Protein-Based Nanofabrics for Multifunctional Air Filtering
NASA Astrophysics Data System (ADS)
Souzandeh, Hamid
With the fast development of economics and population, air pollution is getting worse and becomes a great concern worldwide. The release of chemicals, particulates and biological materials into air can lead to various diseases or discomfort to humans and other living organisms, alongside other serious impacts on the environment. Therefore, improving indoor air quality using various air filters is in critical need because people stay inside buildings most time of the day. However, current air filters using traditional polymers can only remove particles from the polluted air and disposing the huge amount of used air filters can cause serious secondary environmental pollution. Therefore, development of multi-functional air filter materials with environmental friendliness is significant. For this purpose, we developed "green" protein-based multifunctional air-filtering materials. The outstanding performance of the green materials in removal of multiple species of pollutants, including particulate matter, toxic chemicals, and biological hazards, simultaneously, will greatly facilitate the development of the next-generation air-filtration systems. First and foremost, we developed high-performance protein-based nanofabric air-filter mats. It was found that the protein-nanofabrics possess high-efficiency multifunctional air-filtering properties for both particles and various species of chemical gases. Then, the high-performance natural protein-based nanofabrics were promoted both mechanically and functionally by a textured cellulose paper towel. It is interestingly discovered that the textured cellulose paper towel not only can act as a flexible mechanical support, but also a type of airflow regulator which can improve the pollutant-nanofilter interactions. Furthermore, the protein-based nanofabrics were crosslinked in order to enhance the environmental-stability of the filters. It was found that the crosslinked protein-nanofabrics can significantly improve the structure stability against different moisture levels and temperatures, while maintain the multifunctional filtration performance. Moreover, it was demonstrated that the crosslinked protein-nanomaterials also possess antibacterial properties against the selected gram-negative and gram-positive bacteria. This provides a cost-effective solution for advanced "green" nanomaterials with excellent performance in both filtration functions and structure stability under varying environment. This work indicates that protein-based air-filters are promising "green" air-filtering materials for next-generation air-filtration systems.
Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G
2018-02-01
Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3 g -1 ), surface area (124.61 m 2 g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.
A design multifunctional plasmonic optical device by micro ring system
NASA Astrophysics Data System (ADS)
Pornsuwancharoen, N.; Youplao, P.; Amiri, I. S.; Ali, J.; Yupapin, P.
2018-03-01
A multi-function electronic device based on the plasmonic circuit is designed and simulated by using the micro-ring system. From which a nonlinear micro-ring resonator is employed and the selected electronic devices such as rectifier, amplifier, regulator and filter are investigated. A system consists of a nonlinear micro-ring resonator, which is known as a modified add-drop filter and made of an InGaAsP/InP material. The stacked waveguide of an InGaAsP/InP - graphene -gold/silver is formed as a part of the device, the required output signals are formed by the specific control of input signals via the input and add ports. The material and device aspects are reviewed. The simulation results are obtained using the Opti-wave and MATLAB software programs, all device parameters are based on the fabrication technology capability.
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
Influence of UV filters on the texture profile and efficacy of a cosmetic formulation.
Fossa Shirata, M M; Campos, P M B G Maia
2017-12-01
Considering that many cosmetic products contain UV filters in their composition and that few studies have evaluated the role of UV filters in the physical properties and clinical efficacy of these products, the aim of this study was to assess the influence of UV filters on the properties and immediate effects of a cosmetic formulation. Four cosmetic formulations, vehicle (V), vehicle containing UV filters (F), vehicle containing cassava polysaccharides and alfalfa (A) oligosaccharides and vehicle containing UV filters plus cassava polysaccharides and alfalfa oligosaccharides (multifunctional formulation, M) were developed. The texture profile of the formulations was analysed with a TA.XT plus Texturometer ® . Twenty female volunteers aged 39-45 years were then selected for the assessment of immediate clinical efficacy of the formulations under study and of transepidermal water loss (TEWL), stratum corneum water content and microrelief of the skin obtained with their use. The presence of UV filters resulted in an improvement of the physical properties of the multifunctional cosmetic formulation (M) and of skin microrelief. However, the presence of UV filters also caused a significant decrease in hydration. The presence of sunscreens had a negative influence on immediate skin hydration and TEWL. On the other hand, it positively influenced parameters related to the physical properties of the multifunctional formulation and skin microrelief. Thus, we conclude that the influence of UV filters on the development of cosmetic formulations is an important factor to be considered because it can have either positive or negative effect on the efficacy of the product. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.
