Science.gov

Sample records for based multi wavelet

  1. Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems

    NASA Astrophysics Data System (ADS)

    Rossinelli, Diego; Bergdorf, Michael; Hejazialhosseini, Babak; Koumoutsakos, Petros

    We build wavelet-based adaptive numerical methods for the simulation of advection dominated flows that develop multiple spatial scales, with an emphasis on fluid mechanics problems. Wavelet based adaptivity is inherently sequential and in this work we demonstrate that these numerical methods can be implemented in software that is capable of harnessing the capabilities of multi-core architectures while maintaining their computational efficiency. Recent designs in frameworks for multi-core software development allow us to rethink parallelism as task-based, where parallel tasks are specified and automatically mapped into physical threads. This way of exposing parallelism enables the parallelization of algorithms that were considered inherently sequential, such as wavelet-based adaptive simulations. In this paper we present a framework that combines wavelet-based adaptivity with the task-based parallelism. We demonstrate good scaling performance obtained by simulating diverse physical systems on different multi-core and SMP architectures using up to 16 cores.

  2. An Investigation of Wavelet Bases for Grid-Based Multi-Scale Simulations Final Report

    SciTech Connect

    Baty, R.S.; Burns, S.P.; Christon, M.A.; Roach, D.W.; Trucano, T.G.; Voth, T.E.; Weatherby, J.R.; Womble, D.E.

    1998-11-01

    The research summarized in this report is the result of a two-year effort that has focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality was found to be less desirable than weaker semi-orthogonality or bi-orthogonality for solving partial differential equations. This conclusion has led to the development of a multi-scale linear finite element based on a hierarchical change of basis. The reproducing kernel particle method has been found to yield extremely accurate phase characteristics for hyperbolic problems while providing a convenient framework for multi-scale analyses.

  3. Optical correlation recognition of infrared target based on wavelet multi-scale product

    NASA Astrophysics Data System (ADS)

    Chen, Fang-han; Wang, Wen-sheng

    2011-06-01

    As one of the most successful optical correlation recognizers, hybrid optoelectronic joint transform correlator (HOJTC) has received more and more attraction than the purely electronic way in the field of target detection and recognition. It primarily because that HOJTC has the advantages of optics as well as those of electronics. This kind of combination determines that the performance of HOJTC is closely related to optical configuration of system and digital image processing technology. For the stability of optical part, a lot of efforts concerning image processing methods have been made in recent years for improving the power of recognition of HOJTC. Edge contours play a decisive role in target detection. In order to obtain adequate contour feature of target, the solution of edge extraction based on wavelet multi-scale product is proposed. Normalized maximum and argument of each point could be defined utilizing wavelet coefficient of image. Both of them contain the relation of coefficient product between each scale. Edge points synthesized the information of multi-scale are extracted by searching local maxima along the direction of gradient. The way adopted fully exploited the character of multi-resolution of wavelet. Simulation experiments and optical experiments indicate that the energy of correlation peaks is obviously enhanced after the original image is processed by wavelet multi-scale product, and it successfully realizes detection and recognition of infrared target.

  4. Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Wang, Ming-jia; Han, Guang-liang

    2011-08-01

    Being an efficient method of information fusion, image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First, the two original images are decomposed by wavelet transform. Then, based on the PCNN, a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength, so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So, the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment, the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range, which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore, by this algorithm, the threshold adjusting constant is estimated by appointed iteration number. Furthermore, In order to sufficient reflect order of the firing time, the threshold adjusting constant αΘ is estimated by appointed iteration number. So after the iteration achieved, each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules, the experiments upon Multi-focus image are done. Moreover

  5. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  6. Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation

    NASA Astrophysics Data System (ADS)

    Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.

    2017-08-01

    A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.

  7. Fault diagnosis of wind bearing based on multi-scale wavelet kernel extreme learning machine

    NASA Astrophysics Data System (ADS)

    Zhu, Siwen; Jiao, Bin

    2017-08-01

    The principle of kernel Extreme Learning Machine (ELM) is demonstrated. On this basis, a multi - scale wavelet kernel extreme learning machine is proposed. The multi-scale wavelet kernel is used as the kernel function of the extreme learning machine. The test shows that it is an achievable extreme learning machine. Experiments show that, using the multi-scale wavelet kernel extreme learning machine in the wind turbine bearing fault diagnosis has higher classification accuracy and speed than the support vector machine classification algorithm, and has excellent application value.

  8. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  9. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  10. Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination

    PubMed Central

    Kim, Won Hwa; Pachauri, Deepti; Hatt, Charles; Chung, Moo K.; Johnson, Sterling C.; Singh, Vikas

    2012-01-01

    Hypothesis testing on signals defined on surfaces (such as the cortical surface) is a fundamental component of a variety of studies in Neuroscience. The goal here is to identify regions that exhibit changes as a function of the clinical condition under study. As the clinical questions of interest move towards identifying very early signs of diseases, the corresponding statistical differences at the group level invariably become weaker and increasingly hard to identify. Indeed, after a multiple comparisons correction is adopted (to account for correlated statistical tests over all surface points), very few regions may survive. In contrast to hypothesis tests on point-wise measurements, in this paper, we make the case for performing statistical analysis on multi-scale shape descriptors that characterize the local topological context of the signal around each surface vertex. Our descriptors are based on recent results from harmonic analysis, that show how wavelet theory extends to non-Euclidean settings (i.e., irregular weighted graphs). We provide strong evidence that these descriptors successfully pick up group-wise differences, where traditional methods either fail or yield unsatisfactory results. Other than this primary application, we show how the framework allows performing cortical surface smoothing in the native space without mappint to a unit sphere. PMID:25284968

  11. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at

  12. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  13. Application of Wavelet-Based Methods for Accelerating Multi-Time-Scale Simulation of Bistable Heterogeneous Catalysis

    DOE PAGES

    Gur, Sourav; Frantziskonis, George N.; Univ. of Arizona, Tucson, AZ; ...

    2017-02-16

    Here, we report results from a numerical study of multi-time-scale bistable dynamics for CO oxidation on a catalytic surface in a flowing, well-mixed gas stream. The problem is posed in terms of surface and gas-phase submodels that dynamically interact in the presence of stochastic perturbations, reflecting the impact of molecular-scale fluctuations on the surface and turbulence in the gas. Wavelet-based methods are used to encode and characterize the temporal dynamics produced by each submodel and detect the onset of sudden state shifts (bifurcations) caused by nonlinear kinetics. When impending state shifts are detected, a more accurate but computationally expensive integrationmore » scheme can be used. This appears to make it possible, at least in some cases, to decrease the net computational burden associated with simulating multi-time-scale, nonlinear reacting systems by limiting the amount of time in which the more expensive integration schemes are required. Critical to achieving this is being able to detect unstable temporal transitions such as the bistable shifts in the example problem considered here. Lastly, our results indicate that a unique wavelet-based algorithm based on the Lipschitz exponent is capable of making such detections, even under noisy conditions, and may find applications in critical transition detection problems beyond catalysis.« less

  14. Wavelet Characterizations of Multi-Directional Regularity

    NASA Astrophysics Data System (ADS)

    Slimane, Mourad Ben

    2011-05-01

    The study of d dimensional traces of functions of m several variables leads to directional behaviors. The purpose of this paper is two-fold. Firstly, we extend the notion of one direction pointwise Hölder regularity introduced by Jaffard to multi-directions. Secondly, we characterize multi-directional pointwise regularity by Triebel anisotropic wavelet coefficients (resp. leaders), and also by Calderón anisotropic continuous wavelet transform.

  15. Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance

    NASA Astrophysics Data System (ADS)

    Han, Dongying; li, Pei; An, Shujun; Shi, Peiming

    2016-03-01

    In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. A novel weak signal detection method aimed at the problem of detecting multi-frequency signals buried under heavy background noise is proposed based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance (SR). First, the noisy signal is processed by parameter compensation, with the noise and system parameters expanded 10 times to counteract the effect of the damping term. The processed signal is decomposed into multiple signals of different scale frequencies by wavelet transform. Following this, we adjust the size of the scaled signals' amplitudes and reconstruct the signals; the weak signal frequency components are then enhanced by multi-stable stochastic resonance. The enhanced components of the signal are processed through a band-pass filter, leaving the enhanced sections of the signal. The processed signal is analyzed by FFT to achieve detection of the multi-frequency weak signals. The simulation and experimental results show that the proposed method can enhance the signal amplitude, can effectively detect multi-frequency weak signals buried under heavy noise and is valuable and usable for bearing fault signal analysis.

  16. Hermite cubic spline multi-wavelets on the cube

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2015-11-01

    In 2000, W. Dahmen et al. proposed a construction of Hermite cubic spline multi-wavelets adapted to the interval [0, 1]. Later, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of non-zero elements in each column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions, use an anisotropic tensor product to obtain bases on the cube [0, 1]3, and compare their condition numbers.

  17. Wavelet-based detection of bush encroachment in a savanna using multi-temporal aerial photographs and satellite imagery

    NASA Astrophysics Data System (ADS)

    Shekede, Munyaradzi D.; Murwira, Amon; Masocha, Mhosisi

    2015-03-01

    Although increased woody plant abundance has been reported in tropical savannas worldwide, techniques for detecting the direction and magnitude of change are mostly based on visual interpretation of historical aerial photography or textural analysis of multi-temporal satellite images. These techniques are prone to human error and do not permit integration of remotely sensed data from diverse sources. Here, we integrate aerial photographs with high spatial resolution satellite imagery and use a discrete wavelet transform to objectively detect the dynamics in bush encroachment at two protected Zimbabwean savanna sites. Based on the recently introduced intensity-dominant scale approach, we test the hypotheses that: (1) the encroachment of woody patches into the surrounding grassland matrix causes a shift in the dominant scale. This shift in the dominant scale can be detected using a discrete wavelet transform regardless of whether aerial photography and satellite data are used; and (2) as the woody patch size stabilises, woody cover tends to increase thereby triggering changes in intensity. The results show that at the first site where tree patches were already established (Lake Chivero Game Reserve), between 1972 and 1984 the dominant scale of woody patches initially increased from 8 m before stabilising at 16 m and 32 m between 1984 and 2012 while the intensity fluctuated during the same period. In contrast, at the second site, which was formely grass-dominated site (Kyle Game Reserve), we observed an unclear dominant scale (1972) which later becomes distinct in 1985, 1996 and 2012. Over the same period, the intensity increased. Our results imply that using our approach we can detect and quantify woody/bush patch dynamics in savanna landscapes.

  18. Volume holographic wavelet correlators with multi-input channels

    NASA Astrophysics Data System (ADS)

    Feng, Wenyi; Yan, Yingbai; Jin, Guofan; Wu, Minxian; He, Qingsheng

    1999-10-01

    Optical correlators based on volume holographic associative storage and wavelet matched filtering generally have single input channel. In other words, they can only process one input image at a same time. Based on the fact that a volume holographic correlator is not a shift invariance system, novel volume holographic wavelet correlators with multi- input channels are proposed and constructed in this paper to improve the parallelism of processing. Without adding any component, the method of input plane shifting and the technique of angle multiplexing are combined besides the introduction of wavelet transform. With the correlators, several input images can be recognized simultaneously according to a same system output. Conditions of realizing multi-input channel processing are studied in this paper. The mechanism and prototype of the system are described in detail. The performance of the system in human face recognition is testified by experiment. Promising results are given.

  19. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  20. Understanding north-western Mediterranean climate variability: a multi-proxy and multi-sequence approach based on wavelet analysis.

    NASA Astrophysics Data System (ADS)

    Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie

    2017-04-01

    Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years

  1. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  2. Discriminant analyses of stock prices by using multifractality of time series generated via multi-agent systems and interpolation based on wavelet transforms

    NASA Astrophysics Data System (ADS)

    Tokinaga, Shozo; Ikeda, Yoshikazu

    In investments, it is not easy to identify traders'behavior from stock prices, and agent systems may help us. This paper deals with discriminant analyses of stock prices using multifractality of time series generated via multi-agent systems and interpolation based on Wavelet Transforms. We assume five types of agents where a part of agents prefer forecast equations or production rules. Then, it is shown that the time series of artificial stock price reveals as a multifractal time series whose features are defined by the Hausedorff dimension D(h). As a result, we see the relationship between the reliability (reproducibility) of multifractality and D(h) under sufficient number of time series data. However, generally we need sufficient samples to estimate D(h), then we use interpolations of multifractal times series based on the Wavelet Transform.

  3. [A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].

    PubMed

    Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng

    2006-09-01

    The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.

  4. Complex Wavelet Transform-Based Face Recognition

    NASA Astrophysics Data System (ADS)

    Eleyan, Alaa; Özkaramanli, Hüseyin; Demirel, Hasan

    2009-12-01

    Complex approximately analytic wavelets provide a local multiscale description of images with good directional selectivity and invariance to shifts and in-plane rotations. Similar to Gabor wavelets, they are insensitive to illumination variations and facial expression changes. The complex wavelet transform is, however, less redundant and computationally efficient. In this paper, we first construct complex approximately analytic wavelets in the single-tree context, which possess Gabor-like characteristics. We, then, investigate the recently developed dual-tree complex wavelet transform (DT-CWT) and the single-tree complex wavelet transform (ST-CWT) for the face recognition problem. Extensive experiments are carried out on standard databases. The resulting complex wavelet-based feature vectors are as discriminating as the Gabor wavelet-derived features and at the same time are of lower dimension when compared with that of Gabor wavelets. In all experiments, on two well-known databases, namely, FERET and ORL databases, complex wavelets equaled or surpassed the performance of Gabor wavelets in recognition rate when equal number of orientations and scales is used. These findings indicate that complex wavelets can provide a successful alternative to Gabor wavelets for face recognition.

  5. Wavelet Features Based Fingerprint Verification

    NASA Astrophysics Data System (ADS)

    Bagadi, Shweta U.; Thalange, Asha V.; Jain, Giridhar P.

    2010-11-01

    In this work; we present a automatic fingerprint identification system based on Level 3 features. Systems based only on minutiae features do not perform well for poor quality images. In practice, we often encounter extremely dry, wet fingerprint images with cuts, warts, etc. Due to such fingerprints, minutiae based systems show poor performance for real time authentication applications. To alleviate the problem of poor quality fingerprints, and to improve overall performance of the system, this paper proposes fingerprint verification based on wavelet statistical features & co-occurrence matrix features. The features include mean, standard deviation, energy, entropy, contrast, local homogeneity, cluster shade, cluster prominence, Information measure of correlation. In this method, matching can be done between the input image and the stored template without exhaustive search using the extracted feature. The wavelet transform based approach is better than the existing minutiae based method and it takes less response time and hence suitable for on-line verification, with high accuracy.

  6. Detection of Impedance Cardioaraphy's Characteristic Points Based on Wavelet Transform.

    PubMed

    Shuguang, Zhao; Yanhong, Fang; Hailong, Zhao; Min, Tang

    2005-01-01

    With observation that singularities of a multi-scale wavelet transform result are related to discontinuities of the signal, a novel wavelet transform based method is proposed in this paper for detection of biomedical signals' characteristic points. For impedance cardiography signals, characteristic points of the signal dz/dt, including its peaks, start-point and end-point of ventricular ejection are detected and located by using singularities of wavelet transform (e.g., crossover points, maxima, minima). Experiment results showed validity of the approach.

  7. Pedestrian detection based on redundant wavelet transform

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  8. Dual-tree complex wavelet transform and image block residual-based multi-focus image fusion in visual sensor networks.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-11-26

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.

  9. Dual-Tree Complex Wavelet Transform and Image Block Residual-Based Multi-Focus Image Fusion in Visual Sensor Networks

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878

  10. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    PubMed

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  11. Discrete directional wavelet bases for image compression

    NASA Astrophysics Data System (ADS)

    Dragotti, Pier L.; Velisavljevic, Vladan; Vetterli, Martin; Beferull-Lozano, Baltasar

    2003-06-01

    The application of the wavelet transform in image processing is most frequently based on a separable construction. Lines and columns in an image are treated independently and the basis functions are simply products of the corresponding one dimensional functions. Such method keeps simplicity in design and computation, but is not capable of capturing properly all the properties of an image. In this paper, a new truly separable discrete multi-directional transform is proposed with a subsampling method based on lattice theory. Alternatively, the subsampling can be omitted and this leads to a multi-directional frame. This transform can be applied in many areas like denoising, non-linear approximation and compression. The results on non-linear approximation and denoising show very interesting gains compared to the standard two-dimensional analysis.

  12. Leg Motion Classification with Artificial Neural Networks Using Wavelet-Based Features of Gyroscope Signals

    PubMed Central

    Ayrulu-Erdem, Birsel; Barshan, Billur

    2011-01-01

    We extract the informative features of gyroscope signals using the discrete wavelet transform (DWT) decomposition and provide them as input to multi-layer feed-forward artificial neural networks (ANNs) for leg motion classification. Since the DWT is based on correlating the analyzed signal with a prototype wavelet function, selection of the wavelet type can influence the performance of wavelet-based applications significantly. We also investigate the effect of selecting different wavelet families on classification accuracy and ANN complexity and provide a comparison between them. The maximum classification accuracy of 97.7% is achieved with the Daubechies wavelet of order 16 and the reverse bi-orthogonal (RBO) wavelet of order 3.1, both with similar ANN complexity. However, the RBO 3.1 wavelet is preferable because of its lower computational complexity in the DWT decomposition and reconstruction. PMID:22319378

  13. Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals.

    PubMed

    Ayrulu-Erdem, Birsel; Barshan, Billur

    2011-01-01

    We extract the informative features of gyroscope signals using the discrete wavelet transform (DWT) decomposition and provide them as input to multi-layer feed-forward artificial neural networks (ANNs) for leg motion classification. Since the DWT is based on correlating the analyzed signal with a prototype wavelet function, selection of the wavelet type can influence the performance of wavelet-based applications significantly. We also investigate the effect of selecting different wavelet families on classification accuracy and ANN complexity and provide a comparison between them. The maximum classification accuracy of 97.7% is achieved with the Daubechies wavelet of order 16 and the reverse bi-orthogonal (RBO) wavelet of order 3.1, both with similar ANN complexity. However, the RBO 3.1 wavelet is preferable because of its lower computational complexity in the DWT decomposition and reconstruction.

  14. Wavelet-based denoising using local Laplace prior

    NASA Astrophysics Data System (ADS)

    Rabbani, Hossein; Vafadust, Mansur; Selesnick, Ivan

    2007-09-01

    Although wavelet-based image denoising is a powerful tool for image processing applications, relatively few publications have addressed so far wavelet-based video denoising. The main reason is that the standard 3-D data transforms do not provide useful representations with good energy compaction property, for most video data. For example, the multi-dimensional standard separable discrete wavelet transform (M-D DWT) mixes orientations and motions in its subbands, and produces the checkerboard artifacts. So, instead of M-D DWT, usually oriented transforms suchas multi-dimensional complex wavelet transform (M-D DCWT) are proposed for video processing. In this paper we use a Laplace distribution with local variance to model the statistical properties of noise-free wavelet coefficients. This distribution is able to simultaneously model the heavy-tailed and intrascale dependency properties of wavelets. Using this model, simple shrinkage functions are obtained employing maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimators. These shrinkage functions are proposed for video denoising in DCWT domain. The simulation results shows that this simple denoising method has impressive performance visually and quantitatively.

  15. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika

    2017-05-01

    Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.

  16. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  17. Feature enhancement of SAR imagery using Wiener filtering in multi-wavelet domain

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzheng; Huang, Peikang; Zhou, Ping

    2007-11-01

    Recognition of targets in high-resolution synthetic aperture radar(SAR) imagery is a challenging problem in practice. Features of military targets in SAR imagery play important roles in SAR ATR. Robust feature extraction of these targets is difficult due to extended operating conditions such as obscuration, articulation, varied configurations and a host of camouflage. In this paper, a new method based on wiener filtering reconstruction in multi-wavelet domain to enhance target region feature is presented. It uses a wavelet thresholding estimate as a mean to design a wavelet domain Wiener filter employing two different bases of wavelet, one for the thresholding step and another for the filter application. The experimental results demonstrate that the method can improve the target regional feature, can augment statistical separability between targets and clutter, and benefits to speckle suppression using publicly released SAR data from DARPA's MSTAR program.

  18. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    NASA Astrophysics Data System (ADS)

    Fan, W. J.; Lu, Y.

    2006-10-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting.

  19. Wavelet-Based Adaptive Denoising of Phonocardiographic Records

    DTIC Science & Technology

    2007-11-02

    the approximated signal, and d the signal details at the given scale; h and g are biorthogonal filters, corresponding to the selected mother wavelet ...dyadic scale can be written as: where is the orthogonal mother wavelet , and: The discrete version of the dyadic wavelet transform can be based on... wavelet with 4 moments equal to zero (Coiflet-2) as the mother wavelet . The two channels were wavelet decomposed up to the 9th order (i = 0, 1 ... 8

  20. Multi-sensor fusion system using wavelet-based detection algorithm applied to physiological monitoring under high-G environment

    NASA Astrophysics Data System (ADS)

    Ryoo, Han Chool

    2000-06-01

    A significant problem in physiological state monitoring systems with single data channels is high rates of false alarm. In order to reduce false alarm probability, several data channels can be integrated to enhance system performance. In this work, we have investigated a sensor fusion methodology applicable to physiological state monitoring, which combines local decisions made from dispersed detectors. Difficulties in biophysical signal processing are associated with nonstationary signal patterns and individual characteristics of human physiology resulting in nonidentical observation statistics. Thus a two compartment design, a modified version of well established fusion theory in communication systems, is presented and applied to biological signal processing where we combine discrete wavelet transforms (DWT) with sensor fusion theory. The signals were decomposed in time-frequency domain by discrete wavelet transform (DWT) to capture localized transient features. Local decisions by wavelet power analysis are followed by global decisions at the data fusion center operating under an optimization criterion, i.e., minimum error criterion (MEC). We used three signals acquired from human volunteers exposed to high-G forces at the human centrifuge/dynamic flight simulator facility in Warminster, PA. The subjects performed anti-G straining maneuvers to protect them from the adverse effects of high-G forces. These maneuvers require muscular tensing and altered breathing patterns. We attempted to determine the subject's state by detecting the presence or absence of the voluntary anti-G straining maneuvers (AGSM). During the exposure to high G force the respiratory patterns, blood pressure and electroencephalogram (EEG) were measured to determine changes in the subject's state. Experimental results show that the probability of false alarm under MEC can be significantly reduced by applying the same rule found at local thresholds to all subjects, and MEC can be employed as a

  1. Multi-Scale SSA or Data-Adaptive Wavelets

    NASA Astrophysics Data System (ADS)

    Yiou, P.; Sornette, D.; Sornette, D.; Sornette, D.; Ghil, M.; Ghil, M.

    2001-05-01

    Using multi-scale ideas from wavelet analysis, the singular-spectrum analysis (SSA) is extended to the study of nonstationary time series, including the case where their variance diverges. The wavelet transform is similar to a local Fourier transform within a finite moving window whose width W, proportional to the major period of interest, is varied to explore a broad range of such periods. SSA, on the other hand, relies on the construction of the lag-correlation matrix C on M lagged copies of the time series over a fixed window width W proportional to M to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M<= W <= N, where N is the length of the time series. Multi-scale SSA varies W, while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-correlation matrix C(M) as data-adaptive wavelets; successive eigenvectors of C(M) correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain, by a suitable localization of the signal's correlation matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic or geophysical time series. The method is applied to the monthly values of the Southern Oscillation index (SOI) which captures major features of the El Niño/Southern Oscillation in the Tropical Pacific. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 5 and 3 years supports the Devil's staircase scenario for the El Niño/Southern Oscillation phenomenon.

  2. Wavelet-based multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Liu, Dian-Ting; Zhou, Xiao-Dan; Wang, Cheng-Wen

    2008-09-01

    This paper proposes a novel wavelet-based face recognition method using thermal infrared (IR) and visible-light face images. The method applies the combination of Gabor and the Fisherfaces method to the reconstructed IR and visible images derived from wavelet frequency subbands. Our objective is to search for the subbands that are insensitive to the variation in expression and in illumination. The classification performance is improved by combining the multispectal information coming from the subbands that attain individually low equal error rate. Experimental results on Notre Dame face database show that the proposed wavelet-based algorithm outperforms previous multispectral images fusion method as well as monospectral method.

  3. Wavelet-based image compression using fixed residual value

    NASA Astrophysics Data System (ADS)

    Muzaffar, Tanzeem; Choi, Tae-Sun

    2000-12-01

    Wavelet based compression is getting popular due to its promising compaction properties at low bitrate. Zerotree wavelet image coding scheme efficiently exploits multi-level redundancy present in transformed data to minimize coding bits. In this paper, a new technique is proposed to achieve high compression by adding new zerotree and significant symbols to original EZW coder. Contrary to four symbols present in basic EZW scheme, modified algorithm uses eight symbols to generate fewer bits for a given data. Subordinate pass of EZW is eliminated and replaced with fixed residual value transmission for easy implementation. This modification simplifies the coding technique as well and speeds up the process, retaining the property of embeddedness.

  4. Wavelet transform based watermark for digital images.

    PubMed

    Xia, X G; Boncelet, C; Arce, G

    1998-12-07

    In this paper, we introduce a new multiresolution watermarking method for digital images. The method is based on the discrete wavelet transform (DWT). Pseudo-random codes are added to the large coefficients at the high and middle frequency bands of the DWT of an image. It is shown that this method is more robust to proposed methods to some common image distortions, such as the wavelet transform based image compression, image rescaling/stretching and image halftoning. Moreover, the method is hierarchical.

  5. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  6. A wavelet-based method for the forced vibration analysis of piecewise linear single- and multi-DOF systems with application to cracked beam dynamics

    NASA Astrophysics Data System (ADS)

    Joglekar, D. M.; Mitra, M.

    2015-12-01

    The present investigation outlines a method based on the wavelet transform to analyze the vibration response of discrete piecewise linear oscillators, representative of beams with breathing cracks. The displacement and force variables in the governing differential equation are approximated using Daubechies compactly supported wavelets. An iterative scheme is developed to arrive at the optimum transform coefficients, which are back-transformed to obtain the time-domain response. A time-integration scheme, solving a linear complementarity problem at every time step, is devised to validate the proposed wavelet-based method. Applicability of the proposed solution technique is demonstrated by considering several test cases involving a cracked cantilever beam modeled as a bilinear SDOF system subjected to a harmonic excitation. In particular, the presence of higher-order harmonics, originating from the piecewise linear behavior, is confirmed in all the test cases. Parametric study involving the variations in the crack depth, and crack location is performed to bring out their effect on the relative strengths of higher-order harmonics. Versatility of the method is demonstrated by considering the cases such as mixed-frequency excitation and an MDOF oscillator with multiple bilinear springs. In addition to purporting the wavelet-based method as a viable alternative to analyze the response of piecewise linear oscillators, the proposed method can be easily extended to solve inverse problems unlike the other direct time integration schemes.

  7. Contour detection based on wavelet differentiation

    NASA Astrophysics Data System (ADS)

    Bezuglov, D.; Kuzin, A.; Voronin, V.

    2016-05-01

    This work proposes a novel algorithm for contour detection based on high-performance algorithm of wavelet analysis for multimedia applications. To solve the noise effect on the result of peaking in this paper we consider the direct and inverse wavelet differentiation. Extensive experimental evaluation on noisy images demonstrates that our contour detection method significantly outperform competing algorithms. The proposed algorithm provides a means of coupling our system to recognition application such as detection and identification of vehicle number plate.

  8. Image restoration based on wavelets and curvelet

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Chen, Bo

    2014-11-01

    The performance of high-resolution imaging with large optical instruments is severely limited by atmospheric turbulence. Adaptive optics (AO) offers a real-time compensation for turbulence. However, the correction is often only partial, and image restoration is required for reaching or nearing to the diffraction limit. Wavelet-based techniques have been applied in atmospheric turbulencedegraded image restoration. However, wavelets do not restore long edges with high fidelity while curvelets are challenged by small features. Loosely speaking, each transform has its own area of expertise and this complementarity may be of great potential. So, we expect that the combination of different transforms can improve the quality of the result. In this paper, a novel deconvolution algorithm, based on both the wavelet transform and the curvelet transform (NDbWC). It extends previous results which were obtained for the image wavelet-based restoration. Using these two different transformations in the same algorithm allows us to optimally detect in tire same time isotropic features, well represented by the wavelet transform, and edges better represented by the curvelet transform. The NDbWC algorithm works better than classical wavelet-regularization method in deconvolution of the turbulence-degraded image with low SNR.

  9. WaveJava: Wavelet-based network computing

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Jiao, Licheng; Shi, Zhuoer

    1997-04-01

    Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.

  10. Wavelet-based acoustic recognition of aircraft

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1994-09-01

    We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground the paper describes data collection, analysis by various technique, methods of event classification, and extraction of certain physical parameters from wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification, nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.

  11. An adaptive method with integration of multi-wavelet based features for unsupervised classification of SAR images

    NASA Astrophysics Data System (ADS)

    Chamundeeswari, V. V.; Singh, D.; Singh, K.

    2007-12-01

    In single band and single polarized synthetic aperture radar (SAR) images, the information is limited to intensity and texture only and it is very difficult to interpret such SAR images without any a priori information. For unsupervised classification of SAR images, M-band wavelet decomposition is performed on the SAR image and sub-band selection on the basis of energy levels is applied to improve the classification results since sparse representation of sub-bands degrades the performance of classification. Then, textural features are obtained from selected sub-bands and integrated with intensity features. An adaptive neuro-fuzzy algorithm is used to improve computational efficiency by extracting significant features. K-means classification is performed on the extracted features and land features are labeled. This classification algorithm involves user defined parameters. To remove the user dependency and to obtain maximum achievable classification accuracy, an algorithm is developed in this paper for classification accuracy in terms of the parameters involved in the segmentation process. This is very helpful to develop the automated land-cover monitoring system with SAR, where optimized parameters are to be identified only once and these parameters can be applied to SAR imagery of the same scene obtained year after year. A single band, single polarized SAR image is classified into water, urban and vegetation areas using this method and overall classification accuracy is obtained in the range of 85.92%-93.70% by comparing with ground truth data.

  12. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  13. Palm print image recovery and de-noising via multi-channel wavelet filter bank.

    PubMed

    Qiao, Y-H; Li, F-Q; Qiao, A-K; Zhang, J-H; Liang, K; Zeng, Y-J

    2006-01-01

    In this paper, a 3-channel wavelet transform method is introduced to recover palm print images following serious deformation. The deformation processing is actually a kind of digital re-sampling. A filter bank consisting of three filters is implemented for wavelet decomposition of the palm print image, and then a procedure of binary interpolation is performed after the image is reconstructed by another filter bank consisting of another three filters. The design of multi-channel wavelet filter bank is based on the Quadrature Mirror Filter (QMF) method. Because the noise is caused by the Morie stripe, the images are further de-noised after the geometry deformation is addressed. Acceptable results have been obtained.

  14. Wavelet-based zerotree coding of aerospace images

    NASA Astrophysics Data System (ADS)

    Franques, Victoria T.; Jain, Vijay K.

    1996-06-01

    This paper presents a wavelet based image coding method achieving high levels of compression. A multi-resolution subband decomposition system is constructed using Quadrature Mirror Filters. Symmetric extension and windowing of the multi-scaled subbands are incorporated to minimize the boundary effects. Next, the Embedded Zerotree Wavelet coding algorithm is used for data compression method. Elimination of the isolated zero symbol, for certain subbands, leads to an improved EZW algorithm. Further compression is obtained with an adaptive arithmetic coder. We achieve a PSNR of 26.91 dB at a bit rate of 0.018, 35.59 dB at a bit rate of 0.149, and 43.05 dB at 0.892 bits/pixel for the aerospace image, Refuel.

  15. Time Difference of Arrival (TDOA) Estimation Using Wavelet Based Denoising

    DTIC Science & Technology

    1999-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS TIME DIFFERENCE OF ARRIVAL (TDOA) ESTIMATION USING WAVELET BASED DENOISING by Unal Aktas...4. TITLE AND SUBTITLE TIME DIFFERENCE OF ARRIVAL (TDOA) ESTIMATION USING WAVELET BASED DENOISING 6. AUTHOR(S) Unal Aktas 7...difference of arrival (TDOA) method. The wavelet transform is used to increase the accuracy of TDOA estimation. Several denoising techniques based on

  16. Scalable still image coding based on wavelet

    NASA Astrophysics Data System (ADS)

    Yan, Yang; Zhang, Zhengbing

    2005-02-01

    The scalable image coding is an important objective of the future image coding technologies. In this paper, we present a kind of scalable image coding scheme based on wavelet transform. This method uses the famous EZW (Embedded Zero tree Wavelet) algorithm; we give a high-quality encoding to the ROI (region of interest) of the original image and a rough encoding to the rest. This method is applied well in limited memory space condition, and we encode the region of background according to the memory capacity. In this way, we can store the encoded image in limited memory space easily without losing its main information. Simulation results show it is effective.

  17. Signal extrapolation based on wavelet representation

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Kuo, C.-C. Jay; Zhang, Zhen

    1993-11-01

    The Papoulis-Gerchberg (PG) algorithm is well known for band-limited signal extrapolation. We consider the generalization of the PG algorithm to signals in the wavelet subspaces in this research. The uniqueness of the extrapolation for continuous-time signals is examined, and sufficient conditions on signals and wavelet bases for the generalized PG (GPG) algorithm to converge are given. We also propose a discrete GPG algorithm for discrete-time signal extrapolation, and investigate its convergence. Numerical examples are given to illustrate the performance of the discrete GPG algorithm.

  18. A New Wavelet Based Approach to Assess Hydrological Models

    NASA Astrophysics Data System (ADS)

    Adamowski, J. F.; Rathinasamy, M.; Khosa, R.; Nalley, D.

    2014-12-01

    In this study, a new wavelet based multi-scale performance measure (Multiscale Nash Sutcliffe Criteria, and Multiscale Normalized Root Mean Square Error) for hydrological model comparison was developed and tested. The new measure provides a quantitative measure of model performance across different timescales. Model and observed time series are decomposed using the a trous wavelet transform, and performance measures of the model are obtained at each time scale. The usefulness of the new measure was tested using real as well as synthetic case studies. The real case studies included simulation results from the Soil Water Assessment Tool (SWAT), as well as statistical models (the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods). Data from India and Canada were used. The synthetic case studies included different kinds of errors (e.g., timing error, as well as under and over prediction of high and low flows) in outputs from a hydrologic model. It was found that the proposed wavelet based performance measures (i.e., MNSC and MNRMSE) are a more reliable measure than traditional performance measures such as the Nash Sutcliffe Criteria, Root Mean Square Error, and Normalized Root Mean Square Error. It was shown that the new measure can be used to compare different hydrological models, as well as help in model calibration.

  19. Image reconstruction using wavelet multi-resolution technique for time-domain diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Gao, Feng; Jiao, Yuting; Zhao, Huijuan

    2010-02-01

    It is generally believed that the inverse problem in diffuse optical tomography (DOT) is highly ill-posed and its solution is always under-determined and sensitive to noise, which is the main problem in the application of DOT. In this paper, we propose a method on image reconstruction for time-domain diffuse optical tomography based on panel detection and Finite-Difference Method, and introduce an approach to reduce the number of unknown parameters in the reconstruction process. We propose a multi-level scheme to reduce the number of unknowns by parameterizing the spatial distribution of optical properties via wavelet transform and then reconstruct the coefficients of this transform. Compared with previous traditional uni-level full spatial domain algorithm, this method can efficiently improve the reconstruction quality. Numerical simulations show that wavelet-based multi-level inversion is superior to the uni-level algebraic reconstruction technique.

  20. Block-based scalable wavelet image codec

    NASA Astrophysics Data System (ADS)

    Bao, Yiliang; Kuo, C.-C. Jay

    1999-10-01

    This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).

  1. Target profile identification of step frequency MMW radar based on wavelet neural network

    NASA Astrophysics Data System (ADS)

    Li, Yuehua; Gao, Duntang; Shen, Qinghong; Li, Xingguo

    2001-11-01

    With the increased availability of coherent wide band radar, there has been a renewed interest in the target recognition of MMW frequency step radar. A large bandwidth gives high resolution in range which means target recognition may be possible. In this paper, by integrating wavelet with neural network, a new adaptive wavelet function neural network is proposed. An artificial neural network with wavelet as weight coefficients is developed for pattern recognition. It is inspired by wavelet transform theory and feed forward neural network. The good localization characteristics of wavelet functions in both time and frequency space allow hierarchical multi-resolution learning of input-output data mappings. The wavelet shapes are adaptively computed to minimize an energy function for a specific application of radar targets. The mathematical frame of the neural network is introduced and error back propagation algorithm is used. The procedure of using wavelet neural network for identification is described in detail. Based on the target specific information offered by the range profiles of step frequency MMW radar targets, the wavelet neural network is applied to recognition of three kinds of practical radar targets. We find that we can reliably distinguish for three targets over a range of aspect angle. Experiment results indicate that the new feature vector in low dimension is valuable for target recognition, the wavelet neural network has faster convergence speed and higher correct recognition rate and the noise resistance character is good.

  2. Wavelet-based group and phase velocity measurements: Method

    NASA Astrophysics Data System (ADS)

    Yang, H. Y.; Wang, W. W.; Hung, S. H.

    2016-12-01

    Measurements of group and phase velocities of surface waves are often carried out by applying a series of narrow bandpass or stationary Gaussian filters localized at specific frequencies to wave packets and estimating the corresponding arrival times at the peak envelopes and phases of the Fourier spectra. However, it's known that seismic waves are inherently nonstationary and not well represented by a sum of sinusoids. Alternatively, a continuous wavelet transform (CWT) which decomposes a time series into a family of wavelets, translated and scaled copies of a generally fast oscillating and decaying function known as the mother wavelet, is capable of retaining localization in both the time and frequency domain and well-suited for the time-frequency analysis of nonstationary signals. Here we develop a wavelet-based method to measure frequency-dependent group and phase velocities, an essential dataset used in crust and mantle tomography. For a given time series, we employ the complex morlet wavelet to obtain the scalogram of amplitude modulus |Wg| and phase φ on the time-frequency plane. The instantaneous frequency (IF) is then calculated by taking the derivative of phase with respect to time, i.e., (1/2π)dφ(f, t)/dt. Time windows comprising strong energy arrivals to be measured can be identified by those IFs close to the frequencies with the maximum modulus and varying smoothly and monotonically with time. The respective IFs in each selected time window are further interpolated to yield a smooth branch of ridge points or representative IFs at which the arrival time, tridge(f), and phase, φridge(f), after unwrapping and correcting cycle skipping based on a priori knowledge of the possible velocity range, are determined for group and phase velocity estimation. We will demonstrate our measurement method using both ambient noise cross correlation functions and multi-mode surface waves from earthquakes. The obtained dispersion curves will be compared with those by a

  3. Study on the FOG's signal based on wavelet

    NASA Astrophysics Data System (ADS)

    Tang, Ji-qiang; Fang, Jian-cheng; Zhang, Yan-shun

    2006-11-01

    In order to study on the fiber optical gyro (abbreviated as FOG) signal based on wavelet, this paper researches the FOG signal drift model and the properties of wavelet analyzed noise, introduces the wavelet filtering method, wavelet base selection, soft and hard threshold value de-noising algorithm and compulsive filtering based on The Haar wavelet. These threshold value filtering results of both of the soft and of the hard threshold value for the same wavelet base of db4 with the same Donoho threshold values and these results of compulsive filtering based on The Haar wavelet and db4 wavelet are presented also in this paper and then these main conclusions based on foregoing analysis are reached: Larger the resolving scale is, the filtering effect is more perfect. The soft threshold value filtering effect is better than that of the hard threshold value filtering at the cost of calculation when the threshold value is same. The zero shift of the compulsive filtering is least when both the wavelet and the resolving scale are same for these filtering methods. For the compulsive filtering with same wavelets, the filtering effect of Harr is better than that of db4 and the calculation of the former is fewer. Finally the author point out that applying the compulsive filtering with the Harr wavelet base and suitable resolving scale to the signal processing of FOG be helpful for the FOG's design and manufacturing.

  4. 3D Gabor wavelet based vessel filtering of photoacoustic images.

    PubMed

    Haq, Israr Ul; Nagoaka, Ryo; Makino, Takahiro; Tabata, Takuya; Saijo, Yoshifumi

    2016-08-01

    Filtering and segmentation of vasculature is an important issue in medical imaging. The visualization of vasculature is crucial for the early diagnosis and therapy in numerous medical applications. This paper investigates the use of Gabor wavelet to enhance the effect of vasculature while eliminating the noise due to size, sensitivity and aperture of the detector in 3D Optical Resolution Photoacoustic Microscopy (OR-PAM). A detailed multi-scale analysis of wavelet filtering and Hessian based method is analyzed for extracting vessels of different sizes since the blood vessels usually vary with in a range of radii. The proposed algorithm first enhances the vasculature in the image and then tubular structures are classified by eigenvalue decomposition of the local Hessian matrix at each voxel in the image. The algorithm is tested on non-invasive experiments, which shows appreciable results to enhance vasculature in photo-acoustic images.

  5. Ground extraction from airborne laser data based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  6. Compression of Ultrasonic NDT Image by Wavelet Based Local Quantization

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Li, L. Q.; Tsukada, K.; Hanasaki, K.

    2004-02-01

    Compression on ultrasonic image that is always corrupted by noise will cause `over-smoothness' or much distortion. To solve this problem to meet the need of real time inspection and tele-inspection, a compression method based on Discrete Wavelet Transform (DWT) that can also suppress the noise without losing much flaw-relevant information, is presented in this work. Exploiting the multi-resolution and interscale correlation property of DWT, a simple way named DWCs classification, is introduced first to classify detail wavelet coefficients (DWCs) as dominated by noise, signal or bi-effected. A better denoising can be realized by selective thresholding DWCs. While in `Local quantization', different quantization strategies are applied to the DWCs according to their classification and the local image property. It allocates the bit rate more efficiently to the DWCs thus achieve a higher compression rate. Meanwhile, the decompressed image shows the effects of noise suppressed and flaw characters preserved.

  7. The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH-BEKK model

    NASA Astrophysics Data System (ADS)

    Liu, Xueyong; An, Haizhong; Huang, Shupei; Wen, Shaobo

    2017-01-01

    Aiming to investigate the evolution of mean and volatility spillovers between oil and stock markets in the time and frequency dimensions, we employed WTI crude oil prices, the S&P 500 (USA) index and the MICEX index (Russia) for the period Jan. 2003-Dec. 2014 as sample data. We first applied a wavelet-based GARCH-BEKK method to examine the spillover features in frequency dimension. To consider the evolution of spillover effects in time dimension at multiple-scales, we then divided the full sample period into three sub-periods, pre-crisis period, crisis period, and post-crisis period. The results indicate that spillover effects vary across wavelet scales in terms of strength and direction. By analysis the time-varying linkage, we found the different evolution features of spillover effects between the Oil-US stock market and Oil-Russia stock market. The spillover relationship between oil and US stock market is shifting to short-term while the spillover relationship between oil and Russia stock market is changing to all time scales. That result implies that the linkage between oil and US stock market is weakening in the long-term, and the linkage between oil and Russia stock market is getting close in all time scales. This may explain the phenomenon that the US stock index and the Russia stock index showed the opposite trend with the falling of oil price in the post-crisis period.

  8. Wavelet-based multifractal analysis of laser biopsy imagery

    NASA Astrophysics Data System (ADS)

    Jagtap, Jaidip; Ghosh, Sayantan; Panigrahi, Prasanta K.; Pradhan, Asima

    2012-03-01

    In this work, we report a wavelet based multi-fractal study of images of dysplastic and neoplastic HE- stained human cervical tissues captured in the transmission mode when illuminated by a laser light (He-Ne 632.8nm laser). It is well known that the morphological changes occurring during the progression of diseases like cancer manifest in their optical properties which can be probed for differentiating the various stages of cancer. Here, we use the multi-resolution properties of the wavelet transform to analyze the optical changes. For this, we have used a novel laser imagery technique which provides us with a composite image of the absorption by the different cellular organelles. As the disease progresses, due to the growth of new cells, the ratio of the organelle to cellular volume changes manifesting in the laser imagery of such tissues. In order to develop a metric that can quantify the changes in such systems, we make use of the wavelet-based fluctuation analysis. The changing self- similarity during disease progression can be well characterized by the Hurst exponent and the scaling exponent. Due to the use of the Daubechies' family of wavelet kernels, we can extract polynomial trends of different orders, which help us characterize the underlying processes effectively. In this study, we observe that the Hurst exponent decreases as the cancer progresses. This measure could be relatively used to differentiate between different stages of cancer which could lead to the development of a novel non-invasive method for cancer detection and characterization.

  9. EEG analysis using wavelet-based information tools.

    PubMed

    Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A

    2006-06-15

    Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.

  10. Feature Extraction using Wavelet Transform for Multi-class Fault Detection of Induction Motor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Konar, P.

    2014-01-01

    In this paper the theoretical aspects and feature extraction capabilities of continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are experimentally verified from the point of view of fault diagnosis of induction motors. Vertical frame vibration signal is analyzed to develop a wavelet based multi-class fault detection scheme. The redundant and high dimensionality information of CWT makes it computationally in-efficient. Using greedy-search feature selection technique (Greedy-CWT) the redundancy is eliminated to a great extent and found much superior to the widely used DWT technique, even in presence of high level of noise. The results are verified using MLP, SVM, RBF classifiers. The feature selection technique has enabled determination of the most relevant CWT scales and corresponding coefficients. Thus, the inherent limitations of CWT like proper selection of scales and redundant information are eliminated. In the present investigation `db8' is found as the best mother wavelet, due to its long period and higher number of vanishing moments, for detection of motor faults.

  11. Wavelet-based functional mixed models

    PubMed Central

    Morris, Jeffrey S.; Carroll, Raymond J.

    2009-01-01

    Summary Increasingly, scientific studies yield functional data, in which the ideal units of observation are curves and the observed data consist of sets of curves that are sampled on a fine grid. We present new methodology that generalizes the linear mixed model to the functional mixed model framework, with model fitting done by using a Bayesian wavelet-based approach. This method is flexible, allowing functions of arbitrary form and the full range of fixed effects structures and between-curve covariance structures that are available in the mixed model framework. It yields nonparametric estimates of the fixed and random-effects functions as well as the various between-curve and within-curve covariance matrices. The functional fixed effects are adaptively regularized as a result of the non-linear shrinkage prior that is imposed on the fixed effects’ wavelet coefficients, and the random-effect functions experience a form of adaptive regularization because of the separately estimated variance components for each wavelet coefficient. Because we have posterior samples for all model quantities, we can perform pointwise or joint Bayesian inference or prediction on the quantities of the model. The adaptiveness of the method makes it especially appropriate for modelling irregular functional data that are characterized by numerous local features like peaks. PMID:19759841

  12. (Multi)fractality of Earthquakes by use of Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Ito, K.; Struzik, Z. R.

    2002-12-01

    The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability

  13. Gearbox diagnostics using wavelet-based windowing technique

    NASA Astrophysics Data System (ADS)

    Omar, F. K.; Gaouda, A. M.

