An efficient method for the fusion of light field refocused images
NASA Astrophysics Data System (ADS)
Wang, Yingqian; Yang, Jungang; Xiao, Chao; An, Wei
2018-04-01
Light field cameras have drawn much attention due to the advantage of post-capture adjustments such as refocusing after exposure. The depth of field in refocused images is always shallow because of the large equivalent aperture. As a result, a large number of multi-focus images are obtained and an all-in-focus image is demanded. Consider that most multi-focus image fusion algorithms do not particularly aim at large numbers of source images and traditional DWT-based fusion approach has serious problems in dealing with lots of multi-focus images, causing color distortion and ringing effect. To solve this problem, this paper proposes an efficient multi-focus image fusion method based on stationary wavelet transform (SWT), which can deal with a large quantity of multi-focus images with shallow depth of fields. We compare SWT-based approach with DWT-based approach on various occasions. And the results demonstrate that the proposed method performs much better both visually and quantitatively.
Multi-focus image fusion based on window empirical mode decomposition
NASA Astrophysics Data System (ADS)
Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao
2017-09-01
In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.
An adaptive block-based fusion method with LUE-SSIM for multi-focus images
NASA Astrophysics Data System (ADS)
Zheng, Jianing; Guo, Yongcai; Huang, Yukun
2016-09-01
Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.
Multi-focus image fusion and robust encryption algorithm based on compressive sensing
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Lan; Xiang, Tao; Wang, Yong
2017-06-01
Multi-focus image fusion schemes have been studied in recent years. However, little work has been done in multi-focus image transmission security. This paper proposes a scheme that can reduce data transmission volume and resist various attacks. First, multi-focus image fusion based on wavelet decomposition can generate complete scene images and optimize the perception of the human eye. The fused images are sparsely represented with DCT and sampled with structurally random matrix (SRM), which reduces the data volume and realizes the initial encryption. Then the obtained measurements are further encrypted to resist noise and crop attack through combining permutation and diffusion stages. At the receiver, the cipher images can be jointly decrypted and reconstructed. Simulation results demonstrate the security and robustness of the proposed scheme.
Extended depth of field integral imaging using multi-focus fusion
NASA Astrophysics Data System (ADS)
Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua
2018-03-01
In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.
A comparative study of multi-focus image fusion validation metrics
NASA Astrophysics Data System (ADS)
Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael
2016-05-01
Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).
Multi-focus image fusion using a guided-filter-based difference image.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu
2016-03-20
The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
A multi-focus image fusion method via region mosaicking on Laplacian pyramids
Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong
2018-01-01
In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
Multi-focus image fusion with the all convolutional neural network
NASA Astrophysics Data System (ADS)
Du, Chao-ben; Gao, She-sheng
2018-01-01
A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network (CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN (ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system
NASA Astrophysics Data System (ADS)
Wang, Yaoli; Chen, Yuanyuan
2018-07-01
An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.
Image fusion based on Bandelet and sparse representation
NASA Astrophysics Data System (ADS)
Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi
2018-04-01
Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.
Multi-Focus Image Fusion Based on NSCT and NSST
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen
2015-12-01
In this paper, a multi-focus image fusion algorithm based on the nonsubsampled contourlet transform (NSCT) and the nonsubsampled shearlet transform (NSST) is proposed. The source images are first decomposed by the NSCT and NSST into low frequency coefficients and high frequency coefficients. Then, the average method is used to fuse low frequency coefficient of the NSCT. To obtain more accurate salience measurement, the high frequency coefficients of the NSST and NSCT are combined to measure salience. The high frequency coefficients of the NSCT with larger salience are selected as fused high frequency coefficients. Finally, the fused image is reconstructed by the inverse NSCT. We adopt three metrics (Q AB/F , Q e and Q w ) to evaluate the quality of fused images. The experimental results demonstrate that the proposed method outperforms other methods. It retains highly detailed edges and contours.
NASA Astrophysics Data System (ADS)
Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin
2018-04-01
Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.
A broadband terahertz ultrathin multi-focus lens
He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan
2016-01-01
Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430
Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR.
Frey, Othmar; Morsdorf, Felix; Meier, Erich
2008-09-24
In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourierbased focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR).
Multi-scale learning based segmentation of glands in digital colonrectal pathology images.
Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen
2016-02-01
Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.
Multi-scale learning based segmentation of glands in digital colonrectal pathology images
NASA Astrophysics Data System (ADS)
Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen
2016-03-01
Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.
ERIC Educational Resources Information Center
Gordon, Roger L., Ed.
This guide to multi-image program production for practitioners describes the process from the beginning stages through final presentation, examines historical perspectives, theory, and research in multi-image, and provides examples of successful utilization. Ten chapters focus on the following topics: (1) definition of multi-image field and…
NASA Astrophysics Data System (ADS)
Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin
2013-02-01
Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.
High Density Aerial Image Matching: State-Of and Future Prospects
NASA Astrophysics Data System (ADS)
Haala, N.; Cavegn, S.
2016-06-01
Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.
Development and testing of a homogenous multi-wavelength LED light source
NASA Astrophysics Data System (ADS)
Bolton, Frank J.; Bernat, Amir; Jacques, Steven L.; Levitz, David
2017-03-01
Multispectral imaging of human tissue is a powerful method that allows for quantify scattering and absorption parameters of the tissue and differentiate tissue types or identify pathology. This method requires imaging at multiple wavelengths and then fitting the measured data to a model based on light transport theory. Earlier, a mobile phone based multi-spectral imaging system was developed to image the uterine cervix from the colposcopy geometry, outside the patient's body at a distance of 200-300 mm. Such imaging of a distance object has inherent challenges, as bright and homogenous illumination is required. Several solutions addressing this problem were developed, with varied degrees of success. In this paper, several multi-spectral illumination setups were developed and tested for brightness and uniformity. All setups were specifically designed with low cost in mind, utilizing a printed circuit board with surface-mounted LEDs. The three setups include: LEDs illuminating the target directly, LEDs illuminating focused by a 3D printed miniature lens array, and LEDs coupled to a mixing lens and focusing optical system. In order to compare the illumination uniformity and intensity performance two experiments were performed. Test results are presented, and various tradeoffs between the three system configurations are discussed. Test results are presented, and various tradeoffs between the three system configurations are discussed.
Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.
Lahrmann, Bernd; Valous, Nektarios A; Eisenmann, Urs; Wentzensen, Nicolas; Grabe, Niels
2013-01-01
Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells on the glass slide) itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could be distinguished from focus points on artifacts (accuracy 98.6%). Sharpness as total focus quality of a virtual LBC slide is computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as necessary. On 400 LBC slides we achieved a scanning-time of 13.9±10.1 min with 29.1±15.5 focus points. In summary, the integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and subsequent biomarker analysis.
Generating description with multi-feature fusion and saliency maps of image
NASA Astrophysics Data System (ADS)
Liu, Lisha; Ding, Yuxuan; Tian, Chunna; Yuan, Bo
2018-04-01
Generating description for an image can be regard as visual understanding. It is across artificial intelligence, machine learning, natural language processing and many other areas. In this paper, we present a model that generates description for images based on RNN (recurrent neural network) with object attention and multi-feature of images. The deep recurrent neural networks have excellent performance in machine translation, so we use it to generate natural sentence description for images. The proposed method uses single CNN (convolution neural network) that is trained on ImageNet to extract image features. But we think it can not adequately contain the content in images, it may only focus on the object area of image. So we add scene information to image feature using CNN which is trained on Places205. Experiments show that model with multi-feature extracted by two CNNs perform better than which with a single feature. In addition, we make saliency weights on images to emphasize the salient objects in images. We evaluate our model on MSCOCO based on public metrics, and the results show that our model performs better than several state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Gao, M.; Li, J.
2018-04-01
Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.
Harmening, Wolf M; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C
2012-09-01
A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye's optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye's transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution.
Harmening, Wolf M.; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C.
2012-01-01
A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye’s optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye’s transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution. PMID:23024901
Remote focusing for programmable multi-layer differential multiphoton microscopy
Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.
2010-01-01
We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D
2015-05-08
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.
2015-01-01
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714
Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.
Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang
2018-09-01
Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.
Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD
NASA Astrophysics Data System (ADS)
Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun
2017-12-01
This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
NASA Astrophysics Data System (ADS)
Simon, Eric; Craen, Pierre; Gaton, Hilario; Jacques-Sermet, Olivier; Laune, Frédéric; Legrand, Julien; Maillard, Mathieu; Tallaron, Nicolas; Verplanck, Nicolas; Berge, Bruno
2010-05-01
A new generation of liquid lenses based on electrowetting has been developed, using a multi-electrode design, enabling to induce optical tilt and focus corrections in the same component. The basic principle is to rely on a conical shape for supporting the liquid interface, the conical shape insuring a restoring force for the liquid liquid interface to come at the center position. The multi-electrode design enables to induce an average tilt of the liquid liquid interface when a bias voltage is applied to the different electrodes. This tilt is reversible, vanishing when voltage bias is cancelled. Possible application of this new lens component is the realization of miniature camera featuring auto-focus and optical image stabilization (OIS) without any mobile mechanical part. Experimental measurements of actual performances of liquid lens component will be presented : focus and tilt amplitude, residual optical wave front error and response time.
Impact of multi-focused images on recognition of soft biometric traits
NASA Astrophysics Data System (ADS)
Chiesa, V.; Dugelay, J. L.
2016-09-01
In video surveillance semantic traits estimation as gender and age has always been debated topic because of the uncontrolled environment: while light or pose variations have been largely studied, defocused images are still rarely investigated. Recently the emergence of new technologies, as plenoptic cameras, yields to deal with these problems analyzing multi-focus images. Thanks to a microlens array arranged between the sensor and the main lens, light field cameras are able to record not only the RGB values but also the information related to the direction of light rays: the additional data make possible rendering the image with different focal plane after the acquisition. For our experiments, we use the GUC Light Field Face Database that includes pictures from the First Generation Lytro camera. Taking advantage of light field images, we explore the influence of defocusing on gender recognition and age estimation problems. Evaluations are computed on up-to-date and competitive technologies based on deep learning algorithms. After studying the relationship between focus and gender recognition and focus and age estimation, we compare the results obtained by images defocused by Lytro software with images blurred by more standard filters in order to explore the difference between defocusing and blurring effects. In addition we investigate the impact of deblurring on defocused images with the goal to better understand the different impacts of defocusing and standard blurring on gender and age estimation.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.
2012-01-01
In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237
Multi-spectral confocal microendoscope for in-vivo imaging
NASA Astrophysics Data System (ADS)
Rouse, Andrew Robert
The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.
Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi
2014-01-01
The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.
Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera
NASA Astrophysics Data System (ADS)
Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund
2016-03-01
We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.
Steganalysis feature improvement using expectation maximization
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M.; Peterson, Gilbert L.; Agaian, Sos S.
2007-04-01
Images and data files provide an excellent opportunity for concealing illegal or clandestine material. Currently, there are over 250 different tools which embed data into an image without causing noticeable changes to the image. From a forensics perspective, when a system is confiscated or an image of a system is generated the investigator needs a tool that can scan and accurately identify files suspected of containing malicious information. The identification process is termed the steganalysis problem which focuses on both blind identification, in which only normal images are available for training, and multi-class identification, in which both the clean and stego images at several embedding rates are available for training. In this paper an investigation of a clustering and classification technique (Expectation Maximization with mixture models) is used to determine if a digital image contains hidden information. The steganalysis problem is for both anomaly detection and multi-class detection. The various clusters represent clean images and stego images with between 1% and 10% embedding percentage. Based on the results it is concluded that the EM classification technique is highly suitable for both blind detection and the multi-class problem.
NASA Astrophysics Data System (ADS)
Fernandez Galarreta, J.; Kerle, N.; Gerke, M.
2015-06-01
Structural damage assessment is critical after disasters but remains a challenge. Many studies have explored the potential of remote sensing data, but limitations of vertical data persist. Oblique imagery has been identified as more useful, though the multi-angle imagery also adds a new dimension of complexity. This paper addresses damage assessment based on multi-perspective, overlapping, very high resolution oblique images obtained with unmanned aerial vehicles (UAVs). 3-D point-cloud assessment for the entire building is combined with detailed object-based image analysis (OBIA) of façades and roofs. This research focuses not on automatic damage assessment, but on creating a methodology that supports the often ambiguous classification of intermediate damage levels, aiming at producing comprehensive per-building damage scores. We identify completely damaged structures in the 3-D point cloud, and for all other cases provide the OBIA-based damage indicators to be used as auxiliary information by damage analysts. The results demonstrate the usability of the 3-D point-cloud data to identify major damage features. Also the UAV-derived and OBIA-processed oblique images are shown to be a suitable basis for the identification of detailed damage features on façades and roofs. Finally, we also demonstrate the possibility of aggregating the multi-perspective damage information at building level.
Implementation and image processing of a multi-focusing bionic compound eye
NASA Astrophysics Data System (ADS)
Wang, Xin; Guo, Yongcai; Luo, Jiasai
2018-01-01
In this paper, a new BCE with multi-focusing microlens array (MLA) was proposed. The BCE consist of detachable micro-hole array (MHA), multi-focusing MLA and spherical substrate, thus allowing it to have a large FOV without crosstalk and stray light. The MHA was fabricated by the precision machining and the parameters of the microlens varied depend on the aperture of micro-hole, through which the implementation of the multi-focusing MLA was realized under the negative pressure. Without the pattern transfer and substrate reshaping, the whole fabrication method was capable of accomplishing within several minutes by using microinjection technology. Furthermore, the method is cost-effective and easy for operation, thus providing a feasible method for the mass production of the BCE. The corresponding image processing was used to realize the image stitching for the sub-image of each single microlens, which offering an integral image in large FOV. The image stitching was implemented through the overlap between the adjacent sub-images and the feature points between the adjacent sub-images were captured by the Harris point detection. By using the adaptive non-maximal suppression, numerous potential mismatching points were eliminated and the algorithm efficiency was proved effectively. Following this, the random sample consensus (RANSAC) was used for feature points matching, by which the relation of projection transformation of the image is obtained. The implementation of the accurate image matching was then realized after the smooth transition by weighted average method. Experimental results indicate that the image-stitching algorithm can be applied for the curved BCE in large field.
NASA Astrophysics Data System (ADS)
Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari
2008-03-01
In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.
Dynamic clustering detection through multi-valued descriptors of dermoscopic images.
Cozza, Valentina; Guarracino, Maria Rosario; Maddalena, Lucia; Baroni, Adone
2011-09-10
This paper introduces a dynamic clustering methodology based on multi-valued descriptors of dermoscopic images. The main idea is to support medical diagnosis to decide if pigmented skin lesions belonging to an uncertain set are nearer to malignant melanoma or to benign nevi. Melanoma is the most deadly skin cancer, and early diagnosis is a current challenge for clinicians. Most data analysis algorithms for skin lesions discrimination focus on segmentation and extraction of features of categorical or numerical type. As an alternative approach, this paper introduces two new concepts: first, it considers multi-valued data that scalar variables not only describe but also intervals or histogram variables; second, it introduces a dynamic clustering method based on Wasserstein distance to compare multi-valued data. The overall strategy of analysis can be summarized into the following steps: first, a segmentation of dermoscopic images allows to identify a set of multi-valued descriptors; second, we performed a discriminant analysis on a set of images where there is an a priori classification so that it is possible to detect which features discriminate the benign and malignant lesions; and third, we performed the proposed dynamic clustering method on the uncertain cases, which need to be associated to one of the two previously mentioned groups. Results based on clinical data show that the grading of specific descriptors associated to dermoscopic characteristics provides a novel way to characterize uncertain lesions that can help the dermatologist's diagnosis. Copyright © 2011 John Wiley & Sons, Ltd.
Ion source and beam guiding studies for an API neutron generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, A.; Ji, Q.; Persaud, A.
2013-04-19
Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ionmore » current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.« less
Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung
2017-07-08
Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.
Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung
2017-01-01
Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466
Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array.
Phillips, Zachary F; D'Ambrosio, Michael V; Tian, Lei; Rulison, Jared J; Patel, Hurshal S; Sadras, Nitin; Gande, Aditya V; Switz, Neil A; Fletcher, Daniel A; Waller, Laura
2015-01-01
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope--a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities.
Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array
Phillips, Zachary F.; D'Ambrosio, Michael V.; Tian, Lei; Rulison, Jared J.; Patel, Hurshal S.; Sadras, Nitin; Gande, Aditya V.; Switz, Neil A.; Fletcher, Daniel A.; Waller, Laura
2015-01-01
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope—a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities. PMID:25969980
Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.
Liu, Min; Wang, Xueping; Zhang, Hongzhong
2018-03-01
In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing
Wang, Zhaojun; Lei, Ming; Yao, Baoli; Cai, Yanan; Liang, Yansheng; Yang, Yanlong; Yang, Xibin; Li, Hui; Xiong, Daxi
2015-01-01
Autofocusing is a routine technique in redressing focus drift that occurs in time-lapse microscopic image acquisition. To date, most automatic microscopes are designed on the distance detection scheme to fulfill the autofocusing operation, which may suffer from the low contrast of the reflected signal due to the refractive index mismatch at the water/glass interface. To achieve high autofocusing speed with minimal motion artifacts, we developed a compact multi-band fluorescent microscope with an electrically tunable lens (ETL) device for autofocusing. A modified searching algorithm based on equidistant scanning and curve fitting is proposed, which no longer requires a single-peak focus curve and then efficiently restrains the impact of external disturbance. This technique enables us to achieve an autofocusing time of down to 170 ms and the reproductivity of over 97%. The imaging head of the microscope has dimensions of 12 cm × 12 cm × 6 cm. This portable instrument can easily fit inside standard incubators for real-time imaging of living specimens. PMID:26601001
Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening
NASA Astrophysics Data System (ADS)
Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry
2011-05-01
In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).
Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT
NASA Astrophysics Data System (ADS)
Shokouhi, S.; Metzler, S. D.; Wilson, D. W.; Peterson, T. E.
2009-01-01
We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.
Viewpoints on Medical Image Processing: From Science to Application
Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas
2013-01-01
Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804
Viewpoints on Medical Image Processing: From Science to Application.
Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas
2013-05-01
Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.
Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-12-20
In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.
ERIC Educational Resources Information Center
John, Benneaser; Thavavel, V.; Jayaraj, Jayakumar; Muthukumar, A.; Jeevanandam, Poornaselvan Kittu
2016-01-01
Academic writing skills are crucial when students, e.g., in teacher education programs, write their undergraduate theses. A multi-modal web-based and self-regulated learning resource on academic writing was developed, using texts, hypertext, moving images, podcasts and templates. A study, using surveys and a focus group, showed that students used…
Multi-Modality Phantom Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Peng, Qiyu; Moses, William W.
2009-03-20
Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-05
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-01
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
Ozturk, Hande; Yan, Hanfei; He, Yan; ...
2018-05-09
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; He, Yan
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Power, J F
2009-06-01
Light profile microscopy (LPM) is a direct method for the spectral depth imaging of thin film cross-sections on the micrometer scale. LPM uses a perpendicular viewing configuration that directly images a source beam propagated through a thin film. Images are formed in dark field contrast, which is highly sensitive to subtle interfacial structures that are invisible to reference methods. The independent focusing of illumination and imaging systems allows multiple registered optical sources to be hosted on a single platform. These features make LPM a powerful multi-contrast (MC) imaging technique, demonstrated in this work with six modes of imaging in a single instrument, based on (1) broad-band elastic scatter; (2) laser excited wideband luminescence; (3) coherent elastic scatter; (4) Raman scatter (three channels with RGB illumination); (5) wavelength resolved luminescence; and (6) spectral broadband scatter, resolved in immediate succession. MC-LPM integrates Raman images with a wider optical and morphological picture of the sample than prior art microprobes. Currently, MC-LPM resolves images at an effective spectral resolution better than 9 cm(-1), at a spatial resolution approaching 1 microm, with optics that operate in air at half the maximum numerical aperture of the prior art microprobes.
Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System
Lu, Yu; Wang, Keyi; Fan, Gongshu
2016-01-01
A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857
Underwater video enhancement using multi-camera super-resolution
NASA Astrophysics Data System (ADS)
Quevedo, E.; Delory, E.; Callicó, G. M.; Tobajas, F.; Sarmiento, R.
2017-12-01
Image spatial resolution is critical in several fields such as medicine, communications or satellite, and underwater applications. While a large variety of techniques for image restoration and enhancement has been proposed in the literature, this paper focuses on a novel Super-Resolution fusion algorithm based on a Multi-Camera environment that permits to enhance the quality of underwater video sequences without significantly increasing computation. In order to compare the quality enhancement, two objective quality metrics have been used: PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural SIMilarity) index. Results have shown that the proposed method enhances the objective quality of several underwater sequences, avoiding the appearance of undesirable artifacts, with respect to basic fusion Super-Resolution algorithms.
Coherent beam control through inhomogeneous media in multi-photon microscopy
NASA Astrophysics Data System (ADS)
Paudel, Hari Prasad
Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.
MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, K.
At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less
Designing a Website to Support Students' Academic Writing Process
ERIC Educational Resources Information Center
Åberg, Eva Svärdemo; Ståhle, Ylva; Engdahl, Ingrid; Knutes-Nyqvist, Helen
2016-01-01
Academic writing skills are crucial when students, e.g., in teacher education programs, write their undergraduate theses. A multi-modal web-based and self-regulated learning resource on academic writing was developed, using texts, hypertext, moving images, podcasts and templates. A study, using surveys and a focus group, showed that students used…
Multi-focal HIFU reduces cavitation in mild-hyperthermia.
Chaplin, Vandiver; Caskey, Charles F
2017-01-01
Mild-hyperthermia therapy (40-45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5 W, and created heating that was more spatially diffuse than single focus, resulting in more voxels in the mild heating (3-8 °C) range. Multi-focal HIFU can be used to achieve mild temperature elevation and reduce cavitation activity.