2018-04-01
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
Zhao, Xinyan; Dong, Tao
2012-10-16
This study reports a quantitative nucleic acid sequence-based amplification (Q-NASBA) microfluidic platform composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip for environmental investigations on aquatic microorganisms. This low-cost and highly efficient sampling module, having seamless connection with the subsequent steps of sample preparation and quantitative detection, is designed for the collection of microbial communities from aquatic environments. Eight kinds of commercial membrane filters are relevantly analyzed using Saccharomyces cerevisiae, Escherichia coli, and Staphylococcus aureus as model microorganisms. After the microorganisms are concentrated on the membrane filters, the retentate can be easily conserved in a transport medium (TM) buffer and sent to a remote laboratory. A Q-NASBA-oriented sample preparation cassette is originally designed to extract DNA/RNA molecules directly from the captured cells on the membranes. Sequentially, the extract is analyzed within Q-NASBA chips that are compatible with common microplate readers in laboratories. Particularly, a novel analytical algorithmic method is developed for simple but robust on-chip Q-NASBA assays. The reported multifunctional microfluidic system could detect a few microorganisms quantitatively and simultaneously. Further research should be conducted to simplify and standardize ecological investigations on aquatic environments.
A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays
NASA Astrophysics Data System (ADS)
Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao
2018-05-01
Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Leite, Marcella Gabarra Almeida; Maia Campos, Patricia M B G
2018-05-04
The aim of this study was to develop and evaluate the efficacy of a multifunctional hair care formulation-Hair BB Cream-containing botanical extracts of Camellia sinensis, Vitis vinifera, and Euterpe orleacea, vitamins, amino acids, UV filters, and silicones for hair treatment and prevention of UV damages. The in vitro antioxidant activity of the botanical extracts was evaluated using the DPPH and chemiluminescence methods. A tensile test, combability, shine, and image analysis were performed to evaluate the efficacy of the formulation. To evaluate protection against UV damage, the hair strands were submitted to UV radiation without and with the application of the Hair BB Cream. The results showed that the application of the Hair BB Cream promoted a reduction in combability values and an increase in break stress and gloss values. After exposure to UV radiation, the hair treated with the BB Cream formulation showed no difference in the mechanical properties test, indicating protection against UV damage. In conclusion, the multifunctional formulation showed several benefits of single product acting in the prevention of UV damage and the treatment of hair damage. Thus, the Hair BB Cream proposed can be suggested as an effective multifunctional hair care product. © 2018 The American Society of Photobiology.
Villani, M; Rimoldi, T; Calestani, D; Lazzarini, L; Chiesi, V; Casoli, F; Albertini, F; Zappettini, A
2013-04-05
A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with 'tetrapod' morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m(2) kg(-1)), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis.
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-01-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.
NASA Astrophysics Data System (ADS)
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-02-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-01-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of −84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering. PMID:22355759
Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors
NASA Astrophysics Data System (ADS)
Haridasan, Vrinda
Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband rejection, and constant bandwidth is designed, simulated, fabricated and measured. The filters are fabricated using barium strontium titanate (BST) varactors. Electromagnetic simulations and measured results of the tunable two-pole ferroelectric filter are analyzed to explore the origins of high insertion loss in ferroelectric filters. The results indicate that the high-permittivity of the BST (a ferroelectric) not only makes the filters tunable and compact, but also increases the conductive loss of the ferroelectric-based tunable resonators which translates into high insertion loss in ferroelectric filters.
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, J. B.; Yao, K. L.
2017-12-01
We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.
Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids
NASA Astrophysics Data System (ADS)
Liu, Xin; Xiong, Luyao; Yu, Xiang; He, Shuli; Zhang, Bo; Shen, Jingling
2018-03-01
A multifunctional terahertz (THz) wave modulator fabricated from Fe3O4 nanoparticle ferrofluids and metamaterials was characterized in externally applied magnetic fields. Specifically, modulation depths and frequency shifts by the wave modulators were examined. A 34% THz amplitude modulation depth was demonstrated and the absorption peak of the metamaterial induced a frequency shift of 33 GHz at low magnetic field intensities. It is anticipated that this device structure and its tunable properties will have many potential applications in THz filtering, modulation, and sensing.
NASA Astrophysics Data System (ADS)
Torkildsen, H. E.; Hovland, H.; Opsahl, T.; Haavardsholm, T. V.; Nicolas, S.; Skauli, T.