    2009-08-01

    In extracting gear box acoustic signals embedded in excessive noise, the need for an online and automated tool becomes a crucial necessity. One of the recent approaches that have gained some acceptance within the research arena is the Wavelet multi-resolution analysis (WMRA). However selecting an accurate mother wavelet, defining dynamic threshold values and identifying the resolution levels to be considered in gearboxes fault detection and diagnosis are still challenging tasks. This paper proposes a novel wavelet-based technique for detecting, locating and estimating the severity of defects in gear tooth fracture. The proposed technique enhances the WMRA by decomposing the noisy data into different resolution levels while data sliding it into Kaiser's window. Only the maximum expansion coefficients at each resolution level are used in de-noising, detecting and measuring the severity of the defects. A small set of coefficients is used in the monitoring process without assigning threshold values or performing signal reconstruction. The proposed monitoring technique has been applied to a laboratory data corrupted with high noise level.

  14. A Wavelet Technique For Multi-grid Solver For Large Linear Systems

    NASA Astrophysics Data System (ADS)

    Keller, W.

    In general, large systems of linear equations cannot be solved directly. An iterative solver has to be applied instead. Unfortunately, iterative solvers have a notouriously slow convergence rate, which in the worst case can prevent convergence at all, due to the inavoidable rounding errors. Multi-grid iteration schemes are meant to guarantee a sufficiently high convergence rate, independent from the dimension of the linear system. The idea behind the multi-grid solvers is that the traditional iterative solvers eliminate only the short-wavelength error constituents in the initial guess for the solution. For the elimination of the remaining long-wavelength error constituents a much coarser grid is sufficient. On the coarse grid the dimension of the problem is much smaller so that the elimination can be done by a direct solver. The paper shows that wavelet techniques successfully can be applied for following steps of a multi-grid procedure: · Generation of an approximation of the proplem on a coarse grid from a given approximation on the fine grid. · Restriction of a signal on a fine grid to its approximation on a co grid. · Uplift of a signal from the coarse to the fine grid. The paper starts with a theoretical explanation of the links between wavelets and multi-grid solvers. Based on this investigation the class o operators, which are suitable for a multi-grid solution strategy can be characterized. The numerical efficiency of the approach will be tested for the Planar Stokes problem.

  15. Wall-resolved adaptive simulation with spatially-anisotropic wavelet-based refinement

    NASA Astrophysics Data System (ADS)

    de Stefano, Giuliano; Brown-Dymkoski, Eric; Vasilyev, Oleg V.

    2015-11-01

    In the wavelet-based adaptive multi-resolution approach to turbulence simulation, the separation between resolved energetic structures and unresolved flow is achieved through wavelet threshold filtering. Depending on the thresholding level, the effect of residual motions can be either neglected or modeled, leading to wavelet-based adaptive DNS or LES. Due to the ability to identify and efficiently represent energetic dynamically important flow structures, these methods have been proven reliable and effective for the computational modeling of wall-bounded turbulence. The wall-resolved adaptive approach however necessitates the use of high spatial resolution in the wall region, which practically limits the application to moderate Reynolds numbers. In order to address this issue, a new method that makes use of a spatially-anisotropic adaptive wavelet transform on curvilinear grids is introduced. In contrast to all known adaptive wavelet-based approaches that suffer from the ``curse of anisotropy,'' i.e., isotropic wavelet refinement and inability to have spatially varying aspect ratio of the mesh elements, this approach utilizes spatially-anisotropic wavelet-based refinement. The method is tested for the turbulent flow past a rectangular cylinder at moderately high Reynolds number. This work was supported by NSF under grant No. CBET-1236505.

  16. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Research on ghost imaging method based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Mengying; He, Ruiqing; Chen, Qian; Gu, Guohua; Zhang, Wenwen

    2017-09-01

    We present an algorithm of extracting the wavelet coefficients of object based on ghost imaging (GI) system. Through modification of the projected random patterns by using a series of templates, wavelet transform GI (WTGI) can directly measure the high frequency components of wavelet coefficients without needing the original image. In this study, we theoretically and experimentally perform the high frequency components of wavelet coefficients detection with an arrow and a letter A based on GI and WTGI. Comparing with the traditional method, the use of the algorithm proposed in this paper can significantly improve the quality of the image of wavelet coefficients in both cases. The special advantages of GI will make the wavelet coefficient detection based on WTGI very valuable in real applications.

  18. Wavelet-Based Multiresolution Analyses of Signals

    DTIC Science & Technology

    1992-06-01

    classification. Some signals, notably those of a transient nature, are inherently difficult to analyze with these traditional tools. The Discrete Wavelet Transform has...scales. This thesis investigates dyadic discrete wavelet decompositions of signals. A new multiphase wavelet transform is proposed and investigated. The

  19. Biorthogonal wavelet-based method of moments for electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Qinke

    Wavelet analysis is a technique developed in recent years in mathematics and has found usefulness in signal processing and many other engineering areas. The practical use of wavelets for the solution of partial differential and integral equations in computational electromagnetics has been investigated in this dissertation, with the emphasis on development of biorthogonal wavelet based method of moments for the solution of electric and magnetic field integral equations. The fundamentals and numerical analysis aspects of wavelet theory have been studied. In particular, a family of compactly supported biorthogonal spline wavelet bases on the n-cube (0,1) n has been studied in detail. The wavelet bases were used in this work as a building block to construct biorthogonal wavelet bases on general domain geometry. A specific and practical way of adapting the wavelet bases to certain n- dimensional blocks or elements is proposed based on the domain decomposition and local transformation techniques used in traditional finite element methods and computer aided graphics. The element, with the biorthogonal wavelet base embedded in it, is called a wavelet element in this work. The physical domains which can be treated with this method include general curves, surfaces in 2D and 3D, and 3D volume domains. A two-step mapping is proposed for the purpose of taking full advantage of the zero-moments of wavelets. The wavelet element approach appears to offer several important advantages. It avoids the need of generating very complicated meshes required in traditional finite element based methods, and makes the adaptive analysis easy to implement. A specific implementation procedure for performing adaptive analysis is proposed. The proposed biorthogonal wavelet based method of moments (BWMoM) has been implemented by using object-oriented programming techniques. The main computational issues have been detailed, discussed, and implemented in the whole package. Numerical examples show

  20. Fingerprint spoof detection using wavelet based local binary pattern

    NASA Astrophysics Data System (ADS)

    Kumpituck, Supawan; Li, Dongju; Kunieda, Hiroaki; Isshiki, Tsuyoshi

    2017-02-01

    In this work, a fingerprint spoof detection method using an extended feature, namely Wavelet-based Local Binary Pattern (Wavelet-LBP) is introduced. Conventional wavelet-based methods calculate wavelet energy of sub-band images as the feature for discrimination while we propose to use Local Binary Pattern (LBP) operation to capture the local appearance of the sub-band images instead. The fingerprint image is firstly decomposed by two-dimensional discrete wavelet transform (2D-DWT), and then LBP is applied on the derived wavelet sub-band images. Furthermore, the extracted features are used to train Support Vector Machine (SVM) classifier to create the model for classifying the fingerprint images into genuine and spoof. Experiments that has been done on Fingerprint Liveness Detection Competition (LivDet) datasets show the improvement of the fingerprint spoof detection by using the proposed feature.

  1. Discrete directional wavelet bases and frames: analysis and applications

    NASA Astrophysics Data System (ADS)

    Dragotti, Pier Luigi; Velisavljevic, Vladan; Vetterli, Martin; Beferull-Lozano, Baltasar

    2003-11-01

    The application of the wavelet transform in image processing is most frequently based on a separable construction. Lines and columns in an image are treated independently and the basis functions are simply products of the corresponding one dimensional functions. Such method keeps simplicity in design and computation, but is not capable of capturing properly all the properties of an image. In this paper, a new truly separable discrete multi-directional transform is proposed with a subsampling method based on lattice theory. Alternatively, the subsampling can be omitted and this leads to a multi-directional frame. This transform can be applied in many areas like denoising, non-linear approximation and compression. The results on non-linear approximation and denoising show interesting gains compared to the standard two-dimensional analysis.

  2. Wavelet-based technique for target segmentation

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1995-07-01

    Segmentation of targets embedded in clutter obtained by IR imaging sensors is one of the challenging problems in automatic target recognition (ATR). In this paper a new texture-based segmentation technique is presented that uses the statistics of 2D wavelet decomposition components of the lcoal sections of the image. A measure of statistical similarity is then used to segment the image and separate the target from the background. This technique is applied on a set of real sequential IR imagery and has shown to produce a high degree of segmentation accuracy across varying ranges.

  3. Wavelet-based verification of the quantitative precipitation forecast

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Jakubiak, Bogumil

    2016-06-01

    This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.

  4. Wavelets

    NASA Astrophysics Data System (ADS)

    DeVore, Ronald A.; Lucier, Bradley J.

    The subject of `wavelets' is expanding at such a tremendous rate that it is impossible to give, within these few pages, a complete introduction to all aspects of its theory. We hope, however, to allow the reader to become sufficiently acquainted with the subject to understand, in part, the enthusiasm of its proponents toward its potential application to various numerical problems. Furthermore, we hope that our exposition can guide the reader who wishes to make more serious excursions into the subject. Our viewpoint is biased by our experience in approximation theory and data compression; we warn the reader that there are other viewpoints that are either not represented here or discussed only briefly. For example, orthogonal wavelets were developed primarily in the context of signal processing, an application upon which we touch only indirectly. However, there are several good expositions (e.g. Daubechies (1990) and Rioul and Vetterli (1991)) of this application. A discussion of wavelet decompositions in the context of Littlewood-Paley theory can be found in the monograph of Frazier et al. (1991). We shall also not attempt to give a complete discussion of the history of wavelets. Historical accounts can be found in the book of Meyer (1990) and the introduction of the article of Daubechies (1990). We shall try to give sufficient historical commentary in the course of our presentation to provide some feeling for the subject's development.

  5. Invariant wavelet transform-based automatic target recognition

    NASA Astrophysics Data System (ADS)

    Sadovnik, Lev S.; Rashkovskiy, Oleg; Tebelev, Igor

    1995-03-01

    The authors' previous work (SPIE Vol. 2237) on scale-, rotation- and shift-invariant wavelet transform is extended to accommodate multiple objects in the scene and a nonuniform background. After background elimination and segmentation, a set of windows each containing a single object are analyzed based on an invariant wavelet feature extraction algorithm and neural network-based classifier.

  6. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics.

    PubMed

    Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A; Calhoun, Vince D

    2011-02-14

    We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D denoising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional denoising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the denoised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of denoised wavelet coefficients for each voxel. Given the de-correlated nature of these denoised wavelet coefficients, it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules: First, in the analysis module we combine a new 3-D wavelet denoising approach with signal separation properties of ICA in the wavelet domain. This step helps obtain an activation component that corresponds closely to the true underlying signal, which is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing+spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false

  7. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  8. Dual multichannel optical wavelet transform processor

    NASA Astrophysics Data System (ADS)

    Feng, Wenyi; Yan, Yingbai; Jin, Guofan; Wu, Minxian; He, Qingsheng

    1999-10-01

    Based on the theory of volume holographic associative storage in a photorefractive crystal and that of binary optics, a compact dual multichannel optical wavelet transform processor is proposed and constructed. Both wavelet correlation and wavelet transform can be complemented by the system. Multi-pattern channels are achieved by the inherent parallelism of volume holographic storage. Angle multiplexed holograms of wavelet filtered pattern images are recorded in the crystal Multi-wavelet channels are accomplished by a Dammann grating, which is a binary optical element for spectrum duplication. The grating is adopted to generate a set of channels with different wavelet filters. Wavelet correlation peaks in different wavelet channels are synthesized to improve the recognition accuracy by multiplication pixel by pixel. Wavelet transform results in different wavelet channels are stored in the crystal and can be restored for recognition or segmentation. The application of the system in human face recognition is studied.

  9. A new edge detection based on pyramid-structure wavelet transform

    NASA Astrophysics Data System (ADS)

    Yi, Sheng; Cao, Hanqiang; Li, Xutao; Liu, Miao

    2006-05-01

    Many advance image processing, like segmentation and recognition, are based on contour extraction which usually lack of ability to allocate edge precisely in the image of heavy noise with low computation burden. For such problem, in this paper, we proposed a new approach of edge detection based on pyramid-structure wavelet transform. In order to suppress noise and keep good continuity of edge, the proposed edge representation considered both inter-correlations across the multi-scales and intra-correlations within the single-scale. The former one is described by point-wise singularity. The later one is described by the magnitude and ratio of wavelet coefficients in different sub-bands. Based on such edge modeling, the edge point allocation is then complemented in wavelet domain by synthesizing the edge information in multi-scales. The experimental results shows that our approaches achieve the pixel-level edge detection with strong resistant against noise due to scattering in water.

  10. Facial Feature Extraction Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Viet

    Facial feature extraction is one of the most important processes in face recognition, expression recognition and face detection. The aims of facial feature extraction are eye location, shape of eyes, eye brow, mouth, head boundary, face boundary, chin and so on. The purpose of this paper is to develop an automatic facial feature extraction system, which is able to identify the eye location, the detailed shape of eyes and mouth, chin and inner boundary from facial images. This system not only extracts the location information of the eyes, but also estimates four important points in each eye, which helps us to rebuild the eye shape. To model mouth shape, mouth extraction gives us both mouth location and two corners of mouth, top and bottom lips. From inner boundary we obtain and chin, we have face boundary. Based on wavelet features, we can reduce the noise from the input image and detect edge information. In order to extract eyes, mouth, inner boundary, we combine wavelet features and facial character to design these algorithms for finding midpoint, eye's coordinates, four important eye's points, mouth's coordinates, four important mouth's points, chin coordinate and then inner boundary. The developed system is tested on Yale Faces and Pedagogy student's faces.

  11. Wavelet-based rotationally invariant target classification

    NASA Astrophysics Data System (ADS)

    Franques, Victoria T.; Kerr, David A.

    1997-07-01

    In this paper, a novel approach to feature extraction for rotationally invariant object classification is proposed based directly on a discrete wavelet transformation. This form of feature extraction is equivalent to retaining information features while eliminating redundant features from images, which is a critical property when analyzing large, high dimensional images. Usually, researchers have resorted to a data pre-processing method to reduce the size of the feature space prior to classification. The proposed method employs statistical features extracted directly from the wavelet coefficients generated from a three-level subband decomposition system using a set of orthogonal and regular Quadrature Mirror Filters. This algorithm has two desirable properties: (1) It reduces the number of dimensions of the feature space necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; (2) Regardless of the target orientation, the algorithm can perform classification with low error rates. Furthermore, the filters used have performed well in the image compression regime, but they have not been applied to applications in target classification which will be demonstrated in this paper. The results of several classification experiments on variously oriented samples of the visible wavelength targets will be presented.

  12. Wavelets

    SciTech Connect

    Chui, C.K.

    1992-01-01

    The subject of wavelet analysis has recently drawn a great deal of attention from mathematical scientists in various disciplines. It is creating a common link between mathematicians, physicists, and electrical engineers. This book consist of both monographs and edited volumes on the theory and applications of this rapidly developing subject. Its objective is to meet the needs of academic industrial, and governmental researchers, as well as to provide instructional material for teaching at both the undergraduate and graduate levels.

  13. Ablation of multi-wavelet re-entry: general principles and in silico analyses.

    PubMed

    Spector, Peter S; Correa de Sa, Daniel D; Tischler, Ethan S; Thompson, Nathaniel C; Habel, Nicole; Stinnett-Donnelly, Justin; Benson, Bryce E; Bielau, Philipp; Bates, Jason H T

    2012-11-01

    Catheter ablation strategies for treatment of cardiac arrhythmias are quite successful when targeting spatially constrained substrates. Complex, dynamic, and spatially varying substrates, however, pose a significant challenge for ablation, which delivers spatially fixed lesions. We describe tissue excitation using concepts of surface topology which provides a framework for addressing this challenge. The aim of this study was to test the efficacy of mechanism-based ablation strategies in the setting of complex dynamic substrates. We used a computational model of propagation through electrically excitable tissue to test the effects of ablation on excitation patterns of progressively greater complexity, from fixed rotors to multi-wavelet re-entry. Our results indicate that (i) focal ablation at a spiral-wave core does not result in termination; (ii) termination requires linear lesions from the tissue edge to the spiral-wave core; (iii) meandering spiral-waves terminate upon collision with a boundary (linear lesion or tissue edge); (iv) the probability of terminating multi-wavelet re-entry is proportional to the ratio of total boundary length to tissue area; (v) the efficacy of linear lesions varies directly with the regional density of spiral-waves. We establish a theoretical framework for re-entrant arrhythmias that explains the requirements for their successful treatment. We demonstrate the inadequacy of focal ablation for spatially fixed spiral-waves. Mechanistically guided principles for ablating multi-wavelet re-entry are provided. The potential to capitalize upon regional heterogeneity of spiral-wave density for improved ablation efficacy is described.

  14. Wavelet based image visibility enhancement of IR images

    NASA Astrophysics Data System (ADS)

    Jiang, Qin; Owechko, Yuri; Blanton, Brendan

    2016-05-01

    Enhancing the visibility of infrared images obtained in a degraded visibility environment is very important for many applications such as surveillance, visual navigation in bad weather, and helicopter landing in brownout conditions. In this paper, we present an IR image visibility enhancement system based on adaptively modifying the wavelet coefficients of the images. In our proposed system, input images are first filtered by a histogram-based dynamic range filter in order to remove sensor noise and convert the input images into 8-bit dynamic range for efficient processing and display. By utilizing a wavelet transformation, we modify the image intensity distribution and enhance image edges simultaneously. In the wavelet domain, low frequency wavelet coefficients contain original image intensity distribution while high frequency wavelet coefficients contain edge information for the original images. To modify the image intensity distribution, an adaptive histogram equalization technique is applied to the low frequency wavelet coefficients while to enhance image edges, an adaptive edge enhancement technique is applied to the high frequency wavelet coefficients. An inverse wavelet transformation is applied to the modified wavelet coefficients to obtain intensity images with enhanced visibility. Finally, a Gaussian filter is used to remove blocking artifacts introduced by the adaptive techniques. Since wavelet transformation uses down-sampling to obtain low frequency wavelet coefficients, histogram equalization of low-frequency coefficients is computationally more efficient than histogram equalization of the original images. We tested the proposed system with degraded IR images obtained from a helicopter landing in brownout conditions. Our experimental results show that the proposed system is effective for enhancing the visibility of degraded IR images.

  15. Content based image retrieval based on wavelet transform coefficients distribution.

    PubMed

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process.

  16. Carriage Error Identification Based on Cross-Correlation Analysis and Wavelet Transformation

    PubMed Central

    Mu, Donghui; Chen, Dongju; Fan, Jinwei; Wang, Xiaofeng; Zhang, Feihu

    2012-01-01

    This paper proposes a novel method for identifying carriage errors. A general mathematical model of a guideway system is developed, based on the multi-body system method. Based on the proposed model, most error sources in the guideway system can be measured. The flatness of a workpiece measured by the PGI1240 profilometer is represented by a wavelet. Cross-correlation analysis performed to identify the error source of the carriage. The error model is developed based on experimental results on the low frequency components of the signals. With the use of wavelets, the identification precision of test signals is very high. PMID:23012558

  17. Wavelet-based approach to character skeleton.

    PubMed

    You, Xinge; Tang, Yuan Yan

    2007-05-01

    Character skeleton plays a significant role in character recognition. The strokes of a character may consist of two regions, i.e., singular and regular regions. The intersections and junctions of the strokes belong to singular region, while the straight and smooth parts of the strokes are categorized to regular region. Therefore, a skeletonization method requires two different processes to treat the skeletons in theses two different regions. All traditional skeletonization algorithms are based on the symmetry analysis technique. The major problems of these methods are as follows. 1) The computation of the primary skeleton in the regular region is indirect, so that its implementation is sophisticated and costly. 2) The extracted skeleton cannot be exactly located on the central line of the stroke. 3) The captured skeleton in the singular region may be distorted by artifacts and branches. To overcome these problems, a novel scheme of extracting the skeleton of character based on wavelet transform is presented in this paper. This scheme consists of two main steps, namely: a) extraction of primary skeleton in the regular region and b) amendment processing of the primary skeletons and connection of them in the singular region. A direct technique is used in the first step, where a new wavelet-based symmetry analysis is developed for finding the central line of the stroke directly. A novel method called smooth interpolation is designed in the second step, where a smooth operation is applied to the primary skeleton, and, thereafter, the interpolation compensation technique is proposed to link the primary skeleton, so that the skeleton in the singular region can be produced. Experiments are conducted and positive results are achieved, which show that the proposed skeletonization scheme is applicable to not only binary image but also gray-level image, and the skeleton is robust against noise and affine transform.

  18. The Brera Multi-scale Wavelet ROSAT HRI source catalogue

    NASA Astrophysics Data System (ADS)

    Panzera, M. R.; Campana, S.; Covino, S.; Lazzati, D.; Mignani, R. P.; Moretti, A.; Tagliaferri, G.

    2003-02-01

    We present the Brera Multi-scale Wavelet ROSAT HRI source catalogue (BMW-HRI) derived from all ROSAT HRI pointed observations with exposure times longer than 100 s available in the ROSAT public archives. The data were analyzed automatically using a wavelet detection algorithm suited to the detection and characterization of both point-like and extended sources. This algorithm is able to detect and disentangle sources in very crowded fields and/or in the presence of extended or bright sources. Images have been also visually inspected after the analysis to ensure verification. The final catalogue, derived from 4303 observations, consists of 29 089 sources detected with a detection probability of >=4.2 sigma . For each source, the primary catalogue entries provide name, position, count rate, flux and extension along with the relative errors. In addition, results of cross-correlations with existing catalogues at different wavelengths (FIRST, IRAS, 2MASS and GSC2) are also reported. Some information is available on the web via the DIANA Interface. As an external check, we compared our catalogue with the previously available ROSHRICAT catalogue (both in its short and long versions) and we were able to recover, for the short version, ~ 90% of the entries. We computed the sky coverage of the entire HRI data set by means of simulations. The complete BMW-HRI catalogue provides a sky coverage of 732 deg2 down to a limiting flux of ~ 10-12 erg s-1 cm-2 and of 10 deg2 down to ~ 10-14 erg s-1 cm-2. We were able to compute the cosmological log(N)-log(S) distribution down to a flux of =~ 1.2 x 10-14 erg s-1 cm-2. The catalogue is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/351

  19. Wavelet-based Multiresolution Particle Methods

    NASA Astrophysics Data System (ADS)

    Bergdorf, Michael; Koumoutsakos, Petros

    2006-03-01

    Particle methods offer a robust numerical tool for solving transport problems across disciplines, such as fluid dynamics, quantitative biology or computer graphics. Their strength lies in their stability, as they do not discretize the convection operator, and appealing numerical properties, such as small dissipation and dispersion errors. Many problems of interest are inherently multiscale, and their efficient solution requires either multiscale modeling approaches or spatially adaptive numerical schemes. We present a hybrid particle method that employs a multiresolution analysis to identify and adapt to small scales in the solution. The method combines the versatility and efficiency of grid-based Wavelet collocation methods while retaining the numerical properties and stability of particle methods. The accuracy and efficiency of this method is then assessed for transport and interface capturing problems in two and three dimensions, illustrating the capabilities and limitations of our approach.

  20. Wavelet based feature extraction and visualization in hyperspectral tissue characterization

    PubMed Central

    Denstedt, Martin; Bjorgan, Asgeir; Milanič, Matija; Randeberg, Lise Lyngsnes

    2014-01-01

    Hyperspectral images of tissue contain extensive and complex information relevant for clinical applications. In this work, wavelet decomposition is explored for feature extraction from such data. Wavelet methods are simple and computationally effective, and can be implemented in real-time. The aim of this study was to correlate results from wavelet decomposition in the spectral domain with physical parameters (tissue oxygenation, blood and melanin content). Wavelet decomposition was tested on Monte Carlo simulations, measurements of a tissue phantom and hyperspectral data from a human volunteer during an occlusion experiment. Reflectance spectra were decomposed, and the coefficients were correlated to tissue parameters. This approach was used to identify wavelet components that can be utilized to map levels of blood, melanin and oxygen saturation. The results show a significant correlation (p <0.02) between the chosen tissue parameters and the selected wavelet components. The tissue parameters could be mapped using a subset of the calculated components due to redundancy in spectral information. Vessel structures are well visualized. Wavelet analysis appears as a promising tool for extraction of spectral features in skin. Future studies will aim at developing quantitative mapping of optical properties based on wavelet decomposition. PMID:25574437

  1. Image coding based on energy-sorted wavelet packets

    NASA Astrophysics Data System (ADS)

    Kong, Lin-Wen; Lay, Kuen-Tsair

    1995-04-01

    The discrete wavelet transform performs multiresolution analysis, which effectively decomposes a digital image into components with different degrees of details. In practice, it is usually implemented in the form of filter banks. If the filter banks are cascaded and both the low-pass and the high-pass components are further decomposed, a wavelet packet is obtained. The coefficients of the wavelet packet effectively represent subimages in different resolution levels. In the energy-sorted wavelet- packet decomposition, all subimages in the packet are then sorted according to their energies. The most important subimages, as measured by the energy, are preserved and coded. By investigating the histogram of each subimage, it is found that the pixel values are well modelled by the Laplacian distribution. Therefore, the Laplacian quantization is applied to quantized the subimages. Experimental results show that the image coding scheme based on wavelet packets achieves high compression ratio while preserving satisfactory image quality.

  2. Remote sensing image compression method based on lift scheme wavelet transform

    NASA Astrophysics Data System (ADS)

    Tao, Hongjiu; Tang, Xinjian; Liu, Jian; Tian, Jinwen

    2003-06-01

    Based on lifting scheme and the construction theorem of the integer Haar wavelet and biorthogonal wavelet, we propose a new integer wavelet transform construct method on the basis of lift scheme after introduciton of constructing specific-demand biorthogonal wavelet transform using Harr wavelet and Lazy wavelet. In this paper, we represent the method and algorithm of the lifting scheme, and we also give mathematical formulation on this method and experimental results as well.

  3. Coarse-to-fine wavelet-based airport detection

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun

    2015-10-01

    Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.

  4. Continuous wavelet transform-based feature selection applied to near-infrared spectral diagnosis of cancer.

    PubMed

    Chen, Hui; Lin, Zan; Mo, Lin; Wu, Hegang; Wu, Tong; Tan, Chao

    2015-01-01

    Spectrum is inherently local in nature since it can be thought of as a signal being composed of various frequency components. Wavelet transform (WT) is a powerful tool that partitions a signal into components with different frequency. The property of multi-resolution enables WT a very effective and natural tool for analyzing spectrum-like signal. In this study, a continuous wavelet transform (CWT)-based variable selection procedure was proposed to search for a set of informative wavelet coefficients for constructing a near-infrared (NIR) spectral diagnosis model of cancer. The CWT provided a fine multi-resolution feature space for selecting best predictors. A measure of discriminating power (DP) was defined to evaluate the coefficients. Partial least squares-discriminant analysis (PLS-DA) was used as the classification algorithm. A NIR spectral dataset associated to cancer diagnosis was used for experiment. The optimal results obtained correspond to the wavelet of db2. It revealed that on condition of having better performance on the training set, the optimal PLS-DA model using only 40 wavelet coefficients in 10 scales achieved the same performance as the one using all the variables in the original space on the test set: an overall accuracy of 93.8%, sensitivity of 92.5% and specificity of 96.3%. It confirms that the CWT-based feature selection coupled with PLS-DA is feasible and effective for constructing models of diagnostic cancer by NIR spectroscopy.

  5. Wavelet-based regularity analysis reveals Recurrent Spatiotemporal Behavior in Resting-state fMRI

    PubMed Central

    Smith, Robert X.; Jann, Kay; Ances, Beau; Wang, Danny J.J.

    2015-01-01

    One of the major findings from multi-modal neuroimaging studies in the past decade is that the human brain is anatomically and functionally organized into large-scale networks. In resting state fMRI (rs-fMRI), spatial patterns emerge when temporal correlations between various brain regions are tallied, evidencing networks of ongoing intercortical cooperation. However, the dynamic structure governing the brain’s spontaneous activity is far less understood due to the short and noisy nature of the rs-fMRI signal. Here we develop a wavelet-based regularity analysis based on noise estimation capabilities of the wavelet transform to measure recurrent temporal pattern stability within the rs-fMRI signal across multiple temporal scales. The method consists of performing a stationary wavelet transform (SWT) to preserve signal structure, followed by construction of “lagged” subsequences to adjust for correlated features, and finally the calculation of sample entropy across wavelet scales based on an “objective” estimate of noise level at each scale. We found that the brain’s default mode network (DMN) areas manifest a higher level of irregularity in rs-fMRI time series than rest of the brain. In 25 aged subjects with mild cognitive impairment and 25 matched healthy controls, wavelet based regularity analysis showed improved sensitivity in detecting changes in the regularity of rs-fMRI signals between the two groups within the DMN and executive control networks, compared to standard multiscale entropy analysis. Wavelet based regularity analysis based on noise estimation capabilities of the wavelet transform is a promising technique to characterize the dynamic structure of rs-fMRI as well as other biological signals. PMID:26096080

  6. A Comparison of Wavelet-Based and Ridgelet-Based Texture Classification of Tissues in Computed Tomography

    NASA Astrophysics Data System (ADS)

    Semler, Lindsay; Dettori, Lucia

    The research presented in this article is aimed at developing an automated imaging system for classification of tissues in medical images obtained from Computed Tomography (CT) scans. The article focuses on using multi-resolution texture analysis, specifically: the Haar wavelet, Daubechies wavelet, Coiflet wavelet, and the ridgelet. The algorithm consists of two steps: automatic extraction of the most discriminative texture features of regions of interest and creation of a classifier that automatically identifies the various tissues. The classification step is implemented using a cross-validation Classification and Regression Tree approach. A comparison of wavelet-based and ridgelet-based algorithms is presented. Tests on a large set of chest and abdomen CT images indicate that, among the three wavelet-based algorithms, the one using texture features derived from the Haar wavelet transform clearly outperforms the one based on Daubechies and Coiflet transform. The tests also show that the ridgelet-based algorithm is significantly more effective and that texture features based on the ridgelet transform are better suited for texture classification in CT medical images.

  7. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals

    NASA Astrophysics Data System (ADS)

    Wang, Yuan 1Ji, Yanju 2Li, Suyi 13Lin, Jun 12Zhou, Fengdao 1Yang, Guihong

    2013-09-01

    A grounded electrical source airborne transient electromagnetic (GREATEM) system on an airship enjoys high depth of prospecting and spatial resolution, as well as outstanding detection efficiency and easy flight control. However, the movement and swing of the front-fixed receiving coil can cause severe baseline drift, leading to inferior resistivity image formation. Consequently, the reduction of baseline drift of GREATEM is of vital importance to inversion explanation. To correct the baseline drift, a traditional interpolation method estimates the baseline `envelope' using the linear interpolation between the calculated start and end points of all cycles, and obtains the corrected signal by subtracting the envelope from the original signal. However, the effectiveness and efficiency of the removal is found to be low. Considering the characteristics of the baseline drift in GREATEM data, this study proposes a wavelet-based method based on multi-resolution analysis. The optimal wavelet basis and decomposition levels are determined through the iterative comparison of trial and error. This application uses the sym8 wavelet with 10 decomposition levels, and obtains the approximation at level-10 as the baseline drift, then gets the corrected signal by removing the estimated baseline drift from the original signal. To examine the performance of our proposed method, we establish a dipping sheet model and calculate the theoretical response. Through simulations, we compare the signal-to-noise ratio, signal distortion, and processing speed of the wavelet-based method and those of the interpolation method. Simulation results show that the wavelet-based method outperforms the interpolation method. We also use field data to evaluate the methods, compare the depth section images of apparent resistivity using the original signal, the interpolation-corrected signal and the wavelet-corrected signal, respectively. The results confirm that our proposed wavelet-based method is an

  8. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  9. Image denoising based on wavelet cone of influence analysis

    NASA Astrophysics Data System (ADS)

    Pang, Wei; Li, Yufeng

    2009-11-01

    Donoho et al have proposed a method for denoising by thresholding based on wavelet transform, and indeed, the application of their method to image denoising has been extremely successful. But this method is based on the assumption that the type of noise is only additive Gaussian white noise, which is not efficient to impulse noise. In this paper, a new image denoising algorithm based on wavelet cone of influence (COI) analyzing is proposed, and which can effectively remove the impulse noise and preserve the image edges via undecimated discrete wavelet transform (UDWT). Furthermore, combining with the traditional wavelet thresholding denoising method, it can be also used to restrain more widely type of noise such as Gaussian noise, impulse noise, poisson noise and other mixed noise. Experiment results illustrate the advantages of this method.

  10. Space-based RF signal classification using adaptive wavelet features

    SciTech Connect

    Caffrey, M.; Briles, S.

    1995-04-01

    RF signals are dispersed in frequency as they propagate through the ionosphere. For wide-band signals, this results in nonlinearly- chirped-frequency, transient signals in the VHF portion of the spectrum. This ionospheric dispersion provide a means of discriminating wide-band transients from other signals (e.g., continuous-wave carriers, burst communications, chirped-radar signals, etc.). The transient nature of these dispersed signals makes them candidates for wavelet feature selection. Rather than choosing a wavelet ad hoc, we adaptively compute an optimal mother wavelet via a neural network. Gaussian weighted, linear frequency modulate (GLFM) wavelets are linearly combined by the network to generate our application specific mother wavelet, which is optimized for its capacity to select features that discriminate between the dispersed signals and clutter (e.g., multiple continuous-wave carriers), not for its ability to represent the dispersed signal. The resulting mother wavelet is then used to extract features for a neutral network classifier. The performance of the adaptive wavelet classifier is the compared to an FFT based neural network classifier.

  11. [Application of kalman filtering based on wavelet transform in ICP-AES].

    PubMed

    Qin, Xia; Shen, Lan-sun

    2002-12-01

    Kalman filtering is a recursive algorithm, which has been proposed as an attractive alternative to correct overlapping interferences in ICP-AES. However, the noise in ICP-AES contaminates the signal arising from the analyte and hence limits the accuracy of kalman filtering. Wavelet transform is a powerful technique in signal denoising due to its multi-resolution characteristics. In this paper, first, the effect of noise on kalman filtering is discussed. Then we apply the wavelet-transform-based soft-thresholding as the pre-processing of kalman filtering. The simulation results show that the kalman filtering based on wavelet transform can effectively reduce the noise and increase the accuracy of the analysis.

  12. Riesz wavelets and multiresolution structures

    NASA Astrophysics Data System (ADS)

    Larson, David R.; Tang, Wai-Shing; Weber, Eric

    2001-12-01

    Multiresolution structures are important in applications, but they are also useful for analyzing properties of associated wavelets. Given a nonorthogonal (multi-) wavelet in a Hilbert space, we construct a core subspace. Subsequently, the dilates of the core subspace defines a ladder of nested subspaces. Of fundamental importance are two questions: 1) when is the core subspace shift invariant; and if yes, then 2) when is the core subspace generated by shifts of a single vector, i.e. there exists a scaling vector. If the wavelet generates a Riesz basis then the answer to question 1) is yes if and only if the wavelet is a biorthogonal wavelet. Additionally, if the wavelet generates a tight frame of arbitrary frame constant, then the core subspace is shift invariant. Question 1) is still open in case the wavelet generates a non-tight frame. We also present some known results to question 2) and provide some preliminary improvements. Our analysis here arises from investigating the dimension function and the multiplicity function of a wavelet. These two functions agree if the wavelet is orthogonal. Finally, we discuss how these questions are important for considering linear perturbation of wavelets. Utilizing the idea of the local commutant of a unitary system developed by Dai and Larson, we show that nearly all linear perturbations of two orthonormal wavelets form a Riesz wavelet. If in fact these wavelets correspond to a von Neumann algebra in the local commutant of a base wavelet, then the interpolated wavelet is biorthogonal. Moreover, we demonstrate that in this case the interpolated wavelets have a scaling vector if the base wavelet has a scaling vector.

  13. An Improved Spectral Background Subtraction Method Based on Wavelet Energy.

    PubMed

    Zhao, Fengkui; Wang, Jian; Wang, Aimin

    2016-12-01

    Most spectral background subtraction methods rely on the difference in frequency response of background compared with characteristic peaks. It is difficult to extract accurately the background components from the spectrum when characteristic peaks and background have overlaps in frequency domain. An improved background estimation algorithm based on iterative wavelet transform (IWT) is presented. The wavelet entropy principle is used to select the best wavelet basis. A criterion based on wavelet energy theory to determine the optimal iteration times is proposed. The case of energy dispersive X-ray spectroscopy is discussed for illustration. A simulated spectrum with a prior known background and an experimental spectrum are tested. The processing results of the simulated spectrum is compared with non-IWT and it demonstrates the superiority of the IWT. It has great significance to improve the accuracy for spectral analysis.

  14. Principal square root of 3-subdivision-based biorthogonal wavelets.

    PubMed

    Wang, Huawei; Qin, Kaihuai; Sun, Hanqiu

    2007-01-01

    A new efficient biorthogonal wavelet analysis based on the principal square root of subdivision is proposed in the paper by using the lifting scheme. Since the principal square root of subdivision is of the slowest topological refinement among the traditional triangular subdivisions, the multiresolution analysis based on the principal square root of subdivision is more balanced than the existing wavelet analyses on triangular meshes, and accordingly offers more levels of detail for processing polygonal models. In order to optimize the multiresolution analysis process, the new wavelets, no matter whether they are interior or on boundaries, are orthogonalized with the local scaling functions based on a discrete inner product with subdivision masks. Because the wavelet analysis and synthesis algorithms are actually composed of a series of local lifting operations, they can be performed in linear time. The experiments demonstrate the efficiency and stability of the wavelet analysis for both closed and open triangular meshes with principal square root of subdivision connectivity. The principal square root of -subdivision-based biorthogonal wavelets can be used in many applications such as progressive transmission, shape approximation, multiresolution editing and rendering of 3D geometric models.

  15. Classification of Underwater Signals Using Wavelet-Based Decompositions

    DTIC Science & Technology

    1998-06-01

    proposed by Learned and Willsky [21], uses the SVD information obtained from the power mapping, the second one selects the most within-a-class...34 SPIE, Vol. 2242, pp. 792-802, Wavelet Applications, 1994 [14] R. Coifman and D. Donoho, "Translation-Invariant Denoising ," Internal Report...J. Barsanti, Jr., Denoising of Ocean Acoustic Signals Using Wavelet-Based Techniques, MSEE Thesis, Naval Postgraduate School, Monterey, California

  16. Wavelet-based approach for detection and analysis of transient signal in distributed power system

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Han, Pu

    2008-10-01

    By combining wavelet transform (WT) with neural network theory, a novel approach is put forward to detect transient fault and analyze voltage stability. The application of signal denoising based on the statistic rule is proposed to determine the threshold of each order of wavelet space. In a view of the inter relationship of wavelet transform and neural network, the whole and local fractal exponents obtained from WT coefficients as features are presented for extracting signal features. The effectiveness of the new algorithm used to extract the characteristic signal is described, which can be realized by the value of those types of transient signal. This model incorporates the advantages of morphological filter and multi-scale WT to extract the feature of fault signal meanwhile restraining various noises. Besides, it can be implemented in real time using the available hardware. The effectiveness of this model was verified with the voltage stability analysis of simulation results.

  17. Wavelet-based target detection using multiscale directional analysis

    NASA Astrophysics Data System (ADS)

    Chambers, Bradley J.; Reynolds, William D., Jr.; Campbell, Derrick S.; Fennell, Darius K.; Ansari, Rashid

    2007-04-01

    Efficient processing of imagery derived from remote sensing systems has become ever more important due to increasing data sizes, rates, and bit depths. This paper proposes a target detection method that uses a special class of wavelets based on highly frequency-selective directional filter banks. The approach helps isolate object features in different directional filter output components. These components lend themselves well to the application of powerful denoising and edge detection procedures in the wavelet domain. Edge information is derived from directional wavelet decompositions to detect targets of known dimension in electro optical imagery. Results of successful detection of objects using the proposed method are presented in the paper. The approach highlights many of the benefits of working with directional wavelet analysis for image denoising and detection.

  18. Quantitative assessment of laser-dazzling effects through wavelet-weighted multi-scale SSIM measurements

    NASA Astrophysics Data System (ADS)

    Qian, Fang; Guo, Jin; Sun, Tao; Wang, Tingfeng

    2015-04-01

    Laser active imaging systems are widespread tools used in region surveillance and threat identification. However, the photoelectric imaging detector in the imaging systems is easy to be disturbed and this leads to errors of the recognition and even the missing of the target. In this paper, a novel wavelet-weighted multi-scale structural similarity (WWMS-SSIM) algorithm is proposed. 2-D four-level wavelet decomposition is performed for the original and disturbed images. Each image can be partitioned into one low-frequency subband (LL) and a series of octave high-frequency subbands (HL, LH and HH). Luminance, contrast and structure comparison are computed in different subbands with different weighting factors. Based on the results of the above, we can construct a modified WWMS-SSIM. Cross-distorted image quality assessment experiments show that the WWMS-SSIM algorithm is more suitable for the subjective visual feeling comparing with NMSE and SSIM. In the laser-dazzling image quality assessment experiments, the WWMS-SSIM gives more reasonable evaluations to the images with different power and laser spot positions, which can be useful to give the guidance of the laser active imaging system defense and application.

  19. Three-dimensional compression scheme based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Xu, Hui; Liao, Mengyang

    1999-03-01

    In this paper, a 3D compression method based on separable wavelet transform is discussed in detail. The most commonly used digital modalities generate multiple slices in a single examination, which are normally anatomically or physiologically correlated to each other. 3D wavelet compression methods can achieve more efficient compression by exploring the correlation between slices. The first step is based on a separable 3D wavelet transform. Considering the difference between pixel distances within a slice and those between slices, one biorthogonal Antoninin filter bank is applied within 2D slices and a second biorthogonal Villa4 filter bank on the slice direction. Then, S+P transform is applied in the low-resolution wavelet components and an optimal quantizer is presented after analysis of the quantization noise. We use an optimal bit allocation algorithm, which, instead of eliminating the coefficients of high-resolution components in smooth areas, minimizes the system reconstruction distortion at a given bit-rate. Finally, to remain high coding efficiency and adapt to different properties of each component, a comprehensive entropy coding method is proposed, in which arithmetic coding method is applied in high-resolution components and adaptive Huffman coding method in low-resolution components. Our experimental results are evaluated by several image measures and our 3D wavelet compression scheme is proved to be more efficient than 2D wavelet compression.

  20. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  1. A new multi-resolution hybrid wavelet for analysis and image compression

    NASA Astrophysics Data System (ADS)

    Kekre, Hemant B.; Sarode, Tanuja K.; Vig, Rekha

    2015-12-01

    Most of the current image- and video-related applications require higher resolution of images and higher data rates during transmission, better compression techniques are constantly being sought after. This paper proposes a new and unique hybrid wavelet technique which has been used for image analysis and compression. The proposed hybrid wavelet combines the properties of existing orthogonal transforms in the most desirable way and also provides for multi-resolution analysis. These wavelets have unique properties that they can be generated for various sizes and types by using different component transforms and varying the number of components at each level of resolution. These hybrid wavelets have been applied to various standard images like Lena (512 × 512), Cameraman (256 × 256) and the values of peak signal to noise ratio (PSNR) obtained are compared with those obtained using some standard existing compression techniques. Considerable improvement in the values of PSNR, as much as 5.95 dB higher than the standard methods, has been observed, which shows that hybrid wavelet gives better compression. Images of various sizes like Scenery (200 × 200), Fruit (375 × 375) and Barbara (112 × 224) have also been compressed using these wavelets to demonstrate their use for different sizes and shapes.

  2. Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Ray, J.; Yadav, V.; Van Bloemen Waanders, B.; Michalak, A. M.

    2012-12-01

    We present a method to estimate spatially resolved fossil-fuel CO2 (ffCO2) emissions from sparse measurements of time-varying CO2 concentrations. It is based on the wavelet-modeling of the strongly non-stationary spatial distribution of ffCO2 emissions. The dimensionality of the wavelet model is first reduced using images of nightlights, which identify regions of human habitation. Since wavelets are a multiresolution basis set, most of the reduction is accomplished by removing fine-scale wavelets, in the regions with low nightlight radiances. The (reduced) wavelet model of emissions is propagated through an atmospheric transport model (WRF) to predict CO2 concentrations at a handful of measurement sites. The estimation of the wavelet model of emissions i.e., inferring the wavelet weights, is performed by fitting to observations at the measurement sites. This is done using Staggered Orthogonal Matching Pursuit (StOMP), which first identifies (and sets to zero) the wavelet coefficients that cannot be estimated from the observations, before estimating the remaining coefficients. This model sparsification and fitting is performed simultaneously, allowing us to explore multiple wavelet-models of differing complexity. This technique is borrowed from the field of compressive sensing, and is generally used in image and video processing. We test this approach using synthetic observations generated from emissions from the Vulcan database. 35 sensor sites are chosen over the USA. FfCO2 emissions, averaged over 8-day periods, are estimated, at a 1 degree spatial resolutions. We find that only about 40% of the wavelets in emission model can be estimated from the data; however the mix of coefficients that are estimated changes with time. Total US emission can be reconstructed with about ~5% errors. The inferred emissions, if aggregated monthly, have a correlation of 0.9 with Vulcan fluxes. We find that the estimated emissions in the Northeast US are the most accurate. Sandia

  3. Sparse constrained wavelet-based double-difference seismic tomography method and its applications

    NASA Astrophysics Data System (ADS)

    Fang, H.; Zhang, H.

    2013-12-01

    Geophysical inverse problems are often ill-posed and we often need to impose a priori information on the solution to make the inversion stable. In travel time tomography, because the events and stations are not uniformly distributed, ray coverage is thus not even. The regular grid which is generally used to represent the model and the grid spacing is difficult to choose to be suitable for uneven ray coverage. Irregular grid nodes have thus been proposed to represent the model based on tetrahedral diagram (Zhang et al., 2006). That method is purely data adaptive and does not consider whether the model representation is suitable for the solution space. Here we present a method that takes advantage of the multi-resolution property of wavelet transform to overcome this limitation. For the general inverse system Gm=d, we can actually write it into a new form GW'Wm=d by using the orthogonal property of wavelet transform W, where G is the sensitivity matrix, m is the model, and d is the data vector. Therefore, instead of solving the model parameters directly in space, we solve the wavelet coefficients of model parameters by transforming the sensitivity matrix to the wavelet domain. In other words, the inverse problem is now recast as seeking wavelet coefficients of the model parameters. For regions with dense ray coverage, both the approximations and details of wavelet coefficients can be resolved. In comparison, regions with sparse sampling will only have larger wavelet coefficients of model parameters to be resolved. By doing this, the regions with dense ray coverage can have higher spatial resolution and more model details can be recovered. For most models, their representations in the wavelet domain are sparse. Therefore, we imposed the sparse constraint of wavelet coefficients of model parameters by using the iteratively reweight least square method. A generalized cross validation method was used to get the regularization parameter and the approximate model

  4. Assembling A Multi-Feature EEG Classifier for Left-Right Motor Imagery Data Using Wavelet-Based Fuzzy Approximate Entropy for Improved Accuracy.