Abrahamsson, Sara; McQuilken, Molly; Mehta, Shalin B.; Verma, Amitabh; Larsch, Johannes; Ilic, Rob; Heintzmann, Rainer; Bargmann, Cornelia I.; Gladfelter, Amy S.; Oldenbourg, Rudolf
2015-01-01
We have developed an imaging system for 3D time-lapse polarization microscopy of living biological samples. Polarization imaging reveals the position, alignment and orientation of submicroscopic features in label-free as well as fluorescently labeled specimens. Optical anisotropies are calculated from a series of images where the sample is illuminated by light of different polarization states. Due to the number of images necessary to collect both multiple polarization states and multiple focal planes, 3D polarization imaging is most often prohibitively slow. Our MF-PolScope system employs multifocus optics to form an instantaneous 3D image of up to 25 simultaneous focal-planes. We describe this optical system and show examples of 3D multi-focus polarization imaging of biological samples, including a protein assembly study in budding yeast cells. PMID:25837112
An algorithm for pavement crack detection based on multiscale space
NASA Astrophysics Data System (ADS)
Liu, Xiang-long; Li, Qing-quan
2006-10-01
Conventional human-visual and manual field pavement crack detection method and approaches are very costly, time-consuming, dangerous, labor-intensive and subjective. They possess various drawbacks such as having a high degree of variability of the measure results, being unable to provide meaningful quantitative information and almost always leading to inconsistencies in crack details over space and across evaluation, and with long-periodic measurement. With the development of the public transportation and the growth of the Material Flow System, the conventional method can far from meet the demands of it, thereby, the automatic pavement state data gathering and data analyzing system come to the focus of the vocation's attention, and developments in computer technology, digital image acquisition, image processing and multi-sensors technology made the system possible, but the complexity of the image processing always made the data processing and data analyzing come to the bottle-neck of the whole system. According to the above description, a robust and high-efficient parallel pavement crack detection algorithm based on Multi-Scale Space is proposed in this paper. The proposed method is based on the facts that: (1) the crack pixels in pavement images are darker than their surroundings and continuous; (2) the threshold values of gray-level pavement images are strongly related with the mean value and standard deviation of the pixel-grey intensities. The Multi-Scale Space method is used to improve the data processing speed and minimize the effectiveness caused by image noise. Experiment results demonstrate that the advantages are remarkable: (1) it can correctly discover tiny cracks, even from very noise pavement image; (2) the efficiency and accuracy of the proposed algorithm are superior; (3) its application-dependent nature can simplify the design of the entire system.
Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo
2018-05-03
Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.
Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.
Greenbaum, Alon; Zhang, Yibo; Feizi, Alborz; Chung, Ping-Luen; Luo, Wei; Kandukuri, Shivani R; Ozcan, Aydogan
2014-12-17
Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings. Copyright © 2014, American Association for the Advancement of Science.
Sensitivity images for multi-view ultrasonic array inspection
NASA Astrophysics Data System (ADS)
Budyn, Nicolas; Bevan, Rhodri; Croxford, Anthony J.; Zhang, Jie; Wilcox, Paul D.; Kashubin, Artem; Cawley, Peter
2018-04-01
The multi-view total focusing method (TFM) is an imaging technique for ultrasonic full matrix array data that typically exploits ray paths with zero, one or two internal reflections in the inspected object and for all combinations of longitudinal and transverse modes. The fusion of this vast quantity of views is expected to increase the reliability of ultrasonic inspection; however, it is not trivial to determine which views and which areas are the most suited for the detection of a given type and orientation of defect. This work introduces sensitivity images that give the expected response of a defect in any part of the inspected object and for any view. These images are based on a ray-based analytical forward model. They can be used to determine which views and which areas lead to the highest probability of detection of the defect. They can also be used for quantitatively analyzing the effects of the parameters of the inspection (probe angle and position, for example) on the overall probability of detection. Finally, they can be used to rescale TFM images so that the different views have comparable amplitudes. This methodology is applied to experimental data and discussed.
Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio
2012-12-01
An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.
NASA Astrophysics Data System (ADS)
Yin, Biwei; Liang, Chia-Pin; Vuong, Barry; Tearney, Guillermo J.
2017-02-01
Conventional OCT images, obtained using a focused Gaussian beam have a lateral resolution of approximately 30 μm and a depth of focus (DOF) of 2-3 mm, defined as the confocal parameter (twice of Gaussian beam Rayleigh range). Improvement of lateral resolution without sacrificing imaging range requires techniques that can extend the DOF. Previously, we described a self-imaging wavefront division optical system that provided an estimated one order of magnitude DOF extension. In this study, we further investigate the properties of the coaxially focused multi-mode (CAFM) beam created by this self-imaging wavefront division optical system and demonstrate its feasibility for real-time biological tissue imaging. Gaussian beam and CAFM beam fiber optic probes with similar numerical apertures (objective NA≈0.5) were fabricated, providing lateral resolutions of approximately 2 μm. Rigorous lateral resolution characterization over depth was performed for both probes. The CAFM beam probe was found to be able to provide a DOF that was approximately one order of magnitude greater than that of Gaussian beam probe. By incorporating the CAFM beam fiber optic probe into a μOCT system with 1.5 μm axial resolution, we were able to acquire cross-sectional images of swine small intestine ex vivo, enabling the visualization of subcellular structures, providing high quality OCT images over more than a 300 μm depth range.
Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
NASA Astrophysics Data System (ADS)
Liu, Rui-Xue; Zheng, Xian-Liang; Li, Da-Yu; Xia, Ming-Liang; Hu, Li-Fa; Cao, Zhao-Liang; Mu, Quan-Quan; Xuan, Li
2014-09-01
With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia
2018-05-01
The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.
Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying
2013-01-01
High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable MatLab project at http://iclab.life.nctu.edu.tw/HCS-Neurons. Few automatic methods focus on analyzing multi-neuron images collected from HCS used in drug discovery. We provided an automatic HCS-based method for generating accurate classifiers to classify neurons based on their phenotypic changes upon drug treatments. The proposed HCS-neurons method is helpful in identifying and classifying chemical or biological molecules that alter the morphology of a group of neurons in HCS.
Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Abdessetar, M.; Zhong, Y.
2017-09-01
Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
Super-resolution mapping using multi-viewing CHRIS/PROBA data
NASA Astrophysics Data System (ADS)
Dwivedi, Manish; Kumar, Vinay
2016-04-01
High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.
Digital sun sensor multi-spot operation.
Rufino, Giancarlo; Grassi, Michele
2012-11-28
The operation and test of a multi-spot digital sun sensor for precise sun-line determination is described. The image forming system consists of an opaque mask with multiple pinhole apertures producing multiple, simultaneous, spot-like images of the sun on the focal plane. The sun-line precision can be improved by averaging multiple simultaneous measures. Nevertheless, the sensor operation on a wide field of view requires acquiring and processing images in which the number of sun spots and the related intensity level are largely variable. To this end, a reliable and robust image acquisition procedure based on a variable shutter time has been considered as well as a calibration function exploiting also the knowledge of the sun-spot array size. Main focus of the present paper is the experimental validation of the wide field of view operation of the sensor by using a sensor prototype and a laboratory test facility. Results demonstrate that it is possible to keep high measurement precision also for large off-boresight angles.
Shape priors for segmentation of the cervix region within uterine cervix images
NASA Astrophysics Data System (ADS)
Lotenberg, Shelly; Gordon, Shiri; Greenspan, Hayit
2008-03-01
The work focuses on a unique medical repository of digital Uterine Cervix images ("Cervigrams") collected by the National Cancer Institute (NCI), National Institute of Health, in longitudinal multi-year studies. NCI together with the National Library of Medicine is developing a unique web-based database of the digitized cervix images to study the evolution of lesions related to cervical cancer. Tools are needed for the automated analysis of the cervigram content to support the cancer research. In recent works, a multi-stage automated system for segmenting and labeling regions of medical and anatomical interest within the cervigrams was developed. The current paper concentrates on incorporating prior-shape information in the cervix region segmentation task. In accordance with the fact that human experts mark the cervix region as circular or elliptical, two shape models (and corresponding methods) are suggested. The shape models are embedded within an active contour framework that relies on image features. Experiments indicate that incorporation of the prior shape information augments previous results.
NASA Astrophysics Data System (ADS)
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-01
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-10
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
2013-09-01
Results from the GelOE optical engineering software are presented for the through-focus, monochromatic coherent and polychromatic incoherent imaging of a radial "star" target for equivalent t-number circular and Gaussian pupils. The FFT-based simulations are carried out using OpenMP threading on a multi-core desktop computer, with and without the aid of a many-core NVIDIA GPU accessing its cuFFT library. It is found that a custom FFT optimized for the 12-core host has similar performance to a simply implemented 256-core GPU FFT. A more sophisticated version of the latter but tuned to reduce overhead on a 448-core GPU is 20 to 28 times faster than a basic FFT implementation running on one CPU core.
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-01-01
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-12-25
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.
Threshold multi-secret sharing scheme based on phase-shifting interferometry
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng; Wen, Wei; Shi, Zhengang
2017-03-01
A threshold multi-secret sharing scheme is proposed based on phase-shifting interferometry. The K secret images to be shared are firstly encoded by using Fourier transformation, respectively. Then, these encoded images are shared into many shadow images based on recording principle of the phase-shifting interferometry. In the recovering stage, the secret images can be restored by combining any 2 K + 1 or more shadow images, while any 2 K or fewer shadow images cannot obtain any information about the secret images. As a result, a (2 K + 1 , N) threshold multi-secret sharing scheme can be implemented. Simulation results are presented to demonstrate the feasibility of the proposed method.
Instance annotation for multi-instance multi-label learning
F. Briggs; X.Z. Fern; R. Raich; Q. Lou
2013-01-01
Multi-instance multi-label learning (MIML) is a framework for supervised classification where the objects to be classified are bags of instances associated with multiple labels. For example, an image can be represented as a bag of segments and associated with a list of objects it contains. Prior work on MIML has focused on predicting label sets for previously unseen...
Real-time blind image deconvolution based on coordinated framework of FPGA and DSP
NASA Astrophysics Data System (ADS)
Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun
2015-10-01
Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-05-11
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-01-01
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879
Magnetic Nanoparticles for Multi-Imaging and Drug Delivery
Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo
2013-01-01
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479
NASA Astrophysics Data System (ADS)
van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.
2018-01-01
Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.
Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.
Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan
2018-02-03
As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Maximizing Science Return from Future Mars Missions with Onboard Image Analyses
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Bandari, E. B.; Roush, T. L.
2000-01-01
We have developed two new techniques to enhance science return and to decrease returned data volume for near-term Mars missions: 1) multi-spectral image compression and 2) autonomous identification and fusion of in-focus regions in an image series.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
Depth estimation and camera calibration of a focused plenoptic camera for visual odometry
NASA Astrophysics Data System (ADS)
Zeller, Niclas; Quint, Franz; Stilla, Uwe
2016-08-01
This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.
Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints
NASA Astrophysics Data System (ADS)
Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.
2018-05-01
Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.
EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.
Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos
2015-01-01
Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.
Heideklang, René; Shokouhi, Parisa
2016-01-01
This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200
Detecting early stage pressure ulcer on dark skin using multispectral imager
NASA Astrophysics Data System (ADS)
Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Chao; Wang, Fengtao; Liu, Fuhan; Wang, Jiwu; Zhao, Futing
2009-10-01
This paper introduces a novel idea, innovative technology in building multi spectral imaging based device. The benefit from them is people can have low cost, handheld and standing alone device which makes acquire multi spectral images real time with just a snapshot. The paper for the first time publishes some images got from such prototyped miniaturized multi spectral imager.
The iMars web-GIS - spatio-temporal data queries and single image web map services
NASA Astrophysics Data System (ADS)
Walter, S. H. G.; Steikert, R.; Schreiner, B.; Sidiropoulos, P.; Tao, Y.; Muller, J.-P.; Putry, A. R. D.; van Gasselt, S.
2017-09-01
We introduce a new approach for a system dedicated to planetary surface change detection by simultaneous visualisation of single-image time series in a multi-temporal context. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs.
Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1983-01-01
Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.
Light field measurement based on the single-lens coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Shen, Cheng; Tan, Jiubin; Liu, Zhengjun
2018-01-01
Plenoptic camera and holography are popular light field measurement techniques. However, the low resolution or the complex apparatus hinders their widespread application. In this paper, we put forward a new light field measurement scheme. The lens is introduced into coherent diffraction imaging to operate an optical transform, extended fractional Fourier transform. Combined with the multi-image phase retrieval algorithm, the scheme is proved to hold several advantages. It gets rid of the support requirement and is much easier to implement while keeping a high resolution by making full use of the detector plane. Also, it is verified that our scheme has a superiority over the direct lens focusing imaging in amplitude measurement accuracy and phase retrieval ability.
NASA Astrophysics Data System (ADS)
Razguli, A. V.; Iroshnikov, N. G.; Larichev, A. V.; Romanenko, T. E.; Goncharov, A. S.
2017-05-01
In this paper we deal with the problem of optical sectioning. This is a post processing step while investigating of 3D translucent medical objects based on rapid refocusing of the imaging system by the adaptive optics technique. Each image, captured in focal plane, can be represented as the sum of in-focus true section and out-of-focus images of the neighboring sections of the depth that are undesirable in the subsequent reconstruction of 3D object. The problem of optical sectioning under consideration is to elaborate a robust approach capable of obtaining a stack of cross section images purified from such distortions. For a typical sectioning statement arising in ophthalmology we propose a local iterative method in Fourier spectral plane. Compared to the non-local constant parameter selection for the whole spectral domain, the method demonstrates both improved sectioning results and a good level of scalability when implemented on multi-core CPUs.
Ouldarbi, L; Talbi, M; Coëtmellec, S; Lebrun, D; Gréhan, G; Perret, G; Brunel, M
2016-11-10
We realize simplified-tomography experiments on irregular rough particles using interferometric out-of-focus imaging. Using two angles of view, we determine the global 3D-shape, the dimensions, and the 3D-orientation of irregular rough particles whose morphologies belong to families such as sticks, plates, and crosses.
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
Wu, Wenchuan; Fang, Sheng; Guo, Hua
2014-06-01
Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.
Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).
Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge
2011-11-01
We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations.
Enhanced Imaging of Specific Cell-Surface Glycosylation Based on Multi-FRET.
Yuan, Baoyin; Chen, Yuanyuan; Sun, Yuqiong; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Meng, Xiangxian; Yang, Xiaohai; Wen, Xiaohong; Li, Zenghui; Li, Lie; Wang, Kemin
2018-05-15
Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Qu, Xiaobo; He, Yifan
2018-01-01
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate
NASA Astrophysics Data System (ADS)
Luo, Jiasai; Guo, Yongcai; Wang, Xin; Fan, Fenglian
2017-04-01
Miniaturized artificial compound eyes with a large field of view (FOV) have potential application in the area of micro-optical-electro-mechanical-system (MOEMS). A new non-uniform microlens array (MLA) on a negative meniscus substrate, fabricated by the melting photoresist method, was proposed in this paper. The multi-focusing MLA reduced the defocus effectively, which was caused by the uniform array on a spherical substrate. Moreover, like most ommatidia in compound eyes, each microlens of the multi-focusing MLA was arranged in one of the eleven concentric circles. In order to match with the multi-focusing MLA and avoid the total reflection, the negative meniscus substrate was fabricated by a homebuilt mold with a micro-hole array and polydimethylsiloxane coelomic compartment attached. The coelomic compartment is capable of offering an excellent injection environment without bubbles and impurities. Due to the direct 3D implementation of the MLA, rich available materials can be used by this method without substrate reshaping. As the molding material, the ultraviolet curing adhesive NOA81 can be cured within ten few seconds under ultraviolet which relieve intensive labor and protect the stereolithography apparatus effectively. The experimental results show that this new MLA has a better imaging performance, higher light usage efficiency and larger FOV because of the negative meniscus and multi-focusing MLA. Moreover, due to the homebuilt mold, more accurate geometrical parameters and shorter processing cycle were realized. Accordingly, together with an appropriate hardware, this MLA has diverse potential applications in medical imaging, military and machine vision.
Falahati, Farshad; Westman, Eric; Simmons, Andrew
2014-01-01
Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.
Lee, Junghoon; Carass, Aaron; Jog, Amod; Zhao, Can; Prince, Jerry L
2017-02-01
Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multi-atlas-based hybrid synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to the target MR images by multi-channel deformable registration, from which the atlas CT images are deformed and fused by locally-weighted averaging using a structural similarity measure (SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on brain cancer patient data, and showed a noticeable improvement for the tumor region.
Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro
Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo
2010-01-01
Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368
Dolled-Filhart, Marisa P; Gustavson, Mark D
2012-11-01
Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.
Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution
NASA Astrophysics Data System (ADS)
Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin
2017-09-01
Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.
Research on segmentation based on multi-atlas in brain MR image
NASA Astrophysics Data System (ADS)
Qian, Yuejing
2018-03-01
Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.
Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine.
Zhou, Yang; Han, Xiaoxia; Jing, Xiangxiang; Chen, Yu
2017-09-01
Ultrasound (US)-based biomedicine has been extensively explored for its applications in both diagnostic imaging and disease therapy. The fast development of theranostic nanomedicine significantly promotes the development of US-based biomedicine. This progress report summarizes and discusses the recent developments of rational design and fabrication of silica-based micro/nanoparticles for versatile US-based biomedical applications. The synthetic strategies and surface-engineering approaches of silica-based micro/nanoparticles are initially discussed, followed by detailed introduction on their US-based theranostic applications. They have been extensively explored in contrast-enhanced US imaging, US-based multi-modality imaging, synergistic high-intensity focused US (HIFU) ablation, sonosensitizer-enhanced sonodynamic therapy (SDT), as well as US-triggered chemotherapy. Their biological effects and biosafety have been briefly discussed to guarantee further clinical translation. Based on the high biocompatibility, versatile composition/structure and high performance in US-based theranostic biomedicine, these silica-based theranostic agents are expected to pave a new way for achieving efficient US-based theranostics of disease by taking the specific advantages of material science, nanotechnology and US-based biomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT
Mok, Greta S. P.; Du, Yong; Wang, Yuchuan; Frey, Eric C.; Tsui, Benjamin M. W.
2011-01-01
Purpose In this work, we developed and validated a Monte Carlo simulation (MCS) tool for investigation and evaluation of multi-pinhole (MPH) SPECT imaging. Procedures This tool was based on a combination of the SimSET and MCNP codes. Photon attenuation and scatter in the object, as well as penetration and scatter through the collimator detector, are modeled in this tool. It allows accurate and efficient simulation of MPH SPECT with focused pinhole apertures and user-specified photon energy, aperture material, and imaging geometry. The MCS method was validated by comparing the point response function (PRF), detection efficiency (DE), and image profiles obtained from point sources and phantom experiments. A prototype single-pinhole collimator and focused four- and five-pinhole collimators fitted on a small animal imager were used for the experimental validations. We have also compared computational speed among various simulation tools for MPH SPECT, including SimSET-MCNP, MCNP, SimSET-GATE, and GATE for simulating projections of a hot sphere phantom. Results We found good agreement between the MCS and experimental results for PRF, DE, and image profiles, indicating the validity of the simulation method. The relative computational speeds for SimSET-MCNP, MCNP, SimSET-GATE, and GATE are 1: 2.73: 3.54: 7.34, respectively, for 120-view simulations. We also demonstrated the application of this MCS tool in small animal imaging by generating a set of low-noise MPH projection data of a 3D digital mouse whole body phantom. Conclusions The new method is useful for studying MPH collimator designs, data acquisition protocols, image reconstructions, and compensation techniques. It also has great potential to be applied for modeling the collimator-detector response with penetration and scatter effects for MPH in the quantitative reconstruction method. PMID:19779896
Jungmann, Julia H; Heeren, Ron M A
2013-01-15
Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2004-09-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
NASA Astrophysics Data System (ADS)
Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing
2018-02-01
For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Kim, Sun Hyung; Styner, Martin
2016-03-01
The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.
An improved feature extraction algorithm based on KAZE for multi-spectral image
NASA Astrophysics Data System (ADS)
Yang, Jianping; Li, Jun
2018-02-01
Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.
Zhou, Tao; Li, Zhaofu; Pan, Jianjun
2018-01-27
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
Fast Image Subtraction Using Multi-cores and GPUs
NASA Astrophysics Data System (ADS)
Hartung, Steven; Shukla, H.
2013-01-01
Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.
Intelligent multi-spectral IR image segmentation
NASA Astrophysics Data System (ADS)
Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert
2017-05-01
This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.
Multi-focus image fusion algorithm using NSCT and MPCNN
NASA Astrophysics Data System (ADS)
Liu, Kang; Wang, Lianli
2018-04-01
Based on nonsubsampled contourlet transform (NSCT) and modified pulse coupled neural network (MPCNN), the paper proposes an effective method of image fusion. Firstly, the paper decomposes the source image into the low-frequency components and high-frequency components using NSCT, and then processes the low-frequency components by regional statistical fusion rules. For high-frequency components, the paper calculates the spatial frequency (SF), which is input into MPCNN model to get relevant coefficients according to the fire-mapping image of MPCNN. At last, the paper restructures the final image by inverse transformation of low-frequency and high-frequency components. Compared with the wavelet transformation (WT) and the traditional NSCT algorithm, experimental results indicate that the method proposed in this paper achieves an improvement both in human visual perception and objective evaluation. It indicates that the method is effective, practical and good performance.
Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.
Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan
2017-09-01
Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
LUNA: low-flying UAV-based forest monitoring system
NASA Astrophysics Data System (ADS)
Keizer, Jan Jacob; Pereira, Luísa; Pinto, Glória; Alves, Artur; Barros, Antonio; Boogert, Frans-Joost; Cambra, Sílvia; de Jesus, Cláudia; Frankenbach, Silja; Mesquita, Raquel; Serôdio, João; Martins, José; Almendra, Ricardo
2015-04-01
The LUNA project is aiming to develop an information system for precision forestry and, in particular, the monitoring of eucalypt plantations that is first and foremost based on multi-spectral imagery acquired using low-flying uav's. The presentation will focus on the first phase of image acquisition, processing and analysis for a series of pot experiments addressing main threats for early-stage eucalypt plantations in Portugal, i.e. acute , chronic and cyclic hydric stress, nutrient stress, fungal infections and insect plague attacks. The imaging results will be compared with spectroscopic measurements as well as with eco-physiological and plant morphological measurements. Furthermore, the presentation will show initial results of the project's second phase, comprising field tests in existing eucalypt plantations in north-central Portugal.