2014-06-01
In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction. A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results. Elimination of spectral artifacts due to scene motion is demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang
2010-04-01
A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.
Development of a multifunctional particle spectrometer for space radiation imaging
NASA Astrophysics Data System (ADS)
Maddox, Erik; Palacios, Alex; Lampridis, Dimitris; Kraft, Stefan; Owens, Alan; Tomuta, Dana; Ostendorf, Reint
2008-06-01
For future exploration of the solar system, the European Space Agency (ESA) is planning missions to Mercury (BepiColombo), the Sun (SolarOrbiter) and to the moons of Jupiter and Saturn. The expected intensity of radiation during such missions is hazardous for the scientific instruments and the satellite. To extend the lifetime of the satellite and its payload a multifunctional particle spectrometer (MPS) is being developed. The basic function of the MPS is to send an alarm signal to the satellite control system during periods of high radiation. In addition the MPS is a scientific instrument that will unfold the composition of the different contributing particles on-line by the dE/dx versus E method. The energy spectrum and angular distribution of the particles will be recorded as well. This article describes the main requirements and the base line design for the MPS. A readout scheme consisting of a 32 channel ASIC from IDEAS is proposed and the signal filtering algorithm will run on a digital signal processor based on FPGA technology. Results are shown from prototype calibration studies with a proton beam.
An integrated compact airborne multispectral imaging system using embedded computer
NASA Astrophysics Data System (ADS)
Zhang, Yuedong; Wang, Li; Zhang, Xuguo
2015-08-01
An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.
Multifunctional structural lithium ion batteries for electrical energy storage applications
NASA Astrophysics Data System (ADS)
Javaid, Atif; Zeshan Ali, Muhammad
2018-05-01
Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.
NASA Astrophysics Data System (ADS)
Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David
2016-07-01
This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... Determination Concerning Laser-Based Multi-Function Office Machines AGENCY: U.S. Customs and Border Protection... country of origin of laser-based multi-function office machines. Based upon the facts presented, CBP has... essential character of the laser-based multi-function office machine, and it is at their assembly and...
This work will provide the production framework for next-generation treatment technologies capable of targeting diverse chemical pollutants over a range of water chemistries and application scales. Tangible outcomes include a wealth of demonstration data and standard operat...
Peres, Daniela D'Almeida; Sarruf, Fernanda Daud; de Oliveira, Camila Areias; Velasco, Maria Valéria Robles; Baby, André Rolim
2018-05-26
Ultraviolet (UV) radiation stimulates several injurious biological effects on cutaneous tissue, causing, for instance, photocarcinogenesis. Sunscreens are topical products designed to protect the skin against these harmful effects and their use must be encouraged. The addition of antioxidants, as ferulic acid (FA), a phenolic compound from the class of the hydroxycinnamic acids, in sunscreens could improve their sun protection factor (SPF) and prevent inflammatory reactions. Here, the clinical safety and efficacy of an association of ethylhexyl triazone and bis-ethylhexyloxyphenol methoxyphenyl triazine (UV filters) with ferulic acid were assessed. Samples had good skin biocompatibility and presented satisfactory safety profile, even in a sun-exposed condition. A synergic effect between the natural polyphenol and the UV filters was evidenced, as well as, FA increased in vivo SPF in 37% and the UVA protection factor (UVA-PF) in 26%. The in vivo data indicated that FA reinforced the broad-spectrum characteristic of the photoprotective formulations. Additionally, according to the results from the ex vivo antioxidant test, it is plausible to recommend adjustments on the ex vivo protocol to explicitly determine the positive effects of topical antioxidant ingredients applied over the skin. These results provided a new perspective for the development of multifunctional bioactive sunscreens using FA as a new platform. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Zhen; Yuan, Xinxin; Cong, Shan; Chen, Zhigang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang
2018-05-02
Air pollution is one of the most serious issues affecting the world today. Instead of expensive and energy-intensive air filtering devices, a fiber-based transparent air filter coated on a window screen is seen as one of the state-of-the-art filtration technologies to combat the seriously growing problem, delivering the advantages of simplicity, convenience, and high filtering efficiency. However, such a window screen is currently limited to particulate matter (PM) filtration and ineffective with other air pollutants. Here, we report the use of a newfangled type of color-changing fibers, porous Prussian blue analogues (CuHCF)/polymer composite microfibers, for transparent window screens toward air pollutant filtration. To increase pollution filtration, pores and dimples are purposely introduced to the fibers using binary solvent systems through a nonsolvent-induced phase separation mechanism. Such composite microfibers overcome some of the limitations of those previously used fibers and could simultaneously capture PM 2.5 , PM 10 , and NH 3 with high efficiency. More interestingly, a distinct color change is observed upon exposure to air pollutants in such window screens, which provides multifunctional capability of simultaneous pollutant capture and naked eye screening of the pollutant amount. Specifically, in the case of long-term exposure to low-concentration NH 3 , the symbol displayed in such window screens changes from yellow color to brown and the coloration rate is directly controlled by the NH 3 concentration, which may serve as a careful reminder for those people who are repeatedly exposed to low-concentration ammonia gas (referred to as chronic poisoning). In contrast, after short-term exposure to a high concentration of ammonia gas, the yellow symbol immediately becomes blackened, which provides timely information about the risk of acute ammonia poisoning or even ammonia explosion. Further spectroscopic results show that the chromatic behaviors in response to different concentrations of NH 3 are fundamentally different, which is related to the different locations of ammonia in the lattice of CuHCF, either in its interstitial sites or at the Fe(CN) 6 vacancy sites, largely distinguished by the absence or presence of atmospheric moisture.
Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui
2017-03-02
Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg 2+ remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg 2+ . Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH 4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg 2+ deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg 2+ , respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg 2+ in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.
Bayoxide® E33 (E-33, Goethite) is a widely used commercial material for arsenic adsorption. It is a mixture of iron oxyhydroxide and oxides. E-33 is primarily used to remove arsenic from water and to a lesser extent, other anions, but generally lacks multifunctuality. It is a non...
All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation
2015-01-01
This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232
Design of Multifunctional Materials: Chalcogenides and Chalcopyrites
NASA Technical Reports Server (NTRS)
Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen
2017-01-01
There is a strong need for developing multifunctional materials to reduce the cost of applied material without compromising the performance of the detectors, devices and sensors. The materials design, processing, growth and fabrication of bulk and nanocrystals and fabrication into devices and sensors involve huge cost and resources including a multidisciplinary team of experts. Because of this reason, prediction of multifunctionality of materials before design and development should be evaluated. Chalcogenides and chalcopyrites are a very exciting class of materials for developing multifunctionality. Materials such as Gallium selenide GaSe and zinc selenide ZnSe have been proven to be excellent examples. GaSe is a layered material and very difficult to grow in large crystal. However, it's ternary and quaternary analogs such as thallium gallium selenide TlGaSe2, thallium gallium selenide sulfide TlGaSe2-xSs, thallium arsenic selenide Tl3AsSe3, silver gallium selenide AgGaGe3Se8, AgGaGe5Se12 and several others have shown great promise for multifunctionality. Several of these materials have shown good efficiency for frequency conversion (nonlinear optical NLO), electro-optic modulation, and acousto-optic tunable filters and imagers suitable for the visible, near-infrared wavelength, mid wave infrared (MWIR), long wave infrared (LWIR) and even up to Tera hertz wavelength (THW) regions. In addition, this class of materials have demonstrated low absorption coefficients and power handling capability in the systems. Also, these crystals do not require post growth annealing, show very large transparency range and fabricability.
Bipolar magnetic semiconductor in silicene nanoribbons
NASA Astrophysics Data System (ADS)
Farghadan, Rouhollah
2017-08-01
A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green's function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.
Multifunctional Silicon Optoelectronics Integrated with Plasmonic Scattering Color.
Wen, Long; Chen, Qin; Hu, Xin; Wang, Huacun; Jin, Lin; Su, Qiang
2016-12-27
Plasmonic scattering from metallic nanoparticles has been used for centuries to create the colorful appearance of stained glass. Besides their use as passive spectral filtering components, multifunctional optoelectronic applications can be achieved by integrating the nanoscatters with semiconductors that generate electricity using the complementary spectral components of plasmonic colors. To suppress the usual degradation of both efficiency and the gamut of plasmonic scattering coloration in highly asymmetric index configurations like a silicon host, aluminum nanodisks on indium tin oxide (ITO) coated silicon were experimentally studied and demonstrated color sorting in the full visible range along with photocurrent generation. Interestingly, the photocurrents were found to be comparable to the reference devices with only antireflection coatings in spite of the power loss for coloration. Detailed investigation shows that ITO serves as both the impedance matching layer for promoting the backward scattering and schottky contact with silicon, and moreover, plasmonic nanoscatters efficiently harvest the complement spectrum components for charge generation. The present approach combines the capacities of nanoscale color sorting and photoelectric converting at a negligible cost of efficiency, thus providing a broad flexibility of being utilized in various optoelectronic applications including self-powered display, filter-free imaging, and colorful photovoltaics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Cormack, R; Bhagwat, M
Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to createmore » an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.« less
Siddiqui, Hasib; Bouman, Charles A
2007-03-01
Conventional halftoning methods employed in electrophotographic printers tend to produce Moiré artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moiré problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moiré artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise.