    PubMed

    Hsu, Wei-Yen

    2015-12-01

    An EEG classifier is proposed for application in the analysis of motor imagery (MI) EEG data from a brain-computer interface (BCI) competition in this study. Applying subject-action-related brainwave data acquired from the sensorimotor cortices, the system primarily consists of artifact and background removal, feature extraction, feature selection and classification. In addition to background noise, the electrooculographic (EOG) artifacts are also automatically removed to further improve the analysis of EEG signals. Several potential features, including amplitude modulation, spectral power and asymmetry ratio, adaptive autoregressive model, and wavelet fuzzy approximate entropy (wfApEn) that can measure and quantify the complexity or irregularity of EEG signals, are then extracted for subsequent classification. Finally, the significant sub-features are selected from feature combination by quantum-behaved particle swarm optimization and then classified by support vector machine (SVM). Compared with feature extraction without wfApEn on MI data from two data sets for nine subjects, the results indicate that the proposed system including wfApEn obtains better performance in average classification accuracy of 88.2% and average number of commands per minute of 12.1, which is promising in the BCI work applications.

  5. Image denoising based on wavelets and multifractals for singularity detection.

    PubMed

    Zhong, Junmei; Ning, Ruola

    2005-10-01

    This paper presents a very efficient algorithm for image denoising based on wavelets and multifractals for singularity detection. A challenge of image denoising is how to preserve the edges of an image when reducing noise. By modeling the intensity surface of a noisy image as statistically self-similar multifractal processes and taking advantage of the multiresolution analysis with wavelet transform to exploit the local statistical self-similarity at different scales, the pointwise singularity strength value characterizing the local singularity at each scale was calculated. By thresholding the singularity strength, wavelet coefficients at each scale were classified into two categories: the edge-related and regular wavelet coefficients and the irregular coefficients. The irregular coefficients were denoised using an approximate minimum mean-squared error (MMSE) estimation method, while the edge-related and regular wavelet coefficients were smoothed using the fuzzy weighted mean (FWM) filter aiming at preserving the edges and details when reducing noise. Furthermore, to make the FWM-based filtering more efficient for noise reduction at the lowest decomposition level, the MMSE-based filtering was performed as the first pass of denoising followed by performing the FWM-based filtering. Experimental results demonstrated that this algorithm could achieve both good visual quality and high PSNR for the denoised images.

  6. Predicting apple tree leaf nitrogen content based on hyperspectral applying wavelet and wavelet packet analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zheng, Lihua; Li, Minzan; Deng, Xiaolei; Sun, Hong

    2012-11-01

    The visible and NIR spectral reflectance were measured for apple leaves by using a spectrophotometer in fruit-bearing, fruit-falling and fruit-maturing period respectively, and the nitrogen content of each sample was measured in the lab. The analysis of correlation between nitrogen content of apple tree leaves and their hyperspectral data was conducted. Then the low frequency signal and high frequency noise reduction signal were extracted by using wavelet packet decomposition algorithm. At the same time, the original spectral reflectance was denoised taking advantage of the wavelet filtering technology. And then the principal components spectra were collected after PCA (Principal Component Analysis). It was known that the model built based on noise reduction principal components spectra reached higher accuracy than the other three ones in fruit-bearing period and physiological fruit-maturing period. Their calibration R2 reached 0.9529 and 0.9501, and validation R2 reached 0.7285 and 0.7303 respectively. While in the fruit-falling period the model based on low frequency principal components spectra reached the highest accuracy, and its calibration R2 reached 0.9921 and validation R2 reached 0.6234. The results showed that it was an effective way to improve ability of predicting apple tree nitrogen content based on hyperspectral analysis by using wavelet packet algorithm.

  7. Scalable Wavelet-Based Active Network Stepping Stone Detection

    DTIC Science & Technology

    2012-03-22

    network and mask malicious actions from detection. This research focuses on a novel active watermark technique using Discrete Wavelet Transformations...to mark and detect interactive network sessions. This technique is scalable, nearly invisible and resilient to multi-flow attacks. The watermark is...technique accurately detects the presence of a watermark at a 5% False Positive and False Negative rate for both the extracted timestamps as well as the

  8. Some Contributions to Wavelet Based Image Coding

    DTIC Science & Technology

    2000-07-01

    MSE or PSNR. However, it is noted that JZW does not implement the embedded property as in EZW and SPIHT and that the embedded property can be...achieved by passing the JND quantized wavelet coefficients to EZW or SPIHT. It is noted that the lowest frequency (the coarsest scale) band (LL band) is the...other higher frequency subbands can be efficiently encoded using our zero-tree encoding scheme which is derived from EZW and [improved version of EZW by

  9. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method.

  10. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    SciTech Connect

    Liao, T. W.; Ting, C.F.; Qu, Jun; Blau, Peter Julian

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish different states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.

  11. Wavelet-Based Speech Enhancement Using Time-Frequency Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Ching

    2003-12-01

    Wavelet denoising is commonly used for speech enhancement because of the simplicity of its implementation. However, the conventional methods generate the presence of musical residual noise while thresholding the background noise. The unvoiced components of speech are often eliminated from this method. In this paper, a novel algorithm of wavelet coefficient threshold (WCT) based on time-frequency adaptation is proposed. In addition, an unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. The wavelet coefficient threshold (WCT) of each subband is first temporally adjusted according to the value of a posterior signal-to-noise ratio (SNR). To prevent the degradation of unvoiced sounds during noise, the algorithm utilizes a simple speech/noise detector (SND) and further divides speech signal into unvoiced and voiced sounds. Then, we apply appropriate wavelet thresholding according to voiced/unvoiced (V/U) decision. Based on the masking properties of human auditory system, a perceptual gain factor is adopted into wavelet thresholding for suppressing musical residual noise. Simulation results show that the proposed method is capable of reducing noise with little speech degradation and the overall performance is superior to several competitive methods.

  12. A Speckle Reduction Filter Using Wavelet-Based Methods for Medical Imaging Application

    DTIC Science & Technology

    2001-10-25

    A Speckle Reduction Filter using Wavelet-Based Methods for Medical Imaging Application Su...Wavelet-Based Methods for Medical Imaging Application Contract Number Grant Number Program Element Number Author(s) Project Number Task Number Work

  13. Implementing a global DEM database on the sphere based on spherical wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Zhao, Xuesheng; Shan, Shigang; Yao, Liangjun

    2010-11-01

    Wavelets have been proven to be an exceedingly powerful and highly efficient tool for fast computational algorithms in the fields of image data analysis and compression. Traditionally, the classical constructed wavelets are often employed to Euclidean infinite domains (such as the real line R and plane R2). In this paper, a spherical wavelet constructed for discrete DEM data based on the sphere is approached. Firstly, the discrete biorthogonal spherical wavelet with custom properties is constructed with the lifting scheme based on wavelet toolbox in Matlab. Then, the decomposition and reconstruction algorithms are proposed for efficient computation and the related wavelet coefficients are obtained. Finally, different precise images are displayed and analyzed at the different percentage of wavelet coefficients. The efficiency of this spherical wavelet algorithm is tested by using the GTOPO30 DEM data and the results show that at the same precision, the spherical wavelet algorithm consumes smaller storage volume. The results are good and acceptable.

  14. Implementing a global DEM database on the sphere based on spherical wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Zhao, Xuesheng; Shan, Shigang; Yao, Liangjun

    2009-09-01

    Wavelets have been proven to be an exceedingly powerful and highly efficient tool for fast computational algorithms in the fields of image data analysis and compression. Traditionally, the classical constructed wavelets are often employed to Euclidean infinite domains (such as the real line R and plane R2). In this paper, a spherical wavelet constructed for discrete DEM data based on the sphere is approached. Firstly, the discrete biorthogonal spherical wavelet with custom properties is constructed with the lifting scheme based on wavelet toolbox in Matlab. Then, the decomposition and reconstruction algorithms are proposed for efficient computation and the related wavelet coefficients are obtained. Finally, different precise images are displayed and analyzed at the different percentage of wavelet coefficients. The efficiency of this spherical wavelet algorithm is tested by using the GTOPO30 DEM data and the results show that at the same precision, the spherical wavelet algorithm consumes smaller storage volume. The results are good and acceptable.

  15. Propagation source wavelet phase extraction using multi-taper method coherence estimation

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Morley, Christopher Keith

    2017-02-01

    It is possible to use statistical methods to extract the propagation source wavelet phase from seismic data without getting information from a well log. Using kurtosis as a high-order statistics can preserve the phase of the signal but it is highly sensitive to outliers. A new method is introduced here called the multi-taper method coherence estimation. Two steps are required: first, a cosine function that includes the dominant frequency and maximum amplitude of signal is chosen. Secondly, the maximum coherence in the frequency band of the signal, which shows the best phase matching between the time series is determined. To validate this new method real data sets were chosen and the extracted wavelet phases for noise free and noisy data sets were compared with data extracted from a well log. Extracted wavelets using Kurtosis were also generated for comparison, and demonstrate the improved results using the new method.

  16. Color graph based wavelet transform with perceptual information

    NASA Astrophysics Data System (ADS)

    Malek, Mohamed; Helbert, David; Carré, Philippe

    2015-09-01

    We propose a numerical strategy to define a multiscale analysis for color and multicomponent images based on the representation of data on a graph. Our approach consists of computing the graph of an image using the psychovisual information and analyzing it by using the spectral graph wavelet transform. We suggest introducing color dimension into the computation of the weights of the graph and using the geodesic distance as a mean of distance measurement. We thus have defined a wavelet transform based on a graph with perceptual information by using the CIELab color distance. This new representation is illustrated with denoising and inpainting applications. Overall, by introducing psychovisual information in the graph computation for the graph wavelet transform, we obtain very promising results. Thus, results in image restoration highlight the interest of the appropriate use of color information.

  17. Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; LeMoigne, Jacqueline

    2003-01-01

    The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  18. Wavelet-based analysis of circadian behavioral rhythms.

    PubMed

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed.

  19. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  20. WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis.

    PubMed

    Mo, Fan; Mo, Qun; Chen, Yuanyuan; Goodlett, David R; Hood, Leroy; Omenn, Gilbert S; Li, Song; Lin, Biaoyang

    2010-04-29

    Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification. We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline. We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.

  1. Adaptively wavelet-based image denoising algorithm with edge preserving

    NASA Astrophysics Data System (ADS)

    Tan, Yihua; Tian, Jinwen; Liu, Jian

    2006-02-01

    A new wavelet-based image denoising algorithm, which exploits the edge information hidden in the corrupted image, is presented. Firstly, a canny-like edge detector identifies the edges in each subband. Secondly, multiplying the wavelet coefficients in neighboring scales is implemented to suppress the noise while magnifying the edge information, and the result is utilized to exclude the fake edges. The isolated edge pixel is also identified as noise. Unlike the thresholding method, after that we use local window filter in the wavelet domain to remove noise in which the variance estimation is elaborated to utilize the edge information. This method is adaptive to local image details, and can achieve better performance than the methods of state of the art.

  2. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker

    NASA Astrophysics Data System (ADS)

    Shang, Xueyi; Li, Xibing; Weng, Lei

    2017-09-01

    P phase arrival picking of weak signals is still challenging in seismology. A wavelet denoising is proposed to enhance seismic P phase arrival picking, and the kurtosis picker is applied on the wavelet-denoised signal to identify P phase arrival. It has been called the WD-K picker. The WD-K picker, which is different from those traditional wavelet-based pickers on the basis of a single wavelet component or certain main wavelet components, takes full advantage of the reconstruction of main detail wavelet components and the approximate wavelet component. The proposed WD-K picker considers more wavelet components and presents a better P phase arrival feature. The WD-K picker has been evaluated on 500 micro-seismic signals recorded in the Chinese Yongshaba mine. The comparison between the WD-K pickings and manual pickings shows the good picking accuracy of the WD-K picker. Furthermore, the WD-K picking performance has been compared with the main detail wavelet component combining-based kurtosis (WDC-K) picker, the single wavelet component-based kurtosis (SW-K) picker, and certain main wavelet component-based maximum kurtosis (MMW-K) picker. The comparison has demonstrated that the WD-K picker has better picking accuracy than the other three-wavelet and kurtosis-based pickers, thus showing the enhanced ability of wavelet denoising.

  3. Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms

    NASA Astrophysics Data System (ADS)

    Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.

    2013-02-01

    The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.

  4. Object-based wavelet compression using coefficient selection

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Kassim, Ashraf A.

    1998-12-01

    In this paper, we present a novel approach to code image regions of arbitrary shapes. The proposed algorithm combines a coefficient selection scheme with traditional wavelet compression for coding arbitrary regions and uses a shape adaptive embedded zerotree wavelet coding (SA-EZW) to quantize the selected coefficients. Since the shape information is implicitly encoded by the SA-EZW, our decoder can reconstruct the arbitrary region without separate shape coding. This makes the algorithm simple to implement and avoids the problem of contour coding. Our algorithm also provides a sufficient framework to address content-based scalability and improved coding efficiency as described by MPEG-4.

  5. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  6. Wavelet-based analysis of blood pressure dynamics in rats

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Anisimov, A. A.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznecova, A. S.; Matasova, E. G.

    2009-02-01

    Using a wavelet-based approach, we study stress-induced reactions in the blood pressure dynamics in rats. Further, we consider how the level of the nitric oxide (NO) influences the heart rate variability. Clear distinctions for male and female rats are reported.

  7. Wavelet-based hierarchical surface approximation from height fields

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt

    2004-01-01

    This paper presents a novel hierarchical approach to triangular mesh generation from height fields. A wavelet-based multiresolution analysis technique is used to estimate local shape information at different levels of resolution. Using predefined templates at the coarsest level, the method constructs an initial triangulation in which underlying object shapes are well...

  8. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  9. Enhancing Hyperspectral Data Throughput Utilizing Wavelet-Based Fingerprints

    SciTech Connect

    I. W. Ginsberg

    1999-09-01

    Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The results show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.

  10. Iterative support detection-based split Bregman method for wavelet frame-based image inpainting.

    PubMed

    He, Liangtian; Wang, Yilun

    2014-12-01

    The wavelet frame systems have been extensively studied due to their capability of sparsely approximating piece-wise smooth functions, such as images, and the corresponding wavelet frame-based image restoration models are mostly based on the penalization of the l1 norm of wavelet frame coefficients for sparsity enforcement. In this paper, we focus on the image inpainting problem based on the wavelet frame, propose a weighted sparse restoration model, and develop a corresponding efficient algorithm. The new algorithm combines the idea of iterative support detection method, first proposed by Wang and Yin for sparse signal reconstruction, and the split Bregman method for wavelet frame l1 model of image inpainting, and more important, naturally makes use of the specific multilevel structure of the wavelet frame coefficients to enhance the recovery quality. This new algorithm can be considered as the incorporation of prior structural information of the wavelet frame coefficients into the traditional l1 model. Our numerical experiments show that the proposed method is superior to the original split Bregman method for wavelet frame-based l1 norm image inpainting model as well as some typical l(p) (0 ≤ p < 1) norm-based nonconvex algorithms such as mean doubly augmented Lagrangian method, in terms of better preservation of sharp edges, due to their failing to make use of the structure of the wavelet frame coefficients.

  11. Fast wavelet based sparse approximate inverse preconditioner

    SciTech Connect

    Wan, W.L.

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  12. Implementation of Wavelet-Based Neural Network for the detection of Very Low Frequency (VLF) Whistlers Transients

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Verma, Shivali; Kasde, Satish Kumar

    Abstract: In this paper, a wavelet-based neural network system for the detection and identification of four types of VLF whistler’s transients (i.e. dispersive, diffuse, spiky and multipath) is implemented and tested. The discrete wavelet transform (DWT) technique is integrated with the feed forward neural network (FFNN) model to construct the identifier. First, the multi-resolution analysis (MRA) technique of DWT and the Parseval’s theorem are employed to extract the characteristics features of the transients at different resolution levels. Second, the FFNN identifies these extracted features to identify the transients according to the features extracted. The proposed methodology can reduce a great quantity of the features of transients without losing its original property; less memory space and computing time are required. Various transient events are tested; the results show that the identifier can detect whistler transients efficiently. Keywords: Discrete wavelets transform, Multi-resolution analysis, Parseval’s theorem and Feed forward neural network

  13. Wavelet decomposition-based efficient face liveness detection

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2016-04-01

    Existing face recognition systems are susceptible to spoofing attacks. So, Face liveness detection is a pivotal part for reliable face recognition, which has recently acknowledged vast attention. In this paper we propose a wavelet decomposition based face liveness recognition system using an energy calculation technique. Live faces contain high energy components compared to fake or printed image. In this paper, we calculate energy components of live face as well as fake face using discrete wavelet decomposition method. We analyze percentage of energy at different levels as well as for different wavelet basis function. We also analyze percentage of energy at different RGB bands and efficient face liveness detection method has been proposed. Discrete wavelet representation has been used to calculate decomposed energy components. Moreover, it provides differentiation of several spatial orientations as well as average and detailed information which are missing in the fake faces. This technique provides excellent discrimination capability when compared to the previously reported works based on the discrete Fourier transform and n-dimensional Fourier transform operations. To verify the proposed approach, we tested the performance using various face antispoofing datasets such as university of south Alabama (UFAD), and MSU face antispoofing dataset which incorporates different types of attacks. The test results obtained using the proposed technique shows better performance compared to existing techniques.

  14. A Wavelet-Based Approach to Fall Detection

    PubMed Central

    Palmerini, Luca; Bagalà, Fabio; Zanetti, Andrea; Klenk, Jochen; Becker, Clemens; Cappello, Angelo

    2015-01-01

    Falls among older people are a widely documented public health problem. Automatic fall detection has recently gained huge importance because it could allow for the immediate communication of falls to medical assistance. The aim of this work is to present a novel wavelet-based approach to fall detection, focusing on the impact phase and using a dataset of real-world falls. Since recorded falls result in a non-stationary signal, a wavelet transform was chosen to examine fall patterns. The idea is to consider the average fall pattern as the “prototype fall”.In order to detect falls, every acceleration signal can be compared to this prototype through wavelet analysis. The similarity of the recorded signal with the prototype fall is a feature that can be used in order to determine the difference between falls and daily activities. The discriminative ability of this feature is evaluated on real-world data. It outperforms other features that are commonly used in fall detection studies, with an Area Under the Curve of 0.918. This result suggests that the proposed wavelet-based feature is promising and future studies could use this feature (in combination with others considering different fall phases) in order to improve the performance of fall detection algorithms. PMID:26007719

  15. A wavelet-based approach to face verification/recognition

    NASA Astrophysics Data System (ADS)

    Jassim, Sabah; Sellahewa, Harin

    2005-10-01

    Face verification/recognition is a tough challenge in comparison to identification based on other biometrics such as iris, or fingerprints. Yet, due to its unobtrusive nature, the face is naturally suitable for security related applications. Face verification process relies on feature extraction from face images. Current schemes are either geometric-based or template-based. In the latter, the face image is statistically analysed to obtain a set of feature vectors that best describe it. Performance of a face verification system is affected by image variations due to illumination, pose, occlusion, expressions and scale. This paper extends our recent work on face verification for constrained platforms, where the feature vector of a face image is the coefficients in the wavelet transformed LL-subbands at depth 3 or more. It was demonstrated that the wavelet-only feature vector scheme has a comparable performance to sophisticated state-of-the-art when tested on two benchmark databases (ORL, and BANCA). The significance of those results stem from the fact that the size of the k-th LL- subband is 1/4k of the original image size. Here, we investigate the use of wavelet coefficients in various subbands at level 3 or 4 using various wavelet filters. We shall compare the performance of the wavelet-based scheme for different filters at different subbands with a number of state-of-the-art face verification/recognition schemes on two benchmark databases, namely ORL and the control section of BANCA. We shall demonstrate that our schemes have comparable performance to (or outperform) the best performing other schemes.

  16. Data-adaptive wavelets and multi-scale singular-spectrum analysis

    NASA Astrophysics Data System (ADS)

    Yiou, Pascal; Sornette, Didier; Ghil, Michael

    2000-08-01

    Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series, including the case where intermittency gives rise to the divergence of their variance. The wavelet transform resembles a local Fourier transform within a finite moving window whose width W, proportional to the major period of interest, is varied to explore a broad range of such periods. SSA, on the other hand, relies on the construction of the lag-correlation matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W= MΔ t with Δ t as the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M≤ W≤ N, where N is the length of the time series. Multi-scale SSA varies W, while keeping a fixed W/ M ratio, and uses the eigenvectors of the corresponding lag-correlation matrix C(M) as data-adaptive wavelets; successive eigenvectors of C(M) correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain by a suitable localization of the signal’s correlation matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic or geophysical time series. The method is applied next to the monthly values of the Southern Oscillation Index (SOI) for 1933-1996; the SOI time series is widely believed to capture major features of the El Niño/Southern Oscillation (ENSO) in the Tropical Pacific. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 5 and 3 years supports the Devil’s staircase scenario for the ENSO phenomenon (preliminary results of this study

  17. A HAM-based wavelet approach for nonlinear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Yang, Zhaochen; Liao, Shijun

    2017-07-01

    Based on the homotopy analysis method (HAM) and the generalized Coiflet-type orthogonal wavelet, a new analytic approximation approach for solving nonlinear boundary value problems (governed by nonlinear ordinary differential equations), namely the wavelet homotopy analysis method (wHAM), is proposed. The basic ideas of the wHAM are described using the one-dimensional Bratu's equation as an example. This method not only keeps the main advantages of the normal HAM, but also possesses some new properties and advantages. First of all, the wHAM possesses high computational efficiency. Besides, based on multi-resolution analysis, it provides us a convenient way to balance the accuracy and efficiency by simply adjusting the resolution level. Furthermore, different from the normal HAM, the wHAM provides us much larger freedom to choose the auxiliary linear operator. In addition, just like the normal HAM, iteration can greatly accelerate the computational efficiency of the wHAM without loss of accuracy.

  18. On the spline-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.

  19. Mass spectrometry data processing using zero-crossing lines in multi-scale of Gaussian derivative wavelet

    PubMed Central

    Nguyen, Nha; Huang, Heng; Oraintara, Soontorn; Vo, An

    2010-01-01

    Motivation: Peaks are the key information in mass spectrometry (MS) which has been increasingly used to discover diseases-related proteomic patterns. Peak detection is an essential step for MS-based proteomic data analysis. Recently, several peak detection algorithms have been proposed. However, in these algorithms, there are three major deficiencies: (i) because the noise is often removed, the true signal could also be removed; (ii) baseline removal step may get rid of true peaks and create new false peaks; (iii) in peak quantification step, a threshold of signal-to-noise ratio (SNR) is usually used to remove false peaks; however, noise estimations in SNR calculation are often inaccurate in either time or wavelet domain. In this article, we propose new algorithms to solve these problems. First, we use bivariate shrinkage estimator in stationary wavelet domain to avoid removing true peaks in denoising step. Second, without baseline removal, zero-crossing lines in multi-scale of derivative Gaussian wavelets are investigated with mixture of Gaussian to estimate discriminative parameters of peaks. Third, in quantification step, the frequency, SD, height and rank of peaks are used to detect both high and small energy peaks with robustness to noise. Results: We propose a novel Gaussian Derivative Wavelet (GDWavelet) method to more accurately detect true peaks with a lower false discovery rate than existing methods. The proposed GDWavelet method has been performed on the real Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) spectrum with known polypeptide positions and on two synthetic data with Gaussian and real noise. All experimental results demonstrate that our method outperforms other commonly used methods. The standard receiver operating characteristic (ROC) curves are used to evaluate the experimental results. Availability: http://ranger.uta.edu/∼heng/MS/GDWavelet.html or http://www.naaan.org/nhanguyen/archive.htm Contact: heng

  20. Wavelet based Simulation of Reservoir Flow

    NASA Astrophysics Data System (ADS)

    Siddiqi, A. H.; Verma, A. K.; Noor-E-Zahra, Noor-E.-Zahra; Chandiok, Ashish; Hasan, A.

    2009-07-01

    Petroleum reservoirs consist of hydrocarbons and other chemicals trapped in the pores of a rock. The exploration and production of hydrocarbon reservoirs is still the most important technology to develop natural energy resources. Therefore, fluid flow simulators play a key role in order to help oil companies. In fact, simulation is the most important tool to model changes in a reservoir over the time. The main problem in petroleum reservoir simulation is to model the displacement of one fluid by another within a porous medium. A typical problem is characterized by the injection of a wetting fluid, for example water into the reservoir at a particular location displacing to the non wetting fluid, for example oil, which is extracted or produced at another location. Buckley-Leverett equation [1] models this process and its numerical simulation and visualization is of paramount importance. There are several numerical methods applied for numerical solution of partial differential equations modeling real world problems. We review in this paper the numerical solution of Buckley-Leverett equation for flat and non flat structures with special focus on wavelet method. We also indicate a few new avenues for further research.

  1. Hybrid Fuzzy Wavelet Neural Networks Architecture Based on Polynomial Neural Networks and Fuzzy Set/Relation Inference-Based Wavelet Neurons.

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2017-08-11

    This paper presents a hybrid fuzzy wavelet neural network (HFWNN) realized with the aid of polynomial neural networks (PNNs) and fuzzy inference-based wavelet neurons (FIWNs). Two types of FIWNs including fuzzy set inference-based wavelet neurons (FSIWNs) and fuzzy relation inference-based wavelet neurons (FRIWNs) are proposed. In particular, a FIWN without any fuzzy set component (viz., a premise part of fuzzy rule) becomes a wavelet neuron (WN). To alleviate the limitations of the conventional wavelet neural networks or fuzzy wavelet neural networks whose parameters are determined based on a purely random basis, the parameters of wavelet functions standing in FIWNs or WNs are initialized by using the C-Means clustering method. The overall architecture of the HFWNN is similar to the one of the typical PNNs. The main strategies in the design of HFWNN are developed as follows. First, the first layer of the network consists of FIWNs (e.g., FSIWN or FRIWN) that are used to reflect the uncertainty of data, while the second and higher layers consist of WNs, which exhibit a high level of flexibility and realize a linear combination of wavelet functions. Second, the parameters used in the design of the HFWNN are adjusted through genetic optimization. To evaluate the performance of the proposed HFWNN, several publicly available data are considered. Furthermore a thorough comparative analysis is covered.

  2. [Epileptic EEG signal classification based on wavelet packet transform and multivariate multiscale entropy].

    PubMed

    Xu, Yonghong; Li, Xingxing; Zhao, Yong

    2013-10-01

    In this paper, a new method combining wavelet packet transform and multivariate multiscale entropy for the classification of epilepsy EEG signals is introduced. Firstly, the original EEG signals are decomposed at multi-scales with the wavelet packet transform, and the wavelet packet coefficients of the required frequency bands are extracted. Secondly, the wavelet packet coefficients are processed with multivariate multiscale entropy algorithm. Finally, the EEG data are classified by support vector machines (SVM). The experimental results on the international public Bonn epilepsy EEG dataset show that the proposed method can efficiently extract epileptic features and the accuracy of classification result is satisfactory.

  3. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  4. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  5. Medical image compression algorithm based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Minghong; Zhang, Guoping; Wan, Wei; Liu, Minmin

    2005-02-01

    With rapid development of electronic imaging and multimedia technology, the telemedicine is applied to modern medical servings in the hospital. Digital medical image is characterized by high resolution, high precision and vast data. The optimized compression algorithm can alleviate restriction in the transmission speed and data storage. This paper describes the characteristics of human vision system based on the physiology structure, and analyses the characteristics of medical image in the telemedicine, then it brings forward an optimized compression algorithm based on wavelet zerotree. After the image is smoothed, it is decomposed with the haar filters. Then the wavelet coefficients are quantified adaptively. Therefore, we can maximize efficiency of compression and achieve better subjective visual image. This algorithm can be applied to image transmission in the telemedicine. In the end, we examined the feasibility of this algorithm with an image transmission experiment in the network.

  6. Wavelet-based coding of ultraspectral sounder data

    NASA Astrophysics Data System (ADS)

    Garcia-Vilchez, Fernando; Serra-Sagrista, Joan; Auli-Llinas, Francesc

    2005-08-01

    In this paper we provide a study concerning the suitability of well-known image coding techniques originally devised for lossy compression of still natural images when applied to lossless compression of ultraspectral sounder data. We present here the experimental results of six wavelet-based widespread coding techniques, namely EZW, IC, SPIHT, JPEG2000, SPECK and CCSDS-IDC. Since the considered techniques are 2-dimensional (2D) in nature but the ultraspectral data are 3D, a pre-processing stage is applied to convert the two spatial dimensions into a single spatial dimension. All the wavelet-based techniques are competitive when compared either to the benchmark prediction-based methods for lossless compression, CALIC and JPEG-LS, or to two common compression utilities, GZIP and BZIP2. EZW, SPIHT, SPECK and CCSDS-IDC provide a very similar performance, while IC and JPEG2000 improve the compression factor when compared to the other wavelet-based methods. Nevertheless, they are not competitive when compared to a fast precomputed vector quantizer. The benefits of applying a pre-processing stage, the Bias Adjusted Reordering, prior to the coding process in order to further exploit the spectral and/or spatial correlation when 2D techniques are employed, are also presented.

  7. A wavelet transformation approach for multi-source gravity fusion: Applications and uncertainty tests

    NASA Astrophysics Data System (ADS)

    Bai, Yongliang; Dong, Dongdong; Wu, Shiguo; Liu, Zhan; Zhang, Guangxu; Xu, Kaijun

    2016-05-01

    Gravity anomalies detected by different measurement platforms have different characteristics and advantages. There are different kinds of gravity data fusion methods for generating single gravity anomaly map with a rich and accurate spectral content. Former studies using wavelet based gravity fusion method which is a newly developed approach did not pay more attention to the fusion uncertainties. In this paper, we firstly introduce the wavelet based gravity fusion method, and then apply this method to one synthetic model and also to the northern margin of the South China Sea. Wavelet type and the decomposition level are two input parameters for this fusion method, and the uncertainty tests show that fusion results are more sensitive to wavelet type than the decomposition level. The optimal application result of the fusion methodology on the synthetic model is closer to the true anomaly field than either of the simulated shipborne anomaly and altimetry-based anomaly grid. The best fusion result on the northern margin of the South China Sea is based on the 'rbio1.3' wavelet and four-level decomposition. The fusion result contains more accurate short-wavelength anomalies than the altimetry-based gravity anomalies along ship tracks, and it also has more accurate long wavelength characteristics than the shipborne gravity anomalies between ship tracks. The real application case shows that the fusion result has better correspondences to the seafloor topography variations and sub-surface structures than each of the two input gravity anomaly maps (shipborne based gravity anomaly map and altimetry based gravity anomaly map). Therefore, it is possible to map and detect more precise seafloor topography and geologic structures by the new gravity anomaly map.

  8. Studies on filtered back-projection imaging reconstruction based on a modified wavelet threshold function

    NASA Astrophysics Data System (ADS)

    Wang, Zhengzi; Ren, Zhong; Liu, Guodong

    2016-10-01

    In this paper, the wavelet threshold denoising method was used into the filtered back-projection algorithm of imaging reconstruction. To overcome the drawbacks of the traditional soft- and hard-threshold functions, a modified wavelet threshold function was proposed. The modified wavelet threshold function has two threshold values and two variants. To verify the feasibility of the modified wavelet threshold function, the standard test experiments were performed by using the software platform of MATLAB. Experimental results show that the filtered back-projection reconstruction algorithm based on the modified wavelet threshold function has better reconstruction effect because of more flexible advantage.

  9. Embedded wavelet-based face recognition under variable position

    NASA Astrophysics Data System (ADS)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  10. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  11. Wavelet-based asphalt concrete texture grading and classification

    NASA Astrophysics Data System (ADS)

    Almuntashri, Ali; Agaian, Sos

    2011-03-01

    In this Paper, we introduce a new method for evaluation, quality control, and automatic grading of texture images representing different textural classes of Asphalt Concrete (AC). Also, we present a new asphalt concrete texture grading, wavelet transform, fractal, and Support Vector Machine (SVM) based automatic classification and recognition system. Experimental results were simulated using different cross-validation techniques and achieved an average classification accuracy of 91.4.0 % in a set of 150 images belonging to five different texture grades.

  12. Topology in galaxy distributions: method for a multi-scale analysis. A use of the wavelet transform.

    NASA Astrophysics Data System (ADS)

    Escalera, E.; MacGillivray, H. T.

    1995-06-01

    We report the 2D analysis of distributions of galaxies in a search for structures on all scales, from groups up to superclusters (including the identification of voids), based on the use of the wavelet transform. The wavelet method is an objective, multi-scale technique which gives the position, dimension and probability for each individual feature (both structures and voids) detected. We are currently performing the analysis on data from the COSMOS/UKST Southern Sky Galaxy Catalogue. The subsample used in our investigation contains some 2.5x10^6^ galaxies in an area of ~140x45 degrees around the South Galactic Pole. This is the first search for multi-scale objects on such an extended database, allowing us to cover many related topics in present-day Cosmology: realisation of superclusters as large-scale entities in their own right (as opposed to being considered merely as regions of enhanced cluster numbers); improvement in the definition of clusters of galaxies with a new approach to their general behaviour (distribution, typical sizes, state of evolution, etc.); and the objective characterisation of voids, which is exclusive to the wavelet method. In the present paper, we demonstrate the power of the technique by applying it to a selected field covering approximately 3000deg^2^ in the Grus-Sculptor region. In this area, we find 7 large scale structures (of more than 5 degrees in extent) and 26 structures of smaller scales (cluster-sized down to 1 degree, or group-sized down to 0.5 degrees). Sixteen of these small scale aggregates are connected with the large scale structures while ten appear isolated in the field. All these features are significant, having high confidence levels for detection. Voids are also detected in this area, likewise with high significance levels.

  13. Majorization-minimization algorithms for wavelet-based image restoration.

    PubMed

    Figueiredo, Mário A T; Bioucas-Dias, José M; Nowak, Robert D

    2007-12-01

    Standard formulations of image/signal deconvolution under wavelet-based priors/regularizers lead to very high-dimensional optimization problems involving the following difficulties: the non-Gaussian (heavy-tailed) wavelet priors lead to objective functions which are nonquadratic, usually nondifferentiable, and sometimes even nonconvex; the presence of the convolution operator destroys the separability which underlies the simplicity of wavelet-based denoising. This paper presents a unified view of several recently proposed algorithms for handling this class of optimization problems, placing them in a common majorization-minimization (MM) framework. One of the classes of algorithms considered (when using quadratic bounds on nondifferentiable log-priors) shares the infamous "singularity issue" (SI) of "iteratively reweighted least squares" (IRLS) algorithms: the possibility of having to handle infinite weights, which may cause both numerical and convergence issues. In this paper, we prove several new results which strongly support the claim that the SI does not compromise the usefulness of this class of algorithms. Exploiting the unified MM perspective, we introduce a new algorithm, resulting from using l1 bounds for nonconvex regularizers; the experiments confirm the superior performance of this method, when compared to the one based on quadratic majorization. Finally, an experimental comparison of the several algorithms, reveals their relative merits for different standard types of scenarios.

  14. JND measurements and wavelet-based image coding

    NASA Astrophysics Data System (ADS)

    Shen, Day-Fann; Yan, Loon-Shan

    1998-06-01

    Two major issues in image coding are the effective incorporation of human visual system (HVS) properties and the effective objective measure for evaluating image quality (OQM). In this paper, we treat the two issues in an integrated fashion. We build a JND model based on the measurements of the JND (Just Noticeable Difference) property of HVS. We found that JND does not only depend on the background intensity but also a function of both spatial frequency and patten direction. Wavelet transform, due to its excellent simultaneous Time (space)/frequency resolution, is the best choice to apply the JND model. We mathematically derive an OQM called JND_PSNR that is based on the JND property and wavelet decomposed subbands. JND_PSNR is more consistent with human perception and is recommended as an alternative to the PSNR or SNR. With the JND_PSNR in mind, we proceed to propose a wavelet and JND based codec called JZW. JZW quantizes coefficients in each subband with proper step size according to the subband's importance to human perception. Many characteristics of JZW are discussed, its performance evaluated and compared with other famous algorithms such as EZW, SPIHT and TCCVQ. Our algorithm has 1 - 1.5 dB gain over SPIHT even when we use simple Huffman coding rather than the more efficient adaptive arithmetic coding.

  15. Wavelet-based face verification for constrained platforms

    NASA Astrophysics Data System (ADS)

    Sellahewa, Harin; Jassim, Sabah A.

    2005-03-01

    Human Identification based on facial images is one of the most challenging tasks in comparison to identification based on other biometric features such as fingerprints, palm prints or iris. Facial recognition is the most natural and suitable method of identification for security related applications. This paper is concerned with wavelet-based schemes for efficient face verification suitable for implementation on devices that are constrained in memory size and computational power such as PDA"s and smartcards. Beside minimal storage requirements we should apply as few as possible pre-processing procedures that are often needed to deal with variation in recoding conditions. We propose the LL-coefficients wavelet-transformed face images as the feature vectors for face verification, and compare its performance of PCA applied in the LL-subband at levels 3,4 and 5. We shall also compare the performance of various versions of our scheme, with those of well-established PCA face verification schemes on the BANCA database as well as the ORL database. In many cases, the wavelet-only feature vector scheme has the best performance while maintaining efficacy and requiring minimal pre-processing steps. The significance of these results is their efficiency and suitability for platforms of constrained computational power and storage capacity (e.g. smartcards). Moreover, working at or beyond level 3 LL-subband results in robustness against high rate compression and noise interference.

  16. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  17. Towards discrete wavelet transform-based human activity recognition

    NASA Astrophysics Data System (ADS)

    Khare, Manish; Jeon, Moongu

    2017-06-01

    Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.

  18. A wavelet watermarking algorithm based on a tree structure

    NASA Astrophysics Data System (ADS)

    Guitart Pla, Oriol; Lin, Eugene T.; Delp, Edward J., III

    2004-06-01

    We describe a blind watermarking technique for digital images. Our technique constructs an image-dependent watermark in the discrete wavelet transform (DWT) domain and inserts the watermark in the most signifcant coefficients of the image. The watermarked coefficients are determined by using the hierarchical tree structure induced by the DWT, similar in concept to embedded zerotree wavelet (EZW) compression. If the watermarked image is attacked or manipulated such that the set of significant coefficients is changed, the tree structure allows the correlation-based watermark detector to recover synchronization. Our technique also uses a visual adaptive scheme to insert the watermark to minimize watermark perceptibility. The visual adaptive scheme also takes advantage of the tree structure. Finally, a template is inserted into the watermark to provide robustness against geometric attacks. The template detection uses the cross-ratio of four collinear points.

  19. Tilt correction method of text image based on wavelet pyramid

    NASA Astrophysics Data System (ADS)

    Yu, Mingyang; Zhu, Qiguo

    2017-04-01

    Text images captured by camera may be tilted and distorted, which is unfavorable for document character recognition. Therefore,a method of text image tilt correction based on wavelet pyramid is proposed in this paper. The first step is to convert the text image captured by cameras to binary images. After binarization, the images are layered by wavelet transform to achieve noise reduction, enhancement and compression of image. Afterwards,the image would bedetected for edge by Canny operator, and extracted for straight lines by Radon transform. In the final step, this method calculates the intersection of straight lines and gets the corrected text images according to the intersection points and perspective transformation. The experimental result shows this method can correct text images accurately.

  20. Health monitoring of cooling fan bearings based on wavelet filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Miao, Qiang; Azarian, Michael; Pecht, Michael

    2015-12-01

    In this paper, a vibration-based health monitoring approach for cooling fans is proposed using a wavelet filter for early detection of faults in fan bearings and for the assessment of fault severity. To match the wavelet filter to the fault characteristic signal, a fuzzy rule is introduced to maximize the amplitudes of bearing characteristic frequencies (BCFs), which are an indicator of bearing faults. The sum of the amplitudes of BCFs and their harmonics (SABCF) is used as an index to capture the bearing degradation trend. A comparative study is conducted with commonly used time-domain indices in the degradation assessment, and performance is quantified by three measures, i.e., monotonicity, prognosability, and trendability. The analysis results of the experimental data show that the proposed method can effectively detect incipient defects and can better capture the degradation trend of fan bearings than traditional time-domain indices in vibration analysis.

  1. Application of 1-D discrete wavelet transform based compressed sensing matrices for speech compression.

    PubMed

    Parkale, Yuvraj V; Nalbalwar, Sanjay L

    2016-01-01

    Compressed sensing is a novel signal compression technique in which signal is compressed while sensing. The compressed signal is recovered with the only few numbers of observations compared to conventional Shannon-Nyquist sampling, and thus reduces the storage requirements. In this study, we have proposed the 1-D discrete wavelet transform (DWT) based sensing matrices for speech signal compression. The present study investigates the performance analysis of the different DWT based sensing matrices such as: Daubechies, Coiflets, Symlets, Battle, Beylkin and Vaidyanathan wavelet families. First, we have proposed the Daubechies wavelet family based sensing matrices. The experimental result indicates that the db10 wavelet based sensing matrix exhibits the better performance compared to other Daubechies wavelet based sensing matrices. Second, we have proposed the Coiflets wavelet family based sensing matrices. The result shows that the coif5 wavelet based sensing matrix exhibits the best performance. Third, we have proposed the sensing matrices based on Symlets wavelet family. The result indicates that the sym9 wavelet based sensing matrix demonstrates the less reconstruction time and the less relative error, and thus exhibits the good performance compared to other Symlets wavelet based sensing matrices. Next, we have proposed the DWT based sensing matrices using the Battle, Beylkin and the Vaidyanathan wavelet families. The Beylkin wavelet based sensing matrix demonstrates the less reconstruction time and relative error, and thus exhibits the good performance compared to the Battle and the Vaidyanathan wavelet based sensing matrices. Further, an attempt was made to find out the best-proposed DWT based sensing matrix, and the result reveals that sym9 wavelet based sensing matrix shows the better performance among all other proposed matrices. Subsequently, the study demonstrates the performance analysis of the sym9 wavelet based sensing matrix and state-of-the-art random

  2. A wavelet-based feature vector model for DNA clustering.

    PubMed

    Bao, J P; Yuan, R Y

    2015-12-29

    DNA data are important in the bioinformatic domain. To extract useful information from the enormous collection of DNA sequences, DNA clustering is often adopted to efficiently deal with DNA data. The alignment-free method is a very popular way of creating feature vectors from DNA sequences, which are then used to compare DNA similarities. This paper proposes a wavelet-based feature vector (WFV) model, which is also an alignment-free method. From the perspective of signal processing, a DNA sequence is a sequence of digital signals. However, most traditional alignment-free models only extract features in the time domain. The WFV model uses discrete wavelet transform to adaptively yield feature vectors with a fixed dimension based on the features in both the time and frequency domains. The level of wavelet transform is adjusted according to the length of the DNA sequence rather than a fixed manually set value. The WFV model prefers a 32-dimension feature vector, which greatly promotes system performance. We compared the WFV model with the other five alignment-free models, i.e., k-tuple, DMK, TSM, AMI, and CV, on several large-scale DNA datasets on the DNA clustering application by means of the K-means algorithm. The experimental results showed that the WFV model outperformed the other models in terms of both the clustering results and the running time.

  3. Adaptive directional lifting-based wavelet transform for image coding.

    PubMed

    Ding, Wenpeng; Wu, Feng; Wu, Xiaolin; Li, Shipeng; Li, Houqiang

    2007-02-01

    We present a novel 2-D wavelet transform scheme of adaptive directional lifting (ADL) in image coding. Instead of alternately applying horizontal and vertical lifting, as in present practice, ADL performs lifting-based prediction in local windows in the direction of high pixel correlation. Hence, it adapts far better to the image orientation features in local windows. The ADL transform is achieved by existing 1-D wavelets and is seamlessly integrated into the global wavelet transform. The predicting and updating signals of ADL can be derived even at the fractional pixel precision level to achieve high directional resolution, while still maintaining perfect reconstruction. To enhance the ADL performance, a rate-distortion optimized directional segmentation scheme is also proposed to form and code a hierarchical image partition adapting to local features. Experimental results show that the proposed ADL-based image coding technique outperforms JPEG 2000 in both PSNR and visual quality, with the improvement up to 2.0 dB on images with rich orientation features.

  4. FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Szadkowska, Anna

    2014-12-01

    Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜ V2/ R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.

  5. Discrimination of walking patterns using wavelet-based fractal analysis.

    PubMed

    Sekine, Masaki; Tamura, Toshiyo; Akay, Metin; Fujimoto, Toshiro; Togawa, Tatsuo; Fukui, Yasuhiro

    2002-09-01

    In this paper, we attempted to classify the acceleration signals for walking along a corridor and on stairs by using the wavelet-based fractal analysis method. In addition, the wavelet-based fractal analysis method was used to evaluate the gait of elderly subjects and patients with Parkinson's disease. The triaxial acceleration signals were measured close to the center of gravity of the body while the subject walked along a corridor and up and down stairs continuously. Signal measurements were recorded from 10 healthy young subjects and 11 elderly subjects. For comparison, two patients with Parkinson's disease participated in the level walking. The acceleration signal in each direction was decomposed to seven detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 7 to 1 were calculated. The fractal dimension of the acceleration signal was then estimated from the slope of the variance progression. The fractal dimensions were significantly different among the three types of walking for individual subjects (p < 0.01) and showed a high reproducibility. Our results suggest that the fractal dimensions are effective for classifying the walking types. Moreover, the fractal dimensions were significantly higher for the elderly subjects than for the young subjects (p < 0.01). For the patients with Parkinson's disease, the fractal dimensions tended to be higher than those of healthy subjects. These results suggest that the acceleration signals change into a more complex pattern with aging and with Parkinson's disease, and the fractal dimension can be used to evaluate the gait of elderly subjects and patients with Parkinson's disease.

  6. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  7. Wavelet-SVM classifier based on texture features for land cover classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Wu, Bingfang; Zhu, Jianjun; Zhou, Yuemin; Zhu, Liang

    2008-12-01

    Texture features are recognized to be a special hint in images, which represent the spatial relations of the gray pixels. Nowadays, the applications of the texture analysis in image classification spread abroad. Combined with wavelet multi-resolution analysis or support vector machine statistical learning theory, texture analysis could improve the quality of classification increasingly. In this paper, we focus on the land cover for the Three Gorges reservoir using remote sensing data SPOT-5, a new classification method, wavelet-SVM classifier based on texture features, is employed for this study. Compare to the traditional maximum likelihood classifier and SVM classifier only use spectrum feature, this method produces more accurate classification results. According to the real environment of the Three Gorges reservoir land cover, a best texture group is selected from several texture features. Decompose the image at different levels, which is one of the main advantage of wavelet, and then compute the texture features in every sub-image, and the next step is eliminating the redundant, every texture features are centralized on the first principal components using principal component analysis. Finally, with the first principal components inputted, we can get the classification result using SVM in every decomposition scale, but what the problem we couldn't overlook is how to select the best SVM parameters. So an iterative rule based on the classification accuracy is induced, the more accuracy, the proper parameters.