Implementation of total focusing method for phased array ultrasonic imaging on FPGA
NASA Astrophysics Data System (ADS)
Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2015-02-01
This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.
NASA Astrophysics Data System (ADS)
Davis, Brynmor J.
Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in the axial dimension as the diffraction-limited focal volume produced by a lens is more extensive along the optical axis than perpendicular to it. Approaches such as confocal microscopy and 4Pi microscopy have been developed to improve the axial resolution. Spectral Self-Interference Fluorescence Microscopy (SSFM) is another high-axial-resolution technique and is the principal subject of this dissertation. Nanometer-precision localization of a single fluorescent layer has been demonstrated using SSFM. This accuracy compares favorably with the axial resolutions given by confocal and 4Pi systems at similar operating parameters (these resolutions are approximately 350nm and 80nm respectively). This theoretical work analyzes the expected performance of the SSFM system when imaging a general object, i.e. an arbitrary fluorophore density function rather than a single layer. An existing model of SSFM is used in simulations to characterize the system's resolution. Several statistically-based reconstruction methods are applied to show that the expected resolution for SSFM is similar to 4Pi microscopy for a general object but does give very high localization accuracy when the object is known to consist of a limited number of layers. SSFM is then analyzed in a linear systems framework and shown to have strong connections, both physically and mathematically, to a multi-channel 4Pi microscope. Fourier-domain analysis confirms that SSFM cannot be expected to outperform this multi-channel 4Pi instrument. Differences between the channels in spatial-scanning, multi-channel microscopies are then exploited to show that such instruments can operate at a sub-Nyquist scanning rate but still produce images largely free of aliasing effects. Multi-channel analysis is also used to show how light typically discarded in confocal and 4Pi systems can be collected and usefully incorporated into the measured image.
Feature-based Alignment of Volumetric Multi-modal Images
Toews, Matthew; Zöllei, Lilla; Wells, William M.
2014-01-01
This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Multi-frame image processing with panning cameras and moving subjects
NASA Astrophysics Data System (ADS)
Paolini, Aaron; Humphrey, John; Curt, Petersen; Kelmelis, Eric
2014-06-01
Imaging scenarios commonly involve erratic, unpredictable camera behavior or subjects that are prone to movement, complicating multi-frame image processing techniques. To address these issues, we developed three techniques that can be applied to multi-frame image processing algorithms in order to mitigate the adverse effects observed when cameras are panning or subjects within the scene are moving. We provide a detailed overview of the techniques and discuss the applicability of each to various movement types. In addition to this, we evaluated algorithm efficacy with demonstrated benefits using field test video, which has been processed using our commercially available surveillance product. Our results show that algorithm efficacy is significantly improved in common scenarios, expanding our software's operational scope. Our methods introduce little computational burden, enabling their use in real-time and low-power solutions, and are appropriate for long observation periods. Our test cases focus on imaging through turbulence, a common use case for multi-frame techniques. We present results of a field study designed to test the efficacy of these techniques under expanded use cases.
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapur, T.
At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less
MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siewerdsen, J.
At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
Exploring plenoptic properties of correlation imaging with chaotic light
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Vaccarelli, Ornella; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena
2017-11-01
In a setup illuminated by chaotic light, we consider different schemes that enable us to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows us to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.
Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.
Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua
2018-02-01
Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.
High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke
2017-04-01
We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.
Fusion of infrared polarization and intensity images based on improved toggle operator
NASA Astrophysics Data System (ADS)
Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua
2018-01-01
Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.
Pichardo, Samuel; Köhler, Max; Lee, Justin; Hynnyen, Kullervo
2014-12-01
In this in vivo study, the feasibility to perform hyperthermia treatments in the head and neck using magnetic resonance image-guided high intensity focused ultrasound (MRgHIFU) was established using a porcine acute model. Porcine specimens with a weight between 17 and 18 kg were treated in the omohyoid muscle in the neck. Hyperthermia was applied with a target temperature of 41 °C for 30 min using a Sonalleve MRgHIFU system. MR-based thermometry was calculated using water-proton resonance frequency shift and multi-baseline look-up tables indexed by peak-to-peak displacement (Dpp) measurements using a pencil-beam navigator. Three hyperthermia experiments were conducted at different Dpp values of 0.2, 1.0 and 3.0 mm. An optimisation study was carried out to establish the optimal parameters controlling the multi-baseline method that ensured a minimisation of spatial-average peak-to-peak temperature (TSA-pp) and temperature direct current bias (TSA-DC). The multi-baseline technique reduced considerably the noise on both TSA-pp and TSA-DC. The reduction of noise was more important when Dpp was higher. For Dpp = 3 mm the average (±standard deviation (SD)) of TSA-pp and TSA-DC was reduced from 4.5 (± 2.5) and 2.5 (±0.6) °C, respectively, to 0.8 (± 0.7) and 0.09 (± 0.2) °C. This in vivo study showed the level of noise in PRFS-based thermometry introduced by respiratory motion in the context of MRgHIFU hyperthermia treatment for head and neck and the feasibility of reducing this noise using a multi-baseline technique.
A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum. PMID:23112656
A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan
2015-01-01
Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145
MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekhar, R.
At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less
Image degradation characteristics and restoration based on regularization for diffractive imaging
NASA Astrophysics Data System (ADS)
Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun
2017-11-01
The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.
Eisen, Sarajane L; Ulrich, Roger S; Shepley, Mardelle M; Varni, James W; Sherman, Sandra
2008-09-01
Art is assumed to possess therapeutic benefits of healing for children, as part of patient-focused design in health care. Since the psychological and physiological well-being of children in health care settings is extremely important in contributing to the healing process, it is vitally important to identify what type of art supports stress reduction. Based on adult studies, nature art was anticipated to be the most preferred and to have stress-reducing effects on pediatric patients. Nature art refers to art images dominated by natural vegetation, flowers or water. The objective of this study was to investigate what type of art image children prefer, and what type of art image has potentially stress-reducing effects on children in hospitals. This study used a three-phase, multi-method approach with children aged 5-17 years: a focus group study (129 participants), a randomized study (48 participants), and a quasi-experimental study design (48 participants). Findings were evaluated from three phases.
Multi-access laser communications terminal
NASA Technical Reports Server (NTRS)
1992-01-01
The Optical Multi-Access (OMA) Terminal is capable of establishing up to six simultaneous high-data-rate communication links between low-Earth-orbit satellites and a host satellite at synchronous orbit with only one 16-inch-diameter antenna on the synchronous satellite. The advantage over equivalent RF systems in space weight, power, and swept volume is great when applied to NASA satellite communications networks. A photograph of the 3-channel prototype constructed under the present contract to demonstrate the feasibility of the concept is presented. The telescope has a 10-inch clear aperture and a 22 deg full field of view. It consists of 4 refractive elements to achieve a telecentric focus, i.e., the focused beam is normal to the focal plane at all field angles. This feature permits image pick-up optics in the focal plane to track satellite images without tilting their optic axes to accommodate field angle. The geometry of the imager-pick-up concept and the coordinate system of the swinging arm and disk mechanism for image pick-up are shown. Optics in the arm relay the telescope focus to a communications and tracking receiver and introduce the transmitted beacon beam on a path collinear with the receive path. The electronic circuits for the communications and tracking receivers are contained on the arm and disk assemblies and relay signals to an associated PC-based operator's console for control of the arm and disk motor drive through a flexible cable which permits +/- 240 deg travel for each arm and disk assembly. Power supplies and laser transmitters are mounted in the cradle for the telescope. A single-mode fiber in the cable is used to carry the laser transmitter signal to the arm optics. The promise of the optical multi-access terminal towards which the prototype effort worked is shown. The emphasis in the prototype development was the demonstration of the unique aspect of the concept, and where possible, cost avoidance compromises were implemented in areas already proven on other programs. The design details are described in section 2, the prototype test results in section 3, additional development required in section 4, and conclusions in section 5.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2006-06-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2008-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2015-03-01
The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts. PMID:28360851
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework.
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.
MO-E-12A-01: Quantitative Imaging: Techniques, Applications, and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, E; Jeraj, R; McNitt-Gray, M
The first symposium in the Quantitative Imaging Track focused on the introduction of quantitative imaging (QI) by illustrating the potential of QI in diagnostic and therapeutic applications in research and patient care, highlighting key challenges in implementation of such QI applications, and reviewing QI efforts of selected national and international agencies and organizations, including the FDA, NCI, NIST, and RSNA. This second QI symposium will focus more specifically on the techniques, applications, and challenges of QI. The first talk of the session will focus on modalityagnostic challenges of QI, beginning with challenges of the development and implementation of QI applicationsmore » in single-center, single-vendor settings and progressing to the challenges encountered in the most general setting of multi-center, multi-vendor settings. The subsequent three talks will focus on specific QI challenges and opportunities in the modalityspecific settings of CT, PET/CT, and MR. Each talk will provide information on modality-specific QI techniques, applications, and challenges, including current efforts focused on solutions to such challenges. Learning Objectives: Understand key general challenges of QI application development and implementation, regardless of modality. Understand selected QI techniques and applications in CT, PET/CT, and MR. Understand challenges, and potential solutions for such challenges, for the applications presented for each modality.« less
Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Maeda, Shin; Tanaka, Katsuaki; Ohto, Masao; Ito, Ryu; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang, Zhi-Biao
2013-12-01
We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.
NASA Astrophysics Data System (ADS)
Wahbeh, W.; Nebiker, S.
2017-08-01
In our paper, we document experiments and results of image-based 3d reconstructions of famous heritage monuments which were recently damaged or completely destroyed by the so-called Islamic state in Syria and Iraq. The specific focus of our research is on the combined use of professional photogrammetric imagery and of publicly available imagery from the web for optimally 3d reconstructing those monuments. The investigated photogrammetric reconstruction techniques include automated bundle adjustment and dense multi-view 3d reconstruction using public domain and professional imagery on the one hand and an interactive polygonal modelling based on projected panoramas on the other. Our investigations show that the combination of these two image-based modelling techniques delivers better results in terms of model completeness, level of detail and appearance.
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
SW-MW infrared spectrometer for lunar mission
NASA Astrophysics Data System (ADS)
Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.
2016-04-01
SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.
NASA Astrophysics Data System (ADS)
Drass, Holger; Vanzi, Leonardo; Torres-Torriti, Miguel; Dünner, Rolando; Shen, Tzu-Chiang; Belmar, Francisco; Dauvin, Lousie; Staig, Tomás.; Antognini, Jonathan; Flores, Mauricio; Luco, Yerko; Béchet, Clémentine; Boettger, David; Beard, Steven; Montgomery, David; Watson, Stephen; Cabral, Alexandre; Hayati, Mahmoud; Abreu, Manuel; Rees, Phil; Cirasuolo, Michele; Taylor, William; Fairley, Alasdair
2016-08-01
The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will cover the Very Large Telescope's (VLT) field of view with 1000 fibres. The fibres will be mounted on fibre positioning units (FPU) implemented as two-DOF robot arms to ensure a homogeneous coverage of the 500 square arcmin field of view. To accurately and fast determine the position of the 1000 fibres a metrology system has been designed. This paper presents the hardware and software design and performance of the metrology system. The metrology system is based on the analysis of images taken by a circular array of 12 cameras located close to the VLTs derotator ring around the Nasmyth focus. The system includes 24 individually adjustable lamps. The fibre positions are measured through dedicated metrology targets mounted on top of the FPUs and fiducial markers connected to the FPU support plate which are imaged at the same time. A flexible pipeline based on VLT standards is used to process the images. The position accuracy was determined to 5 μm in the central region of the images. Including the outer regions the overall positioning accuracy is 25 μm. The MOONS metrology system is fully set up with a working prototype. The results in parts of the images are already excellent. By using upcoming hardware and improving the calibration it is expected to fulfil the accuracy requirement over the complete field of view for all metrology cameras.
NASA Astrophysics Data System (ADS)
Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.
2011-11-01
This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.
NASA Astrophysics Data System (ADS)
Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan
2015-12-01
In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.
NASA Astrophysics Data System (ADS)
Lee, Junghoon; Carass, Aaron; Jog, Amod; Zhao, Can; Prince, Jerry L.
2017-02-01
Accurate CT synthesis, sometimes called electron density estimation, from MRI is crucial for successful MRI-based radiotherapy planning and dose computation. Existing CT synthesis methods are able to synthesize normal tissues but are unable to accurately synthesize abnormal tissues (i.e., tumor), thus providing a suboptimal solution. We propose a multiatlas- based hybrid synthesis approach that combines multi-atlas registration and patch-based synthesis to accurately synthesize both normal and abnormal tissues. Multi-parametric atlas MR images are registered to the target MR images by multi-channel deformable registration, from which the atlas CT images are deformed and fused by locally-weighted averaging using a structural similarity measure (SSIM). Synthetic MR images are also computed from the registered atlas MRIs by using the same weights used for the CT synthesis; these are compared to the target patient MRIs allowing for the assessment of the CT synthesis fidelity. Poor synthesis regions are automatically detected based on the fidelity measure and refined by a patch-based synthesis. The proposed approach was tested on brain cancer patient data, and showed a noticeable improvement for the tumor region.
A component-based system for agricultural drought monitoring by remote sensing.
Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao
2017-01-01
In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.
A component-based system for agricultural drought monitoring by remote sensing
Yuan, Yanbin; You, Lin; Chen, Chao
2017-01-01
In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China’s Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring. PMID:29236700
Computer Assisted Multi-Center Creation of Medical Knowledge Bases
Giuse, Nunzia Bettinsoli; Giuse, Dario A.; Miller, Randolph A.
1988-01-01
Computer programs which support different aspects of medical care have been developed in recent years. Their capabilities range from diagnosis to medical imaging, and include hospital management systems and therapy prescription. In spite of their diversity these systems have one commonality: their reliance on a large body of medical knowledge in computer-readable form. This knowledge enables such programs to draw inferences, validate hypotheses, and in general to perform their intended task. As has been clear to developers of such systems, however, the creation and maintenance of medical knowledge bases are very expensive. Practical and economical difficulties encountered during this long-term process have discouraged most attempts. This paper discusses knowledge base creation and maintenance, with special emphasis on medical applications. We first describe the methods currently used and their limitations. We then present our recent work on developing tools and methodologies which will assist in the process of creating a medical knowledge base. We focus, in particular, on the possibility of multi-center creation of the knowledge base.
NASA Astrophysics Data System (ADS)
Xiao, Zhili; Tan, Chao; Dong, Feng
2017-08-01
Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.
LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.
Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang
2015-03-01
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images
Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2014-01-01
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8 months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy. PMID:25541188
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
An intelligent framework for medical image retrieval using MDCT and multi SVM.
Balan, J A Alex Rajju; Rajan, S Edward
2014-01-01
Volumes of medical images are rapidly generated in medical field and to manage them effectively has become a great challenge. This paper studies the development of innovative medical image retrieval based on texture features and accuracy. The objective of the paper is to analyze the image retrieval based on diagnosis of healthcare management systems. This paper traces the development of innovative medical image retrieval to estimate both the image texture features and accuracy. The texture features of medical images are extracted using MDCT and multi SVM. Both the theoretical approach and the simulation results revealed interesting observations and they were corroborated using MDCT coefficients and SVM methodology. All attempts to extract the data about the image in response to the query has been computed successfully and perfect image retrieval performance has been obtained. Experimental results on a database of 100 trademark medical images show that an integrated texture feature representation results in 98% of the images being retrieved using MDCT and multi SVM. Thus we have studied a multiclassification technique based on SVM which is prior suitable for medical images. The results show the retrieval accuracy of 98%, 99% for different sets of medical images with respect to the class of image.
Dim target detection method based on salient graph fusion
NASA Astrophysics Data System (ADS)
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
Multi-modal molecular diffuse optical tomography system for small animal imaging
Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid
2013-01-01
A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images. PMID:24954977
Sandiego, Christine M.; Weinzimmer, David; Carson, Richard E.
2012-01-01
An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0–10 min) to closely resemble the subject’s MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal’s anatomical MR space, required for kinetic analysis. The chosen transformed from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies. PMID:22926293
A digital 3D atlas of the marmoset brain based on multi-modal MRI.
Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C
2018-04-01
The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.
Investigation of Parallax Issues for Multi-Lens Multispectral Camera Band Co-Registration
NASA Astrophysics Data System (ADS)
Jhan, J. P.; Rau, J. Y.; Haala, N.; Cramer, M.
2017-08-01
The multi-lens multispectral cameras (MSCs), such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS) to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT) is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.
Multiple speckle illumination for optical-resolution photoacoustic imaging
NASA Astrophysics Data System (ADS)
Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel
2017-03-01
Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2
Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging
Joshi, Bishnu P.; Wang, Thomas D.
2010-01-01
Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839
Imaging, Health Record, and Artificial Intelligence: Hype or Hope?
Mazzanti, Marco; Shirka, Ervina; Gjergo, Hortensia; Hasimi, Endri
2018-05-10
The review is focused on "digital health", which means advanced analytics based on multi-modal data. The "Health Care Internet of Things", which uses sensors, apps, and remote monitoring could provide continuous clinical information in the cloud that enables clinicians to access the information they need to care for patients everywhere. Greater standardization of acquisition protocols will be needed to maximize the potential gains from automation and machine learning. Recent artificial intelligence applications on cardiac imaging will not be diagnosing patients and replacing doctors but will be augmenting their ability to find key relevant data they need to care for a patient and present it in a concise, easily digestible format. Risk stratification will transition from oversimplified population-based risk scores to machine learning-based metrics incorporating a large number of patient-specific clinical and imaging variables in real-time beyond the limits of human cognition. This will deliver highly accurate and individual personalized risk assessments and facilitate tailored management plans.
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Changhui; Wei, Kai
2008-07-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapuyade-Lahorgue, J; Ruan, S; Li, H
Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less
NASA Astrophysics Data System (ADS)
Murukeshan, Vadakke M.; Hoong Ta, Lim
2014-11-01
Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.
NASA Astrophysics Data System (ADS)
Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei
2014-12-01
The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.
Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki
2018-01-01
In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.
Skin condition measurement by using multispectral imaging system (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan
2017-02-01
There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.
Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging
Cherukula, Kondareddy; Manickavasagam Lekshmi, Kamali; Uthaman, Saji; Cho, Kihyun; Cho, Chong-Su; Park, In-Kyu
2016-01-01
Nanotechnology has enabled the development of many alternative anti-cancer approaches, such as thermal therapies, which cause minimal damage to healthy cells. Current challenges in cancer treatment are the identification of the diseased area and its efficient treatment without generating many side effects. Image-guided therapies can be a useful tool to diagnose and treat the diseased tissue and they offer therapy and imaging using a single nanostructure. The present review mainly focuses on recent advances in the field of thermal therapy and imaging integrated with multifunctional inorganic nanoparticles. The main heating sources for heat-induced therapies are the surface plasmon resonance (SPR) in the near infrared region and alternating magnetic fields (AMFs). The different families of inorganic nanoparticles employed for SPR- and AMF-based thermal therapies and imaging are described. Furthermore, inorganic nanomaterials developed for multimodal therapies with different and multi-imaging modalities are presented in detail. Finally, relevant clinical perspectives and the future scope of inorganic nanoparticles in image-guided therapies are discussed. PMID:28335204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y; Chen, I; Kashani, R
Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V
2015-08-24
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.
A multimodal image sensor system for identifying water stress in grapevines
NASA Astrophysics Data System (ADS)
Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong
2012-11-01
Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.
The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I.
Edvardsen, Thor; Plein, Sven; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio
2013-06-01
The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.
Computational method for multi-modal microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2017-02-01
In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
NASA Astrophysics Data System (ADS)
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2010-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.
2017-03-01
Contribution to Project: Ian primarily focuses on developing tissue imaging pipeline and perform imaging data analysis . Funding Support: Partially...3D ReconsTruction), a multi-faceted image analysis pipeline , permitting quantitative interrogation of functional implications of heterogeneous... analysis pipeline , to observe and quantify phenotypic metastatic landscape heterogeneity in situ with spatial and molecular resolution. Our implementation
May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe
2011-10-01
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Network Access to Visual Information: A Study of Costs and Uses.
ERIC Educational Resources Information Center
Besser, Howard
This paper summarizes a subset of the findings of a study of digital image distribution that focused on the Museum Educational Site Licensing (MESL) project--the first large-scale multi-institutional project to explore digital delivery of art images and accompanying text/metadata from disparate sources. This Mellon Foundation-sponsored study…
Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri
2014-01-01
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Multi-spectral endogenous fluorescence imaging for bacterial differentiation
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.
2017-07-01
In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.
Histotripsy Thrombolysis on Retracted Clots
Zhang, Xi; Owens, Gabe E.; Cain, Charles A.; Gurm, Hitinder S.; Macoskey, Jonathan; Xu, Zhen
2016-01-01
Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free, and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage when compared to the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus, and a dual-pass multi-focus strategy. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results in this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. PMID:27166017
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
NASA Astrophysics Data System (ADS)
Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration
2010-03-01
AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.
NASA Astrophysics Data System (ADS)
Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok
2018-02-01
Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.
Pan, Jianjun
2018-01-01
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073
Searching Lost People with Uavs: the System and Results of the Close-Search Project
NASA Astrophysics Data System (ADS)
Molina, P.; Colomina, I.; Vitoria, T.; Silva, P. F.; Skaloud, J.; Kornus, W.; Prades, R.; Aguilera, C.