Field-Sensitive Materials for Optical Applications
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Little, Mark
2002-01-01
The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.
Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Nagiah, Naveen; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F
2018-07-26
A multifunctional material based on co-electrospinning has been developed as a basic material for the development of biosensors with optical oxygen transduction. It is based on coaxial nanofibres: inner fibres containing an oxygen sensitive dye and outer fibres containing aldehyde groups to allow the formation of Schiff bases with the amino groups of the enzyme. The resulting material preserves the oxygen sensing properties of the inner optical transducer as well as exhibits a high capacity for immobilizing molecules on its surface. Uricase has been selected as model enzyme and several parameters (temperature, pH, reaction time, buffer, and enzyme concentration) have been optimised to demonstrate the versatility of this novel multifunctional material in the development of biosensors with optical oxygen transduction for determining uric acid in serum samples. It suggests that the proposed multifunctional material can provide a promising multifunctional platform for biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Multifunctional porous solids derived from tannins
NASA Astrophysics Data System (ADS)
Celzard, Alain; Fierro, Vanessa; Pizzi, Antonio; Zhao, Weigang
2013-03-01
Tannins are extremely valuable, non toxic, wood extractives combining reactivity towards aldehydes, low cost, natural origin and easy handling. When polymerized in the presence of suitable chemicals including blowing agent, ultra lightweight rigid tannin-based foams are obtained. If pyrolyzed under inert gas, reticulated carbon foams having the same pore structure and the same density are obtained. The most remarkable features of tannin-based foams are the following: mechanical resistance similar to, or higher than, that of commercial phenolic foams, tuneable pore size and permeability, infusibility, very low thermal conductivity, cheapness, ecological character, high resistance to flame and to chemicals. Carbon foams have even better properties and are also electrically conducting. Consequently, various applications are suggested for organic foams: cores of sandwich composite panels, sound and shock absorbers and thermal insulators, whereas carbon foams can be used as porous electrodes, filters for molten metals and corrosive chemicals, catalyst supports and adsorbents.
Mechanical properties of multifunctional structure with viscoelastic components based on FVE model
NASA Astrophysics Data System (ADS)
Hao, Dong; Zhang, Lin; Yu, Jing; Mao, Daiyong
2018-02-01
Based on the models of Lion and Kardelky (2004) and Hofer and Lion (2009), a finite viscoelastic (FVE) constitutive model, considering the predeformation-, frequency- and amplitude-dependent properties, has been proposed in our earlier paper [1]. FVE model is applied to investigating the dynamic characteristics of the multifunctional structure with the viscoelastic components. Combing FVE model with the finite element theory, the dynamic model of the multifunctional structure could be obtained. Additionally, the parametric identification and the experimental verification are also given via the frequency-sweep tests. The results show that the computational data agree well with the experimental data. FVE model has made a success of expressing the dynamic characteristics of the viscoelastic materials utilized in the multifunctional structure. The multifunctional structure technology has been verified by in-orbit experiments.
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Fastener Starter; Multifunctional Deployment Hinges Rigidified by Ultraviolet; Temperature-Controlled Clamping and Releasing Mechanism; Long-Range Emergency Preemption of Traffic Lights; High-Efficiency Microwave Power Amplifier; Improvements of ModalMax High-Fidelity Piezoelectric Audio Device; Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz; HEMT Frequency Doubler with Output at 300 GHz; Single-Chip FPGA Azimuth Pre-Filter for SAR; Autonomous Navigation by a Mobile Robot; Software Would Largely Automate Design of Kalman Filter; Predicting Flows of Rarefied Gases; Centralized Planning for Multiple Exploratory Robots; Electronic Router; Piezo-Operated Shutter Mechanism Moves 1.5 cm; Two SMA-Actuated Miniature Mechanisms; Vortobots; Ultrasonic/Sonic Jackhammer; Removing Pathogens Using Nano-Ceramic-Fiber Filters; Satellite-Derived Management Zones; Digital Equivalent Data System for XRF Labeling of Objects; Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside; Vacuum Attachment for XRF Scanner; Simultaneous Conoscopic Holography and Raman Spectroscopy; Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP; Vibrating Optical Fibers to Make Laser Speckle Disappear; Adaptive Filtering Using Recurrent Neural Networks; and Applying Standard Interfaces to a Process-Control Language.