  8. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  9. Construction of compactly supported biorthogonal wavelet based on Human Visual System

    NASA Astrophysics Data System (ADS)

    Hu, Haiping; Hou, Weidong; Liu, Hong; Mo, Yu L.

    2000-11-01

    As an important analysis tool, wavelet transform has made a great development in image compression coding, since Daubechies constructed a kind of compact support orthogonal wavelet and Mallat presented a fast pyramid algorithm for wavelet decomposition and reconstruction. In order to raise the compression ratio and improve the visual quality of reconstruction, it becomes very important to find a wavelet basis that fits the human visual system (HVS). Marr wavelet, as it is known, is a kind of wavelet, so it is not suitable for implementation of image compression coding. In this paper, a new method is provided to construct a kind of compactly supported biorthogonal wavelet based on human visual system, we employ the genetic algorithm to construct compactly supported biorthogonal wavelet that can approximate the modulation transform function for HVS. The novel constructed wavelet is applied to image compression coding in our experiments. The experimental results indicate that the visual quality of reconstruction with the new kind of wavelet is equivalent to other compactly biorthogonal wavelets in the condition of the same bit rate. It has good performance of reconstruction, especially used in texture image compression coding.

  10. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Duan; Xu, Lijun; Li, Xiaolu

    2017-04-01

    To measure the distances and properties of the objects within a laser footprint, a decomposition method for full-waveform light detection and ranging (LiDAR) echoes is proposed. In this method, firstly, wavelet decomposition is used to filter the noise and estimate the noise level in a full-waveform echo. Secondly, peak and inflection points of the filtered full-waveform echo are used to detect the echo components in the filtered full-waveform echo. Lastly, particle swarm optimization (PSO) is used to remove the noise-caused echo components and optimize the parameters of the most probable echo components. Simulation results show that the wavelet-decomposition-based filter is of the best improvement of SNR and decomposition success rates than Wiener and Gaussian smoothing filters. In addition, the noise level estimated using wavelet-decomposition-based filter is more accurate than those estimated using other two commonly used methods. Experiments were carried out to evaluate the proposed method that was compared with our previous method (called GS-LM for short). In experiments, a lab-build full-waveform LiDAR system was utilized to provide eight types of full-waveform echoes scattered from three objects at different distances. Experimental results show that the proposed method has higher success rates for decomposition of full-waveform echoes and more accurate parameters estimation for echo components than those of GS-LM. The proposed method based on wavelet decomposition and PSO is valid to decompose the more complicated full-waveform echoes for estimating the multi-level distances of the objects and measuring the properties of the objects in a laser footprint.

  11. Secure wavelet-based isometric projection for face recognition

    NASA Astrophysics Data System (ADS)

    Al-Assam, Hisham; Sellahewa, Harin; Jassim, Sabah A.

    2011-06-01

    Biometric systems such as face recognition must address four key challenges: efficiency, robustness, accuracy and security. Isometric projection has been proposed as a robust dimension reduction technique for a number of applications, but it is computationally demanding when applied to high dimensional spaces such as the space of face images. On the other hand, wavelet transforms have shown to provide an efficient tool for facial feature representation and face recognition with significant reduction in dimension. In this paper, we propose a hybrid approach that combines the efficiency and robustness of wavelet transforms with isometric projections for face features extraction in the transformed domain to be used for recognition. We shall compare the recognition accuracy of our approach with the accuracy of other commonly used projection techniques in the wavelet domain such as PCA and LDA. The security of biometric templates is addressed by adopting a lightweight random projection technique as an add-on subsystem. The results are based on experiments conducted on a publicly available benchmark face database.

  12. Wavelet-based embedded zerotree extension to color coding

    NASA Astrophysics Data System (ADS)

    Franques, Victoria T.

    1998-03-01

    Recently, a new image compression algorithm was developed which employs wavelet transform and a simple binary linear quantization scheme with an embedded coding technique to perform data compaction. This new family of coder, Embedded Zerotree Wavelet (EZW), provides a better compression performance than the current JPEG coding standard for low bit rates. Since EZW coding algorithm emerged, all of the published coding results related to this coding technique are on monochrome images. In this paper the author has enhanced the original coding algorithm to yield a better compression ratio, and has extended the wavelet-based zerotree coding to color images. Color imagery is often represented by several components, such as RGB, in which each component is generally processed separately. With color coding, each component could be compressed individually in the same manner as a monochrome image, therefore requiring a threefold increase in processing time. Most image coding standards employ de-correlated components, such as YIQ or Y, CB, CR and subsampling of the 'chroma' components, such coding technique is employed here. Results of the coding, including reconstructed images and coding performance, will be presented.

  13. An Evolved Wavelet Library Based on Genetic Algorithm

    PubMed Central

    Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.

    2014-01-01

    As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31 dB improvement in the average PSNR and a 0.39 dB improvement in the maximum PSNR. PMID:25405225

  14. ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds.

    PubMed

    Tohumoglu, Gülay; Sezgin, K Erbil

    2007-02-01

    The modified embedded zero-tree wavelet (MEZW) compression algorithm for the one-dimensional signal was originally derived for image compression based on Shapiro's EZW algorithm. It is revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. The coder also attains exact bit rate control and generates a bit stream progressive in quality or rate. The EZW and MEZW algorithms apply the chosen threshold values or the expressions in order to specify that the significant transformed coefficients are greatly significant. Thus, two different threshold definitions, namely percentage and dyadic thresholds, are used, and they are applied for different wavelet types in biorthogonal and orthogonal classes. In detail, the MEZW and EZW algorithms results are quantitatively compared in terms of the compression ratio (CR) and percentage root mean square difference (PRD). Experiments are carried out on the selected records from the MIT-BIH arrhythmia database and an original ECG signal. It is observed that the MEZW algorithm shows a clear advantage in the CR achieved for a given PRD over the traditional EZW, and it gives better results for the biorthogonal wavelets than the orthogonal wavelets.

  15. Redundant Discrete Wavelet Transform Based Super-Resolution Using Sub-Pixel Image Registration

    DTIC Science & Technology

    2003-03-01

    AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel L. Ward Second...position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED...O3-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel Lee Ward, B.S.E.E. Second

  16. Multi-scale wavelet decomposition and its application in distributed optical fiber fences

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Zhang, Linqiang; Qian, Ya; Li, Hanyu; Zhang, Weili; Rao, Yunjiang

    2015-07-01

    Phase-( Φ -) and Polarization- sensitive (P-) Optical-Time-Domain Reflectometries (OTDRs) are both representative optical fiber fence technologies, which have promising applications in long or ultra-long perimeter security with precise location ability. However, the challenge is that they are liable to be interfered by environmental influences due to their high sensitivity feature. Real human intrusions are always buried in the environmental noises and interferences, which lead to poor detection results. Thus it is proposed in this paper to extract human intrusion signals and separate the complicated noisy backgrounds by using a multi-scale Wavelet decomposition method. Practical test results prove its effectiveness.

  17. Non-invasive diagnosis methods of coronary disease based on wavelet denoising and sound analyzing.

    PubMed

    Chen, Tianhua; Zhao, Shuo; Shao, Siqi; Zheng, Siqun

    2017-03-01

    The heart sound is the characteristic signal of cardiovascular health status. The objective of this project is to explore the correlation between Wavelet Transform and noise performance of heart sound and the adaptability of classifying heart sound using bispectrum estimation. Since the wavelet has multi-scale and multi-resolution characteristics, in this paper, the heart sound signal with different frequency ranges is decomposed through wavelet and displayed on different scales of the resolving wavelet result. According to distribution features of frequency of heart sound signals, the interference components in heart sound signal can be eliminated by selecting reconstruction coefficients. Comparing de-noising effects of four wavelets which are haar, db6, sym8 and coif6, the db6 wavelet has achieved an optimal denoising effect to heart sound signals. The de-noising result of contrasting different layers in the db6 wavelet shows that decomposing with five layers in db6 provide the optimal performance. In practice, the db6 wavelet also shows commendable denoising effects when applying to 51 clinical heart signals. Furthermore, through the clinic analyses of 29 normal signals from healthy people and 22 abnormal heart signals from coronary heart disease patients, this method can fairly distinguish abnormal signals from normal signals by applying bispectrum estimation to denoised signals via ARMA coefficients model.

  18. Two Novel Space-Time Coding Techniques Designed for UWB MISO Systems Based on Wavelet Transform.

    PubMed

    Zaki, Amira Ibrahim; Badran, Ehab F; El-Khamy, Said E

    2016-01-01

    In this paper two novel space-time coding multi-input single-output (STC MISO) schemes, designed especially for Ultra-Wideband (UWB) systems, are introduced. The proposed schemes are referred to as wavelet space-time coding (WSTC) schemes. The WSTC schemes are based on two types of multiplexing, spatial and wavelet domain multiplexing. In WSTC schemes, four symbols are transmitted on the same UWB transmission pulse with the same bandwidth, symbol duration, and number of transmitting antennas of the conventional STC MISO scheme. The used mother wavelet (MW) is selected to be highly correlated with transmitted pulse shape and such that the multiplexed signal has almost the same spectral characteristics as those of the original UWB pulse. The two WSTC techniques increase the data rate to four times that of the conventional STC. The first WSTC scheme increases the data rate with a simple combination process. The second scheme achieves the increase in the data rate with a less complex receiver and better performance than the first scheme due to the spatial diversity introduced by the structure of its transmitter and receiver. The two schemes use Rake receivers to collect the energy in the dense multipath channel components. The simulation results show that the proposed WSTC schemes have better performance than the conventional scheme in addition to increasing the data rate to four times that of the conventional STC scheme.

  19. [A quality controllable algorithm for ECG compression based on wavelet transform and ROI coding].

    PubMed

    Zhao, An; Wu, Baoming

    2006-12-01

    This paper presents an ECG compression algorithm based on wavelet transform and region of interest (ROI) coding. The algorithm has realized near-lossless coding in ROI and quality controllable lossy coding outside of ROI. After mean removal of the original signal, multi-layer orthogonal discrete wavelet transform is performed. Simultaneously,feature extraction is performed on the original signal to find the position of ROI. The coefficients related to the ROI are important coefficients and kept. Otherwise, the energy loss of the transform domain is calculated according to the goal PRDBE (Percentage Root-mean-square Difference with Baseline Eliminated), and then the threshold of the coefficients outside of ROI is determined according to the loss of energy. The important coefficients, which include the coefficients of ROI and the coefficients that are larger than the threshold outside of ROI, are put into a linear quantifier. The map, which records the positions of the important coefficients in the original wavelet coefficients vector, is compressed with a run-length encoder. Huffman coding has been applied to improve the compression ratio. ECG signals taken from the MIT/BIH arrhythmia database are tested, and satisfactory results in terms of clinical information preserving, quality and compress ratio are obtained.

  20. Two Novel Space-Time Coding Techniques Designed for UWB MISO Systems Based on Wavelet Transform

    PubMed Central

    Zaki, Amira Ibrahim; El-Khamy, Said E.

    2016-01-01

    In this paper two novel space-time coding multi-input single-output (STC MISO) schemes, designed especially for Ultra-Wideband (UWB) systems, are introduced. The proposed schemes are referred to as wavelet space-time coding (WSTC) schemes. The WSTC schemes are based on two types of multiplexing, spatial and wavelet domain multiplexing. In WSTC schemes, four symbols are transmitted on the same UWB transmission pulse with the same bandwidth, symbol duration, and number of transmitting antennas of the conventional STC MISO scheme. The used mother wavelet (MW) is selected to be highly correlated with transmitted pulse shape and such that the multiplexed signal has almost the same spectral characteristics as those of the original UWB pulse. The two WSTC techniques increase the data rate to four times that of the conventional STC. The first WSTC scheme increases the data rate with a simple combination process. The second scheme achieves the increase in the data rate with a less complex receiver and better performance than the first scheme due to the spatial diversity introduced by the structure of its transmitter and receiver. The two schemes use Rake receivers to collect the energy in the dense multipath channel components. The simulation results show that the proposed WSTC schemes have better performance than the conventional scheme in addition to increasing the data rate to four times that of the conventional STC scheme. PMID:27959939

  1. Wavelet transform-based methods for denoising of Coulter counter signals

    NASA Astrophysics Data System (ADS)

    Jagtiani, Ashish V.; Sawant, Rupesh; Carletta, Joan; Zhe, Jiang

    2008-06-01

    A process based on discrete wavelet transforms is developed for denoising and baseline correction of measured signals from Coulter counters. Given signals from a particular Coulter counting experiment, which detect passage of particles through a fluid-filled microchannel, the process uses a cross-validation procedure to pick appropriate parameters for signal denoising; these parameters include the choice of the particular wavelet, the number of levels of decomposition, the threshold value and the threshold strategy. The process is demonstrated on simulated and experimental single channel data obtained from a particular multi-channel Coulter counter processing. For these example experimental signals from 20 µm polymethacrylate and Cottonwood/Eastern Deltoid pollen particles and the simulated signals, denoising is aimed at removing Gaussian white noise, 60 Hz power line interference and low frequency baseline drift. The process can be easily adapted for other Coulter counters and other sources of noise. Overall, wavelets are presented as a tool to aid in accurate detection of particles in Coulter counters.

  2. Multifocus microscope color image fusion based on Daub(2) and Daub(4) kernels of the Daubechies wavelet family

    NASA Astrophysics Data System (ADS)

    Padilla-Vivanco, Alfonso; Tellez-Arriaga, Irwing; Toxqui-Quitl, Carina; Santiago-Tepantlan, C.

    2009-08-01

    We present in this work a multifocus image fusion based on the Daubechies wavelet transform applied to multi-focus microscopy color images acquired by the bright-field reflection microscopy technique. The fusion scheme is based on the Daub(2) and Daub(4) kernels of the Daubechies family. The fusion scheme is implemented in each RGB channel. Experimental results are presented using metallic samples.

  3. SAR image change detection algorithm based on stationary wavelet and bi-dimensional intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Huang, S. Q.; Wang, Z. L.; Xie, T. G.; Li, Z. C.

    2017-09-01

    Speckle noise in synthetic aperture radar (SAR) image is produced by the coherent imaging mechanism, which brings a great impact on the change information acquisition of multi-temporal SAR images. Two-dimensional stationary wavelet transform (SWT) and bi-dimensional empirical mode decomposition (BEMD) are the non-stationary signal processing theory of multi-scale transform. According to their implementation process and SAR image characteristic, this paper proposed a new multi-temporal SAR image change detection method based on the combination of the stationary wavelet transform and the bi-dimensional intrinsic mode function (BIMF) features, called SWT-BIMF algorithm. The contribution of the new algorithm includes two aspects. One is the design of the two selections of decomposition features, that is, the speckle noise filtering; another is the selected features to perform the enhance processing, so more effective change information will obtain. The feasibility of the SWT-BIMF algorithm is verified by the measured SAR image data, and good experimental results are obtained.

  4. Fractal coding of wavelet image based on human vision contrast-masking effect

    NASA Astrophysics Data System (ADS)

    Wei, Hai; Shen, Lansun

    2000-06-01

    In this paper, a fractal-based compression approach of wavelet image is presented. The scheme tries to make full use of the sensitivity features of the human visual system. With the wavelet-based multi-resolution representation of image, detail vectors of each high frequency sub-image are constructed in accordance with its spatial orientation in order to grasp the edge information to which human observer is sensitive. Then a multi-level selection algorithm based on human vision's contrast masking effect is proposed to make the decision whether a detail vector is coded or not. Those vectors below the contrast threshold are discarded without introducing visual artifacts because of the ignorance of human vision. As for the redundancy of the retained vectors, different fractal- based methods are employed to decrease the correlation in single sub-image and between the different resolution sub- images with the same orientation. Experimental results suggest the efficiency of the proposed scheme. With the standard test image, our approach outperforms the EZW algorithm and the JPEG method.

  5. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    DTIC Science & Technology

    2016-10-01

    UNCLASSIFIED Signal Separation Of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation Si Tran Nguyen Nguyen 1, Sandun Kodituwakku...RR–0436 ABSTRACT A novel wavelet-based sparse signal representation technique is used to separate the main and tail rotor blade components of a... separation techniques cannot be applied. A sparse signal representation technique is now proposed for this problem with the tunable Q wavelet transform

  6. Remotely sensed image compression based on wavelet transform

    NASA Technical Reports Server (NTRS)

    Kim, Seong W.; Lee, Heung K.; Kim, Kyung S.; Choi, Soon D.

    1995-01-01

    In this paper, we present an image compression algorithm that is capable of significantly reducing the vast amount of information contained in multispectral images. The developed algorithm exploits the spectral and spatial correlations found in multispectral images. The scheme encodes the difference between images after contrast/brightness equalization to remove the spectral redundancy, and utilizes a two-dimensional wavelet transform to remove the spatial redundancy. the transformed images are then encoded by Hilbert-curve scanning and run-length-encoding, followed by Huffman coding. We also present the performance of the proposed algorithm with the LANDSAT MultiSpectral Scanner data. The loss of information is evaluated by PSNR (peak signal to noise ratio) and classification capability.

  7. Wavelet Based Feature Extraction for Target Recognition and Minefield Detection

    DTIC Science & Technology

    2007-11-02

    with Ron Gross (NSWC); presentation of course "Wavelets and Filter Banks " to NSWC personnel; application of simulated annealing to optimize RF absorption...characteristics of multilayer surfaces; generalization of wavelet transform to M-band wavelets; algorithm to generate a wavelet filter bank using any...filter whatsoever as the analysis filter; implementation of an algorithm to parameterize all M-band paraunitary filter banks .

  8. Medical image processing using novel wavelet filters based on atomic functions: optimal medical image compression.

    PubMed

    Landin, Cristina Juarez; Reyes, Magally Martinez; Martin, Anabelem Soberanes; Rosas, Rosa Maria Valdovinos; Ramirez, Jose Luis Sanchez; Ponomaryov, Volodymyr; Soto, Maria Dolores Torres

    2011-01-01

    The analysis of different Wavelets including novel Wavelet families based on atomic functions are presented, especially for ultrasound (US) and mammography (MG) images compression. This way we are able to determine with what type of filters Wavelet works better in compression of such images. Key properties: Frequency response, approximation order, projection cosine, and Riesz bounds were determined and compared for the classic Wavelets W9/7 used in standard JPEG2000, Daubechies8, Symlet8, as well as for the complex Kravchenko-Rvachev Wavelets ψ(t) based on the atomic functions up(t),  fup (2)(t), and eup(t). The comparison results show significantly better performance of novel Wavelets that is justified by experiments and in study of key properties.

  9. Phase-preserving speckle reduction based on soft thresholding in quaternion wavelet domain

    NASA Astrophysics Data System (ADS)

    Liu, Yipeng; Jin, Jing; Wang, Qiang; Shen, Yi

    2012-10-01

    Speckle reduction is a difficult task for ultrasound image processing because of low resolution and contrast. As a novel tool of image analysis, quaternion wavelet (QW) has some superior properties compared to discrete wavelets, such as nearly shift-invariant wavelet coefficients and phase-based texture presentation. We aim to exploit the excellent performance of speckle reduction in quaternion wavelet domain based on the soft thresholding method. First, we exploit the characteristics of magnitude and phases in quaternion wavelet transform (QWT) to the denoising application, and find that the QWT phases of the images are little influenced by the noises. Then we model the QWT magnitude using the Rayleigh distribution, and derive the thresholding criterion. Furthermore, we conduct several experiments on synthetic speckle images and real ultrasound images. The performance of the proposed speckle reduction algorithm, using QWT with soft thresholding, demonstrates superiority to those using discrete wavelet transform and classical algorithms.

  10. Study on Underwater Image Denoising Algorithm Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Jian, Sun; Wen, Wang

    2017-02-01

    This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising

  11. Fabric defect detection based on textured characteristics using wavelet transform

    NASA Astrophysics Data System (ADS)

    Sun, Ziguang; Liu, Zhiqi; Wang, Xiaorong; Xu, YiYi

    2010-08-01

    In texture defect detection, the defects can be discriminated according to the distribution ranges of wavelet coefficients between the normal and defective parts of texture images. In traditional texture defect detection methods, the normal parts of texture images have to be trained in advance. In this paper, we propose a novel method to automatically determine the training regions based on the characteristics exhibited by normal and defective texture images. In this way, the detection error can be reduced because of the avoiding of environmental changes.

  12. Wavelet Transform of Super-Resolutions Based on Radar and Infrared Sensor Fusion

    DTIC Science & Technology

    1998-05-01

    0I Q’UAL1 INwPO¶= I VI STATEMB r AApproved for public release; Distribution Unlimited NAVY CASE 77545 WAVELET TRANSFORM OF SUPER-RESOLUTIONS BASED ON...INVENTION It is, therefore, an object of the present invention to provide a structure and method for applying the forward and reverse Wavelet Transform (WT...invention, the noisy super- 10 resolution of infrared imaging is combined with the Wavelet transform for radar corner back-scattering size information

  13. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Alami, Mohammad Taghi; Vousoughi, Farnaz Daneshvar

    2015-05-01

    Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, a Self-Organizing-Map (SOM)-based clustering technique was used to identify spatially homogeneous clusters of groundwater level (GWL) data for a feed-forward neural network (FFNN) to model one and multi-step-ahead GWLs. The wavelet transform (WT) was also used to extract dynamic and multi-scale features of the non-stationary GWL, runoff and rainfall time series. The performance of the FFNN model was compared to the newly proposed combined WT-FFNN model and also the conventional linear forecasting method of ARIMAX (Auto Regressive Integrated Moving Average with exogenous input). GWL predictions were investigated under three different scenarios. The results indicated that the proposed FFNN model coupled with the SOM-based clustering method decreased the dimensionality of the input variables and consequently the complexity of the FFNN models. On the other hand, the application of the wavelet transform to GWL data increased the performance of the FFNN model up to 15.3% in average by revealing the dominant periods of the process.

  14. Climatic drivers of vegetation based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Claessen, Jeroen; Martens, Brecht; Verhoest, Niko E. C.; Molini, Annalisa; Miralles, Diego

    2017-04-01

    Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. This response can be analysed using time series of different vegetation diagnostics observed from space, in the optical (e.g. Normalised Difference Vegetation Index (NDVI), Solar Induced Fluorescence (SIF)) and microwave (Vegetation Optical Depth (VOD)) domains. In this contribution, we compare the climatic drivers of different vegetation diagnostics, based on a monthly global data-cube of 24 years at a 0.25° resolution. To do so, we calculate the wavelet coherence between each vegetation-related observation and observations of air temperature, precipitation and incoming radiation. The use of wavelet coherence allows unveiling the scale-by-scale response and sensitivity of the diverse vegetation indices to their climatic drivers. Our preliminary results show that the wavelet-based statistics prove to be a suitable tool for extracting information from different vegetation indices. Going beyond traditional methods based on linear correlations, the application of wavelet coherence provides information about: (a) the specific periods at which the correspondence between climate and vegetation dynamics is larger, (b) the frequencies at which this correspondence occurs (e.g. monthly or seasonal scales), and (c) the time lag in the response of vegetation to their climate drivers, and vice versa. As expected, areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. Furthermore, precipitation is the most important driver of vegetation variability over short terms in most regions of the world - which can be explained by the rapid response of leaf development towards available water content

  15. [Automatic measurement of physical parameters of stellar spectra based on the Haar wavelet features].

    PubMed

    Lu, Yu; Li, Chen-Lai; Li, Xiang-Ru

    2012-09-01

    The present paper researches the automatic measurement of the physical parameters ofthe stellar spectra. It is an important problem of the automatic processing of mass spectral data in the large-scale survey plan. The basic steps of the program in this article are: at first, the stellar spectra are decomposed by multi-scale Harr wavelet. Secondly, wavelet coefficients are chosen as the feature vectors of the spectrum. Finally, Non-parameter estimation is employed for estimating physical parameters of the stellar spectra. Studies show that the original spectrumonly needs to be decomposed by four-level Harr wavelet. If the wavelet coefficient at the fourth level is chosen as the wavelet feature of the spectrum, the surface gravity and effective temperature is estimated better. If the wavelet coefficient at the first level is chosen as the wavelet feature of the spectrum, the metallic abundance is estimated better. The authors use the spectral data in the literature ELODIE library to test the effectiveness of the method. When the wavelet coefficient is chosen as the feature vector of the spectrum, the experiment results show that the proposed method is robust and features high accuracy for the automatic measurement of the surface gravity, the effective temperature and the metallic abundance.

  16. Implemented Wavelet Packet Tree based Denoising Algorithm in Bus Signals of a Wearable Sensorarray

    NASA Astrophysics Data System (ADS)

    Schimmack, M.; Nguyen, S.; Mercorelli, P.

    2015-11-01

    This paper introduces a thermosensing embedded system with a sensor bus that uses wavelets for the purposes of noise location and denoising. From the principle of the filter bank the measured signal is separated in two bands, low and high frequency. The proposed algorithm identifies the defined noise in these two bands. With the Wavelet Packet Transform as a method of Discrete Wavelet Transform, it is able to decompose and reconstruct bus input signals of a sensor network. Using a seminorm, the noise of a sequence can be detected and located, so that the wavelet basis can be rearranged. This particularly allows for elimination of any incoherent parts that make up unavoidable measuring noise of bus signals. The proposed method was built based on wavelet algorithms from the WaveLab 850 library of the Stanford University (USA). This work gives an insight to the workings of Wavelet Transformation.

  17. Dual tree complex wavelet transform based shadow detection and removal from moving objects

    NASA Astrophysics Data System (ADS)

    Khare, Manish; Srivastava, Rajneesh K.; Khare, Ashish

    2014-02-01

    Presence of shadow degrades performance of any computer vision system as a number of shadow points are always misclassified as object points. Various algorithms for shadow detection and removal exist for still images but very few algorithms have been developed for moving objects. This paper introduces a new method for shadow detection and removal from moving object which is based on Dual tree complex wavelet transform. We have chosen Dual tree complex wavelet transform as it is shift invariant and have a better edge detection property as compared to real valued wavelet transform. In the present work, shadow detection and removal has been done by thresholding wavelet coefficients of Dual tree complex wavelet transform of difference of reference frame and the current frame. Standard deviation of wavelet coefficients is used as an optimal threshold. Results after visual and quantitative performance metrics computation shows that the proposed method for shadow detection and removal is better than other state-of-theart methods.

  18. Denoising method of heart sound signals based on self-construct heart sound wavelet

    NASA Astrophysics Data System (ADS)

    Cheng, Xiefeng; Zhang, Zheng

    2014-08-01

    In the field of heart sound signal denoising, the wavelet transform has become one of the most effective measures. The selective wavelet basis is based on the well-known orthogonal db series or biorthogonal bior series wavelet. In this paper we present a self-construct wavelet basis which is suitable for the heart sound denoising and analyze its constructor method and features in detail according to the characteristics of heart sound and evaluation criterion of signal denoising. The experimental results show that the heart sound wavelet can effectively filter out the noise of the heart sound signals, reserve the main characteristics of the signal. Compared with the traditional wavelets, it has a higher signal-to-noise ratio, lower mean square error and better denoising effect.

  19. Determination of space-dependent radiative properties in diffuse optical tomography using a wavelet multi-scale method

    NASA Astrophysics Data System (ADS)

    Dubot, F.; Favennec, Y.; Rousseau, B.; Rousse, D. R.

    2016-01-01

    This paper deals with the estimation of radiative property distributions of participating media from a set of light sources and sensors located on the boundaries of a medium. This is the so-called diffuse optical tomography problem. Such a non-linear ill-posed inverse problem is solved through the minimization of a cost function which depends on the discrepancy, in a least-square sense, between some measurements and associated predictions. In the present case, predictions are based on the diffuse approximation model in the frequency domain while the optimization problem is solved by the L-BFGS algorithm. To cope with the local convergence property of the optimizer and the presence of numerous local minima in the cost function, a wavelet multi-scale method associated with the L-BFGS method is designed.

  20. Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition.

    PubMed

    Yang, Bang-hua; Yan, Guo-zheng; Yan, Rong-guo; Wu, Ting

    2006-12-01

    A method based on wavelet packet best basis decomposition (WPBBD) is investigated for the purpose of extracting features of electroencephalogram signals produced during motor imagery tasks in brain-computer interfaces. The method includes the following three steps. (1) Original signals are decomposed by wavelet packet transform (WPT) and a wavelet packet library can be formed. (2) The best basis for classification is selected from the library. (3) Subband energies included in the best basis are used as effective features. Three different motor imagery tasks are discriminated using the features. The WPBBD produces a 70.3% classification accuracy, which is 4.2% higher than that of the existing wavelet packet method.

  1. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  2. A wavelet-based computational method for solving stochastic Itô–Volterra integral equations

    SciTech Connect

    Mohammadi, Fakhrodin

    2015-10-01

    This paper presents a computational method based on the Chebyshev wavelets for solving stochastic Itô–Volterra integral equations. First, a stochastic operational matrix for the Chebyshev wavelets is presented and a general procedure for forming this matrix is given. Then, the Chebyshev wavelets basis along with this stochastic operational matrix are applied for solving stochastic Itô–Volterra integral equations. Convergence and error analysis of the Chebyshev wavelets basis are investigated. To reveal the accuracy and efficiency of the proposed method some numerical examples are included.

  3. Face recognition based on wavelet transform and variance similarity

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhong; Cui, Fayi

    2008-12-01

    The image match for face recognition is studied. Variances of sequences in relation to facial images are computed, and the weights used for computation of similarity are obtained by a certain transform between the variance and weight. The weights based on the better theoretical derivation have good stability. And the variance similarity calculated by these weights is of great adaptability, weakening the impact of interferences including the noise and deformation of images. Wavelet transform is a very good method about image compression, by which redundancies of the image are removed and original features of the image are reserved. Whereas pixels of a facial image are usually larger, wavelet transform is used to extract the low-frequency images. And then each facial variance similarity is computed based on the matrix of the low-frequency image. Finally, the image match is carried out for face recognition. The experiments show that the proposed method has the characteristics of simple realization, rapid recognition speed and high recognition rate.

  4. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform.

    PubMed

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-03-30

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques.

  5. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform

    PubMed Central

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-01-01

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570

  6. Perceptual security of encrypted images based on wavelet scaling analysis

    NASA Astrophysics Data System (ADS)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  7. Lossless image compression with projection-based and adaptive reversible integer wavelet transforms.

    PubMed

    Deever, Aaron T; Hemami, Sheila S

    2003-01-01

    Reversible integer wavelet transforms are increasingly popular in lossless image compression, as evidenced by their use in the recently developed JPEG2000 image coding standard. In this paper, a projection-based technique is presented for decreasing the first-order entropy of transform coefficients and improving the lossless compression performance of reversible integer wavelet transforms. The projection technique is developed and used to predict a wavelet transform coefficient as a linear combination of other wavelet transform coefficients. It yields optimal fixed prediction steps for lifting-based wavelet transforms and unifies many wavelet-based lossless image compression results found in the literature. Additionally, the projection technique is used in an adaptive prediction scheme that varies the final prediction step of the lifting-based transform based on a modeling context. Compared to current fixed and adaptive lifting-based transforms, the projection technique produces improved reversible integer wavelet transforms with superior lossless compression performance. It also provides a generalized framework that explains and unifies many previous results in wavelet-based lossless image compression.

  8. A wavelet-based structural damage assessment approach with progressively downloaded sensor data

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Yunfeng; Zhu, Songye

    2008-02-01

    This paper presents a wavelet-based on-line damage assessment approach based on the use of progressively transmitted multi-resolution sensor data. In extreme events like strong earthquakes, real-time retrieval of structural monitoring data and on-line damage assessment of civil infrastructures are crucial for emergency relief and disaster assistance efforts such as resource allocation and evacuation route arrangement. Due to the limited communication bandwidth available to data transmission during and immediately after major earthquakes, innovative methods for integrated sensor data transmission and on-line damage assessment are highly desired. The proposed approach utilizes a lifting scheme wavelet transform to generate multi-resolution sensor data, which are transmitted progressively in increasing resolution. Multi-resolution sensor data enable interactive on-line condition assessment of structural damages. To validate this concept, a hysteresis-based damage assessment method, proposed by Iwan for extreme-event use, is selected in this study. A sensitivity study on the hysteresis-based damage assessment method under varying data resolution levels was conducted using simulation data from a six-story steel braced frame building subjected to earthquake ground motion. The results of this study show that the proposed approach is capable of reducing the raw sensor data size by a significant amount while having a minor effect on the accuracy of hysteresis-based damage assessment. The proposed approach provides a valuable decision support tool for engineers and emergency response personnel who want to access the data in real time and perform on-line damage assessment in an efficient manner.

  9. Weak transient fault feature extraction based on an optimized Morlet wavelet and kurtosis

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Xing, Jianfeng; Mao, Yongfang

    2016-08-01

    Aimed at solving the key problem in weak transient detection, the present study proposes a new transient feature extraction approach using the optimized Morlet wavelet transform, kurtosis index and soft-thresholding. Firstly, a fast optimization algorithm based on the Shannon entropy is developed to obtain the optimized Morlet wavelet parameter. Compared to the existing Morlet wavelet parameter optimization algorithm, this algorithm has lower computation complexity. After performing the optimized Morlet wavelet transform on the analyzed signal, the kurtosis index is used to select the characteristic scales and obtain the corresponding wavelet coefficients. From the time-frequency distribution of the periodic impulsive signal, it is found that the transient signal can be reconstructed by the wavelet coefficients at several characteristic scales, rather than the wavelet coefficients at just one characteristic scale, so as to improve the accuracy of transient detection. Due to the noise influence on the characteristic wavelet coefficients, the adaptive soft-thresholding method is applied to denoise these coefficients. With the denoised wavelet coefficients, the transient signal can be reconstructed. The proposed method was applied to the analysis of two simulated signals, and the diagnosis of a rolling bearing fault and a gearbox fault. The superiority of the method over the fast kurtogram method was verified by the results of simulation analysis and real experiments. It is concluded that the proposed method is extremely suitable for extracting the periodic impulsive feature from strong background noise.

  10. A wavelet-based method for multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Zhang, Chaoyang; Zhou, Zhaoxian

    2012-06-01

    A wavelet-based method is proposed for multispectral face recognition in this paper. Gabor wavelet transform is a common tool for orientation analysis of a 2D image; whereas Hamming distance is an efficient distance measurement for face identification. Specifically, at each frequency band, an index number representing the strongest orientational response is selected, and then encoded in binary format to favor the Hamming distance calculation. Multiband orientation bit codes are then organized into a face pattern byte (FPB) by using order statistics. With the FPB, Hamming distances are calculated and compared to achieve face identification. The FPB algorithm was initially created using thermal images, while the EBGM method was originated with visible images. When two or more spectral images from the same subject are available, the identification accuracy and reliability can be enhanced using score fusion. We compare the identification performance of applying five recognition algorithms to the three-band (visible, near infrared, thermal) face images, and explore the fusion performance of combing the multiple scores from three recognition algorithms and from three-band face images, respectively. The experimental results show that the FPB is the best recognition algorithm, the HMM yields the best fusion result, and the thermal dataset results in the best fusion performance compared to other two datasets.

  11. Wavelet-based illumination invariant preprocessing in face recognition

    NASA Astrophysics Data System (ADS)

    Goh, Yi Zheng; Teoh, Andrew Beng Jin; Goh, Kah Ong Michael

    2009-04-01

    Performance of a contemporary two-dimensional face-recognition system has not been satisfied due to the variation in lighting. As a result, many works of solving illumination variation in face recognition have been carried out in past decades. Among them, the Illumination-Reflectance model is one of the generic models that is used to separate the individual reflectance and illumination components of an object. The illumination component can be removed by means of image-processing techniques to regain an intrinsic face feature, which is depicted by the reflectance component. We present a wavelet-based illumination invariant algorithm as a preprocessing technique for face recognition. On the basis of the multiresolution nature of wavelet analysis, we decompose both illumination and reflectance components from a face image in a systematic way. The illumination component wherein resides in the low-spatial-frequency subband can be eliminated efficiently. This technique works out very advantageously for achieving higher recognition performance on YaleB, CMU PIE, and FRGC face databases.

  12. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  13. Structural damage localization using wavelet-based silhouette statistics

    NASA Astrophysics Data System (ADS)

    Jung, Uk; Koh, Bong-Hwan

    2009-04-01

    This paper introduces a new methodology for classifying and localizing structural damage in a truss structure. The application of wavelet analysis along with signal classification techniques in engineering problems allows us to discover novel characteristics that can be used for the diagnosis and classification of structural defects. This study exploits the data discriminating capability of silhouette statistics, which is eventually combined with the wavelet-based vertical energy threshold technique for the purpose of extracting damage-sensitive features and clustering signals of the same class. This threshold technique allows us to first obtain a suitable subset of the extracted or modified features of our data, i.e. good predictor sets should contain features that are strongly correlated to the characteristics of the data without considering the classification method used, although each of these features should be as uncorrelated with each other as possible. The silhouette statistics have been used to assess the quality of clustering by measuring how well an object is assigned to its corresponding cluster. We use this concept for the discriminant power function used in this paper. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating both open- and breathing-type damage even in the presence of a considerable amount of process and measurement noise. Finally, a typical data mining tool such as classification and regression tree (CART) quantitatively evaluates the performance of the damage localization results in terms of the misclassification error.

  14. Adaptive nonseparable wavelet transform via lifting and its application to content-based image retrieval.

    PubMed

    Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian

    2010-01-01

    We present in this paper a novel way to adapt a multidimensional wavelet filter bank, based on the nonseparable lifting scheme framework, to any specific problem. It allows the design of filter banks with a desired number of degrees of freedom, while controlling the number of vanishing moments of the primal wavelet ((~)N moments) and of the dual wavelet ( N moments). The prediction and update filters, in the lifting scheme based filter banks, are defined as Neville filters of order (~)N and N, respectively. However, in order to introduce some degrees of freedom in the design, these filters are not defined as the simplest Neville filters. The proposed method is convenient: the same algorithm is used whatever the dimensionality of the signal, and whatever the lattice used. The method is applied to content-based image retrieval (CBIR): an image signature is derived from this new adaptive nonseparable wavelet transform. The method is evaluated on four image databases and compared to a similar CBIR system, based on an adaptive separable wavelet transform. The mean precision at five of the nonseparable wavelet based system is notably higher on three out of the four databases, and comparable on the other one. The proposed method also compares favorably with the dual-tree complex wavelet transform, an overcomplete nonseparable wavelet transform.

  15. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  16. Method of Digital Hologram Coding-Decoding and Holographic Image Processing Based on the Gabor Wavelet

    NASA Astrophysics Data System (ADS)

    Kozlova, A. S.

    2016-02-01

    Special features of an algorithm for coding-decoding of digital particle holograms and restoration of holographic particle images based on the Gabor wavelet are considered. The method involves the application of the decoded wavelet coefficients for the subsequent restoration of images from digital holograms. Results of approbation of the method to numerically calculated holograms and holograms of plankton particles are presented.

  17. Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lei, Sheau-Fang; Tung, Ying-Kai

    Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.

  18. Wavelet Based Analytical Expressions to Steady State Biofilm Model Arising in Biochemical Engineering.

    PubMed

    Padma, S; Hariharan, G

    2016-06-01

    In this paper, we have developed an efficient wavelet based approximation method to biofilm model under steady state arising in enzyme kinetics. Chebyshev wavelet based approximation method is successfully introduced in solving nonlinear steady state biofilm reaction model. To the best of our knowledge, until now there is no rigorous wavelet based solution has been addressed for the proposed model. Analytical solutions for substrate concentration have been derived for all values of the parameters δ and SL. The power of the manageable method is confirmed. Some numerical examples are presented to demonstrate the validity and applicability of the wavelet method. Moreover the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs and computationally attractive.

  19. An approach for tissue density classification in mammographic images using artificial neural network based on wavelet and curvelet transforms

    NASA Astrophysics Data System (ADS)

    Yaşar, Hüseyin; Ceylan, Murat

    2015-03-01

    Breast cancer is one of the types of cancer which is most commonly seen in women. Density of breast is an important indicator for the risk of cancer. In addition, densities of tissue may harden the diagnosis by hiding the abnormalities occurring on the breast. For this reason, during the process of diagnosis, the process of automatic classification of breast density has a significant importance. In this study, a new system with the base of Artificial Neural Network (ANN) and multiple resolution analysis is suggested. Wavelet and curvelet analyses having the most common use have been used as multi resolution analysis. 4 pieces of statistics which are minimum value, maximum value, mean value and standard deviation have been extracted from the images which have been eluted to their sub-bands via multi resolution analysis. For the purpose of testing the success of the system, 322 pieces of images which are in MIAS database have been used. The obtained results for different backgrounds are so satisfying; and the highest classification values have been obtained as 97.16 % with Wavelet transform and ANN for fatty background and 79.80 % with Wavelet transform and ANN for fatty-glanduar background. The same results have been obtained using Wavelet transform and ANN and Curvelet transform and ANN for dense background and accuracy rate of 84.82 % have been reached. The results of mean classification have been obtained, for three pieces of tissue types (fatty, fatty-glanduar, dense), in sequence as 84.47 % with the use of ANN, 85.71 % with the use of curvelet analysis and ANN; and 87.26 % with the use of wavelet analysis and ANN.

  20. Wavelet multi-resolution analysis of energy transfer in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Bassenne, Maxime; Towery, Colin; Poludnenko, Alexei; Hamlington, Peter; Ihme, Matthias; Urzay, Javier

    2016-11-01

    Direct numerical simulations of turbulent premixed flames are examined using wavelet multi-resolution analyses (WMRA) as a diagnostics tool to evaluate the spatially localized inter-scale energy transfer in reacting flows. In non-reacting homogeneous-isotropic turbulence, the net energy transfer occurs from large to small scales on average, thus following the classical Kolmogorov energy cascade. However, in turbulent flames, our prior work suggests that thermal expansion leads to a small-scale pressure-work contribution that transfers energy in an inverse cascade on average, which has important consequences for LES modeling of reacting flows. The current study employs WMRA to investigate, simultaneously in physical and spectral spaces, the characteristics of this combustion-induced backscatter effect. The WMRA diagnostics provide spatial statistics of the spectra, scale-conditioned intermittency of velocity and vorticity, along with energy-transfer fluxes conditioned on the local progress variable.

  1. Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahdavi, Seyed Hossein; Razak, Hashim Abdul

    2016-06-01

    This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.

  2. Wavelet sparse transform optimization in image reconstruction based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Ziran, Wei; Huachuang, Wang; Jianlin, Zhang

    2017-06-01

    The high image sparsity is very important to improve the accuracy of compressed sensing reconstruction image, and the wavelet transform can make the image sparse obviously. This paper is the optimization method based on wavelet sparse transform in image reconstruction based on compressed sensing, and we have designed a restraining matrix to optimize the wavelet sparse transform. Firstly, the wavelet coefficients are obtained by wavelet transform of the original signal data, and the wavelet coefficients have a tendency of decreasing gradually. The restraining matrix is used to restrain the small coefficients and is a part of image sparse transform, so as to make the wavelet coefficients more sparse. When the sampling rate is between 0. 15 and 0. 45, the simulation results show that the quality promotion of the reconstructed image is the best, and the peak signal to noise ratio (PSNR) is increased by about 0.5dB to 1dB. At the same time, it is more obvious to improve the reconstruction accuracy of the fingerprint texture image, which to some extent makes up for the shortcomings that reconstruction of texture image by compressed sensing based on the wavelet transform has the low accuracy.

  3. Rotation invariant texture classification based on Gabor wavelets

    NASA Astrophysics Data System (ADS)

    Xie, Xudong; Lu, Jianhua; Gong, Jie; Zhang, Ning

    2007-11-01

    In this paper, an efficient rotation invariant texture classification method is proposed. Comparing with the previous texture classification method, which is also based on Gabor wavelets, two modifications are made in this paper. Firstly, an adaptive circular orientation normalization scheme is proposed. Because both the effects of orientation and frequency to Gabor features are considered, our method can effectively eliminate the disturbance from inter-frequency, and therefore has the ability to reduce the effect of image rotation. Secondly, besides the Gabor features, which mainly represent the local texture information of an image, the statistical property of the intensity values of an image is also used for texture classification in our algorithm. Our method is evaluated based on the Brodatz album, and the experimental results show that it outperforms the traditional algorithms.

  4. Wavelet-based Image Compression using Subband Threshold

    NASA Astrophysics Data System (ADS)

    Muzaffar, Tanzeem; Choi, Tae-Sun

    2002-11-01

    Wavelet based image compression has been a focus of research in recent days. In this paper, we propose a compression technique based on modification of original EZW coding. In this lossy technique, we try to discard less significant information in the image data in order to achieve further compression with minimal effect on output image quality. The algorithm calculates weight of each subband and finds the subband with minimum weight in every level. This minimum weight subband in each level, that contributes least effect during image reconstruction, undergoes a threshold process to eliminate low-valued data in it. Zerotree coding is done next on the resultant output for compression. Different values of threshold were applied during experiment to see the effect on compression ratio and reconstructed image quality. The proposed method results in further increase in compression ratio with negligible loss in image quality.

  5. Automatic classification of visual evoked potentials based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  6. An FPGA-based rapid prototyping platform for wavelet coprocessors

    NASA Astrophysics Data System (ADS)

    Vera, Alonzo; Meyer-Baese, Uwe; Pattichis, Marios

    2007-04-01

    MatLab/Simulink-based design flows are being used by DSP designers to improve time-to-market of FPGA implementations. 1 Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. This integration might prove to be time consuming and error prone. It also requires that the DSP designer has an excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to educational environments.

  7. The Brera Multi-scale Wavelet HRI Cluster Survey. I. Selection of the sample and number counts

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Guzzo, L.; Campana, S.; Lazzati, D.; Panzera, M. R.; Tagliaferri, G.; Arena, S.; Braglia, F.; Dell'Antonio, I.; Longhetti, M.

    2004-12-01

    We describe the construction of the Brera Multi-scale Wavelet (BMW) HRI Cluster Survey, a deep sample of serendipitous X-ray selected clusters of galaxies based on the ROSAT HRI archive. This is the first cluster catalog exploiting the high angular resolution of this instrument. Cluster candidates are selected on the basis of their X-ray extension only, a parameter which is well measured by the BMW wavelet detection algorithm. The survey includes 154 candidates over a total solid angle of ˜160 deg2 at 10-12 erg s-1 cm-2 and ˜80 deg2 at 1.8×10-13 erg s-1 cm-2. At the same time, a fairly good sky coverage in the faintest flux bins (3-5 × 10-14 erg s-1 cm-2) gives this survey the capability of detecting a few clusters with z˜ 1-1.2, depending on evolution. We present the results of extensive Monte Carlo simulations, providing a complete statistical characterization of the survey selection function and contamination level. We also present a new estimate of the surface density of clusters of galaxies down to a flux of 3× 10-14 erg s-1 cm-2, which is consistent with previous measurements from PSPC-based samples. Several clusters with redshifts up to z=0.92 have already been confirmed, either by cross-correlation with existing PSPC surveys or from early results of an ongoing follow-up campaign. Overall, these results indicate that the excellent HRI PSF (5 arcsec FWHM on axis) more than compensates for the negative effect of the higher instrumental background on the detection of high-redshift clusters. In addition, it allows us to detect compact clusters that could be lost at lower resolution, thus potentially providing an important new insight into cluster evolution. Partially based on observations taken at ESO and TNG telescopes.