2012-07-01
This paper will introduce the goals, concept and results of the project named CLOSE-SEARCH, which stands for 'Accurate and safe EGNOS-SoL Navigation for UAV-based low-cost Search-And-Rescue (SAR) operations'. The main goal is to integrate a medium-size, helicopter-type Unmanned Aerial Vehicle (UAV), a thermal imaging sensor and an EGNOS-based multi-sensor navigation system, including an Autonomous Integrity Monitoring (AIM) capability, to support search operations in difficult-to-access areas and/or night operations. The focus of the paper is three-fold. Firstly, the operational and technical challenges of the proposed approach are discussed, such as ultra-safe multi-sensor navigation system, the use of combined thermal and optical vision (infrared plus visible) for person recognition and Beyond-Line-Of-Sight communications among others. Secondly, the implementation of the integrity concept for UAV platforms is discussed herein through the AIM approach. Based on the potential of the geodetic quality analysis and on the use of the European EGNOS system as a navigation performance starting point, AIM approaches integrity from the precision standpoint; that is, the derivation of Horizontal and Vertical Protection Levels (HPLs, VPLs) from a realistic precision estimation of the position parameters is performed and compared to predefined Alert Limits (ALs). Finally, some results from the project test campaigns are described to report on particular project achievements. Together with actual Search-and-Rescue teams, the system was operated in realistic, user-chosen test scenarios. In this context, and specially focusing on the EGNOS-based UAV navigation, the AIM capability and also the RGB/thermal imaging subsystem, a summary of the results is presented.
Medical image registration based on normalized multidimensional mutual information
NASA Astrophysics Data System (ADS)
Li, Qi; Ji, Hongbing; Tong, Ming
2009-10-01
Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.
Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM
NASA Astrophysics Data System (ADS)
Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang
2016-03-01
A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.
NASA Astrophysics Data System (ADS)
Wu, Yu-Xia; Zhang, Xi; Xu, Xiao-Pan; Liu, Yang; Zhang, Guo-Peng; Li, Bao-Juan; Chen, Hui-Jun; Lu, Hong-Bing
2017-02-01
Ischemic stroke has great correlation with carotid atherosclerosis and is mostly caused by vulnerable plaques. It's particularly important to analysis the components of plaques for the detection of vulnerable plaques. Recently plaque analysis based on multi-contrast magnetic resonance imaging has attracted great attention. Though multi-contrast MR imaging has potentials in enhanced demonstration of carotid wall, its performance is hampered by the misalignment of different imaging sequences. In this study, a coarse-to-fine registration strategy based on cross-sectional images and wall boundaries is proposed to solve the problem. It includes two steps: a rigid step using the iterative closest points to register the centerlines of carotid artery extracted from multi-contrast MR images, and a non-rigid step using the thin plate spline to register the lumen boundaries of carotid artery. In the rigid step, the centerline was extracted by tracking the crosssectional images along the vessel direction calculated by Hessian matrix. In the non-rigid step, a shape context descriptor is introduced to find corresponding points of two similar boundaries. In addition, the deterministic annealing technique is used to find a globally optimized solution. The proposed strategy was evaluated by newly developed three-dimensional, fast and high resolution multi-contrast black blood MR imaging. Quantitative validation indicated that after registration, the overlap of two boundaries from different sequences is 95%, and their mean surface distance is 0.12 mm. In conclusion, the proposed algorithm has improved the accuracy of registration effectively for further component analysis of carotid plaques.
NASA Astrophysics Data System (ADS)
Luo, Jiasai; Guo, Yongcai; Wang, Xin
2018-06-01
This paper puts forward a novel method for fabrication of sandwich-structured BCE using a detachable micro-hole array (MHA) prepared by 3D printing. Compared with most traditional methods, 3D printing enables effective implementation of direct micro-fabrication for curved BCE without the pattern transfer and substrate reshaping process. This 3D fabrication method allows rapid fabrication of the curved BCE and automatic assembly of the detachable MHA using a custom-built mold under negative pressure. The formation of a multi-focusing micro-lens array (MLA) was realized by adjusting the parameters of the curved detachable MHA. The imaging performance was effectively enhanced by the sandwich structure that consist of the multi-focusing MLA, the outer detachable MHA and the inner solidified MHA. This method is suitable for mass production due to its advantages as a time-saving, cost-effective and simple process. Optical design software was used to analyze the optical properties, and an imaging simulation was performed.
USDA-ARS?s Scientific Manuscript database
Multi-angle remote sensing has been proved useful for mapping vegetation community types in desert regions. Based on Multi-angle Imaging Spectro-Radiometer (MISR) multi-angular images, this study compares roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with th...
Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi
2017-05-01
Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.
Cloud-based image sharing network for collaborative imaging diagnosis and consultation
NASA Astrophysics Data System (ADS)
Yang, Yuanyuan; Gu, Yiping; Wang, Mingqing; Sun, Jianyong; Li, Ming; Zhang, Weiqiang; Zhang, Jianguo
2018-03-01
In this presentation, we presented a new approach to design cloud-based image sharing network for collaborative imaging diagnosis and consultation through Internet, which can enable radiologists, specialists and physicians locating in different sites collaboratively and interactively to do imaging diagnosis or consultation for difficult or emergency cases. The designed network combined a regional RIS, grid-based image distribution management, an integrated video conferencing system and multi-platform interactive image display devices together with secured messaging and data communication. There are three kinds of components in the network: edge server, grid-based imaging documents registry and repository, and multi-platform display devices. This network has been deployed in a public cloud platform of Alibaba through Internet since March 2017 and used for small lung nodule or early staging lung cancer diagnosis services between Radiology departments of Huadong hospital in Shanghai and the First Hospital of Jiaxing in Zhejiang Province.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.
Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho
2016-04-18
We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.
NASA Astrophysics Data System (ADS)
Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo
2017-10-01
This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.
Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors
Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee
2012-01-01
In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181
NASA Astrophysics Data System (ADS)
Verma, Sneha K.; Liu, Brent J.; Gridley, Daila S.; Mao, Xiao W.; Kotha, Nikhil
2015-03-01
In previous years we demonstrated an imaging informatics system designed to support multi-institutional research focused on the utilization of proton radiation for treating spinal cord injury (SCI)-related pain. This year we will demonstrate an update on the system with new modules added to perform image processing on evaluation data using immunhistochemistry methods to observe effects of proton therapy. The overarching goal of the research is to determine the effectiveness of using the proton beam for treating SCI-related neuropathic pain as an alternative to invasive surgical lesioning. The research is a joint collaboration between three major institutes, University of Southern California (data collection/integration and image analysis), Spinal Cord Institute VA Healthcare System, Long Beach (patient subject recruitment), and Loma Linda University and Medical Center (human and preclinical animal studies). The system that we are presenting is one of its kind which is capable of integrating a large range of data types, including text data, imaging data, DICOM objects from proton therapy treatment and pathological data. For multi-institutional studies, keeping data secure and integrated is very crucial. Different kinds of data within the study workflow are generated at different stages and different groups of people who process and analyze them in order to see hidden patterns within healthcare data from a broader perspective. The uniqueness of our system relies on the fact that it is platform independent and web-based which makes it very useful in such a large-scale study.
Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B
2016-11-15
A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.
Automated road network extraction from high spatial resolution multi-spectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Qiaoping
For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2017-10-01
Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.
2015-01-01
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169
Atmospheric Science Data Center
2016-11-25
... scales and assess their impact on air quality and climate. Phase B will be performed March 1-31, 2006 and it will focus on Mexico City pollution outflow. The Multi-angle Imaging SpectroRadiometer (MISR) team ...
NASA Astrophysics Data System (ADS)
Qin, Chen; Ren, Bin; Guo, Longfei; Dou, Wenhua
2014-11-01
Multi-projector three dimension display is a promising multi-view glass-free three dimension (3D) display technology, can produce full colour high definition 3D images on its screen. One key problem of multi-projector 3D display is how to acquire the source images of projector array while avoiding pseudoscopic problem. This paper analysis the displaying characteristics of multi-projector 3D display first and then propose a projector content synthetic method using tetrahedral transform. A 3D video format that based on stereo image pair and associated disparity map is presented, it is well suit for any type of multi-projector 3D display and has advantage in saving storage usage. Experiment results show that our method solved the pseudoscopic problem.
Multi exposure image fusion algorithm based on YCbCr space
NASA Astrophysics Data System (ADS)
Yang, T. T.; Fang, P. Y.
2018-05-01
To solve the problem that scene details and visual effects are difficult to be optimized in high dynamic image synthesis, we proposes a multi exposure image fusion algorithm for processing low dynamic range images in YCbCr space, and weighted blending of luminance and chromatic aberration components respectively. The experimental results show that the method can retain color effect of the fused image while balancing details of the bright and dark regions of the high dynamic image.
Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI
Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.
2016-01-01
We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.
2015-12-01
The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.
NASA Astrophysics Data System (ADS)
Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian
2013-02-01
Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.
NASA Astrophysics Data System (ADS)
Lee, Suk-Jun; Yu, Seung-Man
2017-08-01
The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.
Fast auto-focus scheme based on optical defocus fitting model
NASA Astrophysics Data System (ADS)
Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min
2018-04-01
An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.
Calibration for single multi-mode fiber digital scanning microscopy imaging system
NASA Astrophysics Data System (ADS)
Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong
2015-11-01
Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment
NASA Astrophysics Data System (ADS)
David, S.; Visvikis, D.; Roux, C.; Hatt, M.
2011-09-01
In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.
NASA Astrophysics Data System (ADS)
Ben Yaish, Shai; Zlotnik, Alex; Raveh, Ido; Yehezkel, Oren; Belkin, Michael; Lahav, Karen; Zalevsky, Zeev
2009-02-01
We present novel technology for extension in depth of focus of imaging lenses for use in ophthalmic lenses correcting myopia, hyperopia with regular/irregular astigmatism and presbyopia. This technology produces continuous focus without appreciable loss of energy. It is incorporated as a coating or engraving on the surface for spectacles, contact or intraocular lenses. It was fabricated and tested in simulations and in clinical trials. From the various testing this technology seems to provide a satisfactory single-lens solution. Obtained performance is apparently better than those of existing multi/bifocal lenses and it is modular enough to provide solution to various ophthalmic applications.
NASA Astrophysics Data System (ADS)
Huang, Yadong; Gao, Kun; Gong, Chen; Han, Lu; Guo, Yue
2016-03-01
During traditional multi-resolution infrared and visible image fusion processing, the low contrast ratio target may be weakened and become inconspicuous because of the opposite DN values in the source images. So a novel target pseudo-color enhanced image fusion algorithm based on the modified attention model and fast discrete curvelet transformation is proposed. The interesting target regions are extracted from source images by introducing the motion features gained from the modified attention model, and source images are performed the gray fusion via the rules based on physical characteristics of sensors in curvelet domain. The final fusion image is obtained by mapping extracted targets into the gray result with the proper pseudo-color instead. The experiments show that the algorithm can highlight dim targets effectively and improve SNR of fusion image.
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J
2017-03-03
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J.
2017-01-01
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter. PMID:28273796
Development of MPEG standards for 3D and free viewpoint video
NASA Astrophysics Data System (ADS)
Smolic, Aljoscha; Kimata, Hideaki; Vetro, Anthony
2005-11-01
An overview of 3D and free viewpoint video is given in this paper with special focus on related standardization activities in MPEG. Free viewpoint video allows the user to freely navigate within real world visual scenes, as known from virtual worlds in computer graphics. Suitable 3D scene representation formats are classified and the processing chain is explained. Examples are shown for image-based and model-based free viewpoint video systems, highlighting standards conform realization using MPEG-4. Then the principles of 3D video are introduced providing the user with a 3D depth impression of the observed scene. Example systems are described again focusing on their realization based on MPEG-4. Finally multi-view video coding is described as a key component for 3D and free viewpoint video systems. MPEG is currently working on a new standard for multi-view video coding. The conclusion is that the necessary technology including standard media formats for 3D and free viewpoint is available or will be available in the near future, and that there is a clear demand from industry and user side for such applications. 3DTV at home and free viewpoint video on DVD will be available soon, and will create huge new markets.
NASA Astrophysics Data System (ADS)
Ren, B.; Wen, Q.; Zhou, H.; Guan, F.; Li, L.; Yu, H.; Wang, Z.
2018-04-01
The purpose of this paper is to provide decision support for the adjustment and optimization of crop planting structure in Jingxian County. The object-oriented information extraction method is used to extract corn and cotton from Jingxian County of Hengshui City in Hebei Province, based on multi-period GF-1 16-meter images. The best time of data extraction was screened by analyzing the spectral characteristics of corn and cotton at different growth stages based on multi-period GF-116-meter images, phenological data, and field survey data. The results showed that the total classification accuracy of corn and cotton was up to 95.7 %, the producer accuracy was 96 % and 94 % respectively, and the user precision was 95.05 % and 95.9 % respectively, which satisfied the demand of crop monitoring application. Therefore, combined with multi-period high-resolution images and object-oriented classification can be a good extraction of large-scale distribution of crop information for crop monitoring to provide convenient and effective technical means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi
A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energymore » electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.« less
TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, L.
2016-06-15
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
NASA Astrophysics Data System (ADS)
Enguita, Jose M.; Álvarez, Ignacio; González, Rafael C.; Cancelas, Jose A.
2018-01-01
The problem of restoration of a high-resolution image from several degraded versions of the same scene (deconvolution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an optical system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, or scientific imaging.
Vision communications based on LED array and imaging sensor
NASA Astrophysics Data System (ADS)
Yoo, Jong-Ho; Jung, Sung-Yoon
2012-11-01
In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.
Multi-PSF fusion in image restoration of range-gated systems
NASA Astrophysics Data System (ADS)
Wang, Canjin; Sun, Tao; Wang, Tingfeng; Miao, Xikui; Wang, Rui
2018-07-01
For the task of image restoration, an accurate estimation of degrading PSF/kernel is the premise of recovering a visually superior image. The imaging process of range-gated imaging system in atmosphere associates with lots of factors, such as back scattering, background radiation, diffraction limit and the vibration of the platform. On one hand, due to the difficulty of constructing models for all factors, the kernels from physical-model based methods are not strictly accurate and practical. On the other hand, there are few strong edges in images, which brings significant errors to most of image-feature-based methods. Since different methods focus on different formation factors of the kernel, their results often complement each other. Therefore, we propose an approach which combines physical model with image features. With an fusion strategy using GCRF (Gaussian Conditional Random Fields) framework, we get a final kernel which is closer to the actual one. Aiming at the problem that ground-truth image is difficult to obtain, we then propose a semi data-driven fusion method in which different data sets are used to train fusion parameters. Finally, a semi blind restoration strategy based on EM (Expectation Maximization) and RL (Richardson-Lucy) algorithm is proposed. Our methods not only models how the lasers transfer in the atmosphere and imaging in the ICCD (Intensified CCD) plane, but also quantifies other unknown degraded factors using image-based methods, revealing how multiple kernel elements interact with each other. The experimental results demonstrate that our method achieves better performance than state-of-the-art restoration approaches.
The research on multi-projection correction based on color coding grid array
NASA Astrophysics Data System (ADS)
Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu
2017-10-01
There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.
NASA Astrophysics Data System (ADS)
Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu
2016-04-01
Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.
Structure Size Enhanced Histogram
NASA Astrophysics Data System (ADS)
Wesarg, Stefan; Kirschner, Matthias
Direct volume visualization requires the definition of transfer functions (TFs) for the assignment of opacity and color. Multi-dimensional TFs are based on at least two image properties, and are specified by means of 2D histograms. In this work we propose a new type of a 2D histogram which combines gray value with information about the size of the structures. This structure size enhanced (SSE) histogram is an intuitive approach for representing anatomical features. Clinicians — the users we are focusing on — are much more familiar with selecting features by their size than by their gradient magnitude value. As a proof of concept, we employ the SSE histogram for the definition of two-dimensional TFs for the visualization of 3D MRI and CT image data.
Development of solid tunable optics for ultra-miniature imaging systems
NASA Astrophysics Data System (ADS)
Yongchao, Zou
This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.
NASA Astrophysics Data System (ADS)
Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min
2018-03-01
In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.
Multi-aperture microoptical system for close-up imaging
NASA Astrophysics Data System (ADS)
Berlich, René; Brückner, Andreas; Leitel, Robert; Oberdörster, Alexander; Wippermann, Frank; Bräuer, Andreas
2014-09-01
Modern applications in biomedical imaging, machine vision and security engineering require close-up optical systems with high resolution. Combined with the need for miniaturization and fast image acquisition of extended object fields, the design and fabrication of respective devices is extremely challenging. Standard commercial imaging solutions rely on bulky setups or depend on scanning techniques in order to meet the stringent requirements. Recently, our group has proposed a novel, multi-aperture approach based on parallel image transfer in order to overcome these constraints. It exploits state of the art microoptical manufacturing techniques on wafer level in order to create a compact, cost-effective system with a large field of view. However, initial prototypes have so far been subject to various limitations regarding their manufacturing, reliability and applicability. In this work, we demonstrate the optical design and fabrication of an advanced system, which overcomes these restrictions. In particular, a revised optical design facilitates a more efficient and economical fabrication process and inherently improves system reliability. An additional customized front side illumination module provides homogeneous white light illumination over the entire field of view while maintaining a high degree of compactness. Moreover, the complete imaging assembly is mounted on a positioning system. In combination with an extended working range, this allows for adjustment of the system's focus location. The final optical design is capable of capturing an object field of 36x24 mm2 with a resolution of 150 cycles/mm. Finally, we present experimental results of the respective prototype that demonstrate its enhanced capabilities.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis
NASA Astrophysics Data System (ADS)
Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.
2010-04-01
A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.
Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Hope, Stephen C.; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Le fur, Arnaud; Dohlen, Kjetil; Le Mignant, David; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa
2016-08-01
We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380 nm - 640 nm, 640 nm - 955 nm, and 955 nm - 1.26 um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300 mm at the entrance window, and a mass of 280 kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.
NASA Astrophysics Data System (ADS)
Wu, Wei; Zhao, Dewei; Zhang, Huan
2015-12-01
Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.
[Research on non-rigid registration of multi-modal medical image based on Demons algorithm].
Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang
2014-02-01
Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
Research of flaw image collecting and processing technology based on multi-baseline stereo imaging
NASA Astrophysics Data System (ADS)
Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan
2008-03-01
Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.
NASA Astrophysics Data System (ADS)
Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.
2014-03-01
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.
Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.
2014-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase-shift during high energy HIFU treatment with tissue boiling. Forty three (n=43) thermal lesions were formed in ex vivo canine liver specimens (n=28). Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-s, 20-s and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and Passive Cavitation Detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δφ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite unpredictable changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property change throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes. PMID:24556974
Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E
2014-03-07
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.
Development of methods for the analysis of multi-mode TFM images
NASA Astrophysics Data System (ADS)
Sy, K.; Bredif, P.; Iakovleva, E.; Roy, O.; Lesselier, D.
2018-05-01
TFM (Total Focusing Method) is an advanced post-processing imaging algorithm of ultrasonic array data that shows good potential in defect detection and characterization. It can be employed using an infinite number of paths between transducer and focusing point. Depending upon the geometry and the characteristics of the defect in a given part, there are not the same modes that are appropriate for the defect reconstruction. Furthermore, non-physical indications can be observed, prone to misinterpretation. These imaging artifacts are due to the coexistence of several contributions involving several modes of propagation and interactions with possible defects and/or the geometry of the part. Two methods for filtering artifacts and reducing the number of TFM images are developed and illustrated.
Markel, D; Naqa, I El; Freeman, C; Vallières, M
2012-06-01
To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.
Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.
Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V
2018-07-01
Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
TH-C-BRC-02: A Review of Emerging Technologies in Robotic SRS/SBRT Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
TH-C-BRC-01: An Overview of Emerging Technologies in SRS/SBRT Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L.
2016-06-15
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
TH-C-BRC-00: Emerging Technologies in SRS/SBRT Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
Multi-modality molecular imaging: pre-clinical laboratory configuration
NASA Astrophysics Data System (ADS)
Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.
2006-02-01
In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.
Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images
NASA Astrophysics Data System (ADS)
Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.
2016-03-01
Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.
The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation
NASA Astrophysics Data System (ADS)
Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.
2018-04-01
The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.
Multi-Feature Based Information Extraction of Urban Green Space Along Road
NASA Astrophysics Data System (ADS)
Zhao, H. H.; Guan, H. Y.
2018-04-01
Green space along road of QuickBird image was studied in this paper based on multi-feature-marks in frequency domain. The magnitude spectrum of green along road was analysed, and the recognition marks of the tonal feature, contour feature and the road were built up by the distribution of frequency channels. Gabor filters in frequency domain were used to detect the features based on the recognition marks built up. The detected features were combined as the multi-feature-marks, and watershed based image segmentation were conducted to complete the extraction of green space along roads. The segmentation results were evaluated by Fmeasure with P = 0.7605, R = 0.7639, F = 0.7622.
Histotripsy Thrombolysis on Retracted Clots.