  8. Region-based image denoising through wavelet and fast discrete curvelet transform

    NASA Astrophysics Data System (ADS)

    Gu, Yanfeng; Guo, Yan; Liu, Xing; Zhang, Ye

    2008-10-01

    Image denoising always is one of important research topics in the image processing field. In this paper, fast discrete curvelet transform (FDCT) and undecimated wavelet transform (UDWT) are proposed for image denoising. A noisy image is first denoised by FDCT and UDWT separately. The whole image space is then divided into edge region and non-edge regions. After that, wavelet transform is performed on the images denoised by FDCT and UDWT respectively. Finally, the resultant image is fused through using both of edge region wavelet cofficients of the image denoised by FDCT and non-edge region wavelet cofficients of the image denoised by UDWT. The proposed method is validated through numerical experiments conducted on standard test images. The experimental results show that the proposed algorithm outperforms wavelet-based and curvelet-based image denoising methods and preserve linear features well.

  9. A Chinese minority script recognition method based on wavelet feature and multinomial naive Bayes

    NASA Astrophysics Data System (ADS)

    Guo, Hai; Zhao, Jing-ying

    2009-07-01

    The existing Chinese Minorities OCR system is mainly oriented in the "literacy" level, the script recognition has not attracted the attention it deserves, and the area of recognizing the kinds of Chinese minority scripts is still in a blank. This paper presents a method of recognizing the kinds of Chinese minority scripts based on wavelet analysis and Multinomial Naive Bayes. The method of recognizing the kinds of Chinese minority scripts based on wavelet analysis and Multinomial Naive Bayes is presented which adopts wavelet decomposition that obtains feature descriptor of wavelet energy and wavelet energy distribution proportion. Combined with the texture feature of Chinese minority scripts, radially classification in Multinomial Naive Bayes. Among Chinese, English and Chinese minority scripts such as Tibetan, Tai Lue, Naxi Pictographs, Uighur, Tai Le, Yi, the experimental results show the recognition rate is up to 90%.

  10. Wavelet and wavelet packet compression of electrocardiograms.

    PubMed

    Hilton, M L

    1997-05-01

    Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

  11. Exploring the Multi-Scale Statistical Analysis of Ionospheric Scintillation via Wavelets and Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Materassi, Massimo; Spogli, Luca; Cicone, Antonio; Alberti, Tommaso

    2016-04-01

    Highly irregular fluctuations of the power of trans-ionospheric GNSS signals, namely radio power scintillation, are, at least to a large extent, the effect of ionospheric plasma turbulence, a by-product of the non-linear and non-stationary evolution of the plasma fields defining the Earth's upper atmosphere. One could expect the ionospheric turbulence characteristics of inter-scale coupling, local randomness and high time variability to be inherited by the scintillation on radio signals crossing the medium. On this basis, the remote sensing of local features of the turbulent plasma could be expected as feasible by studying radio scintillation. The dependence of the statistical properties of the medium fluctuations on the space- and time-scale is the distinctive character of intermittent turbulent media. In this paper, a multi-scale statistical analysis of some samples of GPS radio scintillation is presented: the idea is that assessing how the statistics of signal fluctuations vary with time scale under different Helio-Geophysical conditions will be of help in understanding the corresponding multi-scale statistics of the turbulent medium causing that scintillation. In particular, two techniques are tested as multi-scale decomposition schemes of the signals: the discrete wavelet analysis and the Empirical Mode Decomposition. The discussion of the results of the one analysis versus the other will be presented, trying to highlight benefits and limits of each scheme, also under suitably different helio-geophysical conditions.

  12. Wavelet-based detection of abrupt changes in natural frequencies of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, K.; Staszewski, W. J.; Basu, B.; Uhl, T.

    2015-12-01

    Detection of abrupt changes in natural frequencies from vibration responses of time-variant systems is a challenging task due to the complex nature of physics involved. It is clear that the problem needs to be analysed in the combined time-frequency domain. The paper proposes an application of the input-output wavelet-based Frequency Response Function for this analysis. The major focus and challenge relate to ridge extraction of the above time-frequency characteristics. It is well known that classical ridge extraction procedures lead to ridges that are smooth. However, this property is not desired when abrupt changes in the dynamics are considered. The methods presented in the paper are illustrated using simulated and experimental multi-degree-of-freedom systems. The results are compared with the classical Frequency Response Function and with the output only analysis based on the wavelet auto-power response spectrum. The results show that the proposed method captures correctly the dynamics of the analysed time-variant systems.

  13. A Novel ECG Eigenvalue Detection Algorithm Based on Wavelet Transform

    PubMed Central

    2017-01-01

    This study investigated an electrocardiogram (ECG) eigenvalue automatic analysis and detection method; ECG eigenvalues were used to reverse the myocardial action potential in order to achieve automatic detection and diagnosis of heart disease. Firstly, the frequency component of the feature signal was extracted based on the wavelet transform, which could be used to locate the signal feature after the energy integral processing. Secondly, this study established a simultaneous equations model of action potentials of the myocardial membrane, using ECG eigenvalues for regression fitting, in order to accurately obtain the eigenvalue vector of myocardial membrane potential. The experimental results show that the accuracy of ECG eigenvalue recognition is more than 99.27%, and the accuracy rate of detection of heart disease such as myocardial ischemia and heart failure is more than 86.7%. PMID:28596962

  14. A New Quantum Watermarking Based on Quantum Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Heidari, Shahrokh; Naseri, Mosayeb; Gheibi, Reza; Baghfalaki, Masoud; Rasoul Pourarian, Mohammad; Farouk, Ahmed

    2017-06-01

    Quantum watermarking is a technique to embed specific information, usually the owner’s identification, into quantum cover data such for copyright protection purposes. In this paper, a new scheme for quantum watermarking based on quantum wavelet transforms is proposed which includes scrambling, embedding and extracting procedures. The invisibility and robustness performances of the proposed watermarking method is confirmed by simulation technique. The invisibility of the scheme is examined by the peak-signal-to-noise ratio (PSNR) and the histogram calculation. Furthermore the robustness of the scheme is analyzed by the Bit Error Rate (BER) and the Correlation Two-Dimensional (Corr 2-D) calculation. The simulation results indicate that the proposed watermarking scheme indicate not only acceptable visual quality but also a good resistance against different types of attack. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

  15. Optimization of integer wavelet transforms based on difference correlation structures.

    PubMed

    Li, Hongliang; Liu, Guizhong; Zhang, Zhongwei

    2005-11-01

    In this paper, a novel lifting integer wavelet transform based on difference correlation structure (DCCS-LIWT) is proposed. First, we establish a relationship between the performance of a linear predictor and the difference correlations of an image. The obtained results provide a theoretical foundation for the following construction of the optimal lifting filters. Then, the optimal prediction lifting coefficients in the sense of least-square prediction error are derived. DCCS-LIWT puts heavy emphasis on image inherent dependence. A distinct feature of this method is the use of the variance-normalized autocorrelation function of the difference image to construct a linear predictor and adapt the predictor to varying image sources. The proposed scheme also allows respective calculations of the lifting filters for the horizontal and vertical orientations. Experimental evaluation shows that the proposed method produces better results than the other well-known integer transforms for the lossless image compression.

  16. Adaptive inpainting algorithm based on DCT induced wavelet regularization.

    PubMed

    Li, Yan-Ran; Shen, Lixin; Suter, Bruce W

    2013-02-01

    In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting.

  17. Employing wavelet-based texture features in ammunition classification

    NASA Astrophysics Data System (ADS)

    Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.

    2017-05-01

    Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques

  18. A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle

    NASA Astrophysics Data System (ADS)

    Hester, D.; González, A.

    2012-04-01

    Previous research based on theoretical simulations has shown the potential of the wavelet transform to detect damage in a beam by analysing the time-deflection response due to a constant moving load. However, its application to identify damage from the response of a bridge to a vehicle raises a number of questions. Firstly, it may be difficult to record the difference in the deflection signal between a healthy and a slightly damaged structure to the required level of accuracy and high scanning frequencies in the field. Secondly, the bridge is going to have a road profile and it will be loaded by a sprung vehicle and time-varying forces rather than a constant load. Therefore, an algorithm based on a plot of wavelet coefficients versus time to detect damage (a singularity in the plot) appears to be very sensitive to noise. This paper addresses these questions by: (a) using the acceleration signal, instead of the deflection signal, (b) employing a vehicle-bridge finite element interaction model, and (c) developing a novel wavelet-based approach using wavelet energy content at each bridge section, which proves to be more sensitive to damage than a wavelet coefficient line plot at a given scale as employed by others.

  19. Simultaneous CDMA and error correction schemes based on wavelet filters in integer quotient rings

    NASA Astrophysics Data System (ADS)

    Lay, Kuen-Tsair; Kong, Lin-Wen; Chen, Jiann-Horng

    2000-04-01

    In the past decade, wavelet filters have been widely applied to signal processing. In effect, wavelet filters are perfect reconstruction filter banks (PRFBs). However, in most researches, the filterbanks and wavelets operate on real- valued or complex-valued signals. In this paper, PRFBs operating over integer quotient rings (IQRs) are introduced. We denote an IQR as Z/(q). Algorithms for constructing such filter banks are proposed. The PRFB design can be carried out either in the time or the frequency domain. We demonstrate that some classical or well known filter tap coefficients can even be transformed into values over Z/(q) in a simple and straightforward way. Here we emphasize that to achieve perfect reconstruction (PR), the filters need not to work on elements in fields. In fact, operating on elements in IQRs can achieve PR with proper choices of a ring and filter tap coefficients. The designed filter banks can be orthogonal or biorthogonal. Based ona PRFB over an IQR, to which we refer as an IQR-PRFB, a perfect reconstruction transmultiplexer (PRTM), to which we refer as an IQR-PRTM, can be derived. Through the utilization of the IQR-PRTM multiplexing and multiple access in a multi-user digital communication system can be realized. The IQR-PRTM effectively decomposes the communication signal space into several orthogonal subspaces, where each multiplexed user sends his message in one of them. If some of the orthogonal subspaces are preserved for parity check, then error correction at the receiving end can be performed. In the proposed schemes, the data to be transmitted must be represented with elements of Z/(q), which can be done easily. A modulation and demodulation/detection scheme, in conjunction with the IQR-PRTM is proposed.

  20. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    PubMed

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Estimating cognitive workload using wavelet entropy-based features during an arithmetic task.

    PubMed

    Zarjam, Pega; Epps, Julien; Chen, Fang; Lovell, Nigel H

    2013-12-01

    Electroencephalography (EEG) has shown promise as an indicator of cognitive workload; however, precise workload estimation is an ongoing research challenge. In this investigation, seven levels of workload were induced using an arithmetic task, and the entropy of wavelet coefficients extracted from EEG signals is shown to distinguish all seven levels. For a subject-independent multi-channel classification scheme, the entropy features achieved high accuracy, up to 98% for channels from the frontal lobes, in the delta frequency band. This suggests that a smaller number of EEG channels in only one frequency band can be deployed for an effective EEG-based workload classification system. Together with analysis based on phase locking between channels, these results consistently suggest increased synchronization of neural responses for higher load levels.

  2. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  3. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-12-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR-NMR log echo data.

  4. A comparison of spectral decorrelation techniques and performance evaluation metrics for a wavelet-based, multispectral data compression algorithm

    NASA Technical Reports Server (NTRS)

    Matic, Roy M.; Mosley, Judith I.

    1994-01-01

    Future space-based, remote sensing systems will have data transmission requirements that exceed available downlinks necessitating the use of lossy compression techniques for multispectral data. In this paper, we describe several algorithms for lossy compression of multispectral data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image compression algorithm to exploit both spectral and spatial correlation. We compare the performance of several different spectral decorrelation techniques including wavelet transformation in the spectral dimension. The performance of each technique is evaluated at compression ratios ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional distortion measures, and multispectral classification results. We also introduce a family of distortion metrics that are designed to quantify and predict the effect of compression artifacts on multi spectral classification of the reconstructed data.

  5. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  6. Wavelet-based detection of clods on a soil surface

    NASA Astrophysics Data System (ADS)

    Vannier, E.; Ciarletti, V.; Darboux, F.

    2009-11-01

    One of the aims of the tillage operation is to produce a specific range of clod sizes, suitable for plant emergence. Due to its cloddy structure, a tilled soil surface has its own roughness, which is connected also with soil water content and erosion phenomena. The comprehension and modeling of surface runoff and erosion require that the micro-topography of the soil surface is well estimated. Therefore, the present paper focuses on the soil surface analysis and characterization. An original method consisting in detecting the individual clods or large aggregates on a 3D digital elevation model (DEM) of the soil surface is introduced. A multiresolution decomposition of the surface is performed by wavelet transform. Then a supervised local maxima extraction is performed on the different sub surfaces and a last process makes the validation of the extractions and the merging of the different scales. The method of detection was evaluated with the help of a soil scientist on a controlled surface made in the laboratory as well as on real seedbed and ploughed surfaces, made by tillage operations in an agricultural field. The identifications of the clods are in good agreement, with an overall sensitivity of 84% and a specificity of 94%. The false positive or false negative detections may have several causes. Some very nearby clods may have been smoothed together in the approximation process. Other clods may be embedded into another peace of the surface relief such as another bigger clod or a part of the furrow. At last, the low levels of decomposition are dependent on the resolution and the measurement noise of the DEM. Therefore, some borders of clods may be difficult to determine. The wavelet-based detection method seems to be suitable for soil surfaces described by 2 or 3 levels of approximation such as seedbeds.

  7. [Fluorescence spectrum analysis system for protoporphyrin IX in serum based on wavelet transform].

    PubMed

    Zhu, Dian-ming; Yang, Hong-peng; Luo, Xiao-sen; Liu, Ying; Shen, Zhong-hua; Lu, Jian; Ni, Xiao-wu

    2007-12-01

    Protoporphyrin IX is an important kind of organic compound for vital movement, and can be used as the sign of tumour blood. Human protoporphyrin IX content in serum is very low, and affected by various factors. The serum fluorescence spectrum analysis system based on wavelet transform was used to discriminated the protoporphyrin IX weak signals. The protoporphyrin IX fluorescence spectrum was obtained by a multi-function spectrum measuring system, and decomposed several times by wavelet transform to distinguish the noise and spectrum signals. The fluorescence spectrum can be divided into corresponding discrete approximations signals (a1-a6) and discrete details signals (d1-d6) by six times of decomposition, showing the signal frequency decreasing with decomposition times increasing and the protoporphyrin IX fluorescence character peak appears here. The weak signals were discriminated and the exactly component and quantity can be acquired for further analysis. So it can be analysed quantitatively. The researches in the present paper provide the potential application in the diagnosis of incipient tumous using the serum fluorescence spectrum

  8. Multispectral image compression technology based on dual-tree discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Fang, Zhijun; Luo, Guihua; Liu, Zhicheng; Gan, Yun; Lu, Yu

    2009-10-01

    The paper proposes a combination of DCT and the Dual-Tree Discrete Wavelet Transform (DDWT) to solve the problems in multi-spectral image data storage and transmission. The proposed method not only removes spectral redundancy by1D DCT, but also removes spatial redundancy by 2D Dual-Tree Discrete Wavelet Transform. Therefore, it achieves low distortion under the conditions of high compression and high-quality reconstruction of the multi-spectral image. Tested by DCT, Haar and DDWT, the results show that the proposed method eliminates the blocking effect of wavelet and has strong visual sense and smooth image, which means the superiors with DDWT has more prominent quality of reconstruction and less noise.

  9. Detection and Classification of Power Quality Disturbancewaveform Using MRA Based Modified Wavelet Transfrom and Neural Networks

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Perumal; Kamaraj, Vijayarajan

    2010-07-01

    In this paper, the modified wavelet based artificial neural network (ANN) is implemented and tested for power signal disturbances. The power signal is decomposed by using modified wavelet transform and the classification is carried by using ANN. Discrete modified wavelet transforms based signal decomposition technique is integrated with the back propagation artificial neural network model is proposed. Varieties of power quality events including voltage sag, swell, momentary interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the proposed approach. The simulation is carried out by using MATLAB software. The simulation results show that the proposed scheme offers superior detection and classification compared to the conventional approaches.

  10. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    SciTech Connect

    Martinez-Torres, C.; Streppa, L.; Arneodo, A.; Argoul, F.; Argoul, P.

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  11. Traffic characterization and modeling of wavelet-based VBR encoded video

    SciTech Connect

    Yu Kuo; Jabbari, B.; Zafar, S.

    1997-07-01

    Wavelet-based video codecs provide a hierarchical structure for the encoded data, which can cater to a wide variety of applications such as multimedia systems. The characteristics of such an encoder and its output, however, have not been well examined. In this paper, the authors investigate the output characteristics of a wavelet-based video codec and develop a composite model to capture the traffic behavior of its output video data. Wavelet decomposition transforms the input video in a hierarchical structure with a number of subimages at different resolutions and scales. the top-level wavelet in this structure contains most of the signal energy. They first describe the characteristics of traffic generated by each subimage and the effect of dropping various subimages at the encoder on the signal-to-noise ratio at the receiver. They then develop an N-state Markov model to describe the traffic behavior of the top wavelet. The behavior of the remaining wavelets are then obtained through estimation, based on the correlations between these subimages at the same level of resolution and those wavelets located at an immediate higher level. In this paper, a three-state Markov model is developed. The resulting traffic behavior described by various statistical properties, such as moments and correlations, etc., is then utilized to validate their model.

  12. Stationary Wavelet-based Two-directional Two-dimensional Principal Component Analysis for EMG Signal Classification

    NASA Astrophysics Data System (ADS)

    Ji, Yi; Sun, Shanlin; Xie, Hong-Bo

    2017-06-01

    Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.

  13. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  14. Energy-based wavelet de-noising of hydrologic time series.

    PubMed

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed.

  15. Wavelet-Based Signal and Image Processing for Target Recognition

    DTIC Science & Technology

    2002-01-01

    in target recognition applications. Classical spatial and frequency domain image processing algorithms were generalized to process discrete wavelet ... transform (DWT) data. Results include adaptation of classical filtering, smoothing and interpolation techniques to DWT. From 2003 the research

  16. Music Tune Restoration Based on a Mother Wavelet Construction

    NASA Astrophysics Data System (ADS)

    Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.

    2017-01-01

    It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.

  17. Automatic Target Recognition Using Wavelet-Based Vector Quantization

    DTIC Science & Technology

    1997-12-01

    uses a set of dedicated vector quantizers (VQs) in the wavelet domain. The background pixels in each input image are properly clipped out by a set of...a target chip . . . . . . 8 5 Background clipping of several input images . . . . . . . . . . 8 6 Wavelet decomposition of a truck into four subbands...dedicated VQ for each subband within each aspect window. In the first stage, an aspect window is a background- clipping rectangle whose size is determined

  18. Multiplexing of volume holographic wavelet correlation processor

    NASA Astrophysics Data System (ADS)

    Feng, Wenyi; Yan, Yingbai; Jin, Guofan; Wu, Minxian; He, Qingsheng

    2000-03-01

    Volume holographic associative memory in a photorefractive crystal provides an inherent mechanism to develop a multi-channel correlation identification system with high parallelism. Wavelet transform is introduced to improve discrimination of the system. We first investigate parameters of the system for parallelism enhancement, and then study multiplexing of the system on input objects and wavelet filters. A general volume holographic wavelet correlation processor has a single input-object channel and a single wavelet-filtering channel. In other words, it can only process one input object with one wavelet filter at a same time. Based on the fact that a volume holographic correlator is not a shift-invariant system, multiplexing of input objects is proposed to improve parallelism of the processor. As a result, several input objects can be recognized simultaneously. Multiplexing of wavelet filters with different wavelet parameters is also achieved by a Dammann grating. Wavelet correlation outputs with different filters are synthesized to improve recognition accuracy of the processor. Corresponding experimental results in human face recognition are given. The combination of the input object multiplexing and the wavelet filter multiplexing is also described.

  19. Wavelet-Based DFT calculations on Massively Parallel Hybrid Architectures

    NASA Astrophysics Data System (ADS)

    Genovese, Luigi

    2011-03-01

    In this contribution, we present an implementation of a full DFT code that can run on massively parallel hybrid CPU-GPU clusters. Our implementation is based on modern GPU architectures which support double-precision floating-point numbers. This DFT code, named BigDFT, is delivered within the GNU-GPL license either in a stand-alone version or integrated in the ABINIT software package. Hybrid BigDFT routines were initially ported with NVidia's CUDA language, and recently more functionalities have been added with new routines writeen within Kronos' OpenCL standard. The formalism of this code is based on Daubechies wavelets, which is a systematic real-space based basis set. As we will see in the presentation, the properties of this basis set are well suited for an extension on a GPU-accelerated environment. In addition to focusing on the implementation of the operators of the BigDFT code, this presentation also relies of the usage of the GPU resources in a complex code with different kinds of operations. A discussion on the interest of present and expected performances of Hybrid architectures computation in the framework of electronic structure calculations is also adressed.

  20. A method of image compression based on lifting wavelet transform and modified SPIHT

    NASA Astrophysics Data System (ADS)

    Lv, Shiliang; Wang, Xiaoqian; Liu, Jinguo

    2016-11-01

    In order to improve the efficiency of remote sensing image data storage and transmission we present a method of the image compression based on lifting scheme and modified SPIHT(set partitioning in hierarchical trees) by the design of FPGA program, which realized to improve SPIHT and enhance the wavelet transform image compression. The lifting Discrete Wavelet Transform (DWT) architecture has been selected for exploiting the correlation among the image pixels. In addition, we provide a study on what storage elements are required for the wavelet coefficients. We present lena's image using the 3/5 lifting scheme.

  1. ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.

    2005-01-01

    ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.

  2. Noisy face recognition using compression-based joint wavelet-transform correlator

    NASA Astrophysics Data System (ADS)

    Widjaja, Joewono

    2012-03-01

    A new method for noisy face recognition by incorporating wavelet filter into compression-based joint transform correlator (JTC) is proposed. The simulation results show that the proposed method has advantages over the conventional compression-based JTC in that regardless of the contrast and the noise level of the target, the wavelet filter can optimize the recognition performance to be higher than the classical JTC, provided compressed references have high contrast.

  3. A wavelet-based Projector Augmented-Wave (PAW) method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set

    NASA Astrophysics Data System (ADS)

    Rangel, T.; Caliste, D.; Genovese, L.; Torrent, M.

    2016-11-01

    We present a Projector Augmented-Wave (PAW) method based on a wavelet basis set. We implemented our wavelet-PAW method as a PAW library in the ABINIT package [http://www.abinit.org] and into BigDFT [http://www.bigdft.org]. We test our implementation in prototypical systems to illustrate the potential usage of our code. By using the wavelet-PAW method, we can simulate charged and special boundary condition systems with frozen-core all-electron precision. Furthermore, our work paves the way to large-scale and potentially order- N simulations within a PAW method.

  4. Adaptive Bayesian-based speck-reduction in SAR images using complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Yan, Wei; Zhang, Peng

    2005-10-01

    In this paper, an improved adaptive speckle reduction method is presented based on dual tree complex wavelet transform (CWT). It combines the characteristics of additive noise reduction of soft thresholding with the CWT's directional selectivity, being its main contribution to adapt the effective threshold to preserve the edge detail. A Bayesian estimator is applied to the decomposed data also to estimate the best value for the noise-free complex wavelet coefficients. This estimation is based on alpha-stable and Gaussian distribution hypotheses for complex wavelet coefficients of the signal and noise, respectively. Experimental results show that the denoising performance is among the state-of-the-art techniques based on real discrete wavelet transform (DWT).

  5. Wavelet-based double-difference seismic tomography with sparsity regularization

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang

    2014-11-01

    We have developed a wavelet-based double-difference (DD) seismic tomography method. Instead of solving for the velocity model itself, the new method inverts for its wavelet coefficients in the wavelet domain. This method takes advantage of the multiscale property of the wavelet representation and solves the model at different scales. A sparsity constraint is applied to the inversion system to make the set of wavelet coefficients of the velocity model sparse. This considers the fact that the background velocity variation is generally smooth and the inversion proceeds in a multiscale way with larger scale features resolved first and finer scale features resolved later, which naturally leads to the sparsity of the wavelet coefficients of the model. The method is both data- and model-adaptive because wavelet coefficients are non-zero in the regions where the model changes abruptly when they are well sampled by ray paths and the model is resolved from coarser to finer scales. An iteratively reweighted least squares procedure is adopted to solve the inversion system with the sparsity regularization. A synthetic test for an idealized fault zone model shows that the new method can better resolve the discontinuous boundaries of the fault zone and the velocity values are also better recovered compared to the original DD tomography method that uses the first-order Tikhonov regularization.

  6. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  7. [Detection of reducing sugar content of potato granules based on wavelet compression by near infrared spectroscopy].

    PubMed

    Dong, Xiao-Ling; Sun, Xu-Dong

    2013-12-01

    The feasibility was explored in determination of reducing sugar content of potato granules based on wavelet compression algorithm combined with near-infrared spectroscopy. The spectra of 250 potato granules samples were recorded by Fourier transform near-infrared spectrometer in the range of 4000- 10000 cm-1. The three parameters of vanishing moments, wavelet coefficients and principal component factor were optimized. The optimization results of three parameters were 10, 100 and 20, respectively. The original spectra of 1501 spectral variables were transfered to 100 wavelet coefficients using db wavelet function. The partial least squares (PLS) calibration models were developed by 1501 spectral variables and 100 wavelet coefficients. Sixty two unknown samples of prediction set were applied to evaluate the performance of PLS models. By comparison, the optimal result was obtained by wavelet compression combined with PLS calibration model. The correlation coefficient of prediction and root mean square error of prediction were 0.98 and 0.181%, respectively. Experimental results show that the dimensions of spectral data were reduced, scarcely losing effective information by wavelet compression algorithm combined with near-infrared spectroscopy technology in determination of reducing sugar in potato granules. The PLS model is simplified, and the predictive ability is improved.

  8. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  9. Wavelet Speech Enhancement Based on Nonnegative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wang, Syu-Siang; Chern, Alan; Tsao, Yu; Hung, Jeih-weih; Lu, Xugang; Lai, Ying-Hui; Su, Borching

    2016-08-01

    For most of the state-of-the-art speech enhancement techniques, a spectrogram is usually preferred than the respective time-domain raw data since it reveals more compact presentation together with conspicuous temporal information over a long time span. However, the short-time Fourier transform (STFT) that creates the spectrogram in general distorts the original signal and thereby limits the capability of the associated speech enhancement techniques. In this study, we propose a novel speech enhancement method that adopts the algorithms of discrete wavelet packet transform (DWPT) and nonnegative matrix factorization (NMF) in order to conquer the aforementioned limitation. In brief, the DWPT is first applied to split a time-domain speech signal into a series of subband signals without introducing any distortion. Then we exploit NMF to highlight the speech component for each subband. Finally, the enhanced subband signals are joined together via the inverse DWPT to reconstruct a noise-reduced signal in time domain. We evaluate the proposed DWPT-NMF based speech enhancement method on the MHINT task. Experimental results show that this new method behaves very well in prompting speech quality and intelligibility and it outperforms the convnenitional STFT-NMF based method.

  10. Classification of Histological Images Based on the Stationary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Nascimento, M. Z.; Neves, L.; Duarte, S. C.; Duarte, Y. A. S.; Ramos Batista, V.

    2015-01-01

    Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.

  11. Planform dynamics of meandering channels based on Wavelet analysis

    NASA Astrophysics Data System (ADS)

    Abad, J. D.

    2009-12-01

    Meandering rivers migrate along the floodplain describing upstream-, laterally, and downstream-valley bend orientations. The prediction of these features is still unresolved, therefore not allowing their direct integration into the river restoration framework. Abad and Garcia (2008a, b) investigated experimentally the implications of bend orientation (upstream- and downstream-valley) on hydrodynamics and bed morphodynamics of periodic asymmetric meandering channels. Downstream-valley bends produce a more coherent secondary flow and higher erosional power near the outer bank. Therefore, downstream oriented bends might migrate much faster than upstream oriented bends. Based on digital information of meandering planform dynamics, spectral analysis (Fast Fourier Transform, FFT) and wavelet analysis are carried out to describe the planform dynamics of meandering channels. Additional relevant parameters and observations based on these metrics (dominant modes along the planform configuration, location of oriented bends along the valley centerline, change of migration rate along the valley, among others) are also discussed in the present work. This work is relevant for river restoration such as the development of design criteria of in-stream structures taking into consideration not only hydraulic and morphologic parameters but also the impact of such structures on stream ecosystem.

  12. Dual tree complex wavelet transform based denoising of optical microscopy images.

    PubMed

    Bal, Ufuk

    2012-12-01

    Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions.

  13. All-optical image processing and compression based on Haar wavelet transform.

    PubMed

    Parca, Giorgia; Teixeira, Pedro; Teixeira, Antonio

    2013-04-20

    Fast data processing and compression methods based on wavelet transform are fundamental tools in the area of real-time 2D data/image analysis, enabling high definition applications and redundant data reduction. The need for information processing at high data rates motivates the efforts on exploiting the speed and the parallelism of the light for data analysis and compression. Among several schemes for optical wavelet transform implementation, the Haar transform offers simple design and fast computation, plus it can be easily implemented by optical planar interferometry. We present an all optical scheme based on an asymmetric couplers network for achieving fast image processing and compression in the optical domain. The implementation of Haar wavelet transform through a 3D passive structure is supported by theoretical formulation and simulations results. Asymmetrical coupler 3D network design and optimization are reported and Haar wavelet transform, including compression, was achieved, thus demonstrating the feasibility of our approach.

  14. Property study of integer wavelet transform lossless compression coding based on lifting scheme

    NASA Astrophysics Data System (ADS)

    Xie, Cheng Jun; Yan, Su; Xiang, Yang

    2006-01-01

    In this paper the algorithms and its improvement of integer wavelet transform combining SPIHT and arithmetic coding in image lossless compression is mainly studied. The experimental result shows that if the order of low-pass filter vanish matrix is fixed, the improvement of compression effect is not evident when invertible integer wavelet transform is satisfied and focusing of energy property monotonic increase with transform scale. For the same wavelet bases, the order of low-pass filter vanish matrix is more important than the order of high-pass filter vanish matrix in improving the property of image compression. Integer wavelet transform lossless compression coding based on lifting scheme has no relation to the entropy of image. The effect of compression is depended on the the focuing of energy property of image transform.

  15. Wavelets-based clustering of air quality monitoring sites.

    PubMed

    Gouveia, Sónia; Scotto, Manuel G; Monteiro, Alexandra; Alonso, Andres M

    2015-11-01

    This paper aims at providing a variance/covariance profile of a set of 36 monitoring stations measuring ozone (O3) and nitrogen dioxide (NO2) hourly concentrations, collected over the period 2005-2013, in Portugal mainland. The resulting individual profiles are embedded in a wavelet decomposition-based clustering algorithm in order to identify groups of stations exhibiting similar profiles. The results of the cluster analysis identify three groups of stations, namely urban, suburban/urban/rural, and a third group containing all but one rural stations. The results clearly indicate a geographical pattern among urban stations, distinguishing those located in Lisbon area from those located in Oporto/North. Furthermore, for urban stations, intra-diurnal and daily time scales exhibit the highest variance. This is due to the more relevant chemical activity occurring in high NO2 emissions areas which are responsible for high variability on daily profiles. These chemical processes also explain the reason for NO2 and O3 being highly negatively cross-correlated in suburban and urban sites as compared with rural stations. Finally, the clustering analysis also identifies sites which need revision concerning classification according to environment/influence type.

  16. R-peaks detection based on stationary wavelet transform.

    PubMed

    Merah, M; Abdelmalik, T A; Larbi, B H

    2015-10-01

    Automatic detection of the QRS complexes/R-peaks in an electrocardiogram (ECG) signal is the most important step preceding any kind of ECG processing and analysis. The performance of these systems heavily relies on the accuracy of the QRS detector. The objective of present work is to drive a new robust method based on stationary wavelet transform (SWT) for R-peaks detection. The decimation of the coefficients at each level of the transformation algorithm is omitted, more samples in the coefficient sequences are available and hence a better outlier detection can be performed. Using the information of local maxima, minima and zero crossings of the fourth SWT coefficient detail, the proposed algorithm identifies the significant points for detection and delineation of the QRS complexes, as well as detection and identification of the QRS individual waves peaks of the pre-processed ECG signal. Various experimental results show that the proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, achieving excellent performance on different databases, on the MIT-BIH database (Se=99.84%, P=99.88%), on the QT Database (Se=99.94%, P=99.89%) and on MIT-BIH Noise Stress Test Database, (Se=95.30%, P=93.98%). Reliability and accuracy are close to the highest among the ones obtained in other studies. Experiments results being satisfactory, the SWT may represent a novel QRS detection tool, for a robust ECG signal analysis.

  17. A wavelet based investigation of long memory in stock returns

    NASA Astrophysics Data System (ADS)

    Tan, Pei P.; Galagedera, Don U. A.; Maharaj, Elizabeth A.

    2012-04-01

    Using a wavelet-based maximum likelihood fractional integration estimator, we test long memory (return predictability) in the returns at the market, industry and firm level. In an analysis of emerging market daily returns over the full sample period, we find that long-memory is not present and in approximately twenty percent of 175 stocks there is evidence of long memory. The absence of long memory in the market returns may be a consequence of contemporaneous aggregation of stock returns. However, when the analysis is carried out with rolling windows evidence of long memory is observed in certain time frames. These results are largely consistent with that of detrended fluctuation analysis. A test of firm-level information in explaining stock return predictability using a logistic regression model reveal that returns of large firms are more likely to possess long memory feature than in the returns of small firms. There is no evidence to suggest that turnover, earnings per share, book-to-market ratio, systematic risk and abnormal return with respect to the market model is associated with return predictability. However, degree of long-range dependence appears to be associated positively with earnings per share, systematic risk and abnormal return and negatively with book-to-market ratio.

  18. Wavelet-based multiscale analysis of geomagnetic disturbance

    NASA Astrophysics Data System (ADS)

    Zaourar, N.; Hamoudi, M.; Mandea, M.; Balasis, G.; Holschneider, M.

    2013-12-01

    The dynamics of external contributions to the geomagnetic field is investigated by applying time-frequency methods to magnetic observatory data. Fractal models and multiscale analysis enable obtaining maximum quantitative information related to the short-term dynamics of the geomagnetic field activity. The stochastic properties of the horizontal component of the transient external field are determined by searching for scaling laws in the power spectra. The spectrum fits a power law with a scaling exponent β, a typical characteristic of self-affine time-series. Local variations in the power-law exponent are investigated by applying wavelet analysis to the same time-series. These analyses highlight the self-affine properties of geomagnetic perturbations and their persistence. Moreover, they show that the main phases of sudden storm disturbances are uniquely characterized by a scaling exponent varying between 1 and 3, possibly related to the energy contained in the external field. These new findings suggest the existence of a long-range dependence, the scaling exponent being an efficient indicator of geomagnetic activity and singularity detection. These results show that by using magnetogram regularity to reflect the magnetosphere activity, a theoretical analysis of the external geomagnetic field based on local power-law exponents is possible.

  19. Efficient architecture for adaptive directional lifting-based wavelet transform

    NASA Astrophysics Data System (ADS)

    Yin, Zan; Zhang, Li; Shi, Guangming

    2010-07-01

    Adaptive direction lifting-based wavelet transform (ADL) has better performance than conventional lifting both in image compression and de-noising. However, no architecture has been proposed to hardware implement it because of its high computational complexity and huge internal memory requirements. In this paper, we propose a four-stage pipelined architecture for 2 Dimensional (2D) ADL with fast computation and high data throughput. The proposed architecture comprises column direction estimation, column lifting, row direction estimation and row lifting which are performed in parallel in a pipeline mode. Since the column processed data is transposed, the row processor can reuse the column processor which can decrease the design complexity. In the lifting step, predict and update are also performed in parallel. For an 8×8 image sub-block, the proposed architecture can finish the ADL forward transform within 78 clock cycles. The architecture is implemented on Xilinx Virtex5 device on which the frequency can achieve 367 MHz. The processed time is 212.5 ns, which can meet the request of real-time system.

  20. Wavelet-based Poisson solver for use in particle-in-cell simulations.

    PubMed

    Terzić, Balsa; Pogorelov, Ilya V

    2005-06-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in three-dimensional particle-in-cell simulations. Our method harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and additional compression of relevant data sets. We present and discuss preliminary results relating to the application of the new solver to test problems in accelerator physics and astrophysics.

  1. Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

    NASA Astrophysics Data System (ADS)

    Cabrera, Diego; Sancho, Fernando; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Li, Chuan; Vásquez, Rafael E.

    2015-09-01

    This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal's condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients' energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters' space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models.

  2. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  3. Adaptive Redundant Lifting Wavelet Transform Based on Fitting for Fault Feature Extraction of Roller Bearings

    PubMed Central

    Yang, Zijing; Cai, Ligang; Gao, Lixin; Wang, Huaqing

    2012-01-01

    A least square method based on data fitting is proposed to construct a new lifting wavelet, together with the nonlinear idea and redundant algorithm, the adaptive redundant lifting transform based on fitting is firstly stated in this paper. By variable combination selections of basis function, sample number and dimension of basis function, a total of nine wavelets with different characteristics are constructed, which are respectively adopted to perform redundant lifting wavelet transforms on low-frequency approximate signals at each layer. Then the normalized lP norms of the new node-signal obtained through decomposition are calculated to adaptively determine the optimal wavelet for the decomposed approximate signal. Next, the original signal is taken for subsection power spectrum analysis to choose the node-signal for single branch reconstruction and demodulation. Experiment signals and engineering signals are respectively used to verify the above method and the results show that bearing faults can be diagnosed more effectively by the method presented here than by both spectrum analysis and demodulation analysis. Meanwhile, compared with the symmetrical wavelets constructed with Lagrange interpolation algorithm, the asymmetrical wavelets constructed based on data fitting are more suitable in feature extraction of fault signal of roller bearings. PMID:22666035

  4. Adaptive redundant lifting wavelet transform based on fitting for fault feature extraction of roller bearings.

    PubMed

    Yang, Zijing; Cai, Ligang; Gao, Lixin; Wang, Huaqing

    2012-01-01

    A least square method based on data fitting is proposed to construct a new lifting wavelet, together with the nonlinear idea and redundant algorithm, the adaptive redundant lifting transform based on fitting is firstly stated in this paper. By variable combination selections of basis function, sample number and dimension of basis function, a total of nine wavelets with different characteristics are constructed, which are respectively adopted to perform redundant lifting wavelet transforms on low-frequency approximate signals at each layer. Then the normalized l(P) norms of the new node-signal obtained through decomposition are calculated to adaptively determine the optimal wavelet for the decomposed approximate signal. Next, the original signal is taken for subsection power spectrum analysis to choose the node-signal for single branch reconstruction and demodulation. Experiment signals and engineering signals are respectively used to verify the above method and the results show that bearing faults can be diagnosed more effectively by the method presented here than by both spectrum analysis and demodulation analysis. Meanwhile, compared with the symmetrical wavelets constructed with Lagrange interpolation algorithm, the asymmetrical wavelets constructed based on data fitting are more suitable in feature extraction of fault signal of roller bearings.

  5. Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction

    NASA Astrophysics Data System (ADS)

    Rizal Isnanto, R.

    2015-06-01

    Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)

  6. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data

    PubMed Central

    Chiarelli, Antonio M.; Maclin, Edward L.; Fabiani, Monica; Gratton, Gabriele

    2015-01-01

    Movements are a major source of artifacts in functional Near-Infrared Spectroscopy (fNIRS). Several algorithms have been developed for motion artifact correction of fNIRS data, including Principal Component Analysis (PCA), targeted Principal Component Analysis (tPCA), Spline Interpolation (SI), and Wavelet Filtering (WF). WF is based on removing wavelets with coefficients deemed to be outliers based on their standardized scores, and it has proven to be effective on both synthetized and real data. However, when the SNR is high, it can lead to a reduction of signal amplitude. This may occur because standardized scores inherently adapt to the noise level, independently of the shape of the distribution of the wavelet coefficients. Higher-order moments of the wavelet coefficient distribution may provide a more diagnostic index of wavelet distribution abnormality than its variance. Here we introduce a new procedure that relies on eliminating wavelets that contribute to generate a large fourth-moment (i.e., kurtosis) of the coefficient distribution to define “outliers” wavelets (kurtosis-based Wavelet Filtering, kbWF). We tested kbWF by comparing it with other existing procedures, using simulated functional hemodynamic responses added to real resting-state fNIRS recordings. These simulations show that kbWF is highly effective in eliminating transient noise, yielding results with higher SNR than other existing methods over a wide range of signal and noise amplitudes. This is because: (1) the procedure is iterative; and (2) kurtosis is more diagnostic than variance in identifying outliers. However, kbWF does not eliminate slow components of artifacts whose duration is comparable to the total recording time. PMID:25747916

  7. [The noise filtering and baseline correction for harmonic spectrum based on wavelet transform].

    PubMed

    Guo, Yuan; Zhao, Xue-Hong; Zhang, Rui; Hu, Ya-Jun; Wang, Yan

    2013-08-01

    The problem of noise and baseline drift is a hot topic in infrared spectral harmonic detection system. This paper presents a new algorithm based on wavelet transform Mallet decomposition to solve the problem of eliminating a variety of complex noise and baseline drift in the harmonic detection. In the algorithm, the appropriate wavelet function and decomposition level were selected to decomposed the noise, baseline drift and useful signal in the harmonic curve into different frequency bands. the bands' information was analysed and a detecting band was set, then the information in useful frequency was reserved by zeroing method of treatment and the coefficient of the threshold. We can just use once transform and reconstruction to remove interference noise and baseline from double-harmonic signal by applying the wavelet transform technique to the harmonic detection spectrum pretreatment. Experiments show that the wavelet transform method can be used to different harmonic detection systems and has universal applicability.

  8. Aircraft target identification based on 2D ISAR images using multiresolution analysis wavelet

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Xiao, Huaitie; Hu, Xiangjiang

    2001-09-01

    The formation of 2D ISAR images for radar target identification hold much promise for additional distinguish- ability between targets. Since an image contains important information is a wide range of scales, and this information is often independent from one scale to another, wavelet analysis provides a method of identifying the spatial frequency content of an image and the local regions within the image where those spatial frequencies exist. In this paper, a multiresolution analysis wavelet method based on 2D ISAR images was proposed for use in aircraft radar target identification under the wide band high range resolution radar background. The proposed method was performed in three steps; first, radar backscatter signals were processed in the form of 2D ISAR images, then, Mallat's wavelet algorithm was used in the decomposition of images, finally, a three layer perceptron neural net was used as classifier. The result of experiments demonstrated that the feasibility of using multiresolution analysis wavelet for target identification.

  9. Image superresolution of cytology images using wavelet based patch search

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  10. A study of morphology-based wavelet features and multiple-wavelet strategy for EEG signal classification: results and selected statistical analysis.

    PubMed

    Zhou, Jing; Schalkoff, Robert J; Dean, Brian C; Halford, Jonathan J

    2013-01-01

    Automatic detection and classification of Epileptiform transients is an open and important clinical issue. In this paper, we test 5 feature sets derived from a group of morphology-based wavelet features and compare the results with that of a Guler-suggested feature set. We also implement a multiple-mother-wavelet strategy and compare performance with the usual single-mother-wavelet strategy. The results indicate that both the derived features and the multiple-mother-wavelet strategy improved classifier performance, using a variety of performance measures. We assess the statistical significance of the performance improvement of the new feature sets/strategy. In most cases, the performance improvement is either significant or highly significant.

  11. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation

    NASA Astrophysics Data System (ADS)

    Feng, Xiao; Li, Qi; Zhu, Yajie; Hou, Junxiong; Jin, Lingyan; Wang, Jingjie

    2015-04-01

    In the paper a novel hybrid model combining air mass trajectory analysis and wavelet transformation to improve the artificial neural network (ANN) forecast accuracy of daily average concentrations of PM2.5 two days in advance is presented. The model was developed from 13 different air pollution monitoring stations in Beijing, Tianjin, and Hebei province (Jing-Jin-Ji area). The air mass trajectory was used to recognize distinct corridors for transport of "dirty" air and "clean" air to selected stations. With each corridor, a triangular station net was constructed based on air mass trajectories and the distances between neighboring sites. Wind speed and direction were also considered as parameters in calculating this trajectory based air pollution indicator value. Moreover, the original time series of PM2.5 concentration was decomposed by wavelet transformation into a few sub-series with lower variability. The prediction strategy applied to each of them and then summed up the individual prediction results. Daily meteorological forecast variables as well as the respective pollutant predictors were used as input to a multi-layer perceptron (MLP) type of back-propagation neural network. The experimental verification of the proposed model was conducted over a period of more than one year (between September 2013 and October 2014). It is found that the trajectory based geographic model and wavelet transformation can be effective tools to improve the PM2.5 forecasting accuracy. The root mean squared error (RMSE) of the hybrid model can be reduced, on the average, by up to 40 percent. Particularly, the high PM2.5 days are almost anticipated by using wavelet decomposition and the detection rate (DR) for a given alert threshold of hybrid model can reach 90% on average. This approach shows the potential to be applied in other countries' air quality forecasting systems.

  12. Speckle Suppression in Ultrasonic Images Based on Undecimated Wavelets

    NASA Astrophysics Data System (ADS)

    Argenti, Fabrizio; Torricelli, Gionatan

    2003-12-01

    An original method to denoise ultrasonic images affected by speckle is presented. Speckle is modeled as a signal-dependent noise corrupting the image. Noise reduction is approached as a Wiener-like filtering performed in a shift-invariant wavelet domain by means of an adaptive rescaling of the coefficients of an undecimated octave decomposition. The scaling factor of each coefficient is calculated from local statistics of the degraded image, the parameters of the noise model, and the wavelet filters. Experimental results demonstrate that excellent background smoothing as well as preservation of edge sharpness and fine details can be obtained.

  13. Estimation of Modal Parameters Using a Wavelet-Based Approach

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Haley, Sidney M.

    1997-01-01

    Modal stability parameters are extracted directly from aeroservoelastic flight test data by decomposition of accelerometer response signals into time-frequency atoms. Logarithmic sweeps and sinusoidal pulses are used to generate DAST closed loop excitation data. Novel wavelets constructed to extract modal damping and frequency explicitly from the data are introduced. The so-called Haley and Laplace wavelets are used to track time-varying modal damping and frequency in a matching pursuit algorithm. Estimation of the trend to aeroservoelastic instability is demonstrated successfully from analysis of the DAST data.