Zhang, Xi; Owens, Gabe E; Cain, Charles A; Gurm, Hitinder S; Macoskey, Jonathan; Xu, Zhen
2016-08-01
Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage compared with the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus and dual-pass multi-focus. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results of this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Retinal projection type super multi-view head-mounted display
NASA Astrophysics Data System (ADS)
Takahashi, Hideya; Ito, Yutaka; Nakata, Seigo; Yamada, Kenji
2014-02-01
We propose a retinal projection type super multi-view head-mounted display (HMD). The smooth motion parallax provided by the super multi-view technique enables a precise superposition of virtual 3D images on the real scene. Moreover, if a viewer focuses one's eyes on the displayed 3D image, the stimulus for the accommodation of the human eye is produced naturally. Therefore, although proposed HMD is a monocular HMD, it provides observers with natural 3D images. The proposed HMD consists of an image projection optical system and a holographic optical element (HOE). The HOE is used as a combiner, and also works as a condenser lens to implement the Maxwellian view. Some parallax images are projected onto the HOE, and converged on the pupil, and then projected onto the retina. In order to verify the effectiveness of the proposed HMD, we constructed the prototype HMD. In the prototype HMD, the number of parallax images and the number of convergent points on the pupil is three. The distance between adjacent convergent points is 2 mm. We displayed virtual images at the distance from 20 cm to 200 cm in front of the pupil, and confirmed the accommodation. This paper describes the principle of proposed HMD, and also describes the experimental result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rilling, M; Centre de Recherche sur le Cancer, Hôtel-Dieu de Québec, Quebec City, QC; Département de radio-oncologie, CHU de Québec, Quebec City, QC
2015-06-15
Purpose: The purpose of this work is to simulate a multi-focus plenoptic camera used as the measuring device in a real-time three-dimensional scintillation dosimeter. Simulating and optimizing this realistic optical system will bridge the technological gap between concept validation and a clinically viable tool that can provide highly efficient, accurate and precise measurements for dynamic radiotherapy techniques. Methods: The experimental prototype, previously developed for proof of concept purposes, uses an off-the-shelf multi-focus plenoptic camera. With an array of interleaved microlenses of different focal lengths, this camera records spatial and angular information of light emitted by a plastic scintillator volume. Themore » three distinct microlens focal lengths were determined experimentally for use as baseline parameters by measuring image-to-object magnification for different distances in object space. A simulated plenoptic system was implemented using the non-sequential ray tracing software Zemax: this tool allows complete simulation of multiple optical paths by modeling interactions at interfaces such as scatter, diffraction, reflection and refraction. The active sensor was modeled based on the camera manufacturer specifications by a 2048×2048, 5 µm-pixel pitch sensor. Planar light sources, simulating the plastic scintillator volume, were employed for ray tracing simulations. Results: The microlens focal lengths were determined to be 384, 327 and 290 µm. A realistic multi-focus plenoptic system, with independently defined and optimizable specifications, was fully simulated. A f/2.9 and 54 mm-focal length Double Gauss objective was modeled as the system’s main lens. A three-focal length hexagonal microlens array of 250-µm thickness was designed, acting as an image-relay system between the main lens and sensor. Conclusion: Simulation of a fully modeled multi-focus plenoptic camera enables the decoupled optimization of the main lens and microlens specifications. This work leads the way to improving the 3D dosimeter’s achievable resolution, efficiency and build for providing a quality assurance tool fully meeting clinical needs. M.R. is financially supported by a Master’s Canada Graduate Scholarship from the NSERC. This research is also supported by the NSERC Industrial Research Chair in Optical Design.« less
ERIC Educational Resources Information Center
Pampaloni, Andrea M.
2010-01-01
Colleges and universities rely on their image to attract new members. This study focuses on the decision-making process of students preparing to apply to college. High school students were surveyed at college open houses to identify the factors most influential to their college application decision-making. A multi-methods analysis found that…
Optimization of Focused Ultrasound and Image Based Modeling in Image Guided Interventions
NASA Astrophysics Data System (ADS)
Almekkawy, Mohamed Khaled Ibrahim
Image-guided high intensity focused ultrasound (HIFU) is becoming increasingly accepted as a form of noninvasive ablative therapy for the treatment of prostate cancer, uterine fibroids and other tissue abnormalities. In principle, HIFU beams can be focused within small volumes which results in forming precise lesions within the target volume (e.g. tumor, atherosclerotic plaque) while sparing the intervening tissue. With this precision, HIFU offers the promise of noninvasive tumor therapy. The goal of this thesis is to develop an image-guidance mode with an interactive image-based computational modeling of tissue response to HIFU. This model could be used in treatment planning and post-treatment retrospective evaluation of treatment outcome(s). Within the context of treatment planning, the challenge of using HIFU to target tumors in organs partially obscured by the rib cage are addressed. Ribs distort HIFU beams in a manner that reduces the focusing gain at the target (tumor) and could cause a treatment-limiting collateral damage. We present a refocusing algorithms to efficiently steer higher power towards the target while limiting power deposition on the ribs, improving the safety and efficacy of tumor ablation. Our approach is based on an approximation of a non-convex to a convex optimization known as the semidefinite relaxation (SDR) technique. An important advantage of the SDR method over previously proposed optimization methods is the explicit control of the sidelobes in the focal plane. A finite-difference time domain (FDTD) heterogeneous propagation model of a 1-MHz concave phased array was used to model the acoustic propagation and temperature simulations in different tissues including ribs. The numerical methods developed for the refocusing problem are also used for retrospective analysis of targeting of atherosclerotic plaques using HIFU. Cases were simulated where seven adjacent HIFU shots (5000 W/cm2, 2 sec exposure time) were focused at the plaque tissue within the posterior wall of external femoral artery. After segmentation of the ultrasound image obtained for the treatment region in-vivo, we integrated this anatomical information into our simulation to account for different parameters that may be caused by these multi-region anatomical complexities. An FDTD heterogeneous model was used for both acoustic field and temperature computations. The acoustic field simulation considered a concave (40-mm radius of curvature) 32-element array operating at 3.5 MHz. To account for the blood flow in the vicinity of the target (plaque), we have used a modified transient bioheat transfer equation (tBHTE) with a convective term. The results from the numerical simulation were in good agreement with the thermal lesions identified by histological examination of the treated tissues. Within the context of accounting for the blood flow in tBHTE, the estimation of the displacement of tissue and blood motion are addressed. A new multi-dimensional speckle tracking method (MDST) utilizing the Riesz transform with subsample accuracy in all dimensions is described. Field II simulation of flow data in a channel is generated to provide a validation of the accuracy of the method. In addition, the new MDST method is applied to imaging data from the carotid artery of a healthy human volunteers. The results obtained show that using Riesz transform produces more robust estimation of the true displacement compared to previously published results.
Multi-Atlas Based Segmentation of Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning.
Dong, Pei; Guo, Yangrong; Gao, Yue; Liang, Peipeng; Shi, Yonghong; Wang, Qian; Shen, Dinggang; Wu, Guorong
2016-10-01
Accurate segmentation of brainstem nuclei (red nucleus and substantia nigra) is very important in various neuroimaging applications such as deep brain stimulation and the investigation of imaging biomarkers for Parkinson's disease (PD). Due to iron deposition during aging, image contrast in the brainstem is very low in Magnetic Resonance (MR) images. Hence, the ambiguity of patch-wise similarity makes the recently successful multi-atlas patch-based label fusion methods have difficulty to perform as competitive as segmenting cortical and sub-cortical regions from MR images. To address this challenge, we propose a novel multi-atlas brainstem nuclei segmentation method using deep hyper-graph learning. Specifically, we achieve this goal in three-fold. First , we employ hyper-graph to combine the advantage of maintaining spatial coherence from graph-based segmentation approaches and the benefit of harnessing population priors from multi-atlas based framework. Second , besides using low-level image appearance, we also extract high-level context features to measure the complex patch-wise relationship. Since the context features are calculated on a tentatively estimated label probability map, we eventually turn our hyper-graph learning based label propagation into a deep and self-refining model. Third , since anatomical labels on some voxels (usually located in uniform regions) can be identified much more reliably than other voxels (usually located at the boundary between two regions), we allow these reliable voxels to propagate their labels to the nearby difficult-to-label voxels. Such hierarchical strategy makes our proposed label fusion method deep and dynamic. We evaluate our proposed label fusion method in segmenting substantia nigra (SN) and red nucleus (RN) from 3.0 T MR images, where our proposed method achieves significant improvement over the state-of-the-art label fusion methods.
Dangerous gas detection based on infrared video
NASA Astrophysics Data System (ADS)
Ding, Kang; Hong, Hanyu; Huang, Likun
2018-03-01
As the gas leak infrared imaging detection technology has significant advantages of high efficiency and remote imaging detection, in order to enhance the detail perception of observers and equivalently improve the detection limit, we propose a new type of gas leak infrared image detection method, which combines background difference methods and multi-frame interval difference method. Compared to the traditional frame methods, the multi-frame interval difference method we proposed can extract a more complete target image. By fusing the background difference image and the multi-frame interval difference image, we can accumulate the information of infrared target image of the gas leak in many aspect. The experiment demonstrate that the completeness of the gas leakage trace information is enhanced significantly, and the real-time detection effect can be achieved.
Region-based multi-step optic disk and cup segmentation from color fundus image
NASA Astrophysics Data System (ADS)
Xiao, Di; Lock, Jane; Manresa, Javier Moreno; Vignarajan, Janardhan; Tay-Kearney, Mei-Ling; Kanagasingam, Yogesan
2013-02-01
Retinal optic cup-disk-ratio (CDR) is a one of important indicators of glaucomatous neuropathy. In this paper, we propose a novel multi-step 4-quadrant thresholding method for optic disk segmentation and a multi-step temporal-nasal segmenting method for optic cup segmentation based on blood vessel inpainted HSL lightness images and green images. The performance of the proposed methods was evaluated on a group of color fundus images and compared with the manual outlining results from two experts. Dice scores of detected disk and cup regions between the auto and manual results were computed and compared. Vertical CDRs were also compared among the three results. The preliminary experiment has demonstrated the robustness of the method for automatic optic disk and cup segmentation and its potential value for clinical application.
A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.
Khelifi, Lazhar; Mignotte, Max
2017-08-01
Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.
Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.
Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi
2015-03-19
In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.
Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong
2006-09-01
Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.
2017-12-01
Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and connectivity of the landscape is being transferred to larger regions using aerial imaging and will be used to constrain multi-scale, multi-physics hydro-biogeochemical simulations of the East River watershed response to hydrological perturbations.
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.
Hofmann, Felix; Phillips, Nicholas W; Harder, Ross J; Liu, Wenjun; Clark, Jesse N; Robinson, Ian K; Abbey, Brian
2017-09-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation
Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina
2014-01-01
In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin
2018-03-01
Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.
Navy-wide Personnel Survey (NPS) 2005: Summary of Survey Results
2008-11-01
Personnel Survey Strategy. The NPS focuses on quality of work life topics including satisfaction with Navy life, work climate, morale, organizational...commitment, leadership, communication, job security, Navy image, fairness, detailing, duty assignments, job satisfaction , career development...Ph.D. Director v Summary The Navy Personnel Survey (NPS) is a multi-faceted survey that focuses on topics such as satisfaction with Navy
No-reference multiscale blur detection tool for content based image retrieval
NASA Astrophysics Data System (ADS)
Ezekiel, Soundararajan; Stocker, Russell; Harrity, Kyle; Alford, Mark; Ferris, David; Blasch, Erik; Gorniak, Mark
2014-06-01
In recent years, digital cameras have been widely used for image capturing. These devices are equipped in cell phones, laptops, tablets, webcams, etc. Image quality is an important component of digital image analysis. To assess image quality for these mobile products, a standard image is required as a reference image. In this case, Root Mean Square Error and Peak Signal to Noise Ratio can be used to measure the quality of the images. However, these methods are not possible if there is no reference image. In our approach, a discrete-wavelet transformation is applied to the blurred image, which decomposes into the approximate image and three detail sub-images, namely horizontal, vertical, and diagonal images. We then focus on noise-measuring the detail images and blur-measuring the approximate image to assess the image quality. We then compute noise mean and noise ratio from the detail images, and blur mean and blur ratio from the approximate image. The Multi-scale Blur Detection (MBD) metric provides both an assessment of the noise and blur content. These values are weighted based on a linear regression against full-reference y values. From these statistics, we can compare to normal useful image statistics for image quality without needing a reference image. We then test the validity of our obtained weights by R2 analysis as well as using them to estimate image quality of an image with a known quality measure. The result shows that our method provides acceptable results for images containing low to mid noise levels and blur content.
Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method
NASA Astrophysics Data System (ADS)
Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao
2016-09-01
To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.
Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution
NASA Astrophysics Data System (ADS)
Tian, Y.; Rao, C. H.; Wei, K.
2008-10-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.
Improvement of Speckle Contrast Image Processing by an Efficient Algorithm.
Steimers, A; Farnung, W; Kohl-Bareis, M
2016-01-01
We demonstrate an efficient algorithm for the temporal and spatial based calculation of speckle contrast for the imaging of blood flow by laser speckle contrast analysis (LASCA). It reduces the numerical complexity of necessary calculations, facilitates a multi-core and many-core implementation of the speckle analysis and enables an independence of temporal or spatial resolution and SNR. The new algorithm was evaluated for both spatial and temporal based analysis of speckle patterns with different image sizes and amounts of recruited pixels as sequential, multi-core and many-core code.
Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan
2011-01-01
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications. PMID:22096600
Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan
2011-01-01
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.
Sereda, A; Moreau, J; Canva, M; Maillart, E
2014-04-15
Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Tao; Abd-Elrahman, Amr
2018-05-01
Deep convolutional neural network (DCNN) requires massive training datasets to trigger its image classification power, while collecting training samples for remote sensing application is usually an expensive process. When DCNN is simply implemented with traditional object-based image analysis (OBIA) for classification of Unmanned Aerial systems (UAS) orthoimage, its power may be undermined if the number training samples is relatively small. This research aims to develop a novel OBIA classification approach that can take advantage of DCNN by enriching the training dataset automatically using multi-view data. Specifically, this study introduces a Multi-View Object-based classification using Deep convolutional neural network (MODe) method to process UAS images for land cover classification. MODe conducts the classification on multi-view UAS images instead of directly on the orthoimage, and gets the final results via a voting procedure. 10-fold cross validation results show the mean overall classification accuracy increasing substantially from 65.32%, when DCNN was applied on the orthoimage to 82.08% achieved when MODe was implemented. This study also compared the performances of the support vector machine (SVM) and random forest (RF) classifiers with DCNN under traditional OBIA and the proposed multi-view OBIA frameworks. The results indicate that the advantage of DCNN over traditional classifiers in terms of accuracy is more obvious when these classifiers were applied with the proposed multi-view OBIA framework than when these classifiers were applied within the traditional OBIA framework.
Multi-Image Registration for an Enhanced Vision System
NASA Technical Reports Server (NTRS)
Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn
2002-01-01
An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under development at the NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm. The images from the different sensors do not have a uniform data structure: the three sensors not only operate at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image registration is the task of aligning images taken at different times, from different sensors, or from different viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for registering multiple multi-spectral images. The first method performs registration using sensor specifications to match the FOVs and resolutions directly through image resampling. In the second method, registration is obtained through geometric correction based on a spatial transformation defined by user selected control points and regression analysis.
Discriminative Multi-View Interactive Image Re-Ranking.
Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng
2017-07-01
Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, H Al; Erickson, B; Paulson, E
Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and wasmore » applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves MR image uniformity. The combination of MR image standardization and multi-match cumulative atlas-based auto-contouring produced the highest DSCs and is a promising strategy for MRI-based ABT for cervix cancer.« less
Sobieranski, Antonio C; Inci, Fatih; Tekin, H Cumhur; Yuksekkaya, Mehmet; Comunello, Eros; Cobra, Daniel; von Wangenheim, Aldo; Demirci, Utkan
2017-01-01
In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2. PMID:29657866
Cloud-based processing of multi-spectral imaging data
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David
2017-03-01
Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.
Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.
Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili
2015-12-15
Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.
A Silicon SPECT System for Molecular Imaging of the Mouse Brain.
Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E
2007-01-01
We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.
Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)
Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...
2014-07-22
The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with twelve vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 µs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channelsmore » focused at the cutoff surface, permitting imaging over an extended poloidal region. As a result, the integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns.« less
Exploiting physical constraints for multi-spectral exo-planet detection
NASA Astrophysics Data System (ADS)
Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth
2016-07-01
We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).
Fusion of multi-tracer PET images for dose painting.
Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle
2014-10-01
PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong
2017-12-01
Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.
Feature selection and classification of multiparametric medical images using bagging and SVM
NASA Astrophysics Data System (ADS)
Fan, Yong; Resnick, Susan M.; Davatzikos, Christos
2008-03-01
This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.
2017-10-01
The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.
Tone mapping infrared images using conditional filtering-based multi-scale retinex
NASA Astrophysics Data System (ADS)
Luo, Haibo; Xu, Lingyun; Hui, Bin; Chang, Zheng
2015-10-01
Tone mapping can be used to compress the dynamic range of the image data such that it can be fitted within the range of the reproduction media and human vision. The original infrared images that captured with infrared focal plane arrays (IFPA) are high dynamic images, so tone mapping infrared images is an important component in the infrared imaging systems, and it has become an active topic in recent years. In this paper, we present a tone mapping framework using multi-scale retinex. Firstly, a Conditional Gaussian Filter (CGF) was designed to suppress "halo" effect. Secondly, original infrared image is decomposed into a set of images that represent the mean of the image at different spatial resolutions by applying CGF of different scale. And then, a set of images that represent the multi-scale details of original image is produced by dividing the original image pointwise by the decomposed image. Thirdly, the final detail image is reconstructed by weighted sum of the multi-scale detail images together. Finally, histogram scaling and clipping is adopted to remove outliers and scale the detail image, 0.1% of the pixels are clipped at both extremities of the histogram. Experimental results show that the proposed algorithm efficiently increases the local contrast while preventing "halo" effect and provides a good rendition of visual effect.
Pirpinia, Kleopatra; Bosman, Peter A N; Loo, Claudette E; Winter-Warnars, Gonneke; Janssen, Natasja N Y; Scholten, Astrid N; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2017-06-23
Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; E Loo, Claudette; Winter-Warnars, Gonneke; Y Janssen, Natasja N.; Scholten, Astrid N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2017-07-01
Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
NASA Astrophysics Data System (ADS)
Spanò, A.; Chiabrando, F.; Sammartano, G.; Teppati Losè, L.
2018-05-01
The paper focuses on the exploration of the suitability and the discretization of applicability issues about advanced surveying integrated techniques, mainly based on image-based approaches compared and integrated to range-based ones that have been developed with the use of the cutting-edge solutions tested on field. The investigated techniques integrate both technological devices for 3D data acquisition and thus editing and management systems to handle metric models and multi-dimensional data in a geospatial perspective, in order to innovate and speed up the extraction of information during the archaeological excavation activities. These factors, have been experienced in the outstanding site of the Hierapolis of Phrygia ancient city (Turkey), downstream the 2017 surveying missions, in order to produce high-scale metric deliverables in terms of high-detailed Digital Surface Models (DSM), 3D continuous surface models and high-resolution orthoimages products. In particular, the potentialities in the use of UAV platforms for low altitude acquisitions in aerial photogrammetric approach, together with terrestrial panoramic acquisitions (Trimble V10 imaging rover), have been investigated with a comparison toward consolidated Terrestrial Laser Scanning (TLS) measurements. One of the main purposes of the paper is to evaluate the results offered by the technologies used independently and using integrated approaches. A section of the study in fact, is specifically dedicated to experimenting the union of different sensor dense clouds: both dense clouds derived from UAV have been integrated with terrestrial Lidar clouds, to evaluate their fusion. Different test cases have been considered, representing typical situations that can be encountered in archaeological sites.
Liu, Fei; Zhang, Xi; Jia, Yan
2015-01-01
In this paper, we propose a computer information processing algorithm that can be used for biomedical image processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1,k2) outlier. It can be used to detect abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1,k2) outlier in uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods' high accuracy and high efficiency.
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans
2018-04-01
Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.
Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N
2017-09-06
In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.
An automated assay for the assessment of cardiac arrest in fish embryo.
Puybareau, Elodie; Genest, Diane; Barbeau, Emilie; Léonard, Marc; Talbot, Hugues
2017-02-01
Studies on fish embryo models are widely developed in research. They are used in several research fields including drug discovery or environmental toxicology. In this article, we propose an entirely automated assay to detect cardiac arrest in Medaka (Oryzias latipes) based on image analysis. We propose a multi-scale pipeline based on mathematical morphology. Starting from video sequences of entire wells in 24-well plates, we focus on the embryo, detect its heart, and ascertain whether or not the heart is beating based on intensity variation analysis. Our image analysis pipeline only uses commonly available operators. It has a low computational cost, allowing analysis at the same rate as acquisition. From an initial dataset of 3192 videos, 660 were discarded as unusable (20.7%), 655 of them correctly so (99.25%) and only 5 incorrectly so (0.75%). The 2532 remaining videos were used for our test. On these, 45 errors were made, leading to a success rate of 98.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Retinex enhancement of infrared images.
Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili
2008-01-01
With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.
Molecular breast tomosynthesis with scanning focus multi-pinhole cameras
NASA Astrophysics Data System (ADS)
van Roosmalen, Jarno; Goorden, Marlies C.; Beekman, Freek J.
2016-08-01
Planar molecular breast imaging (MBI) is rapidly gaining in popularity in diagnostic oncology. To add 3D capabilities, we introduce a novel molecular breast tomosynthesis (MBT) scanner concept based on multi-pinhole collimation. In our design, the patient lies prone with the pendant breast lightly compressed between transparent plates. Integrated webcams view the breast through these plates and allow the operator to designate the scan volume (e.g. a whole breast or a suspected region). The breast is then scanned by translating focusing multi-pinhole plates and NaI(Tl) gamma detectors together in a sequence that optimizes count yield from the volume-of-interest. With simulations, we compared MBT with existing planar MBI. In a breast phantom containing different lesions, MBT improved tumour-to-background contrast-to-noise ratio (CNR) over planar MBI by 12% and 111% for 4.0 and 6.0 mm lesions respectively in case of whole breast scanning. For the same lesions, much larger CNR improvements of 92% and 241% over planar MBI were found in a scan that focused on a breast region containing several lesions. MBT resolved 3.0 mm rods in a Derenzo resolution phantom in the transverse plane compared to 2.5 mm rods distinguished by planar MBI. While planar MBI cannot provide depth information, MBT offered 4.0 mm depth resolution. Our simulations indicate that besides offering 3D localization of increased tracer uptake, multi-pinhole MBT can significantly increase tumour-to-background CNR compared to planar MBI. These properties could be promising for better estimating the position, extend and shape of lesions and distinguishing between single and multiple lesions.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Laser scanning saturated structured illumination microscopy based on phase modulation
NASA Astrophysics Data System (ADS)
Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu
2017-08-01
Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.