  14. SFCVQ and EZW coding method based on Karhunen-Loeve transformation and integer wavelet transformation

    NASA Astrophysics Data System (ADS)

    Yan, Jingwen; Chen, Jiazhen

    2007-03-01

    A new hyperspectral image compression method of spectral feature classification vector quantization (SFCVQ) and embedded zero-tree of wavelet (EZW) based on Karhunen-Loeve transformation (KLT) and integer wavelet transformation is represented. In comparison with the other methods, this method not only keeps the characteristics of high compression ratio and easy real-time transmission, but also has the advantage of high computation speed. After lifting based integer wavelet and SFCVQ coding are introduced, a system of nearly lossless compression of hyperspectral images is designed. KLT is used to remove the correlation of spectral redundancy as one-dimensional (1D) linear transform, and SFCVQ coding is applied to enhance compression ratio. The two-dimensional (2D) integer wavelet transformation is adopted for the decorrelation of 2D spatial redundancy. EZW coding method is applied to compress data in wavelet domain. Experimental results show that in comparison with the method of wavelet SFCVQ (WSFCVQ), the method of improved BiBlock zero tree coding (IBBZTC) and the method of feature spectral vector quantization (FSVQ), the peak signal-to-noise ratio (PSNR) of this method can enhance over 9 dB, and the total compression performance is improved greatly.

  15. Early detection for short-circuit fault in low-voltage systems based on fractal exponent wavelet analysis

    NASA Astrophysics Data System (ADS)

    Kang, Shanlin; Wang, Bingjun; Kang, Yuzhe

    2006-11-01

    By combining wavelet transform (WT ) with fractal theory, a novel approach is put forward to detect early short-circuit fault. The application of signal denoising based on the statistic rule is brought forward to determine the threshold of each order of wavelet space, and an effective method is proposed to determine the decomposition adaptively, increasing the signal-noise-ratio (SNR). In a view of the inter relationship of wavelet transform and fractal theory, the whole and local fractal exponents obtained from WT coefficients as features are presented for extracting fault signals. The effectiveness of the new algorithm used to extract the characteristic signal is described, which can be realized by the value of the fractal dimensions of those types of short-circuit fault. In accordance with the threshold value of each type of short-circuit fault in each frequency band, the correlation between the type of short-circuit and the fractal dimensions can be figured to perform extraction. This model incorporates the advantages of morphological filter and multi-scale WT to extract the feature of faults meanwhile restraining various noises. Besides, it can be implemented in real time using the available hardware. The effectiveness of this model was verified with the simulation results.

  16. Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis.

    PubMed

    Placidi, Giuseppe; Alecci, Marcello; Sotgiu, Antonello

    2003-07-07

    A post-processing noise suppression technique for biomedical MRI images is presented. The described procedure recovers both sharp edges and smooth surfaces from a given noisy MRI image; it does not blur the edges and does not introduce spikes or other artefacts. The fine details of the image are also preserved. The proposed algorithm first extracts the edges from the original image and then performs noise reduction by using a wavelet de-noise method. After the application of the wavelet method, the edges are restored to the filtered image. The result is the original image with less noise, fine detail and sharp edges. Edge extraction is performed by using an algorithm based on Sobel operators. The wavelet de-noise method is based on the calculation of the correlation factor between wavelet coefficients belonging to different scales. The algorithm was tested on several MRI images and, as an example of its application, we report the results obtained from a spin echo (multi echo) MRI image of a human wrist collected with a low field experimental scanner (the signal-to-noise ratio, SNR, of the experimental image was 12). Other filtering operations have been performed after the addition of white noise on both channels of the experimental image, before the magnitude calculation. The results at SNR = 7, SNR = 5 and SNR = 3 are also reported. For SNR values between 5 and 12, the improvement in SNR was substantial and the fine details were preserved, the edges were not blurred and no spikes or other artefacts were evident, demonstrating the good performances of our method. At very low SNR (SNR = 3) our result is worse than that obtained by a simpler filtering procedure.

  17. Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Placidi, Giuseppe; Alecci, Marcello; Sotgiu, Antonello

    2003-07-01

    A post-processing noise suppression technique for biomedical MRI images is presented. The described procedure recovers both sharp edges and smooth surfaces from a given noisy MRI image; it does not blur the edges and does not introduce spikes or other artefacts. The fine details of the image are also preserved. The proposed algorithm first extracts the edges from the original image and then performs noise reduction by using a wavelet de-noise method. After the application of the wavelet method, the edges are restored to the filtered image. The result is the original image with less noise, fine detail and sharp edges. Edge extraction is performed by using an algorithm based on Sobel operators. The wavelet de-noise method is based on the calculation of the correlation factor between wavelet coefficients belonging to different scales. The algorithm was tested on several MRI images and, as an example of its application, we report the results obtained from a spin echo (multi echo) MRI image of a human wrist collected with a low field experimental scanner (the signal-to-noise ratio, SNR, of the experimental image was 12). Other filtering operations have been performed after the addition of white noise on both channels of the experimental image, before the magnitude calculation. The results at SNR = 7, SNR = 5 and SNR = 3 are also reported. For SNR values between 5 and 12, the improvement in SNR was substantial and the fine details were preserved, the edges were not blurred and no spikes or other artefacts were evident, demonstrating the good performances of our method. At very low SNR (SNR = 3) our result is worse than that obtained by a simpler filtering procedure.

  18. Detection of pulse-like ground motions based on continues wavelet transform

    NASA Astrophysics Data System (ADS)

    Yaghmaei-Sabegh, Saman

    2010-10-01

    This paper implements a quantitative approach to detect pulse-like ground motions based on continues wavelet transform, which is able to clearly identify sudden jumps in time history of earthquake records by considering contribution of different levels of frequency. These analyses were performed on a set of time series records obtained in near-fault regions of Iran. Pulse-like ground motions frequently resulted from directivity effects in near-fault area and are of interest in the field of seismology and also earthquake engineering for seismic performance evaluation of structures. The results of this study basically help us to establish a suitable platform for selecting pulse-like records, while performance evaluation of structure in near-fault area will need to account. The period of velocity pulses as a key parameter that significantly affects structural response is simply determined by using a pseudo-period of the mother wavelets. In addition, the efficiency of different types of mother wavelets on classification performance and the features of detected pulse are investigated by applying seven different kinds of mother wavelets. The analyses indicate that the selection of most appropriate mother wavelet plays a significant role in effective extraction of ground motion features and consequently in estimation of velocity pulse period. As a result, the user should be aware of what is selected as a mother wavelet in the analysis. The comparisons given here among different mother wavelets also show the better performance of BiorSpline (bior1.3) basis from biorthognal wavelet families for the preferred purpose in this paper.

  19. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG.

    PubMed

    Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng

    2017-01-01

    In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets.

  20. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG

    PubMed Central

    Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng

    2017-01-01

    In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203

  1. Improved deadzone modeling for bivariate wavelet shrinkage-based image denoising

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2016-05-01

    Modern image processing performed on-board low Size, Weight, and Power (SWaP) platforms, must provide high- performance while simultaneously reducing memory footprint, power consumption, and computational complexity. Image preprocessing, along with downstream image exploitation algorithms such as object detection and recognition, and georegistration, place a heavy burden on power and processing resources. Image preprocessing often includes image denoising to improve data quality for downstream exploitation algorithms. High-performance image denoising is typically performed in the wavelet domain, where noise generally spreads and the wavelet transform compactly captures high information-bearing image characteristics. In this paper, we improve modeling fidelity of a previously-developed, computationally-efficient wavelet-based denoising algorithm. The modeling improvements enhance denoising performance without significantly increasing computational cost, thus making the approach suitable for low-SWAP platforms. Specifically, this paper presents modeling improvements to the Sendur-Selesnick model (SSM) which implements a bivariate wavelet shrinkage denoising algorithm that exploits interscale dependency between wavelet coefficients. We formulate optimization problems for parameters controlling deadzone size which leads to improved denoising performance. Two formulations are provided; one with a simple, closed form solution which we use for numerical result generation, and the second as an integral equation formulation involving elliptic integrals. We generate image denoising performance results over different image sets drawn from public domain imagery, and investigate the effect of wavelet filter tap length on denoising performance. We demonstrate denoising performance improvement when using the enhanced modeling over performance obtained with the baseline SSM model.

  2. Energy Distribution Analysis of Impact Signals Based on Wavelet Decompositions

    DTIC Science & Technology

    2006-05-01

    W.D., Hollowell , W.T., Reagan, S.W., and Sieveka, E.M., "Experiences in Reverse-engineering of a Finite Element Automobile Crash Model," Finite Element...K., Hollowell , W.T., and Crandall, J.R., "Correlation Analysis of Automobile Crash Responses Using Wavelets," Proceedings of 19’h International

  3. PSO based Gabor wavelet feature extraction and tracking method

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Bu, Qian; Zhang, Huijie

    2008-12-01

    The paper is the study of 2D Gabor wavelet and its application in grey image target recognition and tracking. The new optimization algorithms and technologies in the system realization are studied and discussed in theory and practice. Optimization of Gabor wavelet's parameters of translation, orientation, and scale is used to make it approximates a local image contour region. The method of Sobel edge detection is used to get the initial position and orientation value of optimization in order to improve the convergence speed. In the wavelet characteristic space, we adopt PSO (particle swarm optimization) algorithm to identify points on the security border of the system, it can ensure reliable convergence of the target, which can improve convergence speed; the time of feature extraction is shorter. By test in low contrast image, the feasibility and effectiveness of the algorithm are demonstrated by VC++ simulation platform in experiments. Adopting improve Gabor wavelet method in target tracking and making up its frame of tracking, which realize moving target tracking used algorithm, and realize steady target tracking in circumrotate affine distortion.

  4. Wavelet-Based Processing for Fiber Optic Sensing Systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  5. Wavelet-based time series bootstrap model for multidecadal streamflow simulation using climate indicators

    NASA Astrophysics Data System (ADS)

    Erkyihun, Solomon Tassew; Rajagopalan, Balaji; Zagona, Edith; Lall, Upmanu; Nowak, Kenneth

    2016-05-01

    A model to generate stochastic streamflow projections conditioned on quasi-oscillatory climate indices such as Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) is presented. Recognizing that each climate index has underlying band-limited components that contribute most of the energy of the signals, we first pursue a wavelet decomposition of the signals to identify and reconstruct these features from annually resolved historical data and proxy based paleoreconstructions of each climate index covering the period from 1650 to 2012. A K-Nearest Neighbor block bootstrap approach is then developed to simulate the total signal of each of these climate index series while preserving its time-frequency structure and marginal distributions. Finally, given the simulated climate signal time series, a K-Nearest Neighbor bootstrap is used to simulate annual streamflow series conditional on the joint state space defined by the simulated climate index for each year. We demonstrate this method by applying it to simulation of streamflow at Lees Ferry gauge on the Colorado River using indices of two large scale climate forcings: Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO), which are known to modulate the Colorado River Basin (CRB) hydrology at multidecadal time scales. Skill in stochastic simulation of multidecadal projections of flow using this approach is demonstrated.

  6. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    PubMed

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.

  7. Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR

    PubMed Central

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894

  8. Wavelet-Based Image Enhancement in X-Ray Imaging and Tomography

    NASA Astrophysics Data System (ADS)

    Bronnikov, Andrei V.; Duifhuis, Gerrit

    1998-07-01

    We consider an application of the wavelet transform to image processing in x-ray imaging and three-dimensional (3-D) tomography aimed at industrial inspection. Our experimental setup works in two operational modes digital radiography and 3-D cone-beam tomographic data acquisition. Although the x-ray images measured have a large dynamic range and good spatial resolution, their noise properties and contrast are often not optimal. To enhance the images, we suggest applying digital image processing by using wavelet-based algorithms and consider the wavelet-based multiscale edge representation in the framework of the Mallat and Zhong approach IEEE Trans. Pattern Anal. Mach. Intell. 14, 710 (1992) . A contrast-enhancement method by use of equalization of the multiscale edges is suggested. Several denoising algorithms based on modifying the modulus and the phase of the multiscale gradients and several contrast-enhancement techniques applying linear and nonlinear multiscale edge stretching are described and compared by use of experimental data. We propose the use of a filter bank of wavelet-based reconstruction filters for the filtered-backprojection reconstruction algorithm. Experimental results show a considerable increase in the performance of the whole x-ray imaging system for both radiographic and tomographic modes in the case of the application of the wavelet-based image-processing algorithms.

  9. Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data.

    PubMed

    Zhao, Weixiang; Davis, Cristina E

    2009-09-28

    This paper introduces the ant colony algorithm, a novel swarm intelligence based optimization method, to select appropriate wavelet coefficients from mass spectral data as a new feature selection method for ovarian cancer diagnostics. By determining the proper parameters for the ant colony algorithm (ACA) based searching algorithm, we perform the feature searching process for 100 times with the number of selected features fixed at 5. The results of this study show: (1) the classification accuracy based on the five selected wavelet coefficients can reach up to 100% for all the training, validating and independent testing sets; (2) the eight most popular selected wavelet coefficients of the 100 runs can provide 100% accuracy for the training set, 100% accuracy for the validating set, and 98.8% accuracy for the independent testing set, which suggests the robustness and accuracy of the proposed feature selection method; and (3) the mass spectral data corresponding to the eight popular wavelet coefficients can be located by reverse wavelet transformation and these located mass spectral data still maintain high classification accuracies (100% for the training set, 97.6% for the validating set, and 98.8% for the testing set) and also provide sufficient physical and medical meaning for future ovarian cancer mechanism studies. Furthermore, the corresponding mass spectral data (potential biomarkers) are in good agreement with other studies which have used the same sample set. Together these results suggest this feature extraction strategy will benefit the development of intelligent and real-time spectroscopy instrumentation based diagnosis and monitoring systems.

  10. Alternative common bases and signal compression for wavelets application in chemometrics.

    PubMed

    Forina, Michele; Oliveri, Paolo; Casale, Monica

    2011-02-01

    Representation or compression of data sets in the wavelet space is usually performed to retain the maximum variance of the original or pretreated data, like in the compression by means of principal components. In order to represent together a number of objects in the wavelet space, a common basis is required, and this common basis is usually obtained by means of the variance spectrum or of the variance wavelet tree. In this study, the use of alternative common bases is suggested, both for classification and regression problems. In the case of classification or class-modeling, the suggested common bases are based on the spectrum of the Fisher weights (a measure of the between-class to within-class variance ratio) or on the spectrum of the SIMCA discriminant weights. In the case of regression, the suggested common bases are obtained by the correlation spectrum (the correlation coefficients of the predictor variables with a response variable) or by the PLS (Partial Least Squares regression) importance of the predictors (the product between the absolute value of the regression coefficient of the predictor in the PLS model and its standard deviation). Other alternative strategies apply the Gram-Schmidt supervised orthogonalization to the wavelet coefficients. The results indicate that, both in classification and regression, the information retained after compression in the wavelets space can be more efficient than that retained with a common basis obtained by variance.

  11. Mean square error approximation for wavelet-based semiregular mesh compression.

    PubMed

    Payan, Frédéric; Antonini, Marc

    2006-01-01

    The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a "naive" approximation (depending on the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.

  12. Identification of structural damage using wavelet-based data classification

    NASA Astrophysics Data System (ADS)

    Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk

    2008-03-01

    Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.

  13. Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain

    NASA Astrophysics Data System (ADS)

    Nougarou, François; Massicotte, Daniel; Descarreaux, Martin

    2012-12-01

    The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.

  14. Robust wavelet-based video watermarking scheme for copyright protection using the human visual system

    NASA Astrophysics Data System (ADS)

    Preda, Radu O.; Vizireanu, Dragos Nicolae

    2011-01-01

    The development of the information technology and computer networks facilitates easy duplication, manipulation, and distribution of digital data. Digital watermarking is one of the proposed solutions for effectively safeguarding the rightful ownership of digital images and video. We propose a public digital watermarking technique for video copyright protection in the discrete wavelet transform domain. The scheme uses binary images as watermarks. These are embedded in the detail wavelet coefficients of the middle wavelet subbands. The method is a combination of spread spectrum and quantization-based watermarking. Every bit of the watermark is spread over a number of wavelet coefficients with the use of a secret key by means of quantization. The selected wavelet detail coefficients from different subbands are quantized using an optimal quantization model, based on the characteristics of the human visual system (HVS). Our HVS-based scheme is compared to a non-HVS approach. The resilience of the watermarking algorithm is tested against a series of different spatial, temporal, and compression attacks. To improve the robustness of the algorithm, we use error correction codes and embed the watermark with spatial and temporal redundancy. The proposed method achieves a good perceptual quality and high resistance to a large spectrum of attacks.

  15. Iterative edge- and wavelet-based image registration of AVHRR and GOES satellite imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; El-Saleous, Nazmi; Vermote, Eric

    1997-01-01

    Most automatic registration methods are either correlation-based, feature-based, or a combination of both. Examples of features which can be utilized for automatic image registration are edges, regions, corners, or wavelet-extracted features. In this paper, we describe two proposed approaches, based on edge or edge-like features, which are very appropriate to highlight regions of interest such as coastlines. The two iterative methods utilize the Normalized Cross-Correlation of edge and wavelet features and are applied to such problems as image-to-map registration, landmarking, and channel-to-channel co-registration, utilizing test data, AVHRR data, as well as GOES image data.

  16. Wavelet-based pavement image compression and noise reduction

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Huang, Peisen S.; Chiang, Fu-Pen

    2005-08-01

    For any automated distress inspection system, typically a huge number of pavement images are collected. Use of an appropriate image compression algorithm can save disk space, reduce the saving time, increase the inspection distance, and increase the processing speed. In this research, a modified EZW (Embedded Zero-tree Wavelet) coding method, which is an improved version of the widely used EZW coding method, is proposed. This method, unlike the two-pass approach used in the original EZW method, uses only one pass to encode both the coordinates and magnitudes of wavelet coefficients. An adaptive arithmetic encoding method is also implemented to encode four symbols assigned by the modified EZW into binary bits. By applying a thresholding technique to terminate the coding process, the modified EZW coding method can compress the image and reduce noise simultaneously. The new method is much simpler and faster. Experimental results also show that the compression ratio was increased one and one-half times compared to the EZW coding method. The compressed and de-noised data can be used to reconstruct wavelet coefficients for off-line pavement image processing such as distress classification and quantification.

  17. A wavelet based approach to Solar-Terrestrial Coupling

    NASA Astrophysics Data System (ADS)

    Katsavrias, Ch.; Hillaris, A.; Preka-Papadema, P.

    2016-05-01

    Transient and recurrent solar activity drive geomagnetic disturbances; these are quantified (amongst others) by DST , AE indices time-series. Transient disturbances are related to the Interplanetary Coronal Mass Ejections (ICMEs) while recurrent disturbances are related to corotating interaction regions (CIR). We study the relationship of the geomagnetic disturbances to the solar wind drivers within solar cycle 23 where the drivers are represented by ICMEs and CIRs occurrence rate and compared to the DST and AE as follows: terms with common periodicity in both the geomagnetic disturbances and the solar drivers are, firstly, detected using continuous wavelet transform (CWT). Then, common power and phase coherence of these periodic terms are calculated from the cross-wavelet spectra (XWT) and wavelet-coherence (WTC) respectively. In time-scales of ≈27 days our results indicate an anti-correlation of the effects of ICMEs and CIRs on the geomagnetic disturbances. The former modulates the DST and AE time series during the cycle maximum the latter during periods of reduced solar activity. The phase relationship of these modulation is highly non-linear. Only the annual frequency component of the ICMEs is phase-locked with DST and AE. In time-scales of ≈1.3-1.7 years the CIR seem to be the dominant driver for both geomagnetic indices throughout the whole solar cycle 23.

  18. Value at risk estimation with entropy-based wavelet analysis in exchange markets

    NASA Astrophysics Data System (ADS)

    He, Kaijian; Wang, Lijun; Zou, Yingchao; Lai, Kin Keung

    2014-08-01

    In recent years, exchange markets are increasingly integrated together. Fluctuations and risks across different exchange markets exhibit co-moving and complex dynamics. In this paper we propose the entropy-based multivariate wavelet based approaches to analyze the multiscale characteristic in the multidimensional domain and improve further the Value at Risk estimation reliability. Wavelet analysis has been introduced to construct the entropy-based Multiscale Portfolio Value at Risk estimation algorithm to account for the multiscale dynamic correlation. The entropy measure has been proposed as the more effective measure with the error minimization principle to select the best basis when determining the wavelet families and the decomposition level to use. The empirical studies conducted in this paper have provided positive evidence as to the superior performance of the proposed approach, using the closely related Chinese Renminbi and European Euro exchange market.

  19. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these

  20. Echo signal processing of laser rapid scanning based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Jinling; Xu, Zhengfeng; Xie, Delin; Chen, Hongbin; Luo, Jian

    2007-12-01

    In order to get the edge message of a target, a laser scanning system was established. The laser scanning system steers a beam of laser energy which is dithered in two directions to scan the surface of the object. A laser energy detector detects laser energy reflected from the target. The reflected information is filtered to distinguish dither frequencies for signal in both directions. The signals are independently analyzed to determine the edge of the target by detecting the change of reflected laser energy. In order to get the fantastic point of echo signal, wavelet transform is used. Based on invariability of the quality factor of wavelet transform, combined with proper wavelet group, this paper discusses the application of wavelet transform for the detection of echo signal. On the basis of algorithm analysis, from aspects of detecting principle, detecting steps and computer emulation, the authors expatiate how to use wavelet transform to find the fantastic point of echo signal, finally to find the edge of the target being detected. Wavelet transform has the ability of denoting local signal characteristics, so it is fit to analyzing instantaneous and fantastic phenomena and can lay out signal components. The method in this paper will supply an algorithm gist and a reference for signal processing for the detection of edge message of target. The results are demonstrated by using Matlab programme. By the measure, the noise can be eliminated, and effective signals can be picked up. When applying the wavelet transform to experimentation, a satisfactory result was obtained. When using this method, the ability of edge detection can be greatly improved.

  1. A 2D wavelet-based spectral finite element method for elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Pahlavan, L.; Kassapoglou, C.; Suiker, A. S. J.; Gürdal, Z.

    2012-10-01

    A wavelet-based spectral finite element method (WSFEM) is presented that may be used for an accurate and efficient analysis of elastic wave propagation in two-dimensional (2D) structures. The approach is characterised by a temporal transformation of the governing equations to the wavelet domain using a wavelet-Galerkin approach, and subsequently performing the spatial discretisation in the wavelet domain with the finite element method (FEM). The final solution is obtained by transforming the nodal displacements computed in the wavelet domain back to the time domain. The method straightforwardly eliminates artificial temporal edge effects resulting from the discrete wavelet transform and allows for the modelling of structures with arbitrary geometries and boundary conditions. The accuracy and applicability of the method is demonstrated through (i) the analysis of a benchmark problem on axial and flexural waves (Lamb waves) propagating in an isotropic layer, and (ii) the study of a plate subjected to impact loading. The wave propagation response for the impact problem is compared to the result computed with standard FEM equipped with a direct time-integration scheme. The effect of anisotropy on the response is demonstrated by comparing the numerical result for an isotropic plate to that of an orthotropic plate, and to that of a plate made of two dissimilar materials, with and without a cut-out at one of the plate corners. The decoupling of the time-discretised equations in the wavelet domain makes the method inherently suitable for parallel computation, and thus an appealing candidate for efficiently studying high-frequency wave propagation in engineering structures with a large number of degrees of freedom.

  2. Fixed and random effect analysis of multi-subject fMRI data using wavelet transform.

    PubMed

    Soleymani, Mohammad; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid

    2009-01-30

    We propose a new method to estimate the random effect variance in group analysis of fMRI data. In the first level of analysis, general linear model (GLM) is used to estimate a parameter map ("effect") for each subject. After applying discrete wavelet transform to the "effect" maps, noise is reduced through a vertical energy thresholding (VET). The fixed effect component in each coefficient is derived by averaging the wavelet coefficients along all subjects. Then, the wavelet coefficients containing significant random effect are identified by their higher sample variance along the subjects. Wavelet coefficients containing random effect component in each subject are used to reconstruct the random effect maps through an inverse wavelet transform. Random effect variance is obtained from random effect maps for use in random effect analysis. The proposed method and other methods like GLM group analysis and variance ratio smoothing are applied to both experimental and artificial fMRI data. ROC curves, obtained from the simulated data, show improved group activation detection compared to existing random effect analysis methods. For the experimental data, the proposed method shows its high sensitivity by detecting multiple activation regions, namely visual cortex, cuneus, precuneus, thalamus, and cerebellum. From these regions, precuneus and cerebellum are not detected by majority of the previously published methods.

  3. Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG.

    PubMed

    Chen, Duo; Wan, Suiren; Bao, Forrest Sheng

    2017-05-01

    Over the past decade, with the development of machine learning, discrete wavelet transform (DWT) has been widely used in computer-aided epileptic electroencephalography (EEG) signal analysis as a powerful time-frequency tool. But some important problems have not yet been benefitted from DWT, including epileptic focus localization, a key task in epilepsy diagnosis and treatment. Additionally, the parameters and settings for DWT are chosen empirically or arbitrarily in previous work. In this work, we propose a framework to use DWT and support vector machine (SVM) for epileptic focus localization problem based on EEG. To provide a guideline in selecting the best settings for DWT, we decompose the EEG segments in seven commonly used wavelet families to their maximum theoretical levels. The wavelet and its level of decomposition providing the highest accuracy in each wavelet family are then used in a grid search for obtaining the optimal frequency bands and wavelet coefficient features. Our approach achieves promising performance on two widely-recognized intrancranial EEG datasets that are also seizure-free, with an accuracy of 83.07% on the Bern-Barcelona dataset and an accuracy of 88.00% on the UBonn dataset. Compared with existing DWT-based approaches in epileptic EEG analysis, the proposed approach leads to more accurate and robust results. A guideline for DWT parameter setting is provided at the end of the paper.

  4. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  5. Wavelet-based SAR images despeckling using joint hidden Markov model

    NASA Astrophysics Data System (ADS)

    Li, Qiaoliang; Wang, Guoyou; Liu, Jianguo; Chen, Shaobo

    2007-11-01

    In the past few years, wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the deficiency for taking account of intrascale correlations that exist among neighboring wavelet coefficients. In this paper, we propose to develop a joint hidden Markov model by fusing the wavelet Bayesian denoising technique with an image regularization procedure based on HMT and Markov random field (MRF). The Expectation Maximization algorithm is used to estimate hyperparameters and specify the mixture model. The noise-free wavelet coefficients are finally estimated by a shrinkage function based on local weighted averaging of the Bayesian estimator. It is shown that the joint method outperforms lee filter and standard HMT techniques in terms of the integrative measure of the equivalent number of looks (ENL) and Pratt's figure of merit(FOM), especially when dealing with speckle noise in large variance.

  6. [Recognition of landscape characteristic scale based on two-dimension wavelet analysis].

    PubMed

    Gao, Yan-Ni; Chen, Wei; He, Xing-Yuan; Li, Xiao-Yu

    2010-06-01

    Three wavelet bases, i. e., Haar, Daubechies, and Symlet, were chosen to analyze the validity of two-dimension wavelet analysis in recognizing the characteristic scales of the urban, peri-urban, and rural landscapes of Shenyang. Owing to the transform scale of two-dimension wavelet must be the integer power of 2, some characteristic scales cannot be accurately recognized. Therefore, the pixel resolution of images was resampled to 3, 3.5, 4, and 4.5 m to densify the scale in analysis. It was shown that two-dimension wavelet analysis worked effectively in checking characteristic scale. Haar, Daubechies, and Symle were the optimal wavelet bases to the peri-urban landscape, urban landscape, and rural landscape, respectively. Both Haar basis and Symlet basis played good roles in recognizing the fine characteristic scale of rural landscape and in detecting the boundary of peri-urban landscape. Daubechies basis and Symlet basis could be also used to detect the boundary of urban landscape and rural landscape, respectively.

  7. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  8. A Wavelet-Based Assessment of Topographic-Isostatic Reductions for GOCE Gravity Gradients

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Luo, Xiaoguang; Seitz, Kurt; Heck, Bernhard

    2014-07-01

    Gravity gradient measurements from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE) contain significant high- and mid-frequency signal components, which are primarily caused by the attraction of the Earth's topographic and isostatic masses. In order to mitigate the resulting numerical instability of a harmonic downward continuation, the observed gradients can be smoothed with respect to topographic-isostatic effects using a remove-compute-restore technique. For this reason, topographic-isostatic reductions are calculated by forward modeling that employs the advanced Rock-Water-Ice methodology. The basis of this approach is a three-layer decomposition of the topography with variable density values and a modified Airy-Heiskanen isostatic concept incorporating a depth model of the Mohorovičić discontinuity. Moreover, tesseroid bodies are utilized for mass discretization and arranged on an ellipsoidal reference surface. To evaluate the degree of smoothing via topographic-isostatic reduction of GOCE gravity gradients, a wavelet-based assessment is presented in this paper and compared with statistical inferences in the space domain. Using the Morlet wavelet, continuous wavelet transforms are applied to measured GOCE gravity gradients before and after reducing topographic-isostatic signals. By analyzing a representative data set in the Himalayan region, an employment of the reductions leads to significantly smoothed gradients. In addition, smoothing effects that are invisible in the space domain can be detected in wavelet scalograms, making a wavelet-based spectral analysis a powerful tool.

  9. Keyhole image processing based on the wavelet transform in the VPPA welding process

    NASA Astrophysics Data System (ADS)

    Liu, Zhonghua; Wang, Qilong

    2000-04-01

    In order to realize the feedback control for variable polarity plasma arc weld formation in the weld process, the feature geometrical size of the keyhole must be extracted. A multiscale edge detection based on the wavelet transform is equivalent to finding the local maxima of a wavelet transform. With the properties of multiscale edge through the wavelet theory, the edge points were detected by getting the maximum modulus of the gradient vector in the direction towards which the gradient vector points in the image plane. The edge points with a large module value correspond to the sharper intensity variation of the image. At coarse scales, the maxima of modules have different positions than at the fine scales and only detected the sharp edge. At fine scale, there are many maxima create by the image noise. We must integrate this multiscale information to look for the best scale where the edges are well discriminated from noises. At last, a new method of peak analysis for threshold selection is proved. It is based on the wavelet transform which provides a multiscale analysis of the information of the histogram. We how that the detection of the zero-crossing or the local extrema of a wavelet transform of the histogram gives a compete characterization of het peaks in the histogram. Many experiments show these ways are effective for the keyhole image to get the geometry parameters of the keyhole in the real-time image processing.

  10. Identification of large geomorphological anomalies based on 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Doglioni, A.; Simeone, V.

    2012-04-01

    The identification and analysis based on quantitative evidences of large geomorphological anomalies is an important stage for the study of large landslides. Numerical geomorphic analyses represent an interesting approach to this kind of studies, allowing for a detailed and pretty accurate identification of hidden topographic anomalies that may be related to large landslides. Here a geomorphic numerical analyses of the Digital Terrain Model (DTM) is presented. The introduced approach is based on 2D discrete wavelet transform (Antoine et al., 2003; Bruun and Nilsen, 2003, Booth et al., 2009). The 2D wavelet decomposition of the DTM, and in particular the analysis of the detail coefficients of the wavelet transform can provide evidences of anomalies or singularities, i.e. discontinuities of the land surface. These discontinuities are not very evident from the DTM as it is, while 2D wavelet transform allows for grid-based analysis of DTM and for mapping the decomposition. In fact, the grid-based DTM can be assumed as a matrix, where a discrete wavelet transform (Daubechies, 1992) is performed columnwise and linewise, which basically represent horizontal and vertical directions. The outcomes of this analysis are low-frequency approximation coefficients and high-frequency detail coefficients. Detail coefficients are analyzed, since their variations are associated to discontinuities of the DTM. Detailed coefficients are estimated assuming to perform 2D wavelet transform both for the horizontal direction (east-west) and for the vertical direction (north-south). Detail coefficients are then mapped for both the cases, thus allowing to visualize and quantify potential anomalies of the land surface. Moreover, wavelet decomposition can be pushed to further levels, assuming a higher scale number of the transform. This may potentially return further interesting results, in terms of identification of the anomalies of land surface. In this kind of approach, the choice of a proper

  11. Two Stage Helical Gearbox Fault Detection and Diagnosis based on Continuous Wavelet Transformation of Time Synchronous Averaged Vibration Signals

    NASA Astrophysics Data System (ADS)

    Elbarghathi, F.; Wang, T.; Zhen, D.; Gu, F.; Ball, A.

    2012-05-01

    Vibration signals from a gearbox are usually very noisy which makes it difficult to find reliable symptoms of a fault in a multistage gearbox. This paper explores the use of time synchronous average (TSA) to suppress the noise and Continue Wavelet Transformation (CWT) to enhance the non-stationary nature of fault signal for more accurate fault diagnosis. The results obtained in diagnosis an incipient gear breakage show that fault diagnosis results can be improved by using an appropriate wavelet. Moreover, a new scheme based on the level of wavelet coefficient amplitudes of baseline data alone, without faulty data samples, is suggested to select an optimal wavelet.

  12. Eyebrows Identity Authentication Based on Wavelet Transform and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Jun-bin, CAO; Haitao, Yang; Lili, Ding

    In order to study the novel biometric of eyebrow,,this paper presents an Eyebrows identity authentication based on wavelet transform and support vector machines. The features of the eyebrows image are extracted by wavelet transform, and then classifies them based on SVM. Verification results of the experiment on an eyebrow database taken from 100 of self-built personal demonstrate the effectiveness of the system. The system has a lower FAR 0.22%and FRR 28% Therefore, eyebrow recongnition may possibly apply to personal identification.

  13. [Detection of R-wave in Fetal EGG Based on Wavelet Transform and Matched Filtering].

    PubMed

    Yan, Wenhong; Jiang, Ning

    2015-09-01

    By analyzing the characteristics of maternal abdominal ECG (Electrocardiogram), a method based on wavelet transform and matched filtering is proposed to detect the R-wave in fetal EGG (FECG). In this method, the high-frequency coefficients are calculated by using wavelet transform. First, the maternal QRS template is obtained by using the arithmetic mean scheme. Finally, the R-wave of FECG is detected based on matched filtering. The experimental results show that this method can effectively eliminate the noises, such as the maternal ECG signal and baseline drift, enhancing the accuracy of the detection of fetal ECG.

  14. Serial identification of EEG patterns using adaptive wavelet-based analysis

    NASA Astrophysics Data System (ADS)

    Nazimov, A. I.; Pavlov, A. N.; Nazimova, A. A.; Grubov, V. V.; Koronovskii, A. A.; Sitnikova, E.; Hramov, A. E.

    2013-10-01

    A problem of recognition specific oscillatory patterns in the electroencephalograms with the continuous wavelet-transform is discussed. Aiming to improve abilities of the wavelet-based tools we propose a serial adaptive method for sequential identification of EEG patterns such as sleep spindles and spike-wave discharges. This method provides an optimal selection of parameters based on objective functions and enables to extract the most informative features of the recognized structures. Different ways of increasing the quality of patterns recognition within the proposed serial adaptive technique are considered.

  15. Wavelet packet transform-based optical orthogonal frequency-division multiplexing transmission using direct detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Yi, Xingwen; Chen, Lei; Zhang, Jing; Deng, Mingliang; Qiu, Kun

    2012-10-01

    As an alternate to fast Fourier transform-based orthogonal frequency-division multiplexing (OFDM), wavelet packet transform (WPT)-based OFDM (WPT-OFDM) does not require cyclic prefix to avoid inter-symbol-interference. The wavelet has many varieties and therefore, it can provide more freedom for system design to suit different applications. We propose a real-valued WPT-OFDM that uses intensity modulation/direct detection. We also conduct an experiment to verify its performance through a 75-km standard single-mode fiber.

  16. Adaptive wavelet packet-based de-speckling of ultrasound images with bilateral filter.

    PubMed

    Esakkirajan, Sankaralingam; Vimalraj, Chinna Thambi; Muhammed, Rashad; Subramanian, Ganapathi

    2013-12-01

    A new adaptive wavelet packet-based approach to minimize speckle noise in ultrasound images is proposed. This method combines wavelet packet thresholding with a bilateral filter. Here, the best bases after wavelet packet decomposition are selected by comparing the first singular value of all sub-bands, and the noisy coefficients are thresholded using a modified NeighShrink technique. The algorithm is tested with various ultrasound images, and the results, in terms of peak signal-to-noise ratio and mean structural similarity values, are compared with those for some well-known de-speckling techniques. The simulation results indicate that the proposed method has better potential to minimize speckle noise and retain fine details of the ultrasound image. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  17. A speech recognition system based on hybrid wavelet network including a fuzzy decision support system

    NASA Astrophysics Data System (ADS)

    Jemai, Olfa; Ejbali, Ridha; Zaied, Mourad; Ben Amar, Chokri

    2015-02-01

    This paper aims at developing a novel approach for speech recognition based on wavelet network learnt by fast wavelet transform (FWN) including a fuzzy decision support system (FDSS). Our contributions reside in, first, proposing a novel learning algorithm for speech recognition based on the fast wavelet transform (FWT) which has many advantages compared to other algorithms and in which major problems of the previous works to compute connection weights were solved. They were determined by a direct solution which requires computing matrix inversion, which may be intensive. However, the new algorithm was realized by the iterative application of FWT to compute connection weights. Second, proposing a new classification way for this speech recognition system. It operated a human reasoning mode employing a FDSS to compute similarity degrees between test and training signals. Extensive empirical experiments were conducted to compare the proposed approach with other approaches. Obtained results show that the new speech recognition system has a better performance than previously established ones.

  18. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  19. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  20. Application of wavelet transformation and adaptive neighborhood based modified backpropagation (ANMBP) for classification of brain cancer

    NASA Astrophysics Data System (ADS)

    Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry

    2017-08-01

    This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.

  1. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  2. Multi-scale Analysis of DSCOVR Data Using Wavelet Cross Correlation

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.; Kasper, J. C.; Stevens, M. L.; Alterman, B. L.; Case, A. W.; Szabo, A.; Koval, A.

    2015-12-01

    The Deep Space Climate Observatory (DSCOVR), launched February 11th 2015, makes the fastest combined measurements of solar wind magnetic field vectors and ion velocity distribution functions ever. These data allow us to search for correlation between ion and magnetic field fluctuations at kinetic ion scales for the first time. We present first results of a wavelet correlation analysis, which allows us to search for wave-particle interactions while accounting for different sampling cadences and data gaps. Using different wavelet algorithms we circumvent these issues and decompose the covariance and correlation between these two data streams on a scale by scale basis. We then generalize these quantities to wavelet cross-correlation and cross-covariance to identify interactions between charged particles and magnetic fields on kinetic scales. The techniques developed in this work will be directly applicable to plasma and magnetic field observations in the corona on the upcoming Solar Probe Plus mission.

  3. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    NASA Astrophysics Data System (ADS)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  4. A novel super-resolution image fusion algorithm based on improved PCNN and wavelet transform

    NASA Astrophysics Data System (ADS)

    Liu, Na; Gao, Kun; Song, Yajun; Ni, Guoqiang

    2009-10-01

    Super-resolution reconstruction technology is to explore new information between the under-sampling image series obtained from the same scene and to achieve the high-resolution picture through image fusion in sub-pixel level. The traditional super-resolution fusion methods for sub-sampling images need motion estimation and motion interpolation and construct multi-resolution pyramid to obtain high-resolution, yet the function of the human beings' visual features are ignored. In this paper, a novel resolution reconstruction for under-sampling images of static scene based on the human vision model is considered by introducing PCNN (Pulse Coupled Neural Network) model, which simplifies and improves the input model, internal behavior and control parameters selection. The proposed super-resolution image fusion algorithm based on PCNN-wavelet is aimed at the down-sampling image series in a static scene. And on the basis of keeping the original features, we introduce Relief Filter(RF) to the control and judge segment to overcome the effect of random factors(such as noise, etc) effectively to achieve the aim that highlighting interested object though the fusion. Numerical simulations show that the new algorithm has the better performance in retaining more details and keeping high resolution.

  5. Radiation dose reduction in digital radiography using wavelet-based image processing methods

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruyuki; Tsai, Du-Yih; Lee, Yongbum; Matsuyama, Eri; Kojima, Katsuyuki

    2011-03-01

    In this paper, we investigate the effect of the use of wavelet transform for image processing on radiation dose reduction in computed radiography (CR), by measuring various physical characteristics of the wavelet-transformed images. Moreover, we propose a wavelet-based method for offering a possibility to reduce radiation dose while maintaining a clinically acceptable image quality. The proposed method integrates the advantages of a previously proposed technique, i.e., sigmoid-type transfer curve for wavelet coefficient weighting adjustment technique, as well as a wavelet soft-thresholding technique. The former can improve contrast and spatial resolution of CR images, the latter is able to improve the performance of image noise. In the investigation of physical characteristics, modulation transfer function, noise power spectrum, and contrast-to-noise ratio of CR images processed by the proposed method and other different methods were measured and compared. Furthermore, visual evaluation was performed using Scheffe's pair comparison method. Experimental results showed that the proposed method could improve overall image quality as compared to other methods. Our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved in hip joint radiography by using the proposed method.

  6. Optical image compression based on adaptive directional prediction discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Libao; Qiu, Bingchang

    2013-11-01

    The traditional lifting wavelet transform cannot effectively reconstruct the nonhorizontal and nonvertical high-frequency information of an image. In this paper, we present a new image compression method based on adaptive directional prediction discrete wavelet transform (ADP-DWT). We first design a directional prediction model to obtain the optimal transform direction of the lifting wavelet. Then, we execute the directional lifting transform along the optimal transform direction. The edge and texture energy can be reduced in the nonhorizontal and nonvertical directions of the high-frequency sub-bands. Finally, the wavelet coefficients are coded with the set partitioning in hierarchical trees (SPIHT) algorithm. The new method holds the advantages of both adaptive directional lifting (ADL) and direction-adaptive discrete wavelet transform (DA-DWT), and the computational complexity is far lower than that in these methods. For the images containing regular and fine textures or edges, the coding preformance of ADP-DWT is better than that of ADL and DA-DWT.

  7. Research on preprocessing method of tractor wheel speed signal based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhili, Zhou; Yao, Liu; Liyou, Xu

    2017-09-01

    As one of the most important parameters in the measurement of tractor slip ratio, wheel speed signal must ensure its accuracy in order to accurately measure the tractor slip ratio. Noises make tractor wheel speed signal a significant fluctuation, which may cause control system failure. Fault points elimination method suitable for tractor wheel speed signal was determined based on the characteristics of tractor wheel speed signal during working process. Meanwhile, soft-hard compromise threshold function wavelet denoising method is designed according to the characteristics of tractor wheel speed signal and trials. We use Carsim simulation software to get actual tractor wheel speed signal, and add white noise which SNR (signal to noise ratio) is 60 to the original signal. From the results of several wavelet denoising methods we can conclude that the soft-hard compromise threshold function wavelet denoising method is better than any other ordinary wavelet denoising methods. The SNR of denoised signal is 56.440 and the MSE (mean square error) is 0.0042. The wavelet transform denoising method is feasible to remove noise from tractor driving wheel speed signal.

  8. Selecting optimum base wavelet for extracting spectral alteration features associated with porphyry copper mineralization using hyperspectral images

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Mehdi; Tabaei, Morteza; Fathianpour, Nader; Gorte, Ben G. H.

    2017-06-01

    Extracting a set of meaningful spectral features could enhance the classification performance. This is particularly important in hyperspectral images where the dataset are very large and time consuming to process. Wavelet transform as a powerful decomposition tool in both low and high frequency components could play an essential role in extracting spectral features of target minerals. Selecting the optimum base wavelet is an important step in wavelet transform. In this research, two criteria to select optimum base wavelet were implemented on three wavelet series including Daubechie (db), symlet (sym) and coiflet (coif). Energy criterion involves entropy factor and energy-to-Shannon entropy ratio while matching shape criterion operates according to correlation coefficients. High ranking base wavelets in both energy and shape criteria, coif1, db3 and db7, are recommended to be utilized in hyperspectral image classification. Neural Network technique was used for classification and trained by means of mineral spectral features related to typical porphyry copper deposits. Non-Linear wavelet feature extraction was employed to select the efficient features as input data. The study area covered by Hyperion data contains two well-known porphyry copper deposits, Darrehzar and Sarcheshmeh, located in the Iranian copper belt. Based on classification error matrix, it is concluded that db7 through 12 selected features exhibits the maximum consistency with the field measured data and can be recommended as an appropriate base wavelet for detecting porphyry copper deposits.

  9. Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing.

    PubMed

    Matz, Vaclav; Smid, Radislav; Starman, Stanislav; Kreidl, Marcel

    2009-12-01

    In ultrasonic non-destructive testing of materials with a coarse-grained structure the scattering from the grains causes backscattering noise, which masks flaw echoes in the measured signal. Several filtering methods have been proposed for improving the signal-to-noise ratio. In this paper we present a comparative study of methods based on the wavelet transform. Experiments with stationary, discrete and wavelet packet de-noising are evaluated by means of signal-to-noise ratio enhancement. Measured and simulated ultrasonic signals are used to verify the proposed de-noising methods. For comparison, we use signal-to-noise ratio enhancement related to fault echo amplitudes and filtering efficiency specific for ultrasonic signals. The best results in our setup were achieved with the wavelet packet de-noising method.

  10. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  11. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.

  12. Implementation in an FPGA circuit of Edge detection algorithm based on the Discrete Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia

    2017-07-01

    The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.

  13. Improving Resolution in k and r Space: A FEFF-based Wavelet for EXAFS Data Analysis

    SciTech Connect

    Funke, H.; Scheinost, A. C.; Chukalina, M.; Voegelin, A.

    2007-02-02

    Applying a wavelet analysis based on the Morlet mother function, we previously demonstrated the presence of both Al and Zn atoms in the first metal shell (r {approx_equal} 3 A from the central Zn atom) of Zn-Al layered double hydroxide (LDH). However, this approach was not suited to resolve the second and third metal shells (r {approx_equal} 5 - 6 A) in r and k space independently. Therefore, we developed a new FEFF-Morlet wavelet, where the EXAFS function itself, extracted from the FEFF model, is combined with the complex Morlet wavelet. With this method, we were able to distinguish the second metal shell (Zn atoms only) from the third metal shell (Zn and Al atoms), thereby proving a regular, dioctahedral distribution of Zn atoms in the hydroxide layers.

  14. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  15. Improving Resolution in k and r Space: A FEFF-based Wavelet for EXAFS Data Analysis

    NASA Astrophysics Data System (ADS)

    Funke, H.; Chukalina, M.; Voegelin, A.; Scheinost, A. C.

    2007-02-01

    Applying a wavelet analysis based on the Morlet mother function, we previously demonstrated the presence of both Al and Zn atoms in the first metal shell (r ≈ 3 Å from the central Zn atom) of Zn-Al layered double hydroxide (LDH). However, this approach was not suited to resolve the second and third metal shells (r ≈ 5 - 6 Å) in r and k space independently. Therefore, we developed a new FEFF-Morlet wavelet, where the EXAFS function itself, extracted from the FEFF model, is combined with the complex Morlet wavelet. With this method, we were able to distinguish the second metal shell (Zn atoms only) from the third metal shell (Zn and Al atoms), thereby proving a regular, dioctahedral distribution of Zn atoms in the hydroxide layers.

  16. An automatic sleep spindle detector based on wavelets and the teager energy operator.

    PubMed

    Ahmed, Beena; Redissi, Amira; Tafreshi, Reza

    2009-01-01

    Sleep spindles are one of the most important short-lasting rhythmic events occurring in the EEG during Non-Rapid Eye Movement sleep. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Visual spindle scoring however is a tedious workload, as there are often a thousand spindles in an all-night recording. In this paper a novel approach for the automatic detection of sleep spindles based upon the Teager Energy Operator and wavelet packets has been presented. The Teager operator was found to accurately enhance periodic activity in epochs of the EEG containing spindles. The wavelet packet transform proved effective in accurately locating spindles in the time-frequency domain. The autocorrelation function of the resultant Teager signal and the wavelet packet energy ratio were used to identify epochs with spindles. These two features were integrated into a spindle detection algorithm which achieved an accuracy of 93.7%.

  17. Efficient wavelet-based voice/data discriminator for telephone networks

    NASA Astrophysics Data System (ADS)

    Quirk, Patrick J.; Tseng, Yi-Chyun; Adhami, Reza R.

    1996-06-01

    A broad array of applications in the Public Switched Telephone Network (PSTN) require detailed information about type of call being carried. This information can be used to enhance service, diagnose transmission impairments, and increase available call capacity. The increase in data rates of modems and the increased usage of speech compression in the PSTN has rendered existing detection algorithms obsolete. Wavelets, specifically the Discrete Wavelet Transform (DWT), are a relatively new analysis tool in Digital Signal Processing. The DWT has been applied to signal processing problems ranging from speech compression to astrophysics. In this paper, we present a wavelet-based method of categorizing telephony traffic by call type. Calls are categorized as Voice or Data. Data calls, primarily modem and fax transmissions, are further divided by the International Telecommunications Union-Telephony (ITU-T), formerly CCITT, V-series designations (V.22bis, V.32, V.32bis, and V.34).

  18. Wavelet based approach for posture transition estimation using a waist worn accelerometer.

    PubMed

    Bidargaddi, Niranjan; Klingbeil, Lasse; Sarela, Antti; Boyle, Justin; Cheung, Vivian; Yelland, Catherine; Karunanithi, Mohanraj; Gray, Len

    2007-01-01

    The ability to rise from a chair is considered to be important to achieve functional independence and quality of life. This sit-to-stand task is also a good indicator to assess condition of patients with chronic diseases. We developed a wavelet based algorithm for detecting and calculating the durations of sit-to-stand and stand-to-sit transitions from the signal vector magnitude of the measured acceleration signal. The algorithm was tested on waist worn accelerometer data collected from young subjects as well as geriatric patients. The test demonstrates that both transitions can be detected by using wavelet transformation applied to signal magnitude vector. Wavelet analysis produces an estimate of the transition pattern that can be used to calculate the transition duration that further gives clinically significant information on the patients condition. The method can be applied in a real life ambulatory monitoring system for assessing the condition of a patient living at home.

  19. Wavelet detection of weak far-magnetic signal based on adaptive ARMA model threshold

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lin, Chun-sheng; Fang, Shi

    2009-10-01

    Based on Mallat algorithm, a de-noising algorithm of adaptive wavelet threshold is applied for weak magnetic signal detection of far moving target in complex magnetic environment. The choice of threshold is the key problem. With the spectrum analysis of the magnetic field target, a threshold algorithm on the basis of adaptive ARMA model filter is brought forward to improve the wavelet filtering performance. The simulation of this algorithm on measured data is carried out. Compared to Donoho threshold algorithm, it shows that adaptive ARMA model threshold algorithm significantly improved the capability of weak magnetic signal detection in complex magnetic environment.

  20. Use of a JPEG-2000 Wavelet Compression Scheme for Content-Based Ophtalmologic Retinal Images Retrieval.

    PubMed

    Lamard, Mathieu; Daccache, Wissam; Cazuguel, Guy; Roux, Christian; Cochener, Beatrice

    2005-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in diabetic retinopathy. We characterize images without extracting significant features, and use histograms obtained from the compressed images in JPEG-2000 wavelet scheme to build signatures. The research is carried out by calculating signature distances between the query and database images. A weighted distance between histograms is used. Retrieval efficiency is given for different standard types of JPEG-2000 wavelets, and for different values of histogram weights. A classified diabetic retinopathy image database is built allowing algorithms tests. On this image database, results are promising: the retrieval efficiency is higher than 70% for some lesion types.

  1. WAVELET-BASED BAYESIAN ESTIMATION OF PARTIALLY LINEAR REGRESSION MODELSWITH LONG MEMORY ERRORS

    PubMed Central

    Ko, Kyungduk; Qu, Leming; Vannucci, Marina

    2013-01-01

    In this paper we focus on partially linear regression models with long memory errors, and propose a wavelet-based Bayesian procedure that allows the simultaneous estimation of the model parameters and the nonparametric part of the model. Employing discrete wavelet transforms is crucial in order to simplify the dense variance-covariance matrix of the long memory error. We achieve a fully Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. We evaluate the performances of the proposed method on simulated data. In addition, we present an application to Northern hemisphere temperature data, a benchmark in the long memory literature. PMID:23946613

  2. Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis

    PubMed Central

    Gerasimova, Evgeniya; Audit, Benjamin; Roux, Stephane G.; Khalil, André; Gileva, Olga; Argoul, Françoise; Naimark, Oleg; Arneodo, Alain

    2014-01-01

    Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of screening X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared (IR) imaging as an efficient method for identifying women with risk of breast cancer. Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast skin temperature collected from a panel of patients with diagnosed breast cancer and some female volunteers with healthy breasts, we show that the multifractal complexity of temperature fluctuations observed in healthy breasts is lost in mammary glands with malignant tumor. Besides potential clinical impact, these results open new perspectives in the investigation of physiological changes that may precede anatomical alterations in breast cancer development. PMID:24860510

  3. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD.

    PubMed

    Ahmadlou, Mehran; Adeli, Hojjat

    2010-01-01

    A multi-paradigm methodology is presented for electroencephalogram (EEG) based diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) through adroit integration of nonlinear science; wavelets, a signal processing technique; and neural networks, a pattern recognition technique. The selected nonlinear features are generalized synchronizations known as synchronization likelihoods (SL), both among all electrodes and among electrode pairs. The methodology consists of three parts: first detecting the more synchronized loci (group 1) and loci with more discriminative deficit connections (group 2). Using SLs among all electrodes, discriminative SLs in certain sub-bands are extracted. In part two, SLs are computed, not among all electrodes, but between loci of group 1 and loci of group 2 in all sub-bands and the band-limited EEG. This part leads to more accurate detection of deficit connections, and not just deficit areas, but more discriminative SLs in sub-bands with finer resolutions. In part three, a classification technique, radial basis function neural network, is used to distinguish ADHD from normal subjects. The methodology was applied to EEG data obtained from 47 ADHD and 7 control individuals with eyes closed. The Radial Basis Function (RBF) neural network classifier yielded a high accuracy of 95.6% for diagnosis of the ADHD in the feature space discovered in this research with a variance of 0.7%.

  4. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies--both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the

  5. Predictability of nonstationary time series using wavelet and EMD based ARMA models

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Nagesh Kumar, D.

    2013-10-01

    Research has been undertaken to ascertain the predictability of non-stationary time series using wavelet and Empirical Mode Decomposition (EMD) based time series models. Methods have been developed in the past to decompose a time series into components. Forecasting of these components combined with random component could yield predictions. Using this ideology, wavelet and EMD analyses have been incorporated separately which decomposes a time series into independent orthogonal components with both time and frequency localizations. The component series are fit with specific auto-regressive models to obtain forecasts which are later combined to obtain the actual predictions. Four non-stationary streamflow sites (USGS data resources) of monthly total volumes and two non-stationary gridded rainfall sites (IMD) of monthly total rainfall are considered for the study. The predictability is checked for six and twelve months ahead forecasts across both the methodologies. Based on performance measures, it is observed that wavelet based method has better prediction capabilities over EMD based method despite some of the limitations of time series methods and the manner in which decomposition takes place. Finally, the study concludes that the wavelet based time series algorithm can be used to model events such as droughts with reasonable accuracy. Also, some modifications that can be made in the model have been discussed that could extend the scope of applicability to other areas in the field of hydrology.

  6. A Wavelet-Based Noise Reduction Algorithm and Its Clinical Evaluation in Cochlear Implants

    PubMed Central

    Ye, Hua; Deng, Guang; Mauger, Stefan J.; Hersbach, Adam A.; Dawson, Pam W.; Heasman, John M.

    2013-01-01

    Noise reduction is often essential for cochlear implant (CI) recipients to achieve acceptable speech perception in noisy environments. Most noise reduction algorithms applied to audio signals are based on time-frequency representations of the input, such as the Fourier transform. Algorithms based on other representations may also be able to provide comparable or improved speech perception and listening quality improvements. In this paper, a noise reduction algorithm for CI sound processing is proposed based on the wavelet transform. The algorithm uses a dual-tree complex discrete wavelet transform followed by shrinkage of the wavelet coefficients based on a statistical estimation of the variance of the noise. The proposed noise reduction algorithm was evaluated by comparing its performance to those of many existing wavelet-based algorithms. The speech transmission index (STI) of the proposed algorithm is significantly better than other tested algorithms for the speech-weighted noise of different levels of signal to noise ratio. The effectiveness of the proposed system was clinically evaluated with CI recipients. A significant improvement in speech perception of 1.9 dB was found on average in speech weighted noise. PMID:24086605

  7. Improved successive refinement for wavelet-based embedded image compression

    NASA Astrophysics Data System (ADS)

    Creusere, Charles D.

    1999-10-01

    In this paper we consider a new form of successive coefficient refinement which can be used in conjunction with embedded compression algorithms like Shapiro's EZW (Embedded Zerotree Wavelet) and Said & Pearlman's SPIHT (Set Partitioning in Hierarchical Trees). Using the conventional refinement process, the approximation of a coefficient that was earlier determined to be significantly is refined by transmitting one of two symbols--an `up' symbol if the actual coefficient value is in the top half of the current uncertainty interval or a `down' symbol if it is the bottom half. In the modified scheme developed here, we transmit one of 3 symbols instead--`up', `down', or `exact'. The new `exact' symbol tells the decoder that its current approximation of a wavelet coefficient is `exact' to the level of precision desired. By applying this scheme in earlier work to lossless embedded compression (also called lossy/lossless compression), we achieved significant reductions in encoder and decoder execution times with no adverse impact on compression efficiency. These excellent results for lossless systems have inspired us to adapt this refinement approach to lossy embedded compression. Unfortunately, the results we have achieved thus far for lossy compression are not as good.

  8. Wavelet-based Poisson rate estimation using the Skellam distribution

    NASA Astrophysics Data System (ADS)

    Hirakawa, Keigo; Baqai, Farhan; Wolfe, Patrick J.

    2009-02-01

    Owing to the stochastic nature of discrete processes such as photon counts in imaging, real-world data measurements often exhibit heteroscedastic behavior. In particular, time series components and other measurements may frequently be assumed to be non-iid Poisson random variables, whose rate parameter is proportional to the underlying signal of interest-witness literature in digital communications, signal processing, astronomy, and magnetic resonance imaging applications. In this work, we show that certain wavelet and filterbank transform coefficients corresponding to vector-valued measurements of this type are distributed as sums and differences of independent Poisson counts, taking the so-called Skellam distribution. While exact estimates rarely admit analytical forms, we present Skellam mean estimators under both frequentist and Bayes models, as well as computationally efficient approximations and shrinkage rules, that may be interpreted as Poisson rate estimation method performed in certain wavelet/filterbank transform domains. This indicates a promising potential approach for denoising of Poisson counts in the above-mentioned applications.

  9. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    NASA Astrophysics Data System (ADS)

    Han, Jian; Jiang, Nan

    2008-05-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow.

  10. A Wavelet-Based Instrument for Detection of Crackles in Pulmonary Sounds

    DTIC Science & Technology

    2001-10-25

    A WAVELET-BASED INSTRUMENT FOR DETECTION OF CRACKLES IN PULMONARY SOUNDS Yasemin P. Kahya , Serkan Yerer , Omer Cerid Department of Electrical and...Electronics Engineering, Bogazici University, Istanbul, Turkey Abstract-- Crackles are discontinuous adventitious respiratory sounds , which are...considered as signs of various pulmonary disorders, therefore their detection is important in the analysis of lung sounds . In this work, an instrument for

  11. Wavelet Analysis for Acoustic Phased Array

    NASA Astrophysics Data System (ADS)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.

  12. GPU-based 3D lower tree wavelet video encoder

    NASA Astrophysics Data System (ADS)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Drummond, Leroy Anthony; Migallón, Hector

    2013-12-01

    The 3D-DWT is a mathematical tool of increasing importance in those applications that require an efficient processing of huge amounts of volumetric info. Other applications like professional video editing, video surveillance applications, multi-spectral satellite imaging, HQ video delivery, etc, would rather use 3D-DWT encoders to reconstruct a frame as fast as possible. In this article, we introduce a fast GPU-based encoder which uses 3D-DWT transform and lower trees. Also, we present an exhaustive analysis of the use of GPU memory. Our proposal shows good trade off between R/D, coding delay (as fast as MPEG-2 for High definition) and memory requirements (up to 6 times less memory than x264).

  13. [Retrieval of leaf net photosynthetic rate of moso bamboo forests using hyperspectral remote sen-sing based on wavelet transform].

    PubMed

    Sun, Shao-bo; Du, Hua-qiangl; Li, Ping-heng; Zhou, Guo-mo; Xu, Xiao-juni; Gao, Guo-long; Li, Xue-jian

    2016-01-01

    This study focused on retrieval of net photosynthetic rate (Pn) of moso bamboo forest based on analysis of wavelet transform on hyperspectral reflectance data of moso bamboo forest leaf. The result showed that the accuracy of Pn retrieved by the ideal high frequency wavelet vegetation index ( VI) was higher than that retrieved by low frequency wavelet VI and spectral VI. Normalized difference vegetation index of wavelet (NDVIw), simple ratio vegetation index of wavelet (SRw) and difference vegetation index of wavelet (Dw) constructed by the first layer of high frequency coefficient through wavelet decomposition had the highest relationship with Pn, with the R² of 0.7 and RMSE of 0.33; low frequency wavelet VI had no advantage compared with spectral VI. Significant correlation existed between Pn estimated by multivariate linear model constructed by the ideal wavelet VI and the measured Pn, with the R² of 0.77 and RMSE of 0.29, and the accuracy was significantly higher than that of using the spectral VI. Compared with the fact that sensitive spectral bands of the retrieval through spectral VI were limited in the range of visible light, the wavelength of sensitive bands of wavelet VI ranged more widely from visible to infrared bands. The results illustrated that spectrum of wavelet transform could reflect the Pn of moso bamboo more in detail, and the overall accuracy was significantly improved than that using the original spectral data, which provided a new alternative method for retrieval of Pn of moso bamboo forest using hyper spectral remotely sensed data.

  14. On a Wavelet-Based Method for the Numerical Simulation of Wave Propagation

    NASA Astrophysics Data System (ADS)

    Hong, Tae-Kyung; Kennett, B. L. N.

    2002-12-01

    A wavelet-based method for the numerical simulation of acoustic and elastic wave propagation is developed. Using a displacement-velocity formulation and treating spatial derivatives with linear operators, the wave equations are rewritten as a system of equations whose evolution in time is controlled by first-order derivatives. The linear operators for spatial derivatives are implemented in wavelet bases using an operator projection technique with nonstandard forms of wavelet transform. Using a semigroup approach, the discretized solution in time can be represented in an explicit recursive form, based on Taylor expansion of exponential functions of operator matrices. The boundary conditions are implemented by augmenting the system of equations with equivalent force terms at the boundaries. The wavelet-based method is applied to the acoustic wave equation with rigid boundary conditions at both ends in 1-D domain and to the elastic wave equation with a traction-free boundary conditions at a free surface in 2-D spatial media. The method can be applied directly to media with plane surfaces, and surface topography can be included with the aid of distortion of the grid describing the properties of the medium. The numerical results are compared with analytic solutions based on the Cagniard technique and show high accuracy. The wavelet-based approach is also demonstrated for complex media including highly varying topography or stochastic heterogeneity with rapid variations in physical parameters. These examples indicate the value of the approach as an accurate and stable tool for the simulation of wave propagation in general complex media.

  15. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    PubMed

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained.

  16. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  17. Efficiency analysis of parallelized wavelet-based FDTD model for simulating high-index optical devices

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Wang, Jin; Jiang, Xiyan; Lu, Yunqing; Xu, Ji

    2014-10-01

    The finite-difference time-domain (FDTD) method, which solves time-dependent Maxwell's curl equations numerically, has been proved to be a highly efficient technique for numerous applications in electromagnetic. Despite the simplicity of the FDTD method, this technique suffers from serious limitations in case that substantial computer resource is required to solve electromagnetic problems with medium or large computational dimensions, for example in high-index optical devices. In our work, an efficient wavelet-based FDTD model has been implemented and extended in a parallel computation environment, to analyze high-index optical devices. This model is based on Daubechies compactly supported orthogonal wavelets and Deslauriers-Dubuc interpolating functions as biorthogonal wavelet bases, and thus is a very efficient algorithm to solve differential equations numerically. This wavelet-based FDTD model is a high-spatial-order FDTD indeed. Because of the highly linear numerical dispersion properties of this high-spatial-order FDTD, the required discretization can be coarser than that required in the standard FDTD method. In our work, this wavelet-based FDTD model achieved significant reduction in the number of cells, i.e. used memory. Also, as different segments of the optical device can be computed simultaneously, there was a significant gain in computation time. Substantially, we achieved speed-up factors higher than 30 in comparisons to using a single processor. Furthermore, the efficiency of the parallelized computation such as the influence of the discretization and the load sharing between different processors were analyzed. As a conclusion, this parallel-computing model is promising to analyze more complicated optical devices with large dimensions.

  18. Wavelet-based techniques for the gamma-ray sky

    DOE PAGES

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; ...

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  19. Wavelet-based scaling indices for breast cancer diagnostics.

    PubMed

    Roberts, T; Newell, M; Auffermann, W; Vidakovic, B

    2017-05-30

    Mammography is routinely used to screen for breast cancer. However, the radiological interpretation of mammogram images is complicated by the heterogeneous nature of normal breast tissue and the fact that cancers are often of the same radiographic density as normal tissue. In this work, we use wavelets to quantify spectral slopes of breast cancer cases and controls and demonstrate their value in classifying images. In addition, we propose asymmetry statistics to be used in forming features, which improve the classification result. For the best classification procedure, we achieve approximately 77% accuracy (sensitivity=73%, specificity=84%) in classifying mammograms with and without cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Wavelet-based techniques for the gamma-ray sky

    SciTech Connect

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  1. Electroencephalographic compression based on modulated filter banks and wavelet transform.

    PubMed

    Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando

    2011-01-01

    Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.

  2. Wavelet-based techniques for the gamma-ray sky

    SciTech Connect

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  3. [Drug discrimination by near infrared spectroscopy based on summation wavelet extreme learning machine].

    PubMed

    Liu, Zhen-Bing; Jiang, Shu-Jie; Yang, Hui-Hua; Zhang, Xue-Bo

    2014-10-01

    As an effective technique to identify counterfeit drugs, Near Infrared Spectroscopy has been successfully used in the drug management of grass-roots units, with classifier modeling of Pattern Recognition. Due to a major disadvantage of the characteristic overlap and complexity, the wide bandwidth and the weak absorption of the Spectroscopy signals, it seems difficult to give a satisfactory solutions for the modeling problem. To address those problems, in the present paper, a summation wavelet extreme learning machine algorithm (SWELM(CS)) combined with Cuckoo research was adopted for drug discrimination by NIRS. Specifically, Extreme Learning Machine (ELM) was selected as the classifier model because of its properties of fast learning and insensitivity, to improve the accuracy and generalization performances of the classifier model; An inverse hyperbolic sine and a Morlet-wavelet are used as dual activation functions to improve convergence speed, and a combination of activation functions makes the network more adequate to deal with dynamic systems; Due to ELM' s weights and hidden layer threshold generated randomly, it leads to network instability, so Cuckoo Search was adapted to optimize model parameters; SWELM(CS) improves stability of the classifier model. Besides, SWELM(CS) is based on the ELM algorithm for fast learning and insensitivity; the dual activation functions and proper choice of activation functions enhances the capability of the network to face low and high frequency signals simultaneously; it has high stability of classification by Cuckoo Research. This compact structure of the dual activation functions constitutes a kernel framework by extracting signal features and signal simultaneously, which can be generalized to other machine learning fields to obtain a good accuracy and generalization performances. Drug samples of near in- frared spectroscopy produced by Xian-Janssen Pharmaceutical Ltd were adopted as the main objects in this paper

  4. Speckle reduction using module-maximum-based modification in wavelet domain

    NASA Astrophysics Data System (ADS)

    Peng, Shichun; Liu, Jian; Yan, Guoping

    2005-11-01

    Speckle noise in synthetic aperture radar (SAR) images is characterized as multiplicative random noise. To address SAR image speckle denoising, this paper proposes a new method which is based on the combination of statistical model of wavelet coefficients and modification to the coefficients according to module-maximum-based (significant coefficient) rule. In our method, wavelet coefficients of image are firstly modeled as mixture density of two Gaussian (MG) distributions with zero mean. In order to incorporate the spatial dependencies into the denoising procedure, hidden markov tree (HMT) model is explored and expectation maximization (EM) algorithm is proposed to estimate model parameters. Bayes minimum mean square error (Bayes MMSE) method is used to estimate the wavelet coefficients free of noise. The wavelet coefficients are updated according to a rule whether the coefficient is a significant one or not. 2D inverse DWT is performed on the updated coefficients to get denoised SAR image. Experimental Results using real SAR image demonstrate that the method can not only reduce the speckle but also preserve edges and radiometric scatter points. Equivalent Number of Look Enl shows that the proposed method yields very satisfactory results compared with other methods.

  5. Method of range profile for step frequency MMW radar based on wavelet transform power spectrum estimator

    NASA Astrophysics Data System (ADS)

    Li, Yuehua; Gao, Duntang; Shen, Qinghong; Li, Xingguo

    2001-11-01

    The method of range profile for step frequency MMW radar targets based on wavelet transform power spectrum estimator is studied. We show how the Fourier power spectrum can be detected by using the wavelet function coefficients (WFC) of the DWT. This method can successfully measure the power spectrum in samples for which traditional methods often fail because the sample are finite sized, have a complex geometry, or are varyingly sampled. We demonstrate that the spectrum features, such as the power law index, the magnitude, and the typical scales can be determined by the DWT reconstructed spectrum. We apply this method to the practical step frequency MMW radar target echo signals, and on the condition of the same sampling frequency and sampling data length, it can achieve one dimensional range profile with profile"s resolution superior to FFT"s, so the one dimensional range profile of targets can be analyzed with high resolution, the detail algorithm of range profiles spectrum estimation based on wavelet transforming multirange cells is proposed. Compare with FFT algorithm, using wavelet spectrum estimator of short data series, we can achieves high resolution, high accuracy, and low SNR threshold. The Experiment results make clear that the DWT estimator is a sensitive tool in range profile of step frequency MMW radar.

  6. Mouse EEG spike detection based on the adapted continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.

    2016-04-01

    Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.

  7. Multi-Bandwidth GPR Profiles of Granite in New Hampshire: Attributes of Fracture Horizons and Wavelets

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Campbell, S. W.

    2012-12-01

    Sheet and tectonic fractures transport water and facilitate erosion on geologic time scales. We discuss ground-penetrating radar profiles of fractures recorded with 150, 350, 600 and 1000 MHz pulse dominant frequencies, and quantitative data obtained from their horizons and pulse wavelet attributes. We recorded the profiles along dirt roads and bare rock transects, beneath which include the mid Ordovician Oliverian granodiorite and binary granite of western New Hampshire and just north of the Presidential Range, respectively, and the late Devonian biotite granite just west of the Presidential Range. The overriding till is characterized by numerous diffractions, and from 0 to about 5 m thick. We use a known relative dielectric permittivity of 6.6 for granodiorite and assume the same for the other types to calibrate depth from the reflection time scale. Dielectric permittivity values for the till range from about 13-21. The sheet fracture responses are up to 25 m deep while the deepest tectonic fracture horizon extends to at least 35 m depth. Some horizons are associated with numerous diffractions originating along their length, while others have very few. The less clear horizons recorded in seasonal profiles of the binary granite suggest grusification, a possible factor to help explain the greater height of the more durable metamorphic Presidential Range. Sheet fracture spacing can be closer than one meter, with horizons comprised of thin layer responses because the wavelets, even at 1000 MHz, are similar to the transmitted wavelet. Therefore, the fractures are likely less than a few cm thick, as is apparent from quarry wall exposures, and from models that predict that even one mm fractures are detectable. The wavelet phase structure generally indicates a higher dielectric medium, which could mean calcite, and more likely water, but this structure is not consistent along individual horizons. The higher frequency profiles reveal a complex fracture network that

  8. Wavelet-Based Angiographic Reconstruction of Computed Tomography Perfusion Data: Diagnostic Value in Cerebral Venous Sinus Thrombosis.

    PubMed

    Kunz, Wolfgang G; Schuler, Felix; Sommer, Wieland H; Fabritius, Matthias P; Havla, Lukas; Meinel, Felix G; Reiser, Maximilian F; Ertl-Wagner, Birgit; Thierfelder, Kolja M

    2017-05-01

    The aim of this study was to test the diagnostic value of wavelet-based angiographic reconstruction of CT perfusion data (waveletCTA) to detect cerebral venous sinus thrombosis (CVST) in patients who underwent whole-brain CT perfusion imaging (WB-CTP). Datasets were retrospectively selected from an initial cohort of 2863 consecutive patients who had undergone multiparametric CT including WB-CTP. WaveletCTA was reconstructed from WB-CTP: the angiographic signal was generated by voxel-based wavelet transform of time attenuation curves (TACs) from WB-CTP raw data. In a preliminary clinical evaluation, waveletCTA was analyzed by 2 readers with respect to presence and location of CVST. Venous CT and MR angiography (venCTA/venMRA) served as reference standard. Diagnostic confidence for CVST detection and the quality of depiction for venous sections were evaluated on 5-point Likert scales. Thrombus extent was assessed by length measurements. The mean CT attenuation and waveletCTA signal of the thrombus and of flowing blood were quantified. Sixteen patients were included: 10 patients with venCTA-/venMRA-confirmed CVST and 6 patients with arterial single-phase CT angiography (artCTA)-suspected but follow-up-excluded CVST. The reconstruction of waveletCTA was successful in all patients. Among the patients with confirmed CVST, waveletCTA correctly demonstrated presence, location, and extent of the thrombosis in 10/10 cases. In 6 patients with artCTA-suspected but follow-up-excluded CVST, waveletCTA correctly ruled out CVST in 5 patients. Reading waveletCTA in addition to artCTA significantly increased the diagnostic confidence concerning CVST compared with reading artCTA alone (4.4 vs 3.6, P = 0.044). The mean flowing blood-to-thrombus ratio was highest in waveletCTA, followed by venCTA and artCTA (146.2 vs 5.9 vs 2.6, each with P < 0.001). In waveletCTA, the venous sections were depicted better compared with artCTA (4.2 vs 2.6, P < 0.001), and equally well compared with ven

  9. Image and spectral fidelity study of hyperspectral remote sensing image scaling up based on wavelet transform

    NASA Astrophysics Data System (ADS)

    An, Ni; Ma, Yi; Bao, Yuhai

    2015-08-01

    Wavelet transform is a kind of effective image-scale transformation method, which can achieve multi-scale transformation by distinguishing the low-frequency information and the high-frequency information. Hyperspectral remote sensing data combining image with spectrum has almost continuous spectrum that is the important premise of extracting hyperspectral image information, while scale transformation will inevitably lead to the change of image and spectra. Therefore, it is important to study the image and spectral fidelity after wavelet transform. In this paper, the Proba CHRIS hyperspectral remote sensing image of Yellow River Estuary Wetland is used to investigate the image and spectral fidelity of image transformed by wavelet which remained the low-frequency information. The level 1-3 of up-scale images are obtained and then compared with the original. Then image and spectral fidelity is quantitatively analyzed. The results show that the image fidelity is slightly reduced by up-scale transformation, but near-infrared images have a larger distortion than other bands. With the increasing scaling up, the distortion of spectrum is more and more great, but spectral fidelity is overall well. For the typical wetland objects, Phragmites austrialis has the best spectral correlation, Spartina has a small spectra change, and aquaculture water spectral distortion is most remarkable.

  10. A millimeter wave image fusion algorithm design and optimization based on CDF97 wavelet transform

    NASA Astrophysics Data System (ADS)

    Yu, Jian-cheng; Chen, Bo-yang; Xia, A.-lin; Liu, Xin-guang

    2011-08-01

    Millimeter wave imaging technology provides a new detection method for security, fast and safe. But the wave of the images is its own shortcomings, such as noise and low sensitivity. Systems used for security, since only the corresponding specific objects to retain the information, and other information missing, so the actual image is difficult to locate in the millimeter wave . Image fusion approach can be used to effectively solve this problem. People usually use visible and millimeter-wave image fusion. The use of visible image contains the visual information. The fused image can be more convenient site for the detection of concealed weapons and to provide accurate positioning. The integration of information from different detectors, and there are different between the two levels of signal to noise ratio and pixel resolution, so traditional pixel-level fusion methods often cannot satisfy the fusion. Many experts and scholars apply wavelet transform approach to deal with some remote sensing image fusion, and the performance has been greatly improved. Due to these wavelet transform algorithm with complexity and large amount of computation, many algorithms are still in research stage. In order to improve the fusion performance and gain the real-time image fusion, an Integer Wavelet Transform CDF97 based with regional energy enhancement fusion algorithm is proposed in this paper. First, this paper studies of choice of wavelet operator. The paper invites several characteristics to evaluate the performance of wavelet operator used in image fusion. Results show that CDF97 wavelet fusion performance is better than traditional wavelet wavelets such as db wavelet, the vanishing moment longer the better. CDF97 wavelet has good energy concentration characteristic. The low frequency region of the transformed image contains almost the whole image energy. The target in millimeter wave image often has the low-pass characteristics and with a higher energy compare to the ambient

  11. [Analysis of spectral characteristics of oil film on water based on wavelet transform].

    PubMed

    Li, Ying; Liu, Bing-Xin; Li, Bao-Yu; Chen, Duo

    2012-07-01

    The diagnostic features are the basis to detect and characterize the oil film on water through optical remote sensing. This work shows the results of lab spectral measurements of light diesel oil with thickness ranged 1.0 - 127 microm. A wavelet transform were performed to the reflectance, and the singularity (388-393 nm) was explored as the indicators of oil film thickness. The results indicate that the reflectance of light diesel oil film is higher than that of water in the range from 350-2 500 nm. There is a reflectance peak near 388 nm when the thickness of oil film is larger than 6 microm, however, no distinguished features could be recognized when oil films were thinner than 6 microm. The wavelet coefficients of the fifth decomposition level by applying Daubechies 4 (db4) mother wavelets proved successful for identifying the singularity of oil film's reflectance spectra and its accurate position. With the thickness lager than 6 microm, the detail coefficients performed an abrupt change within the range of 388-393 nm, and became more violent while oil films' thickness increased. This research demonstrated that oil films on water with different thickness could be distinguished based on wavelet detail coefficients, with important implications for detection of oils on water using UV and short wave optical remote sensing.

  12. Centrifugal compressor surge detecting method based on wavelet analysis of unsteady pressure fluctuations in typical stages

    NASA Astrophysics Data System (ADS)

    Izmaylov, R.; Lebedev, A.

    2015-08-01

    Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.

  13. A wavelet neural network based on genetic algorithm and its application to gain scheduling flight control

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Zhang, Weiguo; Yin, Wei; Li, Aijun

    2006-11-01

    As enlarging of the flight envelop, the aerodynamic derivative of the airplane varies enormous. The gain scheduling method is usually used to deal with it. But the workload is enormously and the stability is difficulty to be assured. To solve the above problem, a large envelope wavelet neural network gain scheduling flight control law design method based on genetic algorithm is presented in this paper. Wavelet has good time accuracy in high frequency-domain and the good frequency accuracy in low frequency-domain. Neural network has the self-learning character. In this method, wavelet function instead of Sigmoid function as the excitation function. So the two merits are merged and the high nonlinear function approximation capability could be achieved. In order to obtain higher accuracy and faster speed, genetic algorithm is used to optimize the parameters of the wavelet neural network. This method is used in design the large envelope gain scheduling flight control law. This simulation results show that good control capability could be achieved in large envelope and the system is still stable when modeling error is 20%. In the situation of 20% modeling error, the maximum overshoot is only 12m and it is 35% of the maximum overshoot using normal method.

  14. A FPGA system for QRS complex detection based on Integer Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Stojanović, R.; Karadaglić, D.; Mirković, M.; Milošević, D.

    2011-01-01

    Due to complexity of their mathematical computation, many QRS detectors are implemented in software and cannot operate in real time. The paper presents a real-time hardware based solution for this task. To filter ECG signal and to extract QRS complex it employs the Integer Wavelet Transform. The system includes several components and is incorporated in a single FPGA chip what makes it suitable for direct embedding in medical instruments or wearable health care devices. It has sufficient accuracy (about 95%), showing remarkable noise immunity and low cost. Additionally, each system component is composed of several identical blocks/cells what makes the design highly generic. The capacity of today existing FPGAs allows even dozens of detectors to be placed in a single chip. After the theoretical introduction of wavelets and the review of their application in QRS detection, it will be shown how some basic wavelets can be optimized for easy hardware implementation. For this purpose the migration to the integer arithmetic and additional simplifications in calculations has to be done. Further, the system architecture will be presented with the demonstrations in both, software simulation and real testing. At the end, the working performances and preliminary results will be outlined and discussed. The same principle can be applied with other signals where the hardware implementation of wavelet transform can be of benefit.

  15. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-05-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  16. Power quality disturbance classification based on wavelet transform and self-organizing learning neural network

    NASA Astrophysics Data System (ADS)

    Ding, Guangbin; Liu, Lin

    2006-11-01

    A novel approach for the power quality (PQ) disturbances classification based on the wavelet transform (WT) and selforganizing learning array (SOLAR) system is proposed. Wavelet transform is utilized to extract feature vectors for various PQ disturbances and the WT can accurately localizes the characteristics of a signal both in the time and frequency domains. These feature vectors then are applied to a SOLAR system for training and disturbance pattern classification. By comparing with a classic neural network, it is concluded that SOLAR has better data driven learning and local interconnections performance. The research results between the proposed method and the other existing method is discussed and the proposed method can provide accurate classification results. On the basis of hypothesis test of the averages, it is shown that corresponding to different wavelets selection, there is no statistically significant difference in performance of PQ disturbances classification and the relationship between the wavelet decomposition level and classification performance is discussed. The simulation results demonstrate the proposed method gives a new way for identification and classification of dynamic power quality disturbances.

  17. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  18. Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis

    PubMed Central

    Lee, Jinae; Park, Cheolwoo; Dyckman, Kara A.; Lazar, Nicole A.; Austin, Benjamin P.; Li, Qingyang; McDowell, Jennifer E.

    2012-01-01

    Objectives To evaluate brain activation using functional magnetic resonance imaging (fMRI) and specifically, activation changes across time associated with practice-related cognitive control during eye movement tasks. Experimental design Participants were engaged in antisaccade performance (generating a glance away from a cue) while fMR images were acquired during two separate time points: 1) at pre-test before any exposure to the task, and 2) at post-test, after one week of daily practice on antisaccades, prosaccades (glancing towards a target) or fixation (maintaining gaze on a target). Principal observations The three practice groups were compared across the two time points, and analyses were conducted via the application of a model-free clustering technique based on wavelet analysis. This series of procedures was developed to avoid analysis problems inherent in fMRI data and was composed of several steps: detrending, data aggregation, wavelet transform and thresholding, no trend test, principal component analysis and K-means clustering. The main clustering algorithm was built in the wavelet domain to account for temporal correlation. We applied a no trend test based on wavelets to significantly reduce the high dimension of the data. We clustered the thresholded wavelet coefficients of the remaining voxels using the principal component analysis K-means clustering. Conclusion Over the series of analyses, we found that the antisaccade practice group was the only group to show decreased activation from pre- to post-test in saccadic circuitry, particularly evident in supplementary eye field, frontal eye fields, superior parietal lobe, and cuneus. PMID:22505290

  19. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  20. THE APPLICATION OF CONTINUOUS WAVELET TRANSFORM BASED FOREGROUND SUBTRACTION METHOD IN 21 cm SKY SURVEYS

    SciTech Connect

    Gu Junhua; Xu Haiguang; Wang Jingying; Chen Wen; An Tao

    2013-08-10

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  1. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  2. Multiscale geometric filter based on the wavelet transform

    NASA Astrophysics Data System (ADS)

    Alparone, Luciano; Argenti, Fabrizio; Garzelli, Andrea

    1996-10-01

    A viable approach to noise filtering in a spatially heterogeneous environment consists of considering a multiresolution representation of the noisy image, nd of applying a different adaptive filter to each layer. The wavelet decomposition has been widely employed, thanks to its capability to capture spatial features within frequency subbands. Geometric filter is a nonlinear local operator that exploits a morphologic approach to smooth noise using a complementary hull algorithm, which as the effect of gradually reducing the maximum curvature of the boundary of the grey-level profile along all of the 8-neighbor directions. The idea of the present scheme is to apply the complementary-hull algorithm to the different subbands into which the noisy image is decomposed. The hull is applied only on the direction along which the signal is structured. The number of iterations is adjusted to the SNR of the subbands, so as to preserve spatial details to the largest extent. Results and comparisons with the standard geometric filter are presented for images affected by synthetic multiplicative noise.

  3. Ultrasonic Periodontal Probing Based on the Dynamic Wavelet Fingerprint

    NASA Astrophysics Data System (ADS)

    Hou, Jidong; Rose, S. Timothy; Hinders, Mark K.

    2005-12-01

    Manual pocket depth probing has been widely used as a retrospective diagnosis method in periodontics. However, numerous studies have questioned its ability to accurately measure the anatomic pocket depth. In this paper, an ultrasonic periodontal probing method is described, which involves using a hollow water-filled probe to focus a narrow beam of ultrasound energy into and out of the periodontal pocket, followed by automatic processing of pulse-echo signals to obtain the periodontal pocket depth. The signal processing algorithm consists of three steps: peak detection/characterization, peak classification, and peak identification. A dynamic wavelet fingerprint (DWFP) technique is first applied to detect suspected scatterers in the A-scan signal and generate a two-dimensional black and white pattern to characterize the local transient signal corresponding to each scatterer. These DWFP patterns are then classified by a two-dimensional FFT procedure and mapped to an inclination index curve. The location of the pocket bottom was identified as the third broad peak in the inclination index curve. The algorithm is tested on full-mouth probing data from two sequential visits of 14 patients. Its performance is evaluated by comparing ultrasonic probing results with that of full-mouth manual probing at the same sites, which is taken as the "gold standard."

  4. Ultrasonic Periodontal Probing Based on the Dynamic Wavelet Fingerprint

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Hou, Jidong

    2005-04-01

    Manual pocket depth probing has been widely used as a retrospective diagnosis method in periodontics. However, numerous studies have questioned its ability to accurately measure the anatomic pocket depth. In this paper, an ultrasonic periodontal probing method is described, which involves using a hollow water-filled probe to focus a narrow beam of ultrasound energy into and out of the periodontal pocket, followed by automatic processing of pulse-echo signals to obtain the periodontal pocket depth. The signal processing algorithm consists of three steps: peak detection/characterization, peak classification and peak identification. A dynamic wavelet fingerprint (DWFP) technique was first applied to detect suspected scatterers in the A-scan signal and generate a two-dimensional black and white pattern to characterize the local transient signal corresponding to each scatterer. These DWFP patterns were then classified by a two-dimensional FFT procedure and mapped to an inclination index curve. The location of the pocket bottom was identified as the third broad peak in the inclination index curve. The algorithm was tested on full mouth probing data from two sequential visits of 14 patients. Its performance was evaluated by comparing ultrasonic probing results with that of full-mouth manual probing at the same sites, which was taken as the `gold standard'.

  5. Down syndrome diagnosis based on Gabor Wavelet Transform.

    PubMed

    Saraydemir, Safak; Taşpınar, Necmi; Eroğul, Osman; Kayserili, Hülya; Dinçkan, Nuriye

    2012-10-01

    Down syndrome is a chromosomal condition caused by the presence of all or part of an extra 21st chromosome. It has different facial symptoms. These symptoms contain distinctive information for face recognition. In this study, a novel method is developed to distinguish Down Syndrome in a custom face database. Gabor Wavelet Transform (GWT) is used as a feature extraction method. Dimension reduction is performed with Principal Component Analysis (PCA). New dimension which has most valuable information is derived with Linear Discriminant Analysis (LDA). Classification process is implemented with k-nearest neighbor (kNN) and Support Vector Machine (SVM) methods. The classification accuracy is carried out 96% and 97,34% with kNN and SVM methods, respectively. Different from the studies related with the Down Sydrome, feature selection process is applied before PCA according to the correlation between components of feature vectors. Best results are achieved with euclidean distance metric for kNN and linear kernel type for SVM. In this way, we developed an efficient system to recognize Down syndrome.

  6. Wavelet Packets-Based Blind Watermarking for Medical Image Management

    PubMed Central

    Mostafa, Salwa A.K.; El-sheimy, Naser; Tolba, A.S.; Abdelkader, F.M.; Elhindy, Hisham M.

    2010-01-01

    The last decade has witnessed an explosive use of medical images and Electronics Patient Record (EPR) in the healthcare sector for facilitating the sharing of patient information and exchange between networked hospitals and healthcare centers. To guarantee the security, authenticity and management of medical images and information through storage and distribution, the watermarking techniques are growing to protect the medical healthcare information. This paper presents a technique for embedding the EPR information in the medical image to save storage space and transmission overheads and to guarantee security of the shared data. In this paper a new method for protecting the patient information in which the information is embedded as a watermark in the discrete wavelet packet transform (DWPT) of the medical image using the hospital logo as a reference image. The patient information is coded by an error correcting code (ECC), BCH code, to enhance the robustness of the proposed method. The scheme is blind so that the EPR can be extracted from the medical image without the need of the original image. Therefore, this proposed technique is useful in telemedicine applications. Performance of the proposed method was tested using four modalities of medical images; MRA, MRI, Radiological, and CT. Experimental results showed no visible difference between the watermarked and the original image. Moreover, the proposed watermarking method is robust against a wide range of attacks such as JPEG coding, Gaussian noise addition, histogram equalization, gamma correction, contrast adjustment, and sharpen filter and rotation. PMID:20700520

  7. The solar activity by wavelet-based multifractal analysis

    NASA Astrophysics Data System (ADS)

    Maruyama, Fumio

    2016-12-01

    The interest in the relation between the solar activity and climate change is increasing. As for the solar activity, a fractal property of the sunspot series was studied by many works. In general, a fractal property was observed in the time series of dynamics of complex systems. The purposes of this study were to investigate the relationship between the sunspot number, solar radio flux at 10.7 cm (F10.7 cm) and total ozone from a view of multifractality. To detect the changes of multifractality, we examined the multifractal analysis on the time series of the solar activity and total ozone indices. The changes of fractality of the sunspot number and F10.7 cm are very similar. When the sunspot number becomes maximum, the fractality of the F10.7 cm changes from multifractality to monofractality. The changes of fractality of the F10.7 cm and the total ozone are very similar. When the sunspot number becomes maximum, the fractality of the total ozone changes from multifractality to monofractality. A change of fractality of the F10.7 cm and total ozone was observed when the solar activity became maximum. The influence of the solar activity on the total ozone was shown by the wavelet coherence, phase and the similarity of the change of fractality. These findings will contribute to the research of the relationship between the solar activity and climate.

  8. Wavelet based mobile video watermarking: spread spectrum vs. informed embedding

    NASA Astrophysics Data System (ADS)

    Mitrea, M.; Prêteux, F.; Duţă, S.; Petrescu, M.

    2005-11-01

    The cell phone expansion provides an additional direction for digital video content distribution: music clips, news, sport events are more and more transmitted toward mobile users. Consequently, from the watermarking point of view, a new challenge should be taken: very low bitrate contents (e.g. as low as 64 kbit/s) are now to be protected. Within this framework, the paper approaches for the first time the mathematical models for two random processes, namely the original video to be protected and a very harmful attack any watermarking method should face the StirMark attack. By applying an advanced statistical investigation (combining the Chi square, Ro, Fisher and Student tests) in the discrete wavelet domain, it is established that the popular Gaussian assumption can be very restrictively used when describing the former process and has nothing to do with the latter. As these results can a priori determine the performances of several watermarking methods, both of spread spectrum and informed embedding types, they should be considered in the design stage.

  9. Scalable wavelet-based active network detection of stepping stones

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph I.; Robinson, David J.; Butts, Jonathan W.; Lacey, Timothy H.

    2012-06-01

    Network intrusions leverage vulnerable hosts as stepping stones to penetrate deeper into a network and mask malicious actions from detection. Identifying stepping stones presents a significant challenge because network sessions appear as legitimate traffic. This research focuses on a novel active watermark technique using discrete wavelet transformations to mark and detect interactive network sessions. This technique is scalable, resilient to network noise, and difficult for attackers to discern that it is in use. Previously captured timestamps from the CAIDA 2009 dataset are sent using live stepping stones in the Amazon Elastic Compute Cloud service. The client system sends watermarked and unmarked packets from California to Virginia using stepping stones in Tokyo, Ireland and Oregon. Five trials are conducted in which the system sends simultaneous watermarked samples and unmarked samples to each target. The live experiment results demonstrate approximately 5% False Positive and 5% False Negative detection rates. Additionally, watermark extraction rates of approximately 92% are identified for a single stepping stone. The live experiment results demonstrate the effectiveness of discerning watermark traffic as applied to identifying stepping stones.

  10. Wavelet-based automatic determination of the P- and S-wave arrivals

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2013-12-01

    The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.

  11. Modal identification of structures by a novel approach based on FDD-wavelet method

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2014-02-01

    An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.

  12. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  13. On the analysis of wavelet-based approaches for print mottle artifacts

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed H.; Cooper, Brian E.

    2014-01-01

    Print mottle is one of several attributes described in ISO/IEC DTS 24790, a draft technical specification for the measurement of image quality for monochrome printed output. It defines mottle as aperiodic fluctuations of lightness less than about 0.4 cycles per millimeter, a definition inherited from the latest official standard on printed image quality, ISO/IEC 13660. In a previous publication, we introduced a modification to the ISO/IEC 13660 mottle measurement algorithm that includes a band-pass, wavelet-based, filtering step to limit the contribution of high-frequency fluctuations including those introduced by print grain artifacts. This modification has improved the algorithm's correlation with the subjective evaluation of experts who rated the severity of printed mottle artifacts. Seeking to improve upon the mottle algorithm in ISO/IEC 13660, the ISO 24790 committee evaluated several mottle metrics. This led to the selection of the above wavelet-based approach as the top candidate algorithm for inclusion in a future ISO/IEC standard. Recent experimental results from the ISO committee showed higher correlation between the wavelet-based approach and the subjective evaluation conducted by the ISO committee members based upon 25 samples covering a variety of printed mottle artifacts. In addition, we introduce an alternative approach for measuring mottle defects based on spatial frequency analysis of wavelet- filtered images. Our goal is to establish a link between the spatial-based mottle (ISO/IEC DTS 24790) approach and its equivalent frequency-based one in light of Parseval's theorem. Our experimental results showed a high correlation between the spatial and frequency based approaches.