Commissioning Results on the JWST Testbed Telescope
NASA Technical Reports Server (NTRS)
Dean, Bruce H.; Acton, D. Scott
2006-01-01
The one-meter 18 segment JWST Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate commissioning operations for the JWST Observatory. Eight different commissioning activities were tested on the TBT: telescope focus sweep, segment ID and Search, image array, global alignment, image stacking, coarse phasing, fine phasing, and multi-field phasing. This paper describes recent commissioning results from experiments performed on the TBT.
NASA Astrophysics Data System (ADS)
Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.
Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements arcs in space surveillance are often both short and sparse. FISST methodologies have been applied to the general problem of SSA by many authors, but they generally focus on tracking scenarios with long arcs or assume that line detection is tractable. We will instead focus this work on estimating sensor-level kinematics of RSOs for low SNR too-short arc observations. Once said estimate is made available, track association and simultaneous initial orbit determination may be achieved via any number of proposed solutions to the too-short arc problem, such as those incorporating the admissible region. We show that the benefit of combining FISST-based TBD with too-short arc association goes both ways; i.e., the former provides consistent statistics regarding bearing-only measurements, whereas the latter makes better use of the precise dynamical models nominally applicable to RSOs in orbit determination.
Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification
NASA Astrophysics Data System (ADS)
Gao, G.; Zhang, M.; Gu, Y.
2017-05-01
Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".
A novel visual saliency analysis model based on dynamic multiple feature combination strategy
NASA Astrophysics Data System (ADS)
Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao
2017-06-01
The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging
Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.
2016-01-01
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V
2016-09-07
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
Richard Mazurchuk, PhD | Division of Cancer Prevention
Dr. Richard Mazurchuk received a BS in Physics and MS and PhD in Biophysics from SUNY Buffalo. His research focused on developing novel multi-modality imaging techniques, contrast (enhancing) agents and methods to assess the efficacy of experimental therapeutics. |
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-01-01
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-02-07
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.
NASA Astrophysics Data System (ADS)
Yang, Huijin; Pan, Bin; Wu, Wenfu; Tai, Jianhao
2018-07-01
Rice is one of the most important cereals in the world. With the change of agricultural land, it is urgently necessary to update information about rice planting areas. This study aims to map rice planting areas with a field-based approach through the integration of multi-temporal Sentinel-1A and Landsat-8 OLI data in Wuhua County of South China where has many basins and mountains. This paper, using multi-temporal SAR and optical images, proposes a methodology for the identification of rice-planting areas. This methodology mainly consists of SSM applied to time series SAR images for the calculation of a similarity measure, image segmentation process applied to the pan-sharpened optical image for the searching of homogenous objects, and the integration of SAR and optical data for the elimination of some speckles. The study compares the per-pixel approach with the per-field approach and the results show that the highest accuracy (91.38%) based on the field-based approach is 1.18% slightly higher than that based on the pixel-based approach for VH polarization, which is brought by eliminating speckle noise through comparing the rice maps of these two approaches. Therefore, the integration of Sentinel-1A and Landsat-8 OLI images with a field-based approach has great potential for mapping rice or other crops' areas.
Lidar-based individual tree species classification using convolutional neural network
NASA Astrophysics Data System (ADS)
Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi
2017-06-01
Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
Multi-spectral imaging with infrared sensitive organic light emitting diode
Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky
2014-01-01
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589
Multi-spectral imaging with infrared sensitive organic light emitting diode
NASA Astrophysics Data System (ADS)
Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky
2014-08-01
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.
Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573
NASA Technical Reports Server (NTRS)
Thompson, Rodger I.
1997-01-01
Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has been in orbit for about 8 months. This is a report on its current status and future plans. Also included are some comments on particular aspects of data analysis concerning dark subtraction, shading, and removal of cosmic rays. At present NICMOS provides excellent images of high scientific content. Most of the observations utilize cameras 1 and 2 which are in excellent focus. Camera 3 is not yet within the range of the focus adjustment mechanism, but its current images are still quite excellent. In this paper we will present the status of various aspects of the NICMOS instrument.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M
2018-04-12
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.
2018-01-01
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes
2011-01-01
Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284
A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.
Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M
2011-01-20
A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.
Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces
NASA Astrophysics Data System (ADS)
Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf
2016-06-01
The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.
Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography
NASA Astrophysics Data System (ADS)
Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki
2017-03-01
We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.
NASA Astrophysics Data System (ADS)
Yu, Le; Zhang, Dengrong; Holden, Eun-Jung
2008-07-01
Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.
NASA Astrophysics Data System (ADS)
Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.
2015-12-01
Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of multi-temporal vegetation index data derived from satellite images. Determined changes were exported to GIS environment and spatial overlay and intersection analyses were performed with use of forest type maps and authorized area maps in order to demonstrate the actual situation of destructions and infractions.
Chu, Constance R; Andriacchi, Thomas P
2015-07-01
Osteoarthritis (OA) is a leading cause of human suffering and disability for which disease-modifying treatments are lacking. OA occurs through complex and dynamic interplays between diverse factors over long periods of time. The traditional research and clinical focus on OA, the end stage disease, obscured understanding pathogenesis prior to reaching a common pathway defined by pain and functional deficits, joint deformity, and radiographic changes. To emphasize disease modification and prevention, we describe a multi-disciplinary systems-based approach encompassing biology, mechanics, and structure to define pre-osteoarthritic disease processes. Central to application of this model is the concept of "pre-osteoarthritis," conditions where clinical OA has not yet developed. Rather, joint homeostasis has been compromised and there are potentially reversible markers for heightened OA risk. Key messages from this perspective are (i) to focus research onto defining pre-OA through identifying and validating biological, mechanical, and imaging markers of OA risk, (ii) to emphasize multi-disciplinary approaches, and (iii) to propose that developing personalized interventions to address reversible markers of OA risk in healthy joints may be the key to prevention. Ultimately, a systems-based analysis of OA pathogenesis shows potential to transform clinical practice by facilitating development and testing of new strategies to prevent or delay the onset of osteoarthritis. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Development and bench testing of a multi-spectral imaging technology built on a smartphone platform
NASA Astrophysics Data System (ADS)
Bolton, Frank J.; Weiser, Reuven; Kass, Alex J.; Rose, Donny; Safir, Amit; Levitz, David
2016-03-01
Cervical cancer screening presents a great challenge for clinicians across the developing world. In many countries, cervical cancer screening is done by visualization with the naked eye. Simple brightfield white light imaging with photo documentation has been shown to make a significant impact on cervical cancer care. Adoption of smartphone based cervical imaging devices is increasing across Africa. However, advanced imaging technologies such as multispectral imaging systems, are seldom deployed in low resource settings, where they are needed most. To address this challenge, the optical system of a smartphone-based mobile colposcopy imaging system was refined, integrating components required for low cost, portable multi-spectral imaging of the cervix. This paper describes the refinement of the mobile colposcope to enable it to acquire images of the cervix at multiple illumination wavelengths, including modeling and laboratory testing. Wavelengths were selected to enable quantifying the main absorbers in tissue (oxyand deoxy-hemoglobin, and water), as well as scattering parameters that describe the size distribution of scatterers. The necessary hardware and software modifications are reviewed. Initial testing suggests the multi-spectral mobile device holds promise for use in low-resource settings.
Ma, Xu; Cheng, Yongmei; Hao, Shuai
2016-12-10
Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.
Examining multi-component DNA-templated nanostructures as imaging agents
NASA Astrophysics Data System (ADS)
Jaganathan, Hamsa
2011-12-01
Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation levels. The findings from this dissertation suggest that the structural arrangement of NPs on DNA significantly influenced their function and utility as MRI agents.
Automatic image enhancement based on multi-scale image decomposition
NASA Astrophysics Data System (ADS)
Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong
2014-01-01
In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.
High-immersion three-dimensional display of the numerical computer model
NASA Astrophysics Data System (ADS)
Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu
2013-08-01
High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.
Wang, Hongzhi; Yushkevich, Paul A.
2013-01-01
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427
Skimming Digits: Neuromorphic Classification of Spike-Encoded Images
Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André
2016-01-01
The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646
Display technologies for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang
2018-02-01
With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
Predictive spectroscopy and chemical imaging based on novel optical systems
NASA Astrophysics Data System (ADS)
Nelson, Matthew Paul
1998-10-01
This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.
Superpixel-based segmentation of muscle fibers in multi-channel microscopy.
Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa
2016-12-05
Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.
The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer
NASA Technical Reports Server (NTRS)
Davis, Anthony B.
2012-01-01
Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.
Three Dimentional Reconstruction of Large Cultural Heritage Objects Based on Uav Video and Tls Data
NASA Astrophysics Data System (ADS)
Xu, Z.; Wu, T. H.; Shen, Y.; Wu, L.
2016-06-01
This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.
Hollow fiber: a biophotonic implant for live cells
NASA Astrophysics Data System (ADS)
Silvestre, Oscar F.; Holton, Mark D.; Summers, Huw D.; Smith, Paul J.; Errington, Rachel J.
2009-02-01
The technical objective of this study has been to design, build and validate biocompatible hollow fiber implants based on fluorescence with integrated biophotonics components to enable in fiber kinetic cell based assays. A human osteosarcoma in vitro cell model fiber system has been established with validation studies to determine in fiber cell growth, cell cycle analysis and organization in normal and drug treated conditions. The rationale for implant development have focused on developing benchmark concepts in standard monolayer tissue culture followed by the development of in vitro hollow fiber designs; encompassing imaging with and without integrated biophotonics. Furthermore the effect of introducing targetable biosensors into the encapsulated tumor implant such as quantum dots for informing new detection readouts and possible implant designs have been evaluated. A preliminary micro/macro imaging approach has been undertaken, that could provide a mean to track distinct morphological changes in cells growing in a 3D matrix within the fiber which affect the light scattering properties of the implant. Parallel engineering studies have showed the influence of the optical properties of the fiber polymer wall in all imaging modes. Taken all together, we show the basic foundation and the opportunities for multi-modal imaging within an in vitro implant format.
NASA Astrophysics Data System (ADS)
Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing
2018-02-01
Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.
NASA Astrophysics Data System (ADS)
Othman, Khairulnizam; Ahmad, Afandi
2016-11-01
In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.
HCP: A Flexible CNN Framework for Multi-label Image Classification.
Wei, Yunchao; Xia, Wei; Lin, Min; Huang, Junshi; Ni, Bingbing; Dong, Jian; Zhao, Yao; Yan, Shuicheng
2015-10-26
Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground-truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) the shared CNN is flexible and can be well pre-trained with a large-scale single-label image dataset, e.g., ImageNet; and 4) it may naturally output multi-label prediction results. Experimental results on Pascal VOC 2007 and VOC 2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 90.5% by HCP only and 93.2% after the fusion with our complementary result in [44] based on hand-crafted features on the VOC 2012 dataset.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.
2011-01-01
Background The International Multi-centre ADHD Genetics (IMAGE) project with 11 participating centres from 7 European countries and Israel has collected a large behavioural and genetic database for present and future research. Behavioural data were collected from 1068 probands with the combined type of attention deficit/hyperactivity disorder (ADHD-CT) and 1446 'unselected' siblings. The aim was to analyse the IMAGE sample with respect to demographic features (gender, age, family status, and recruiting centres) and psychopathological characteristics (diagnostic subtype, symptom frequencies, age at symptom detection, and comorbidities). A particular focus was on the effects of the study design and the diagnostic procedure on the homogeneity of the sample in terms of symptom-based behavioural data, and potential consequences for further analyses based on these data. Methods Diagnosis was based on the Parental Account of Childhood Symptoms (PACS) interview and the DSM-IV items of the Conners' teacher questionnaire. Demographics of the full sample and the homogeneity of a subsample (all probands) were analysed by using robust statistical procedures which were adjusted for unequal sample sizes and skewed distributions. These procedures included multi-way analyses based on trimmed means and winsorised variances as well as bootstrapping. Results Age and proband/sibling ratios differed between participating centres. There was no significant difference in the distribution of gender between centres. There was a significant interaction between age and centre for number of inattentive, but not number of hyperactive symptoms. Higher ADHD symptom frequencies were reported by parents than teachers. The diagnostic symptoms differed from each other in their frequencies. The face-to-face interview was more sensitive than the questionnaire. The differentiation between ADHD-CT probands and unaffected siblings was mainly due to differences in hyperactive/impulsive symptoms. Conclusions Despite a symptom-based standardized inclusion procedure according to DSM-IV criteria with defined symptom thresholds, centres may differ markedly in probands' ADHD symptom frequencies. Both the diagnostic procedure and the multi-centre design influence the behavioural characteristics of a sample and, thus, may bias statistical analyses, particularly in genetic or neurobehavioral studies. PMID:21473745
RAMTaB: Robust Alignment of Multi-Tag Bioimages
Raza, Shan-e-Ahmed; Humayun, Ahmad; Abouna, Sylvie; Nattkemper, Tim W.; Epstein, David B. A.; Khan, Michael; Rajpoot, Nasir M.
2012-01-01
Background In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can interact only when they are located close to each other. We present a novel approach to align images in a multi-tag fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall overlap between the images. Methodology/Principal Findings We employ a block-based method for registration, which yields a confidence measure to indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The registration results are also shown to significantly improve any follow-up protein co-localization studies. Conclusions For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence image data for normal and diseased tissue specimens to analyze molecular co-expression patterns and functional protein networks. PMID:22363510
Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida
2016-09-01
Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.
MR-based keyhole SPECT for small animal imaging
Lee, Keum Sil; Roeck, Werner W; Gullberg, Grant T; Nalcioglu, Orhan
2011-01-01
The rationale for multi-modality imaging is to integrate the strengths of different imaging technologies while reducing the shortcomings of an individual modality. The work presented here proposes a limited-field-of-view (LFOV) SPECT reconstruction technique that can be implemented on a multi-modality MR/SPECT system that can be used to obtain simultaneous MRI and SPECT images for small animal imaging. The reason for using a combined MR/SPECT system in this work is to eliminate any possible misregistration between the two sets of images when MR images are used as a priori information for SPECT. In nuclear imaging the target area is usually smaller than the entire object; thus, focusing the detector on the LFOV results in various advantages including the use of a smaller nuclear detector (less cost), smaller reconstruction region (faster reconstruction) and higher spatial resolution when used in conjunction with pinhole collimators with magnification. The MR/SPECT system can be used to choose a region of interest (ROI) for SPECT. A priori information obtained by the full field-of-view (FOV) MRI combined with the preliminary SPECT image can be used to reduce the dimensions of the SPECT reconstruction by limiting the computation to the smaller FOV while reducing artifacts resulting from the truncated data. Since the technique is based on SPECT imaging within the LFOV it will be called the keyhole SPECT (K-SPECT) method. At first MRI images of the entire object using a larger FOV are obtained to determine the location of the ROI covering the target organ. Once the ROI is determined, the animal is moved inside the radiofrequency (rf) coil to bring the target area inside the LFOV and then simultaneous MRI and SPECT are performed. The spatial resolution of the SPECT image is improved by employing a pinhole collimator with magnification >1 by having carefully calculated acceptance angles for each pinhole to avoid multiplexing. In our design all the pinholes are focused to the center of the LFOV. K-SPECT reconstruction is accomplished by generating an adaptive weighting matrix using a priori information obtained by simultaneously acquired MR images and the radioactivity distribution obtained from the ROI region of the SPECT image that is reconstructed without any a priori input. Preliminary results using simulations with numerical phantoms show that the image resolution of the SPECT image within the LFOV is improved while minimizing artifacts arising from parts of the object outside the LFOV due to the chosen magnification and the new reconstruction technique. The root-mean-square-error (RMSE) in the out-of-field artifacts was reduced by 60% for spherical phantoms using the K-SPECT reconstruction technique and by 48.5–52.6% for the heart in the case with the MOBY phantom. The KSPECT reconstruction technique significantly improved the spatial resolution and quantification while reducing artifacts from the contributions outside the LFOV as well as reducing the dimension of the reconstruction matrix. PMID:21220840
STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.
Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X
2009-08-01
This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.
NASA Astrophysics Data System (ADS)
Alderliesten, Tanja; Bosman, Peter A. N.; Sonke, Jan-Jakob; Bel, Arjan
2014-03-01
Currently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is one of the reasons why, despite significant progress, clinical implementation of such techniques has proven to be difficult. The second challenge is to account for large anatomical differences (e.g. large deformations, (dis)appearing structures) that occurred between image acquisitions. In this paper, we study a framework based on multi-objective optimization to improve registration robustness and to simplify tuning for specific applications. Within this framework we specifically consider the use of an advanced model-based evolutionary algorithm for optimization and a dual-dynamic transformation model (i.e. two "non-fixed" grids: one for the source- and one for the target image) to accommodate for large anatomical differences. The framework computes and presents multiple outcomes that represent efficient trade-offs between the different objectives (a so-called Pareto front). In image processing it is common practice, for reasons of robustness and accuracy, to use a multi-resolution strategy. This is, however, only well-established for single-objective registration methods. Here we describe how such a strategy can be realized for our multi-objective approach and compare its results with a single-resolution strategy. For this study we selected the case of prone-supine breast MRI registration. Results show that the well-known advantages of a multi-resolution strategy are successfully transferred to our multi-objective approach, resulting in superior (i.e. Pareto-dominating) outcomes.
NASA Astrophysics Data System (ADS)
Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-08-01
Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.
Salient object detection based on multi-scale contrast.
Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long
2018-05-01
Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Next Generation Image-Based Phenotyping of Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.
2016-12-01
The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.
Multi-focus beam shaping of high power multimode lasers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei
2017-08-01
Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
Validation of multi-angle imaging spectroradiometer aerosol products in China
J. Liu; X. Xia; Z. Li; P. Wang; M. Min; WeiMin Hao; Y. Wang; J. Xin; X. Li; Y. Zheng; Z. Chen
2010-01-01
Based on AErosol RObotic NETwork and Chinese Sun Hazemeter Network data, the Multi-angle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) products are evaluated in China. The MISR retrievals depict well the temporal aerosol trend in China with correlation coefficients exceeding 0.8 except for stations located in northeast China and at the...
Sentinel-2: State of the Image Quality Calibration at the End of the Commissioning
NASA Astrophysics Data System (ADS)
Tremas, Thierry; Lonjou, Vincent; Lacherade, Sophie; Gaudel-Vacaresse, Angelique; Languille, Florie
2016-08-01
This article summarizes the activity of CNES during the In Orbit Calibration Phase of Sentinel 2A as well as the transfer of production of GIPP (Ground Image Processing Parameters) from CNES to ESRIN. The state of the main calibration parameters and performances, few months before PDGS is declared fully operational, are listed and explained.In radiometry a special attention is paid to the absolute calibration using the on-board diffuser, and the vicarious calibration methods using instrumented or statistically well characterized sites and inter- comparisons with other sensors. Regarding geometry, the presentation focuses on the performances of absolute location with and without reference points. The requirements of multi-band and multi-temporal registration are exposed. Finally, the construction and the rule of the GRI (Ground Reference Images) in the future are explained.
Sjöberg, C; Ahnesjö, A
2013-06-01
Label fusion multi-atlas approaches for image segmentation can give better segmentation results than single atlas methods. We present a multi-atlas label fusion strategy based on probabilistic weighting of distance maps. Relationships between image similarities and segmentation similarities are estimated in a learning phase and used to derive fusion weights that are proportional to the probability for each atlas to improve the segmentation result. The method was tested using a leave-one-out strategy on a database of 21 pre-segmented prostate patients for different image registrations combined with different image similarity scorings. The probabilistic weighting yields results that are equal or better compared to both fusion with equal weights and results using the STAPLE algorithm. Results from the experiments demonstrate that label fusion by weighted distance maps is feasible, and that probabilistic weighted fusion improves segmentation quality more the stronger the individual atlas segmentation quality depends on the corresponding registered image similarity. The regions used for evaluation of the image similarity measures were found to be more important than the choice of similarity measure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Response normalization and blur adaptation: Data and multi-scale model
Elliott, Sarah L.; Georgeson, Mark A.; Webster, Michael A.
2011-01-01
Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M. Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log–log) slopes from −2 (strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002). A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when they are represented only implicitly by the distribution of responses across multiple channels. PMID:21307174
Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data
NASA Astrophysics Data System (ADS)
Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.
Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions
Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging
NASA Astrophysics Data System (ADS)
Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector
2016-02-01
Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1
Deep Learning for Lowtextured Image Matching
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Fedorenko, V. V.; Fomin, N. A.
2018-05-01
Low-textured objects pose challenges for an automatic 3D model reconstruction. Such objects are common in archeological applications of photogrammetry. Most of the common feature point descriptors fail to match local patches in featureless regions of an object. Hence, automatic documentation of the archeological process using Structure from Motion (SfM) methods is challenging. Nevertheless, such documentation is possible with the aid of a human operator. Deep learning-based descriptors have outperformed most of common feature point descriptors recently. This paper is focused on the development of a new Wide Image Zone Adaptive Robust feature Descriptor (WIZARD) based on the deep learning. We use a convolutional auto-encoder to compress discriminative features of a local path into a descriptor code. We build a codebook to perform point matching on multiple images. The matching is performed using the nearest neighbor search and a modified voting algorithm. We present a new "Multi-view Amphora" (Amphora) dataset for evaluation of point matching algorithms. The dataset includes images of an Ancient Greek vase found at Taman Peninsula in Southern Russia. The dataset provides color images, a ground truth 3D model, and a ground truth optical flow. We evaluated the WIZARD descriptor on the "Amphora" dataset to show that it outperforms the SIFT and SURF descriptors on the complex patch pairs.
Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps
NASA Astrophysics Data System (ADS)
Yu, Yanzhong; Huang, Han; Zhou, Mianmian; Zhan, Qiwen
2018-01-01
Based on the radiation pattern from a sectional-uniform line source antenna, a three-dimensional (3D) focus engineering technique for the creation of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps is proposed. Under a 4Pi focusing system, the fields radiated from sectional-uniform magnetic and electromagnetic current line source antennas are employed to generate multi-segmented optical tube and flattop focus, respectively. Numerical results demonstrate that the produced light tube and flattop focus remain homogeneous along the optical axis; and their lengths of the nth segment and the nth gap between consecutive segments can be easily adjusted and only depend on the sizes of the nth section and the nth blanking between adjacent sectional antennas. The optical tube is a pure azimuthally polarized field but for the flattop focus the longitudinal polarization is dominant on the optical axis. To obtain the required pupil plane illumination for constructing the above focal field with prescribed characteristics, the inverse problem of the antenna radiation field is solved. These peculiar focusing fields might find potential applications in multi-particle acceleration, multi-particle trapping and manipulation.
Imaging Techniques for Dense 3D reconstruction of Swimming Aquatic Life using Multi-view Stereo
NASA Astrophysics Data System (ADS)
Daily, David; Kiser, Jillian; McQueen, Sarah
2016-11-01
Understanding the movement characteristics of how various species of fish swim is an important step to uncovering how they propel themselves through the water. Previous methods have focused on profile capture methods or sparse 3D manual feature point tracking. This research uses an array of 30 cameras to automatically track hundreds of points on a fish as they swim in 3D using multi-view stereo. Blacktip sharks, sting rays, puffer fish, turtles and more were imaged in collaboration with the National Aquarium in Baltimore, Maryland using the multi-view stereo technique. The processes for data collection, camera synchronization, feature point extraction, 3D reconstruction, 3D alignment, biological considerations, and lessons learned will be presented. Preliminary results of the 3D reconstructions will be shown and future research into mathematically characterizing various bio-locomotive maneuvers will be discussed.
ACTIM: an EDA initiated study on spectral active imaging
NASA Astrophysics Data System (ADS)
Steinvall, O.; Renhorn, I.; Ahlberg, J.; Larsson, H.; Letalick, D.; Repasi, E.; Lutzmann, P.; Anstett, G.; Hamoir, D.; Hespel, L.; Boucher, Y.
2010-10-01
This paper will describe ongoing work from an EDA initiated study on Active Imaging with emphasis of using multi or broadband spectral lasers and receivers. Present laser based imaging and mapping systems are mostly based on a fixed frequency lasers. On the other hand great progress has recently occurred in passive multi- and hyperspectral imaging with applications ranging from environmental monitoring and geology to mapping, military surveillance, and reconnaissance. Data bases on spectral signatures allow the possibility to discriminate between different materials in the scene. Present multi- and hyperspectral sensors mainly operate in the visible and short wavelength region (0.4-2.5 μm) and rely on the solar radiation giving shortcoming due to shadows, clouds, illumination angles and lack of night operation. Active spectral imaging however will largely overcome these difficulties by a complete control of the illumination. Active illumination enables spectral night and low-light operation beside a robust way of obtaining polarization and high resolution 2D/3D information. Recent development of broadband lasers and advanced imaging 3D focal plane arrays has led to new opportunities for advanced spectral and polarization imaging with high range resolution. Fusing the knowledge of ladar and passive spectral imaging will result in new capabilities in the field of EO-sensing to be shown in the study. We will present an overview of technology, systems and applications for active spectral imaging and propose future activities in connection with some prioritized applications.
Adaptive Optics Image Restoration Based on Frame Selection and Multi-frame Blind Deconvolution
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Chang-hui; Wei, Kai
Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.
Multi-Frequency Intravascular Ultrasound (IVUS) Imaging
Ma, Teng; Yu, Mingyue; Chen, Zeyu; Fei, Chunlong; Shung, K. Kirk; Zhou, Qifa
2015-01-01
Acute coronary syndrome (ACS) is frequently associated with the sudden rupture of a vulnerable atherosclerotic plaque within the coronary artery. Several unique physiological features, including a thin fibrous cap accompanied by a necrotic lipid core, are the targeted indicators for identifying the vulnerable plaques. Intravascular ultrasound (IVUS), a catheter-based imaging technology, has been routinely performed in clinics for more than 20 years to describe the morphology of the coronary artery and guide percutaneous coronary interventions. However, conventional IVUS cannot facilitate the risk assessment of ACS because of its intrinsic limitations, such as insufficient resolution. Renovation of the IVUS technology is essentially needed to overcome the limitations and enhance the coronary artery characterization. In this paper, a multi-frequency intravascular ultrasound (IVUS) imaging system was developed by incorporating a higher frequency IVUS transducer (80 to 150 MHz) with the conventional IVUS (30–50 MHz) system. The newly developed system maintains the advantage of deeply penetrating imaging with the conventional IVUS, while offering an improved higher resolution image with IVUS at a higher frequency. The prototyped multi-frequency catheter has a clinically compatible size of 0.95 mm and a favorable capability of automated image co-registration. In vitro human coronary artery imaging has demonstrated the feasibility and superiority of the multi-frequency IVUS imaging system to deliver a more comprehensive visualization of the coronary artery. This ultrasonic-only intravascular imaging technique, based on a moderate refinement of the conventional IVUS system, is not only cost-effective from the perspective of manufacturing and clinical practice, but also holds the promise of future translation into clinical benefits. PMID:25585394
Young Kim, Eun; Johnson, Hans J
2013-01-01
A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
NASA Astrophysics Data System (ADS)
Mabu, Shingo; Kido, Shoji; Hashimoto, Noriaki; Hirano, Yasushi; Kuremoto, Takashi
2018-02-01
This research proposes a multi-channel deep convolutional neural network (DCNN) for computer-aided diagnosis (CAD) that classifies normal and abnormal opacities of diffuse lung diseases in Computed Tomography (CT) images. Because CT images are gray scale, DCNN usually uses one channel for inputting image data. On the other hand, this research uses multi-channel DCNN where each channel corresponds to the original raw image or the images transformed by some preprocessing techniques. In fact, the information obtained only from raw images is limited and some conventional research suggested that preprocessing of images contributes to improving the classification accuracy. Thus, the combination of the original and preprocessed images is expected to show higher accuracy. The proposed method realizes region of interest (ROI)-based opacity annotation. We used lung CT images taken in Yamaguchi University Hospital, Japan, and they are divided into 32 × 32 ROI images. The ROIs contain six kinds of opacities: consolidation, ground-glass opacity (GGO), emphysema, honeycombing, nodular, and normal. The aim of the proposed method is to classify each ROI into one of the six opacities (classes). The DCNN structure is based on VGG network that secured the first and second places in ImageNet ILSVRC-2014. From the experimental results, the classification accuracy of the proposed method was better than the conventional method with single channel, and there was a significant difference between them.
NASA Astrophysics Data System (ADS)
Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki
To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.
Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.
Scharfe, Michael; Pielot, Rainer; Schreiber, Falk
2010-01-11
Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.
MS lesion segmentation using a multi-channel patch-based approach with spatial consistency
NASA Astrophysics Data System (ADS)
Mechrez, Roey; Goldberger, Jacob; Greenspan, Hayit
2015-03-01
This paper presents an automatic method for segmentation of Multiple Sclerosis (MS) in Magnetic Resonance Images (MRI) of the brain. The approach is based on similarities between multi-channel patches (T1, T2 and FLAIR). An MS lesion patch database is built using training images for which the label maps are known. For each patch in the testing image, k similar patches are retrieved from the database. The matching labels for these k patches are then combined to produce an initial segmentation map for the test case. Finally a novel iterative patch-based label refinement process based on the initial segmentation map is performed to ensure spatial consistency of the detected lesions. A leave-one-out evaluation is done for each testing image in the MS lesion segmentation challenge of MICCAI 2008. Results are shown to compete with the state-of-the-art methods on the MICCAI 2008 challenge.
First experience with THE AUTOLAP™ SYSTEM: an image-based robotic camera steering device.
Wijsman, Paul J M; Broeders, Ivo A M J; Brenkman, Hylke J; Szold, Amir; Forgione, Antonello; Schreuder, Henk W R; Consten, Esther C J; Draaisma, Werner A; Verheijen, Paul M; Ruurda, Jelle P; Kaufman, Yuval
2018-05-01
Robotic camera holders for endoscopic surgery have been available for 20 years but market penetration is low. The current camera holders are controlled by voice, joystick, eyeball tracking, or head movements, and this type of steering has proven to be successful but excessive disturbance of surgical workflow has blocked widespread introduction. The Autolap™ system (MST, Israel) uses a radically different steering concept based on image analysis. This may improve acceptance by smooth, interactive, and fast steering. These two studies were conducted to prove safe and efficient performance of the core technology. A total of 66 various laparoscopic procedures were performed with the AutoLap™ by nine experienced surgeons, in two multi-center studies; 41 cholecystectomies, 13 fundoplications including hiatal hernia repair, 4 endometriosis surgeries, 2 inguinal hernia repairs, and 6 (bilateral) salpingo-oophorectomies. The use of the AutoLap™ system was evaluated in terms of safety, image stability, setup and procedural time, accuracy of imaged-based movements, and user satisfaction. Surgical procedures were completed with the AutoLap™ system in 64 cases (97%). The mean overall setup time of the AutoLap™ system was 4 min (04:08 ± 0.10). Procedure times were not prolonged due to the use of the system when compared to literature average. The reported user satisfaction was 3.85 and 3.96 on a scale of 1 to 5 in two studies. More than 90% of the image-based movements were accurate. No system-related adverse events were recorded while using the system. Safe and efficient use of the core technology of the AutoLap™ system was demonstrated with high image stability and good surgeon satisfaction. The results support further clinical studies that will focus on usability, improved ergonomics and additional image-based features.
Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images
NASA Astrophysics Data System (ADS)
Awumah, Anna; Mahanti, Prasun; Robinson, Mark
2016-10-01
Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).
Automatic atlas-based three-label cartilage segmentation from MR knee images
Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc
2016-01-01
Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683
One-step production of multilayered microparticles by tri-axial electro-flow focusing
NASA Astrophysics Data System (ADS)
Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald
2014-03-01
Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.
Rapid Multi-Tracer PET Tumor Imaging With F-FDG and Secondary Shorter-Lived Tracers.
Black, Noel F; McJames, Scott; Kadrmas, Dan J
2009-10-01
Rapid multi-tracer PET, where two to three PET tracers are rapidly scanned with staggered injections, can recover certain imaging measures for each tracer based on differences in tracer kinetics and decay. We previously showed that single-tracer imaging measures can be recovered to a certain extent from rapid dual-tracer (62)Cu - PTSM (blood flow) + (62)Cu - ATSM (hypoxia) tumor imaging. In this work, the feasibility of rapidly imaging (18)F-FDG plus one or two of these shorter-lived secondary tracers was evaluated in the same tumor model. Dynamic PET imaging was performed in four dogs with pre-existing tumors, and the raw scan data was combined to emulate 60 minute long dual- and triple-tracer scans, using the single-tracer scans as gold standards. The multi-tracer data were processed for static (SUV) and kinetic (K(1), K(net)) endpoints for each tracer, followed by linear regression analysis of multi-tracer versus single-tracer results. Static and quantitative dynamic imaging measures of FDG were both accurately recovered from the multi-tracer scans, closely matching the single-tracer FDG standards (R > 0.99). Quantitative blood flow information, as measured by PTSM K(1) and SUV, was also accurately recovered from the multi-tracer scans (R = 0.97). Recovery of ATSM kinetic parameters proved more difficult, though the ATSM SUV was reasonably well recovered (R = 0.92). We conclude that certain additional information from one to two shorter-lived PET tracers may be measured in a rapid multi-tracer scan alongside FDG without compromising the assessment of glucose metabolism. Such additional and complementary information has the potential to improve tumor characterization in vivo, warranting further investigation of rapid multi-tracer techniques.
Rapid Multi-Tracer PET Tumor Imaging With 18F-FDG and Secondary Shorter-Lived Tracers
Black, Noel F.; McJames, Scott; Kadrmas, Dan J.
2009-01-01
Rapid multi-tracer PET, where two to three PET tracers are rapidly scanned with staggered injections, can recover certain imaging measures for each tracer based on differences in tracer kinetics and decay. We previously showed that single-tracer imaging measures can be recovered to a certain extent from rapid dual-tracer 62Cu – PTSM (blood flow) + 62Cu — ATSM (hypoxia) tumor imaging. In this work, the feasibility of rapidly imaging 18F-FDG plus one or two of these shorter-lived secondary tracers was evaluated in the same tumor model. Dynamic PET imaging was performed in four dogs with pre-existing tumors, and the raw scan data was combined to emulate 60 minute long dual- and triple-tracer scans, using the single-tracer scans as gold standards. The multi-tracer data were processed for static (SUV) and kinetic (K1, Knet) endpoints for each tracer, followed by linear regression analysis of multi-tracer versus single-tracer results. Static and quantitative dynamic imaging measures of FDG were both accurately recovered from the multi-tracer scans, closely matching the single-tracer FDG standards (R > 0.99). Quantitative blood flow information, as measured by PTSM K1 and SUV, was also accurately recovered from the multi-tracer scans (R = 0.97). Recovery of ATSM kinetic parameters proved more difficult, though the ATSM SUV was reasonably well recovered (R = 0.92). We conclude that certain additional information from one to two shorter-lived PET tracers may be measured in a rapid multi-tracer scan alongside FDG without compromising the assessment of glucose metabolism. Such additional and complementary information has the potential to improve tumor characterization in vivo, warranting further investigation of rapid multi-tracer techniques. PMID:20046800
Microlenses and microcameras for biomedical imaging
NASA Astrophysics Data System (ADS)
Kanhere, Aditi
Liquid lens technology is a rapidly progressing field driven by the promise of low cost fabrication, faster response, fewer mechanical elements, versatility and ease of customization for different applications. Here we present the use of liquid lenses for biomedical optics and medical imaging. I will specifically focus on our approaches towards the development of two liquid-lens optical systems -- laparoscopic cameras and 3D microscopy. The first part of this work is based on the development of a multi-camera laparoscopic imaging system with tunable focusing capability. The work attempts to find a solution to overcome many of the fundamental challenges faced by current laparoscopic imaging systems. The system is developed upon the key idea that widely spread multiple, tunable microcameras can cover a large range of vantage points and field of view (FoV) for intra-abdominal visualization. Our design features multiple tunable-focus microcameras integrated with a surgical port to provide panoramic intra-abdominal visualization with enhanced depth perception. Our system can be optically tuned to focus in on objects within a range of 5 mm to infinity, with a FoV adjustable between 36 degrees and 130 degrees. This unique approach also eliminates the requirement of an exclusive imaging port and need for navigation of cameras between ports during surgery. The second part of this report focuses on the application of tunable lenses in microscopy. Conventional wide-field microscopy is one of the most widely used optical microscopy technique. This technique typically captures a two dimensional image of a specimen. For a volumetric visualization of the sample or to enable depth scanning along the axial direction, it is necessary to move the sample relative to the fixed focal plane of the microscope objective. For this purpose, a mechanical z-scanning stage is typically employed. The stage enables the focal plane to move through the sample. Typical approaches used to achieve axial scanning are a motorized stepper stage or a piezoelectric stage. While stepper motors offer the advantage of unlimited travel distance, they suffer from hysteresis. Piezoelectric stages on the other hand, help eliminate hysteresis at the cost of the travel distance which is reduced to 100-200 mum. Both the types of stages, however, are bulky and cause vibrations and wobble in the sample due to high inertia. Additional care is required to avoid mechanical overshoots and backlash from the tip touching the sample. Additionally, for water or oil-immersion lenses, vibration of the sample stage can cause disturbance or ripples in the immersion media that can lead to significant distortion in the images. A robust alternative to the use of mechanical scanning stages is a remote focusing system that allows both the objective and the sample to be stationary. One such solution is the employment of a tunable-focus liquid lens in conjunction with a microscope objective to achieve axial scanning through a sample being imaged. Our work demonstrates the implementation of a robust, cost-effective and energy-efficient axial tuning solution for 3D microscopy based on thermo-responsive hydrogel-based tunable liquid lenses.
Advances in multi-sensor data fusion: algorithms and applications.
Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying
2009-01-01
With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.
Modeling and Correcting the Time-Dependent ACS PSF
NASA Technical Reports Server (NTRS)
Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie
2006-01-01
The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less
Multi-Scale Computational Models for Electrical Brain Stimulation
Seo, Hyeon; Jun, Sung C.
2017-01-01
Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476
Combined multi-spectrum and orthogonal Laplacianfaces for fast CB-XLCT imaging with single-view data
NASA Astrophysics Data System (ADS)
Zhang, Haibo; Geng, Guohua; Chen, Yanrong; Qu, Xuan; Zhao, Fengjun; Hou, Yuqing; Yi, Huangjian; He, Xiaowei
2017-12-01
Cone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, which has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. Single-view data reconstruction as a key issue of CB-XLCT imaging promotes the effective study of dynamic XLCT imaging. However, it suffers from serious ill-posedness in the inverse problem. In this paper, a multi-spectrum strategy is adopted to relieve the ill-posedness of reconstruction. The strategy is based on the third-order simplified spherical harmonic approximation model. Then, an orthogonal Laplacianfaces-based method is proposed to reduce the large computational burden without degrading the imaging quality. Both simulated data and in vivo experimental data were used to evaluate the efficiency and robustness of the proposed method. The results are satisfactory in terms of both location and quantitative recovering with computational efficiency, indicating that the proposed method is practical and promising for single-view CB-XLCT imaging.
Classification algorithm of lung lobe for lung disease cases based on multislice CT images
NASA Astrophysics Data System (ADS)
Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.
2011-03-01
With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.
Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.
Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl
2015-01-01
The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
Ad Hoc Network Architecture for Multi-Media Networks
2007-12-01
sensor network . Video traffic is modeled and simulations are performed via the use of the Sun Small Programmable Object Technology (Sun SPOT) Java...characteristics of video traffic must be studied and understood. This thesis focuses on evaluating the possibility of routing video images over a wireless
Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.
Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A
2015-12-01
We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.
ARGOS laser system mechanical design
NASA Astrophysics Data System (ADS)
Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.
2014-07-01
ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.
Dai, Erpeng; Zhang, Zhe; Ma, Xiaodong; Dong, Zijing; Li, Xuesong; Xiong, Yuhui; Yuan, Chun; Guo, Hua
2018-03-23
To study the effects of 2D navigator distortion and noise level on interleaved EPI (iEPI) DWI reconstruction, using either the image- or k-space-based method. The 2D navigator acquisition was adjusted by reducing its echo spacing in the readout direction and undersampling in the phase encoding direction. A POCS-based reconstruction using image-space sampling function (IRIS) algorithm (POCSIRIS) was developed to reduce the impact of navigator distortion. POCSIRIS was then compared with the original IRIS algorithm and a SPIRiT-based k-space algorithm, under different navigator distortion and noise levels. Reducing the navigator distortion can improve the reconstruction of iEPI DWI. The proposed POCSIRIS and SPIRiT-based algorithms are more tolerable to different navigator distortion levels, compared to the original IRIS algorithm. SPIRiT may be hindered by low SNR of the navigator. Multi-shot iEPI DWI reconstruction can be improved by reducing the 2D navigator distortion. Different reconstruction methods show variable sensitivity to navigator distortion or noise levels. Furthermore, the findings can be valuable in applications such as simultaneous multi-slice accelerated iEPI DWI and multi-slab diffusion imaging. © 2018 International Society for Magnetic Resonance in Medicine.
The Performance Analysis Based on SAR Sample Covariance Matrix
Erten, Esra
2012-01-01
Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976
Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei
2014-01-01
Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000
High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)
NASA Astrophysics Data System (ADS)
Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.
2003-06-01
Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.
NASA Astrophysics Data System (ADS)
Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C. D.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.
2016-12-01
Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image-based measurements of the distribution and time scales of imbibition. We also characterize nm-scale structure via focused ion beam tomography to quantify sub-voxel porosity and connectivity. The multi-scale image and flow data is used to develop a framework to upscale and benchmark pore-scale models.
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
Image fusion based on millimeter-wave for concealed weapon detection
NASA Astrophysics Data System (ADS)
Zhu, Weiwen; Zhao, Yuejin; Deng, Chao; Zhang, Cunlin; Zhang, Yalin; Zhang, Jingshui
2010-11-01
This paper describes a novel multi sensors image fusion technology which is presented for concealed weapon detection (CWD). It is known to all, because of the good transparency of the clothes at millimeter wave band, a millimeter wave radiometer can be used to image and distinguish concealed contraband beneath clothes, for example guns, knives, detonator and so on. As a result, we adopt the passive millimeter wave (PMMW) imaging technology for airport security. However, in consideration of the wavelength of millimeter wave and the single channel mechanical scanning, the millimeter wave image has law optical resolution, which can't meet the need of practical application. Therefore, visible image (VI), which has higher resolution, is proposed for the image fusion with the millimeter wave image to enhance the readability. Before the image fusion, a novel image pre-processing which specifics to the fusion of millimeter wave imaging and visible image is adopted. And in the process of image fusion, multi resolution analysis (MRA) based on Wavelet Transform (WT) is adopted. In this way, the experiment result shows that this method has advantages in concealed weapon detection and has practical significance.
Advanced human machine interaction for an image interpretation workstation
NASA Astrophysics Data System (ADS)
Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.
2016-05-01
In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs
A Large Aperture Fabry-Perot Tunable Filter Based On Micro Opto Electromechanical Systems Technology
NASA Technical Reports Server (NTRS)
Greenhouse, Matt; Mott, Brent; Powell, Dan; Barclay, Rich; Hsieh, Wen-Ting
2002-01-01
A research and development effort sponsored by the NASA Goddard Spaceflight Center (GSFC) is focused on applying Micro Opto Electromechanical Systems (MOEMS) technology to create a miniature Fabry-Perot tunable etalon for space and ground-based near infrared imaging spectrometer applications. Unlike previous devices developed for small-aperture telecommunications systems, the GSFC research is directed toward a novel 12 - 40 mm aperture for astrophysical studies, including emission line imaging of galaxies and nebulae, and multi-spectral redshift surveys in the 1.1 - 2.3 micron wavelength region. The MOEMS design features integrated electrostatic scanning of the 11-micron optical gap, and capacitance micrometry for closed loop control of parallelism within a 10-nm tolerance. The low thermal mass and inertia inherent in MOEMS devices allows for rapid cooling to the proposed 30 K operating temperature, and high frequency response. Achieving the proposed 6-nm aperture flatness (with an effective finesse of 50) represents the primary technical challenge in the current 12-mm prototype.