  14. Wavelet-based analysis of electroencephalogram (EEG) signals for detection and localization of epileptic seizures

    NASA Astrophysics Data System (ADS)

    Benke, George; Bozek-Kuzmicki, Maribeth; Colella, David; Jacyna, Garry M.; Benedetto, John J.

    1995-04-01

    A wavelet-based technique WISP is used to discriminate normal brain activity from brain activity during epileptic seizures. The WISP technique is used to exploit the noted difference in frequency content during the normal brain state and the seizure brain state so that detection and localization decisions can be made. An AR-Pole statistic technique is used as a comparative measure to base-line the WISP performance.

  15. A multichannel time-frequency and multi-wavelet toolbox for uterine electromyography processing and visualisation.

    PubMed

    Batista, Arnaldo G; Najdi, Shirin; Godinho, Daniela M; Martins, Catarina; Serrano, Fátima C; Ortigueira, Manuel D; Rato, Raul T

    2016-09-01

    The uterine electromyogram, also called electrohysterogram (EHG), is an electrical signal generated by the uterine contractile activity. The EHG has been considered a promising biomarker for labour and preterm labour prediction, for which there is a demand for accurate estimation methods. Preterm labour is a significant public health concern and one of the major causes of neonatal mortality and morbidity [1]. Given the non-stationary properties of the EHG signal, time-frequency domain analysis can be used. For real life signals it is not generally possible to determine a priori the suitable quadratic time-frequency kernel or the appropriate wavelet family and relative parameters, regarding, for instance, the adequate detection of the signal frequency variation in time. There has been a lack of a comprehensive software tool for the selection of the appropriate time frequency representation of a multichannel EHG signal and extraction of relevant spectral and temporal information. The presented toolbox (Uterine Explorer) has been specifically designed for the EHG analysis and exploration in view of the characterisation of its components. The starting point is the multichannel scalogram or spectrogram representation from which frequency and time marginals, instantaneous frequency and bandwidth are obtained as EHG features. From this point the detected components undergo parametric and non-parametric spectral estimation and wavelet packet analysis. Intrauterine pressure estimation (IUP) is obtained using the Teager, RMS, wavelet marginal and Hilbert operators over the EHG. This toolbox has been tested to build up a dictionary of 288 EHG components [2], useful for research in preterm labour prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Measurement method for low-contrast nonuniformity in liquid crystal displays by using multi-wavelet analysis

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroki; Mori, Yumi

    2005-08-01

    One of the visual problems hardest to recognize in liquid crystal displays (LCDs) is an area of non-uniform brightness called a mura. The accurate and consistent detection of a low-contrast mura is extremely difficult because the boundary between the regional mura and the background is indistinct. This paper presents a novel method for detection and quantitative measurement of low-contrast mura. Compared with some wavelet approaches, the multiple resolution analysis method based on the Symmetric Selesnick multiwavelet has advantages for practical use.

  17. Effective wavelet-based compression method with adaptive quantization threshold and zerotree coding

    NASA Astrophysics Data System (ADS)

    Przelaskowski, Artur; Kazubek, Marian; Jamrogiewicz, Tomasz

    1997-10-01

    Efficient image compression technique especially for medical applications is presented. Dyadic wavelet decomposition by use of Antonini and Villasenor bank filters is followed by adaptive space-frequency quantization and zerotree-based entropy coding of wavelet coefficients. Threshold selection and uniform quantization is made on a base of spatial variance estimate built on the lowest frequency subband data set. Threshold value for each coefficient is evaluated as linear function of 9-order binary context. After quantization zerotree construction, pruning and arithmetic coding is applied for efficient lossless data coding. Presented compression method is less complex than the most effective EZW-based techniques but allows to achieve comparable compression efficiency. Specifically our method has similar to SPIHT efficiency in MR image compression, slightly better for CT image and significantly better in US image compression. Thus the compression efficiency of presented method is competitive with the best published algorithms in the literature across diverse classes of medical images.

  18. Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis

    SciTech Connect

    Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; Gur, Sourav; Danielson, Thomas L.; Hin, Celine N.; Pannala, Sreekanth; Frantziskonis, George N.

    2016-01-28

    We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which can be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.

  19. Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis

    DOE PAGES

    Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; ...

    2016-01-28

    We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less

  20. Corrosion in reinforced concrete panels: wireless monitoring and wavelet-based analysis.

    PubMed

    Qiao, Guofu; Sun, Guodong; Hong, Yi; Liu, Tiejun; Guan, Xinchun

    2014-02-19

    To realize the efficient data capture and accurate analysis of pitting corrosion of the reinforced concrete (RC) structures, we first design and implement a wireless sensor and network (WSN) to monitor the pitting corrosion of RC panels, and then, we propose a wavelet-based algorithm to analyze the corrosion state with the corrosion data collected by the wireless platform. We design a novel pitting corrosion-detecting mote and a communication protocol such that the monitoring platform can sample the electrochemical emission signals of corrosion process with a configured period, and send these signals to a central computer for the analysis. The proposed algorithm, based on the wavelet domain analysis, returns the energy distribution of the electrochemical emission data, from which close observation and understanding can be further achieved. We also conducted test-bed experiments based on RC panels. The results verify the feasibility and efficiency of the proposed WSN system and algorithms.

  1. Adaptive 2-D wavelet transform based on the lifting scheme with preserved vanishing moments.

    PubMed

    Vrankic, Miroslav; Sersic, Damir; Sucic, Victor

    2010-08-01

    In this paper, we propose novel adaptive wavelet filter bank structures based on the lifting scheme. The filter banks are nonseparable, based on quincunx sampling, with their properties being pixel-wise adapted according to the local image features. Despite being adaptive, the filter banks retain a desirable number of primal and dual vanishing moments. The adaptation is introduced in the predict stage of the filter bank with an adaptation region chosen independently for each pixel, based on the intersection of confidence intervals (ICI) rule. The image denoising results are presented for both synthetic and real-world images. It is shown that the obtained wavelet decompositions perform well, especially for synthetic images that contain periodic patterns, for which the proposed method outperforms the state of the art in image denoising.

  2. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM.

    PubMed

    Janjarasjitt, Suparerk

    2017-02-13

    In this study, wavelet-based features of single-channel scalp EEGs recorded from subjects with intractable seizure are examined for epileptic seizure classification. The wavelet-based features extracted from scalp EEGs are simply based on detail and approximation coefficients obtained from the discrete wavelet transform. Support vector machine (SVM), one of the most commonly used classifiers, is applied to classify vectors of wavelet-based features of scalp EEGs into either seizure or non-seizure class. In patient-based epileptic seizure classification, a training data set used to train SVM classifiers is composed of wavelet-based features of scalp EEGs corresponding to the first epileptic seizure event. Overall, the excellent performance on patient-dependent epileptic seizure classification is obtained with the average accuracy, sensitivity, and specificity of, respectively, 0.9687, 0.7299, and 0.9813. The vector composed of two wavelet-based features of scalp EEGs provide the best performance on patient-dependent epileptic seizure classification in most cases, i.e., 19 cases out of 24. The wavelet-based features corresponding to the 32-64, 8-16, and 4-8 Hz subbands of scalp EEGs are the mostly used features providing the best performance on patient-dependent classification. Furthermore, the performance on both patient-dependent and patient-independent epileptic seizure classifications are also validated using tenfold cross-validation. From the patient-independent epileptic seizure classification validated using tenfold cross-validation, it is shown that the best classification performance is achieved using the wavelet-based features corresponding to the 64-128 and 4-8 Hz subbands of scalp EEGs.

  3. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  4. Wavelet Packets in Wideband Multiuser Communications

    DTIC Science & Technology

    2004-11-01

    developed doubly orthogonal CDMA user spreading waveforms based on wavelet packets. We have also developed and evaluated a wavelet packet based ...inter symbol interferences. Compared with the existing DFT based multicarrier CDMA systems, better performance is achieved with the wavelet packet...23 3.4 Over Loaded Waveform Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4. Wavelet Packet Based Time-Varying

  5. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

    PubMed

    Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei

    2010-01-01

    This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

  6. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis.

    PubMed

    Faust, Oliver; Acharya, U Rajendra; Adeli, Hojjat; Adeli, Amir

    2015-03-01

    Electroencephalography (EEG) is an important tool for studying the human brain activity and epileptic processes in particular. EEG signals provide important information about epileptogenic networks that must be analyzed and understood before the initiation of therapeutic procedures. Very small variations in EEG signals depict a definite type of brain abnormality. The challenge is to design and develop signal processing algorithms which extract this subtle information and use it for diagnosis, monitoring and treatment of patients with epilepsy. This paper presents a review of wavelet techniques for computer-aided seizure detection and epilepsy diagnosis with an emphasis on research reported during the past decade. A multiparadigm approach based on the integration of wavelets, nonlinear dynamics and chaos theory, and neural networks advanced by Adeli and associates is the most effective method for automated EEG-based diagnosis of epilepsy. Copyright © 2015 British Epilepsy Association. All rights reserved.

  7. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Low-dose computed tomography image denoising based on joint wavelet and sparse representation.

    PubMed

    Ghadrdan, Samira; Alirezaie, Javad; Dillenseger, Jean-Louis; Babyn, Paul

    2014-01-01

    Image denoising and signal enhancement are the most challenging issues in low dose computed tomography (CT) imaging. Sparse representational methods have shown initial promise for these applications. In this work we present a wavelet based sparse representation denoising technique utilizing dictionary learning and clustering. By using wavelets we extract the most suitable features in the images to obtain accurate dictionary atoms for the denoising algorithm. To achieve improved results we also lower the number of clusters which reduces computational complexity. In addition, a single image noise level estimation is developed to update the cluster centers in higher PSNRs. Our results along with the computational efficiency of the proposed algorithm clearly demonstrates the improvement of the proposed algorithm over other clustering based sparse representation (CSR) and K-SVD methods.

  9. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy.

    PubMed

    Chang, Ching-Wei; Mycek, Mary-Ann

    2012-05-01

    We report the first application of wavelet-based denoising (noise removal) methods to time-domain box-car fluorescence lifetime imaging microscopy (FLIM) images and compare the results to novel total variation (TV) denoising methods. Methods were tested first on artificial images and then applied to low-light live-cell images. Relative to undenoised images, TV methods could improve lifetime precision up to 10-fold in artificial images, while preserving the overall accuracy of lifetime and amplitude values of a single-exponential decay model and improving local lifetime fitting in live-cell images. Wavelet-based methods were at least 4-fold faster than TV methods, but could introduce significant inaccuracies in recovered lifetime values. The denoising methods discussed can potentially enhance a variety of FLIM applications, including live-cell, in vivo animal, or endoscopic imaging studies, especially under challenging imaging conditions such as low-light or fast video-rate imaging.

  10. Wavelet-based low-delay ECG compression algorithm for continuous ECG transmission.

    PubMed

    Kim, Byung S; Yoo, Sun K; Lee, Moon H

    2006-01-01

    The delay performance of compression algorithms is particularly important when time-critical data transmission is required. In this paper, we propose a wavelet-based electrocardiogram (ECG) compression algorithm with a low delay property for instantaneous, continuous ECG transmission suitable for telecardiology applications over a wireless network. The proposed algorithm reduces the frame size as much as possible to achieve a low delay, while maintaining reconstructed signal quality. To attain both low delay and high quality, it employs waveform partitioning, adaptive frame size adjustment, wavelet compression, flexible bit allocation, and header compression. The performances of the proposed algorithm in terms of reconstructed signal quality, processing delay, and error resilience were evaluated using the Massachusetts Institute of Technology University and Beth Israel Hospital (MIT-BIH) and Creighton University Ventricular Tachyarrhythmia (CU) databases and a code division multiple access-based simulation model with mobile channel noise.

  11. Implantable neural spike detection using lifting-based stationary wavelet transform.

    PubMed

    Yang, Yuning; Mason, Andrew J

    2011-01-01

    Spike detection from high data rate neural recordings is desired to ease the bandwidth bottleneck of bio-telemetry. An appropriate spike detection method should be able to detect spikes under low signal-to-noise ratio (SNR) while meeting the power and area constraints of implantation. This paper introduces a spike detection system utilizing lifting-based stationary wavelet transform (SWT) that decomposes neural signals into 2 levels using 'symmlet2' wavelet basis. This approach enables accurate spike detection down to an SNR of only 2. The lifting-based SWT architecture permits a hardware implementation consuming only 6.6 μW power and 0.07 mm(2) area for 32 channels with 3.2 MHz master clock.

  12. Research on electrocardiogram baseline wandering correction based on wavelet transform, QRS barycenter fitting, and regional method.

    PubMed

    Song, Jinzhong; Yan, Hong; Li, Yanjun; Mu, Kaiyu

    2010-09-01

    Baseline wandering in electrocardiogram (ECG) is one of the biggest interferences in visualization and computerized detection of waveforms (especially ST-segment) based on threshold decision. A new method based on wavelet transform, QRS barycenter fitting and regional method was proposed in this paper. Firstly, wavelet transform as a coarse correction was used to remove the baseline wandering, whose frequency bands were non-overlapping with that of ST-segment. Secondly, QRS barycenter fitting was applied as a detailed correction. The third, the regional method was used to transfer baseline to zero. Finally, the method in this paper was proved to perform better than filtering and function fitting methods in baseline wandering correction after the long-term ST database (LTST) verification. In addition, the proposed method is simple and easy to carry out, and in current use.

  13. Super resolution reconstruction based on adaptive sparse domain and total variation regularization of wavelet transform

    NASA Astrophysics Data System (ADS)

    Gan, Ling; Zhu, Linhua; Guo, Qianwen

    2017-05-01

    A new image super-resolution reconstruction method based on adaptive sparse domain and total variation regularization of wavelet transform is proposed to solve the problem that the reconstruction image is not clear enough and the edge detail is natural in the reconstruction of single image super resolution. And to solve the problem of the influence of the abnormal data to sub-dictionary quality in the process of neutron training set clustering in the adaptive sparse domain model, the method of an improved K-means is present. Meanwhile, because the sparse decomposition is NP-problem, which will cause the edge of the reconstructed image is not smooth; we propose the total variation regularization based on wavelet transform to enhance the edge of the image without damaging the texture. The experiments show that the reconstructed image can obtain better visual effect and the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) are also improved.

  14. EEG based patient emotion monitoring using relative wavelet energy feature and Back Propagation Neural Network.

    PubMed

    Purnamasari, Prima Dewi; Ratna, Anak Agung Putri; Kusumoputro, Benyamin

    2015-08-01

    In EEG-based emotion recognition, feature extraction is as important as the classification algorithm. A good choice of features results in higher recognition rate. However, there is no standard method for feature extraction in EEG-based emotion recognition, especially for real time monitoring, where speed of computation is crucial. In this work, we assess the use of relative wavelet energy as features and Back Propagation Neural Network (BPNN) as classifier for emotion recognition. This method was implemented in simulated real time emotion recognition by using a publicly accessible database. The results showed that relative wavelet energy and BPNN achieved an average recognition rate of 92.03%. The highest average recognition rate was achieved when the time window was 30s.

  15. Conjugate Event Study of Geomagnetic ULF Pulsations with Wavelet-based Indices

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Clauer, C. R.; Kim, H.; Weimer, D. R.; Cai, X.

    2013-12-01

    The interactions between the solar wind and geomagnetic field produce a variety of space weather phenomena, which can impact the advanced technology systems of modern society including, for example, power systems, communication systems, and navigation systems. One type of phenomena is the geomagnetic ULF pulsation observed by ground-based or in-situ satellite measurements. Here, we describe a wavelet-based index and apply it to study the geomagnetic ULF pulsations observed in Antarctica and Greenland magnetometer arrays. The wavelet indices computed from these data show spectrum, correlation, and magnitudes information regarding the geomagnetic pulsations. The results show that the geomagnetic field at conjugate locations responds differently according to the frequency of pulsations. The index is effective for identification of the pulsation events and measures important characteristics of the pulsations. It could be a useful tool for the purpose of monitoring geomagnetic pulsations.

  16. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Feng, Naizhang; Wang, Yan; Shen, Yi

    2015-03-01

    In order to detect cracks in railroad tracks, various experiments have been examined by Acoustic Emission (AE) method. However, little work has been done on studying rail defect detection at high speed. This paper presents a study on AE detection of rail defect at high speed based on rail-wheel test rig. Meanwhile, Wavelet Transform and Shannon entropy are employed to detect defects. Signals with and without defects are acquired, and characteristic frequencies from them at different speeds are analyzed. Based on appropriate decomposition level and Energy-to-Shannon entropy ratio, the optimal wavelet is selected. In order to suppress noise effects and ensure appropriate time resolution, the length of time window is investigated. Further, the characteristic frequency of time window is employed to detect defect. The results clearly illustrate that the proposed method can detect rail defect at high speed effectively.

  17. Application of Wavelet Based Denoising for T-Wave Alternans Analysis in High Resolution ECG Maps

    NASA Astrophysics Data System (ADS)

    Janusek, D.; Kania, M.; Zaczek, R.; Zavala-Fernandez, H.; Zbieć, A.; Opolski, G.; Maniewski, R.

    2011-01-01

    T-wave alternans (TWA) allows for identification of patients at an increased risk of ventricular arrhythmia. Stress test, which increases heart rate in controlled manner, is used for TWA measurement. However, the TWA detection and analysis are often disturbed by muscular interference. The evaluation of wavelet based denoising methods was performed to find optimal algorithm for TWA analysis. ECG signals recorded in twelve patients with cardiac disease were analyzed. In seven of them significant T-wave alternans magnitude was detected. The application of wavelet based denoising method in the pre-processing stage increases the T-wave alternans magnitude as well as the number of BSPM signals where TWA was detected.

  18. Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Xu, Wei

    2016-02-01

    This paper investigates the nonlinear structure between carbon and energy markets by employing the maximum overlap wavelet transform (MODWT) as well as the multifractal detrended cross-correlation analysis based on maximum overlap wavelet transform (MFDCCA-MODWT). Based on the MODWT multiresolution analysis and the statistic Qcc(m) significance, relatively significant cross-correlations are obtained between carbon and energy future markets either on different time scales or on the whole. The result of the Granger causality test indicates bidirectional Granger causality between carbon and electricity future markets, although the Granger causality relationship between the carbon and oil price is not evident. The existence of multifractality for the returns between carbon and energy markets is proven with the MFDCCA-MODWT algorithm. In addition, results of investigating the origin of multifractality demonstrate that both long-range correlations and fat-tailed distributions play important roles in the contributions of multifractality.

  19. Spline- and wavelet-based models of neural activity in response to natural visual stimulation.

    PubMed

    Gerhard, Felipe; Szegletes, Luca

    2012-01-01

    We present a comparative study of the performance of different basis functions for the nonparametric modeling of neural activity in response to natural stimuli. Based on naturalistic video sequences, a generative model of neural activity was created using a stochastic linear-nonlinear-spiking cascade. The temporal dynamics of the spiking response is well captured with cubic splines with equidistant knot spacings. Whereas a sym4-wavelet decomposition performs competitively or only slightly worse than the spline basis, Haar wavelets (or histogram-based models) seem unsuitable for faithfully describing the temporal dynamics of the sensory neurons. This tendency was confirmed with an application to a real data set of spike trains recorded from visual cortex of the awake monkey.

  20. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  1. The analysis of VF and VT with wavelet-based Tsallis information measure [rapid communication

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Hongbo; Wang, Zhizhong

    2005-03-01

    We undertake the study of ventricular fibrillation and ventricular tachycardia by recourse to wavelet-based multiresolution analysis. Comparing with conventional Shannon entropy analysis of signal, we proposed a new application of Tsallis entropy analysis. It is shown that, as a criteria for detecting between ventricular fibrillation and ventricular tachycardia, Tsallis' multiresolution entropy (MRET) provides one with better discrimination power than the Shannon's multiresolution entropy (MRE).

  2. Wavelet-based analysis of gastric microcirculation in rats with ulcer bleedings

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Rodionov, M. A.; Pavlova, O. N.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznetsova, Ya. V.; Semyachkin-Glushkovskij, I. A.

    2012-03-01

    Studying of nitric oxide (NO) dependent mechanisms of regulation of microcirculation in a stomach can provide important diagnostic markers of the development of stress-induced ulcer bleedings. In this work we use a multiscale analysis based on the discrete wavelet-transform to characterize a latent stage of illness formation in rats. A higher sensitivity of stomach vessels to the NO-level in ill rats is discussed.

  3. A Toxicity Evaluation and Predictive System Based on Neural Networks and Wavelets

    SciTech Connect

    Piotrowski, Pamela L; Sumpter, Bobby G; Malling, Heinrich; Wassom, John; Lu, Po-Yung; Bothers, Robin; Sega, Gary; Martin, Sheryl A; Parang, Morey

    2007-01-01

    A computational approach has been developed for performing efficient and reasonably accurate toxicity evaluation and prediction. The approach is based on computational neural networks linked to modern computational chemistry and wavelet methods. In this paper we present details of this approach and results demonstrating its accuracy and flexibility for predicting diverse biological endpoints including metabolic processes, mode of action, and hepato- and neurotoxicity. The approach also can be used for automatic processing of microarray data to predict modes of action.

  4. Recognition of short-term changes in physiological signals with the wavelet-based multifractal formalism

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Sindeeva, Olga A.; Sindeev, Sergey S.; Pavlova, Olga N.; Rybalova, Elena V.; Semyachkina-Glushkovskaya, Oxana V.

    2016-03-01

    In this paper we address the problem of revealing and recognition transitions between distinct physiological states using quite short fragments of experimental recordings. With the wavelet-based multifractal analysis we characterize changes of complexity and correlation properties in the stress-induced dynamics of arterial blood pressure in rats. We propose an approach for association revealed changes with distinct physiological regulatory mechanisms and for quantifying the influence of each mechanism.

  5. Wavelet-based Time Series Bootstrap Approach for Multidecadal Hydrologic Projections Using Observed and Paleo Data of Climate Indicators

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.

    2013-12-01

    Understanding streamflow variability and the ability to generate realistic scenarios at multi-decadal time scales is important for robust water resources planning and management in any River Basin - more so on the Colorado River Basin with its semi-arid climate and highly stressed water resources It is increasingly evident that large scale climate forcings such as El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) are known to modulate the Colorado River Basin hydrology at multi-decadal time scales. Thus, modeling these large scale Climate indicators is important to then conditionally modeling the multi-decadal streamflow variability. To this end, we developed a simulation model that combines the wavelet-based time series method, Wavelet Auto Regressive Moving Average (WARMA) with a K-nearest neighbor (K-NN) bootstrap approach. In this, for a given time series (climate forcings), dominant periodicities/frequency bands are identified from the wavelet spectrum that pass the 90% significant test. The time series is filtered at these frequencies in each band to create ';components'; the components are orthogonal and when added to the residual (i.e., noise) results in the original time series. The components, being smooth, are easily modeled using parsimonious Auto Regressive Moving Average (ARMA) time series models. The fitted ARMA models are used to simulate the individual components which are added to obtain simulation of the original series. The WARMA approach is applied to all the climate forcing indicators which are used to simulate multi-decadal sequences of these forcing. For the current year, the simulated forcings are considered the ';feature vector' and K-NN of this are identified; one of the neighbors (i.e., one of the historical year) is resampled using a weighted probability metric (with more weights to nearest neighbor and least to the farthest) and the corresponding streamflow is the

  6. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-08-11

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Efficient entropy estimation based on doubly stochastic models for quantized wavelet image data.

    PubMed

    Gaubatz, Matthew D; Hemami, Sheila S

    2007-04-01

    Under a rate constraint, wavelet-based image coding involves strategic discarding of information such that the remaining data can be described with a given amount of rate. In a practical coding system, this task requires knowledge of the relationship between quantization step size and compressed rate for each group of wavelet coefficients, the R-Q curve. A common approach to this problem is to fit each subband with a scalar probability distribution and compute entropy estimates based on the model. This approach is not effective at rates below 1.0 bits-per-pixel because the distributions of quantized data do not reflect the dependencies in coefficient magnitudes. These dependencies can be addressed with doubly stochastic models, which have been previously proposed to characterize more localized behavior, though there are tradeoffs between storage, computation time, and accuracy. Using a doubly stochastic generalized Gaussian model, it is demonstrated that the relationship between step size and rate is accurately described by a low degree polynomial in the logarithm of the step size. Based on this observation, an entropy estimation scheme is presented which offers an excellent tradeoff between speed and accuracy; after a simple data-gathering step, estimates are computed instantaneously by evaluating a single polynomial for each group of wavelet coefficients quantized with the same step size. These estimates are on average within 3% of a desired target rate for several of state-of-the-art coders.

  8. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-03-01

    As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.

  9. Analysis of damped tissue vibrations in time-frequency space: a wavelet-based approach.

    PubMed

    Enders, Hendrik; von Tscharner, Vinzenz; Nigg, Benno M

    2012-11-15

    There is evidence that vibrations of soft tissue compartments are not appropriately described by a single sinusoidal oscillation for certain types of locomotion such as running or sprinting. This paper discusses a new method to quantify damping of superimposed oscillations using a wavelet-based time-frequency approach. This wavelet-based method was applied to experimental data in order to analyze the decay of the overall power of vibration signals over time. Eight healthy subjects performed sprinting trials on a 30 m runway on a hard surface and a soft surface. Soft tissue vibrations were quantified from the tissue overlaying the muscle belly of the medial gastrocnemius muscle. The new methodology determines damping coefficients with an average error of 2.2% based on a wavelet scaling factor of 0.7. This was sufficient to detect differences in soft tissue compartment damping between the hard and soft surface. On average, the hard surface elicited a 7.02 s(-1) lower damping coefficient than the soft surface (p<0.05). A power spectral analysis of the muscular vibrations occurring during sprinting confirmed that vibrations during dynamic movements cannot be represented by a single sinusoidal function. Compared to the traditional sinusoidal approach, this newly developed method can quantify vibration damping for systems with multiple vibration modes that interfere with one another. This new time-frequency analysis may be more appropriate when an acceleration trace does not follow a sinusoidal function, as is the case with multiple forms of human locomotion.

  10. Fluorometric discrimination technique of phytoplankton population based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Shanshan; Su, Rongguo; Duan, Yali; Zhang, Cui; Song, Zhijie; Wang, Xiulin

    2012-09-01

    The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton

  11. A fast method for the detection of vascular structure in images, based on the continuous wavelet transform with the Morlet wavelet having a low central frequency

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.; Tsoy, Maria O.; Kurochkin, Maxim A.; Postnov, Dmitry E.

    2017-04-01

    A manual measurement of blood vessels diameter is a conventional component of routine visual assessment of microcirculation, say, during optical capillaroscopy. However, many modern optical methods for blood flow measurements demand the reliable procedure for a fully automated detection of vessels and estimation of their diameter that is a challenging task. Specifically, if one measure the velocity of red blood cells by means of laser speckle imaging, then visual measurements become impossible, while the velocity-based estimation has their own limitations. One of promising approaches is based on fast switching of illumination type, but it drastically reduces the observation time, and hence, the achievable quality of images. In the present work we address this problem proposing an alternative method for the processing of noisy images of vascular structure, which extracts the mask denoting locations of vessels, based on the application of the continuous wavelet transform with the Morlet wavelet having small central frequencies. Such a method combines a reasonable accuracy with the possibility of fast direct implementation to images. Discussing the latter, we describe in details a new MATLAB program code realization for the CWT with the Morlet wavelet, which does not use loops completely replaced with element-by-element operations that drastically reduces the computation time.

  12. Pigmented skin lesion detection using random forest and wavelet-based texture

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  13. Block-based wavelet transform coding of mammograms with region-adaptive quantization

    NASA Astrophysics Data System (ADS)

    Moon, Nam Su; Song, Jun S.; Kwon, Musik; Kim, JongHyo; Lee, ChoongWoong

    1998-06-01

    To achieve both high compression ratio and information preserving, it is an efficient way to combine segmentation and lossy compression scheme. Microcalcification in mammogram is one of the most significant sign of early stage of breast cancer. Therefore in coding, detection and segmentation of microcalcification enable us to preserve it well by allocating more bits to it than to other regions. Segmentation of microcalcification is performed both in spatial domain and in wavelet transform domain. Peak error controllable quantization step, which is off-line designed, is suitable for medical image compression. For region-adaptive quantization, block- based wavelet transform coding is adopted and different peak- error-constrained quantizers are applied to blocks according to the segmentation result. In view of preservation of microcalcification, the proposed coding scheme shows better performance than JPEG.

  14. Difference between healthy children and ADHD based on wavelet spectral analysis of nuclear magnetic resonance images

    NASA Astrophysics Data System (ADS)

    González Gómez, Dulce I.; Moreno Barbosa, E.; Martínez Hernández, Mario Iván; Ramos Méndez, José; Hidalgo Tobón, Silvia; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito

    2014-11-01

    The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (p<0.0015) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done.

  15. Difference between healthy children and ADHD based on wavelet spectral analysis of nuclear magnetic resonance images

    SciTech Connect

    González Gómez Dulce, I. E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Moreno Barbosa, E. E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Hernández, Mario Iván Martínez E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Méndez, José Ramos E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Silvia, Hidalgo Tobón; Pilar, Dies Suarez E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez E-mail: neurodoc@prodigy.net.mx; Benito, De Celis Alonso

    2014-11-07

    The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (p<0.0015) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done.

  16. Detecting laser-range-finding signals in surveying converter lining based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Yang, Xiaofei; Shi, Tielin; Yang, Shuzi

    1998-08-01

    The precision of the laser range finding subsystem has important influences on the performances of the whole measurement system applied to survey the steelmaking converter lining erosion state. In the system, the object of laser beams is some rough lighting surfaces in high temperature. the laser range finding signals to reach the microcomputer system would be submerged in intense disturb environments. Common laser range finding devices could not work normally. This paper presents a method based on the wavelet transform to test solving the problem. The idea of this method includes encoding the measuring signals, decomposing the encoded received signals of components in different frequency scales and time domains by the wavelet transform method, extracting the features of encoded signals according to queer points to confirm the arrival of signals, and accurately calculating out the measured distances. In addition, the method is also helpful to adopt some digital filter algorithms in time. It could make further in improvement on the precision.

  17. A study of interceptor attitude control based on adaptive wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  18. Wavelet-based SVD method for face recognition with one training sample per person

    NASA Astrophysics Data System (ADS)

    He, Jiazhong; Du, Minghui

    2005-10-01

    At present there are many methods that could deal well with frontal view face recognition when there is sufficient number of representative training samples. However, few of them can work well when only one training sample per class is available. In this paper, we present a method of face recognition based on wavelet low-frequency band and singular value decomposition (SVD) to solve the one training sample problem. To acquire more information from the single training sample, training image is linearly combined with its reconstructed image of wavelet low-frequency band into a new training image. By using Fourier transform, the spectrum representation of face image is obtained that is invariant against spatial translation. Then the spectrum representation is projected into a uniform eigen-space that is obtained from SVD of standard face image and the coefficient matrix is used as feature for recognition. The proposed algorithm obtains acceptable experimental results on the ORL face database.

  19. Wavelet-based improved Chan-Vese model for image segmentation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoli; Zhou, Pucheng; Xue, Mogen

    2016-10-01

    In this paper, a kind of image segmentation approach which based on improved Chan-Vese (CV) model and wavelet transform was proposed. Firstly, one-level wavelet decomposition was adopted to get the low frequency approximation image. And then, the improved CV model, which contains the global term, local term and the regularization term, was utilized to segment the low frequency approximation image, so as to obtain the coarse image segmentation result. Finally, the coarse segmentation result was interpolated into the fine scale as an initial contour, and the improved CV model was utilized again to get the fine scale segmentation result. Experimental results show that our method can segment low contrast images and/or inhomogeneous intensity images more effectively than traditional level set methods.

  20. A 64-channel neural signal processor/ compressor based on Haar wavelet transform.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M; Abrishami-Moghaddam, Hamid

    2011-01-01

    A signal processor/compressor dedicated to implantable neural recording microsystems is presented. Signal compression is performed based on Haar wavelet. It is shown in this paper that, compared to other mathematical transforms already used for this purpose, compression of neural signals using this type of wavelet transform can be of almost the same quality, while demanding less circuit complexity and smaller silicon area. Designed in a 0.13-μm standard CMOS process, the 64-channel 8-bit signal processor reported in this paper occupies 113 μm x 110 μm of silicon area. It operates under a 1.8-V supply voltage at a master clock frequency of 3.2 MHz.

  1. An Orthogonal Wavelet Transform Blind Equalization Algorithm Based on the Optimization of Immune Clone Particle Swarm

    NASA Astrophysics Data System (ADS)

    Yecai, Guo; Lingling, Hu

    On the basis of the analyzing the futures of particle swarm algorithm, orthogonal wavelet transform constant modulus blind equalization algorithm (WTCMA), and immune clone algorithm, an orthogonal wavelet transform constant modulus blind equalization algorithm based on the immune clone particle swarm optimization is proposed. In this proposed algorithm, the diversity of population in particle swarm algorithm is effectively regulated via the immune clone operation after introducing the immune clone algorithm into particle swarm optimization. Therefore, the local extreme points and the premature convergence caused by the diversity variation of population in the evolution late of the particle swarm algorithm are avoided and the global search capability of particle swarm optimization algorithm is improved. So, the proposed algorithm has fastest convergence rate and smallest mean square error. The performance of the proposed algorithm is proved by computer simulation in underwater acoustic channels.

  2. Wavelet-based color pathological image watermark through dynamically adjusting the embedding intensity.

    PubMed

    Liu, Guoyan; Liu, Hongjun; Kadir, Abdurahman

    2012-01-01

    This paper proposes a new dynamic and robust blind watermarking scheme for color pathological image based on discrete wavelet transform (DWT). The binary watermark image is preprocessed before embedding; firstly it is scrambled by Arnold cat map and then encrypted by pseudorandom sequence generated by robust chaotic map. The host image is divided into n × n blocks, and the encrypted watermark is embedded into the higher frequency domain of blue component. The mean and variance of the subbands are calculated, to dynamically modify the wavelet coefficient of a block according to the embedded 0 or 1, so as to generate the detection threshold. We research the relationship between embedding intensity and threshold and give the effective range of the threshold to extract the watermark. Experimental results show that the scheme can resist against common distortions, especially getting advantage over JPEG compression, additive noise, brightening, rotation, and cropping.

  3. Wavelet-Based Color Pathological Image Watermark through Dynamically Adjusting the Embedding Intensity

    PubMed Central

    Liu, Guoyan; Liu, Hongjun; Kadir, Abdurahman

    2012-01-01

    This paper proposes a new dynamic and robust blind watermarking scheme for color pathological image based on discrete wavelet transform (DWT). The binary watermark image is preprocessed before embedding; firstly it is scrambled by Arnold cat map and then encrypted by pseudorandom sequence generated by robust chaotic map. The host image is divided into n × n blocks, and the encrypted watermark is embedded into the higher frequency domain of blue component. The mean and variance of the subbands are calculated, to dynamically modify the wavelet coefficient of a block according to the embedded 0 or 1, so as to generate the detection threshold. We research the relationship between embedding intensity and threshold and give the effective range of the threshold to extract the watermark. Experimental results show that the scheme can resist against common distortions, especially getting advantage over JPEG compression, additive noise, brightening, rotation, and cropping. PMID:23243463

  4. Face recognition algorithm based on Gabor wavelet and locality preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Shen, Lin; Fan, Honghui

    2017-07-01

    In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.

  5. Parameter identification of fractional order linear system based on Haar wavelet operational matrix.

    PubMed

    Li, Yuanlu; Meng, Xiao; Zheng, Bochao; Ding, Yaqing

    2015-11-01

    Fractional order systems can be more adequate for the description of dynamical systems than integer order models, however, how to obtain fractional order models are still actively exploring. In this paper, an identification method for fractional order linear system was proposed. This is a method based on input-output data in time domain. The input and output signals are represented by Haar wavelet, and then fractional order systems described by fractional order differential equations are transformed into fractional order integral equations. Taking use of the Haar wavelet operational matrix of the fractional order integration, the fractional order linear system can easily be converted into a system of algebraic equation. Finally, the parameters of the fractional order system are determined by minimizing the errors between the output of the real system and that of the identified system. Numerical simulations, involving integral and fractional order systems, confirm the efficiency of the above methodology.

  6. CHARACTERIZING COMPLEXITY IN SOLAR MAGNETOGRAM DATA USING A WAVELET-BASED SEGMENTATION METHOD

    SciTech Connect

    Kestener, P.; Khalil, A.; Arneodo, A.

    2010-07-10

    The multifractal nature of solar photospheric magnetic structures is studied using the two-dimensional wavelet transform modulus maxima (WTMM) method. This relies on computing partition functions from the wavelet transform skeleton defined by the WTMM method. This skeleton provides an adaptive space-scale partition of the fractal distribution under study, from which one can extract the multifractal singularity spectrum. We describe the implementation of a multiscale image processing segmentation procedure based on the partitioning of the WT skeleton, which allows the disentangling of the information concerning the multifractal properties of active regions from the surrounding quiet-Sun field. The quiet Sun exhibits an average Hoelder exponent {approx}-0.75, with observed multifractal properties due to the supergranular structure. On the other hand, active region multifractal spectra exhibit an average Hoelder exponent {approx}0.38, similar to those found when studying experimental data from turbulent flows.

  7. Research on temporal features of LEMP based on Laplace wavelet in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Qin; Zhong, Jianwei; Ai, Qing; Gao, Shihong

    2015-12-01

    In this paper, the fine-structures of lightning electromagnetic pulse (LEMP) including 19 pulses in preliminary breakdown, 37 stepped leaders, 8 dart leaders, 73 first return strokes, and 52 subsequent return strokes have been analyzed based on Laplace wavelet. The main characteristics of field waveforms are presented: the correlation coefficient, the dominant frequency, the peak energy and the spread distribution of the power spectrum. The instantaneous field peak pulse can be precisely located by the value of the correlation coefficient. The pulses of preliminary breakdown and leaders are found to radiate in the dominant frequency in the range 100 kHz to 1 MHz. The field radiated by the first return strokes dominantly lies under 100 kHz, whereas the subsequent return strokes under 50 kHz. The statistical results show that the Laplace wavelet is effective and can accurately determine time and frequency of the electromagnetic field of first and subsequent return strokes.

  8. A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising.

    PubMed

    Pizurica, Aleksandra; Philips, Wilfried; Lemahieu, Ignace; Acheroy, Marc

    2002-01-01

    This paper presents a new wavelet-based image denoising method, which extends a "geometrical" Bayesian framework. The new method combines three criteria for distinguishing supposedly useful coefficients from noise: coefficient magnitudes, their evolution across scales and spatial clustering of large coefficients near image edges. These three criteria are combined in a Bayesian framework. The spatial clustering properties are expressed in a prior model. The statistical properties concerning coefficient magnitudes and their evolution across scales are expressed in a joint conditional model. The three main novelties with respect to related approaches are (1) the interscale-ratios of wavelet coefficients are statistically characterized and different local criteria for distinguishing useful coefficients from noise are evaluated, (2) a joint conditional model is introduced, and (3) a novel anisotropic Markov random field prior model is proposed. The results demonstrate an improved denoising performance over related earlier techniques.

  9. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    PubMed

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  10. Target detection from SAR images based on wavelet transform de-noise and improved CFAR

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Chen, Li; Zhou, Xiao Yang; He, Xin Yi; Tan, Shu Run; Lin, Hai; Cui, Tie Jun

    2009-10-01

    Target detection is an important part of an automatic target recognition (ATR) system. There would be many false alarms if using constant false alarm rate (CFAR) algorithm directly on complex synthetic aperture radar (SAR) images with tremendous speckle. Usually, the speckle should be reduced previously before CFAR. In this paper, a wavelet transform de-noise and an improved CFAR algorithm have been combined to detect military targets from SAR image. Different threshold methods were used in the wavelet domain when dealing with the detail information and non-detail information in the image to receive the edge information and reduce the speckle. Then a three-stage CFAR algorithm was used to detect the de-noised image. This algorithm contains global CFAR, local CFAR and count filters. Good results are obtained when the method is used to process high-resolution, HH polarization SAR images. Such algorithms could be arranged in the SAR image based automatic target recognition system.

  11. Wavelet-based Poisson Solver for use in Particle-In-CellSimulations

    SciTech Connect

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-05-13

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors.

  12. Wavelet-based method for image filtering using scale-space continuity

    NASA Astrophysics Data System (ADS)

    Jung, Claudio R.; Scharcanski, Jacob

    2001-04-01

    This paper proposes a novel technique to reduce noise while preserving edge sharpness during image filtering. This method is based on the image multiresolution decomposition by a discrete wavelet transform, given a proper wavelet basis. In the transform spaces, edges are implicitly located and preserved, at the same time that image noise is filtered out. At each resolution level, geometric continuity is used to preserve edges that are not isolated. Finally, we compare consecutive levels to preserve edges having continuity along scales. As a result, the proposed technique produces a filtered version of the original image, where homogeneous regions appear segmented by well-defined edges. Possible applications include image presegmentation and image denoising.

  13. An Efficient P300-based BCI Using Wavelet Features and IBPSO-based Channel Selection

    PubMed Central

    Perseh, Bahram; Sharafat, Ahmad R.

    2012-01-01

    We present a novel and efficient scheme that selects a minimal set of effective features and channels for detecting the P300 component of the event-related potential in the brain–computer interface (BCI) paradigm. For obtaining a minimal set of effective features, we take the truncated coefficients of discrete Daubechies 4 wavelet, and for selecting the effective electroencephalogram channels, we utilize an improved binary particle swarm optimization algorithm together with the Bhattacharyya criterion. We tested our proposed scheme on dataset IIb of BCI competition 2005 and achieved 97.5% and 74.5% accuracy in 15 and 5 trials, respectively, using a simple classification algorithm based on Bayesian linear discriminant analysis. We also tested our proposed scheme on Hoffmann's dataset for eight subjects, and achieved similar results. PMID:23717804

  14. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Peng, Zhongxiao; Li, Li

    2011-10-01

    Gear systems are an essential element widely used in a variety of industrial applications. Since approximately 80% of the breakdowns in transmission machinery are caused by gear failure, the efficiency of early fault detection and accurate fault diagnosis are therefore critical to normal machinery operations. Reviewed literature indicates that only limited research has considered the gear multi-fault diagnosis, especially for single, coupled distributed and localized faults. Through virtual prototype simulation analysis and experimental study, a novel method for gear multi-fault diagnosis has been presented in this paper. This new method was developed based on the integration of Wavelet transform (WT) technique, Autoregressive (AR) model and Principal Component Analysis (PCA) for fault detection. The WT method was used in the study as the de-noising technique for processing raw vibration signals. Compared with the noise removing method based on the time synchronous average (TSA), the WT technique can be performed directly on the raw vibration signals without the need to calculate any ensemble average of the tested gear vibration signals. More importantly, the WT can deal with coupled faults of a gear pair in one operation while the TSA must be carried out several times for multiple fault detection. The analysis results of the virtual prototype simulation prove that the proposed method is a more time efficient and effective way to detect coupled fault than TSA, and the fault classification rate is superior to the TSA based approaches. In the experimental tests, the proposed method was compared with the Mahalanobis distance approach. However, the latter turns out to be inefficient for the gear multi-fault diagnosis. Its defect detection rate is below 60%, which is much less than that of the proposed method. Furthermore, the ability of the AR model to cope with localized as well as distributed gear faults is verified by both the virtual prototype simulation and

  15. Method for low-light-level image compression based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Sun, Shaoyuan; Zhang, Baomin; Wang, Liping; Bai, Lianfa

    2001-10-01

    Low light level (LLL) image communication has received more and more attentions in the night vision field along with the advance of the importance of image communication. LLL image compression technique is the key of LLL image wireless transmission. LLL image, which is different from the common visible light image, has its special characteristics. As still image compression, we propose in this paper a wavelet-based image compression algorithm suitable for LLL image. Because the information in the LLL image is significant, near lossless data compression is required. The LLL image is compressed based on improved EZW (Embedded Zerotree Wavelet) algorithm. We encode the lowest frequency subband data using DPCM (Differential Pulse Code Modulation). All the information in the lowest frequency is kept. Considering the HVS (Human Visual System) characteristics and the LLL image characteristics, we detect the edge contour in the high frequency subband image first using templet and then encode the high frequency subband data using EZW algorithm. And two guiding matrix is set to avoid redundant scanning and replicate encoding of significant wavelet coefficients in the above coding. The experiment results show that the decoded image quality is good and the encoding time is shorter than that of the original EZW algorithm.

  16. Wavelet transform and Huffman coding based electrocardiogram compression algorithm: Application to telecardiology

    NASA Astrophysics Data System (ADS)

    Chouakri, S. A.; Djaafri, O.; Taleb-Ahmed, A.

    2013-08-01

    We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly.

  17. Surface roughness extraction based on Markov random field model in wavelet feature domain

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Lei, Li-qiao

    2014-12-01

    Based on the computer texture analysis method, a new noncontact surface roughness measurement technique is proposed. The method is inspired by the nonredundant directional selectivity and highly discriminative nature of the wavelet representation and the capability of the Markov random field (MRF) model to capture statistical regularities. Surface roughness information contained in the texture features may be extracted based on an MRF stochastic model of textures in the wavelet feature domain. The model captures significant intrascale and interscale statistical dependencies between wavelet coefficients. To investigate the relationship between the texture features and surface roughness Ra, a simple research setup, which consists of a charge-coupled diode camera without a lens and a diode laser, was established, and the laser speckle texture patterns are acquired from some standard grinding surfaces. The research results have illustrated that surface roughness Ra has a good monotonic relationship with the texture features of the laser speckle pattern. If this measuring system is calibrated with the surface standard samples roughness beforehand, the surface roughness actual value Ra can be deduced in the case of the same material surfaces ground at the same manufacture conditions.

  18. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  19. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  20. Classification of normal and arrhythmic ECG using wavelet transform based template-matching technique.

    PubMed

    Hassan, Wajahat; Saleem, Saqib; Habib, Aamir

    2017-06-01

    To propose a wavelet-based template matching technique to extract features for automatic classification of electrocardiogram signals of normal and arrhythmic individuals. The study was conducted from December 2014 to December 2015 at the Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan. Electrocardiogram signals analysed in this study were taken from the freely available database www.physionet.org. The data for normal subjects was taken from the Massachusetts Institute of Technology-Beth Israel Hospital's normal sinus rhythm database and data for diseased subjects was taken from the arrhythmia database. Of the 30 subjects, there were 15(50%) normal and 15(50%) diseased subjects. The group-averaged phase difference indices of arrhythmic subjects were significantly larger than that of normal individuals (p<0.05) within the frequency range of 0.9-1.1 Hz. Moreover, the scatter plot between the phase difference index and magnitude of wavelet cross-spectrum for frequency range of 0.9-1.1 Hz demonstrated a satisfactory delineation between normal and arrhythmic individuals. Wavelet decomposition-based template matching technique achieved satisfactory delineation of normal and arrhythmic electrocardiogram dynamics.