Coarse-to-fine wavelet-based airport detection
NASA Astrophysics Data System (ADS)
Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun
2015-10-01
Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.
Kagawa-Singer, Marjorie; Adler, Shelley R; Mouton, Charles E; Ory, Marcia; Underwood, Lynne G
2009-01-01
To outline the lessons learned about the use of focus groups for the multisite, multi-ethnic longitudinal Study of Women Across the Nation (SWAN). Focus groups were designed to identify potential cultural differences in the incidence of symptoms and the meaning of transmenopause among women of diverse cultures, and to identify effective recruitment and retention strategies. Inductive and deductive focus groups for a multi-ethnic study. Seven community research sites across the United States conducted focus groups with six ethnic populations: African American, Chinese American, Japanese American, Mexican American, non-Hispanic white, and Puerto Rican. Community women from each ethnic group of color. A set of four/five focus groups in each ethnic group as the formative stage of the deductive, quantitative SWAN survey. Identification of methodological advantages and challenges to the successful implementation of formative focus groups in a multi-ethnic, multi-site population-based epidemiologic study. We provide recommendations from our lessons learned to improve the use of focus groups in future studies with multi-ethnic populations. Mixed methods using inductive and deductive approaches require the scientific integrity of both research paradigms. Adequate resources and time must be budgeted as essential parts of the overall strategy from the outset of study. Inductive cross-cultural researchers should be key team members, beginning with inception through each subsequent design phase to increase the scientific validity, generalizability, and comparability of the results across diverse ethnic groups, to assure the relevance, validity and applicability of the findings to the multicultural population of focus.
Segmentation of neuroanatomy in magnetic resonance images
NASA Astrophysics Data System (ADS)
Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.
1992-06-01
Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Huijun; Gong, Jianya
2018-01-01
Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).
Structural Information Detection Based Filter for GF-3 SAR Images
NASA Astrophysics Data System (ADS)
Sun, Z.; Song, Y.
2018-04-01
GF-3 satellite with high resolution, large swath, multi-imaging mode, long service life and other characteristics, can achieve allweather and all day monitoring for global land and ocean. It has become the highest resolution satellite system in the world with the C-band multi-polarized synthetic aperture radar (SAR) satellite. However, due to the coherent imaging system, speckle appears in GF-3 SAR images, and it hinders the understanding and interpretation of images seriously. Therefore, the processing of SAR images has big challenges owing to the appearance of speckle. The high-resolution SAR images produced by the GF-3 satellite are rich in information and have obvious feature structures such as points, edges, lines and so on. The traditional filters such as Lee filter and Gamma MAP filter are not appropriate for the GF-3 SAR images since they ignore the structural information of images. In this paper, the structural information detection based filter is constructed, successively including the point target detection in the smallest window, the adaptive windowing method based on regional characteristics, and the most homogeneous sub-window selection. The despeckling experiments on GF-3 SAR images demonstrate that compared with the traditional filters, the proposed structural information detection based filter can well preserve the points, edges and lines as well as smooth the speckle more sufficiently.
A multi-temporal analysis approach for land cover mapping in support of nuclear incident response
NASA Astrophysics Data System (ADS)
Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.
2012-06-01
Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
Asymptotics of action variables near semi-toric singularities
NASA Astrophysics Data System (ADS)
Wacheux, Christophe
2015-12-01
The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behavior and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by San Vũ Ngọc to any dimension. We also calculate the monodromy matrix for these systems.
NASA Astrophysics Data System (ADS)
Wingo, S. M.; Petersen, W. A.; Gatlin, P. N.; Marks, D. A.; Wolff, D. B.; Pabla, C. S.
2017-12-01
The versatile SIMBA (System for Integrating Multi-platform data to Build the Atmospheric column) precipitation data-fusion framework produces an atmospheric column data product with multi-platform observations set into a common 3-D grid, affording an efficient starting point for multi-sensor comparisons and analysis that can be applied to any region. Supported data sources include: ground-based scanning and profiling radars (S-, X-, Ku-, K-, and Ka-band), multiple types of disdrometers and rain gauges, the GPM Core Observatory's Microwave Imager (GMI, 10-183 GHz) and Dual-frequency Precipitation Radar (DPR, Ka/Ku-band), as well as thermodynamic soundings and the Multi-Radar/Multi-Sensor QPE product. SIMBA column data files provide a unique way to evaluate the complete vertical profile of precipitation. Two post-launch (GPM Core in orbit) field campaigns focused on different facets of the GPM mission: the Olympic Mountains Experiment (OLYMPEX) was geared toward winter season (November-February) precipitation in Pacific frontal systems and their transition from the coastal to mountainous terrain of northwest Washington, while the Integrated Precipitation and Hydrology Experiment (IPHEx) sampled warm season (April-June) precipitation and supported hydrologic applications in the southern Appalachians and eastern North Carolina. Both campaigns included multiple orographic precipitation enhancement episodes. SIMBA column products generated for select OLYMPEX and IPHEx events will be used to evaluate spatial variability and vertical profiles of precipitation and drop size distribution parameters derived and/or observed by space- and ground-based sensors. Results will provide a cursory view of how well the space-based measurements represent what is observed from the ground below and an indication to how the terrain in both regions impacts the characteristics of precipitation within the column and reaching the ground.
NASA Astrophysics Data System (ADS)
Wingo, S. M.; Petersen, W. A.; Gatlin, P. N.; Marks, D. A.; Wolff, D. B.; Pabla, C. S.
2016-12-01
The versatile SIMBA (System for Integrating Multi-platform data to Build the Atmospheric column) precipitation data-fusion framework produces an atmospheric column data product with multi-platform observations set into a common 3-D grid, affording an efficient starting point for multi-sensor comparisons and analysis that can be applied to any region. Supported data sources include: ground-based scanning and profiling radars (S-, X-, Ku-, K-, and Ka-band), multiple types of disdrometers and rain gauges, the GPM Core Observatory's Microwave Imager (GMI, 10-183 GHz) and Dual-frequency Precipitation Radar (DPR, Ka/Ku-band), as well as thermodynamic soundings and the Multi-Radar/Multi-Sensor QPE product. SIMBA column data files provide a unique way to evaluate the complete vertical profile of precipitation. Two post-launch (GPM Core in orbit) field campaigns focused on different facets of the GPM mission: the Olympic Mountains Experiment (OLYMPEX) was geared toward winter season (November-February) precipitation in Pacific frontal systems and their transition from the coastal to mountainous terrain of northwest Washington, while the Integrated Precipitation and Hydrology Experiment (IPHEx) sampled warm season (April-June) precipitation and supported hydrologic applications in the southern Appalachians and eastern North Carolina. Both campaigns included multiple orographic precipitation enhancement episodes. SIMBA column products generated for select OLYMPEX and IPHEx events will be used to evaluate spatial variability and vertical profiles of precipitation and drop size distribution parameters derived and/or observed by space- and ground-based sensors. Results will provide a cursory view of how well the space-based measurements represent what is observed from the ground below and an indication to how the terrain in both regions impacts the characteristics of precipitation within the column and reaching the ground.
NASA Astrophysics Data System (ADS)
Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao
A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.
Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu
2018-03-02
Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.
Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu
2018-01-01
Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703
Towards a More Efficient Detection of Earthquake Induced FAÇADE Damages Using Oblique Uav Imagery
NASA Astrophysics Data System (ADS)
Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.
2017-08-01
Urban search and rescue (USaR) teams require a fast and thorough building damage assessment, to focus their rescue efforts accordingly. Unmanned aerial vehicles (UAV) are able to capture relevant data in a short time frame and survey otherwise inaccessible areas after a disaster, and have thus been identified as useful when coupled with RGB cameras for façade damage detection. Existing literature focuses on the extraction of 3D and/or image features as cues for damage. However, little attention has been given to the efficiency of the proposed methods which hinders its use in an urban search and rescue context. The framework proposed in this paper aims at a more efficient façade damage detection using UAV multi-view imagery. This was achieved directing all damage classification computations only to the image regions containing the façades, hence discarding the irrelevant areas of the acquired images and consequently reducing the time needed for such task. To accomplish this, a three-step approach is proposed: i) building extraction from the sparse point cloud computed from the nadir images collected in an initial flight; ii) use of the latter as proxy for façade location in the oblique images captured in subsequent flights, and iii) selection of the façade image regions to be fed to a damage classification routine. The results show that the proposed framework successfully reduces the extracted façade image regions to be assessed for damage 6 fold, hence increasing the efficiency of subsequent damage detection routines. The framework was tested on a set of UAV multi-view images over a neighborhood of the city of L'Aquila, Italy, affected in 2009 by an earthquake.
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
An Automatic Detection System of Lung Nodule Based on Multi-Group Patch-Based Deep Learning Network.
Jiang, Hongyang; Ma, He; Qian, Wei; Gao, Mengdi; Li, Yan
2017-07-14
High-efficiency lung nodule detection dramatically contributes to the risk assessment of lung cancer. It is a significant and challenging task to quickly locate the exact positions of lung nodules. Extensive work has been done by researchers around this domain for approximately two decades. However, previous computer aided detection (CADe) schemes are mostly intricate and time-consuming since they may require more image processing modules, such as the computed tomography (CT) image transformation, the lung nodule segmentation and the feature extraction, to construct a whole CADe system. It is difficult for those schemes to process and analyze enormous data when the medical images continue to increase. Besides, some state of the art deep learning schemes may be strict in the standard of database. This study proposes an effective lung nodule detection scheme based on multi-group patches cut out from the lung images, which are enhanced by the Frangi filter. Through combining two groups of images, a four-channel convolution neural networks (CNN) model is designed to learn the knowledge of radiologists for detecting nodules of four levels. This CADe scheme can acquire the sensitivity of 80.06% with 4.7 false positives per scan and the sensitivity of 94% with 15.1 false positives per scan. The results demonstrate that the multi-group patch-based learning system is efficient to improve the performance of lung nodule detection and greatly reduce the false positives under a huge amount of image data.
Module for multiphoton high-resolution hyperspectral imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Zeytunyan, Aram; Baldacchini, Tommaso; Zadoyan, Ruben
2018-02-01
We developed a module for dual-output, dual-wavelength lasers that facilitates multiphoton imaging and spectroscopy experiments and enables hyperspectral imaging with spectral resolution up to 5 cm-1. High spectral resolution is achieved by employing spectral focusing. Specifically, two sets of grating pairs are used to control the chirps in each laser beam. In contrast with the approach that uses fixed-length glass rods, grating pairs allow matching the spectral resolution and the linewidths of the Raman lines of interest. To demonstrate the performance of the module, we report the results of spectral focusing CARS and SRS microscopy experiments for various test samples and Raman shifts. The developed module can be used for a variety of multimodal imaging and spectroscopy applications, such as single- and multi-color two-photon fluorescence, second harmonic generation, third harmonic generation, pump-probe, transient absorption, and others.
Volume curtaining: a focus+context effect for multimodal volume visualization
NASA Astrophysics Data System (ADS)
Fairfield, Adam J.; Plasencia, Jonathan; Jang, Yun; Theodore, Nicholas; Crawford, Neil R.; Frakes, David H.; Maciejewski, Ross
2014-03-01
In surgical preparation, physicians will often utilize multimodal imaging scans to capture complementary information to improve diagnosis and to drive patient-specific treatment. These imaging scans may consist of data from magnetic resonance imaging (MR), computed tomography (CT), or other various sources. The challenge in using these different modalities is that the physician must mentally map the two modalities together during the diagnosis and planning phase. Furthermore, the different imaging modalities will be generated at various resolutions as well as slightly different orientations due to patient placement during scans. In this work, we present an interactive system for multimodal data fusion, analysis and visualization. Developed with partners from neurological clinics, this work discusses initial system requirements and physician feedback at the various stages of component development. Finally, we present a novel focus+context technique for the interactive exploration of coregistered multi-modal data.
Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian
2015-07-01
We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.
High-speed laser photoacoustic imaging system combined with a digital ultrasonic imaging platform
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Ji, Xuanrong; Ren, Zhong; Huang, Zhen
2009-07-01
As a new field of combined ultrasound/photoacoustic imaging in biomedical photonics research, we present and demonstrate a high-speed laser photoacoustic imaging system combined with digital ultrasound imaging platform. In the prototype system, a new B-mode digital ultrasonic imaging system is modified as the hardware platform with 384 vertical transducer elements. The centre resonance frequency of the piezoelectric transducer is 5.0 MHz with greater than 70% pulse-echo -6dB fractional bandwidth. The modular instrument of PCI-6541 is used as the hardware control centre of the testing system, which features 32 high-speed channels to build low-skew and multi-channel system. The digital photoacoustic data is transported into computer for subsequent reconstruction at 25 MHz clock frequency. Meantime, the software system for controlling and analyzing is correspondingly explored with LabVIEW language on virtual instrument platform. In the breast tissue experiment, the reconstructed image agrees well with the original sample, and the spatial resolution of the system can reach 0.2 mm with multi-element synthetic aperture focusing technique. Therefore, the system and method may have a significant value in improving early detecting level of cancer in the breast and other organs.
Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering
NASA Astrophysics Data System (ADS)
Jiang, Lu; Piao, Yan
2018-04-01
The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.
Quicksilver: Fast predictive image registration - A deep learning approach.
Yang, Xiao; Kwitt, Roland; Styner, Martin; Niethammer, Marc
2017-09-01
This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou
2006-03-01
Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.
BaTMAn: Bayesian Technique for Multi-image Analysis
NASA Astrophysics Data System (ADS)
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2016-12-01
Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.
Scattered light in a DMD based multi-object spectrometer
NASA Astrophysics Data System (ADS)
Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.
2010-07-01
The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.
Progressive multi-atlas label fusion by dictionary evolution.
Song, Yantao; Wu, Guorong; Bahrami, Khosro; Sun, Quansen; Shen, Dinggang
2017-02-01
Accurate segmentation of anatomical structures in medical images is important in recent imaging based studies. In the past years, multi-atlas patch-based label fusion methods have achieved a great success in medical image segmentation. In these methods, the appearance of each input image patch is first represented by an atlas patch dictionary (in the image domain), and then the latent label of the input image patch is predicted by applying the estimated representation coefficients to the corresponding anatomical labels of the atlas patches in the atlas label dictionary (in the label domain). However, due to the generally large gap between the patch appearance in the image domain and the patch structure in the label domain, the estimated (patch) representation coefficients from the image domain may not be optimal for the final label fusion, thus reducing the labeling accuracy. To address this issue, we propose a novel label fusion framework to seek for the suitable label fusion weights by progressively constructing a dynamic dictionary in a layer-by-layer manner, where the intermediate dictionaries act as a sequence of guidance to steer the transition of (patch) representation coefficients from the image domain to the label domain. Our proposed multi-layer label fusion framework is flexible enough to be applied to the existing labeling methods for improving their label fusion performance, i.e., by extending their single-layer static dictionary to the multi-layer dynamic dictionary. The experimental results show that our proposed progressive label fusion method achieves more accurate hippocampal segmentation results for the ADNI dataset, compared to the counterpart methods using only the single-layer static dictionary. Copyright © 2016 Elsevier B.V. All rights reserved.
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C
2013-01-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382
NASA Astrophysics Data System (ADS)
Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding
2018-01-01
In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by femtosecond laser were realized effectively.
NASA Astrophysics Data System (ADS)
Bosman, Peter A. N.; Alderliesten, Tanja
2016-03-01
We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-dynamic transformation model with good results, directly obtaining insight into the trade-off between important registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a multi-resolution scheme and find a substantial benefit of using smart grid initialization.
The research of multi-frame target recognition based on laser active imaging
NASA Astrophysics Data System (ADS)
Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan
2013-09-01
Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.
Tissues segmentation based on multi spectral medical images
NASA Astrophysics Data System (ADS)
Li, Ya; Wang, Ying
2017-11-01
Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.
Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets
2010-01-01
Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262
NASA Astrophysics Data System (ADS)
Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho
2016-10-01
A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.
Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi
2012-02-01
By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.
A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator
NASA Astrophysics Data System (ADS)
Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei
2017-10-01
A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.
NASA Astrophysics Data System (ADS)
Champion, N.
2012-08-01
Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images) and is based on a region-growing procedure. Seeds (corresponding to clouds) are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images). Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011). In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.
Atmospheric correction for remote sensing image based on multi-spectral information
NASA Astrophysics Data System (ADS)
Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen
2018-03-01
The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.
An embedded multi-core parallel model for real-time stereo imaging
NASA Astrophysics Data System (ADS)
He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu
2018-04-01
The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.
NASA Astrophysics Data System (ADS)
Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard
2016-04-01
Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire-fighting missions. The ongoing development focuses on the following topics: (1) Development of a multi-level management solution to coordinate and guide different airborne and terrestrial deployed firefighting modules as well as related data processing and data distribution activities. (2) Further, a targeted control of the thermal sensor based on a rotating mirror system to extend the "area performance" (covered area per hour) in time critical situations for the monitoring requirements during forest fire events. (3) Novel computer vision methods for analysis of thermal sensor signatures, which allow an automatic classification of different forest fire types and situations. (4) A module for simulation-based decision support for planning and evaluation of resource usage and the effectiveness of performed fire-fighting measures. (5) Integration of wearable systems to assist ground teams in rescue operations as well as a mobile information system into innovative command and fire-fighting vehicles. In addition, the paper gives an outlook on future perspectives including a first concept for the integration of the near real-time multilevel forest fire fighting management system into an "EU Civil Protection Team" to support the EU civil protection modules and the Emergency Response Coordination Centre in Brussels. Keywords: Airborne sensing, multi sensor imaging, near real-time fire monitoring, simulation-based decision support, forest firefighting management, firefighting impact analysis.
Multi-object segmentation using coupled nonparametric shape and relative pose priors
NASA Astrophysics Data System (ADS)
Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep
2009-02-01
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin
2018-06-15
The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.
BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-02-27
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.
BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-01-01
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014
Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography
Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael
2012-01-01
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108
Saito, Kenta; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu
2008-01-01
Multi-point scanning confocal microscopy using a Nipkow disk enables the acquisition of fluorescent images with high spatial and temporal resolutions. Like other single-point scanning confocal systems that use Galvano meter mirrors, a commercially available Nipkow spinning disk confocal unit, Yokogawa CSU10, requires lasers as the excitation light source. The choice of fluorescent dyes is strongly restricted, however, because only a limited number of laser lines can be introduced into a single confocal system. To overcome this problem, we developed an illumination system in which light from a mercury arc lamp is scrambled to make homogeneous light by passing it through a multi-mode optical fiber. This illumination system provides incoherent light with continuous wavelengths, enabling the observation of a wide range of fluorophores. Using this optical system, we demonstrate both the high-speed imaging (up to 100 Hz) of intracellular Ca(2+) propagation, and the multi-color imaging of Ca(2+) and PKC-gamma dynamics in living cells.
XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle
2002-05-01
We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.
O'Reilly, Meaghan A; Hough, Olivia; Hynynen, Kullervo
2017-03-01
Microbubble-mediated focused ultrasound (US) opening of the blood-brain barrier (BBB) has shown promising results for the treatment of brain tumors and conditions such as Alzheimer disease. Practical clinical implementation of focused US treatments would aim to treat a substantial portion of the brain; thus, the safety of opening large volumes must be investigated. This study investigated whether the opened volume affects the time for the BBB to be restored after treatment. Sprague Dawley rats (n = 5) received bilateral focused US treatments. One hemisphere received a single sonication, and the contralateral hemisphere was targeted with 4 overlapping foci. Contrast-enhanced T1-weighted magnetic resonance imaging was used to assess the integrity of the BBB at 0, 6, and 24 hours after focused US. At time 0, there was no significant difference in the mean enhancement between the single- and multi-point sonications (mean ± SD, 29.7% ± 18.4% versus 29.7% ± 24.1%; P = .9975). The mean cross-sectional area of the BBB opening resulting from the multi-point sonication was approximately 3.5-fold larger than that of the single-point case (14.2 ± 4.7 versus 4.1 ± 3.3 mm 2 ; P < .0001). The opened volumes in 9 of 10 hemispheres were closed by 6 hours after focused US. The remaining treatment location had substantially reduced enhancement at 6 hours and was closed by 24 hours. Histologic analysis revealed small morphologic changes associated with this location. T2-weighted images at 6 and 24 hours showed no signs of edema. T2*-weighted images obtained at 6 hours also showed no signs hemorrhage in any animal. The time for the BBB to close after focused US was independent of the opening volume on the time scale investigated. No differences in treatment effects were observable by magnetic resonance imaging follow-up between larger- and smaller-volume sonications, suggesting that larger-volume BBB opening can be performed safely. © 2017 by the American Institute of Ultrasound in Medicine.
Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions
Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner
2016-01-01
In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter. PMID:27983669
Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.
Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner
2016-12-15
In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.
Focus measure method based on the modulus of the gradient of the color planes for digital microscopy
NASA Astrophysics Data System (ADS)
Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel
2018-02-01
The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.
A method of extracting speed-dependent vector correlations from 2 + 1 REMPI ion images.
Wei, Wei; Wallace, Colin J; Grubb, Michael P; North, Simon W
2017-07-07
We present analytical expressions for extracting Dixon's bipolar moments in the semi-classical limit from experimental anisotropy parameters of sliced or reconstructed non-sliced images. The current method focuses on images generated by 2 + 1 REMPI (Resonance Enhanced Multi-photon Ionization) and is a necessary extension of our previously published 1 + 1 REMPI equations. Two approaches for applying the new equations, direct inversion and forward convolution, are presented. As demonstration of the new method, bipolar moments were extracted from images of carbonyl sulfide (OCS) photodissociation at 230 nm and NO 2 photodissociation at 355 nm, and the results are consistent with previous publications.