NASA Astrophysics Data System (ADS)
Kirillova, Ariadna; Prytkova, Oksana O.
2018-03-01
The article is devoted to the features of the formation of the organizational and economic model of the construction of a socio-commercial multifunctional complex for high-rise construction. Authors have given examples of high-altitude multifunctional complexes in Moscow, analyzed the advantages and disadvantages in the implementation of multifunctional complexes, stressed the need for a holistic strategic approach, allowing to take into account the prospects for the development of the city and the creation of a comfortable living environment. Based on the analysis of multifunctional complexes features, a matrix of SWOT analysis was compiled. For the development of cities and improving the quality of life of the population, it is proposed to implement a new type of multifunctional complexes of a joint social and commercial direction, including, along with the implementation of office areas - schools, polyclinics, various sports facilities and cultural and leisure centers (theatrical, dance, studio, etc.). The approach proposed in the article for developing the model is based on a comparative evaluation of the multifunctional complex project of a social and commercial direction implemented at the expense of public-private partnership in the form of a concession agreement and a commercial multifunctional complex being built at the expense of the investor. It has been proved by calculations that the obtained indicators satisfy the conditions of expediency of the proposed organizational-economic model and the project of the social and commercial multifunctional complex is effective.
Safety and efficacy evaluation of gelatin-based nanoparticles associated with UV filters.
Oliveira, Camila Areias de; Dario, Michelli Ferrera; Sarruf, Fernanda Daud; Mariz, Inês Fátima Afonso; Velasco, Maria Valéria Robles; Rosado, Catarina; Baby, André Rolim
2016-04-01
The safety and efficacy assessment of nanomaterials is a major concern of industry and academia. These materials, due to their nanoscale size, can have chemical, physical, and biological properties that differ from those of their larger counterparts. The encapsulation of natural ingredients can provide marked improvements in sun protection efficacy. This strategy promotes solubility enhancement of flavonoids and yields an improved active ingredient with innovative physical, physicochemical and functional characteristics. Rutin, a flavonoid, has chemical and functional stability in topical vehicles exerting a synergistic effect in association with ultraviolet (UV) filters. However, the solubility of rutin is a limiting factor. Additionally, this bioactive compound does not have tendency to permeate across the stratum corneum. As an alternative to common synthetic based sunscreens, rutin-entrapped gelatin nanoparticles were designed. The present study investigated the pre-clinical safety of gelatin nanoparticles (GNPs) using an in vitro method and also assessed the clinical safety and efficacy of the association of GNPs with three commonly used chemical UV filters (ethylhexyl dimethyl PABA, ethylhexyl methoxycinnamate and methoxydibenzoylmethane). The non-irritant and adequate safety profile under sun-exposed skin conditions of the nanomaterials and the emulsions qualified the products for clinical efficacy assays. The in vivo results indicated that the GNPs increased the antioxidant protection of the emulsions developed. However, the presence of rutin in the nanosized material did not enhance performance on the SPF test. In conclusion, these findings characterized the nanomaterials as an innovative platform for multifunctional bioactive sunscreens. Copyright © 2015 Elsevier B.V. All rights reserved.
A global characterization and identification of multifunctional enzymes.
Cheng, Xian-Ying; Huang, Wei-Juan; Hu, Shi-Chang; Zhang, Hai-Lei; Wang, Hao; Zhang, Jing-Xian; Lin, Hong-Huang; Chen, Yu-Zong; Zou, Quan; Ji, Zhi-Liang
2012-01-01
Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
Transitioning Client Based NALCOMIS to a Multi Function Web Based Application
2016-09-23
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS TRANSITIONING CLIENT- BASED NALCOMIS TO A MULTI-FUNCTION WEB- BASED APPLICATION by Aaron P...TITLE AND SUBTITLE TRANSITIONING CLIENT- BASED NALCOMIS TO A MULTI-FUNCTION WEB- BASED APPLICATION 5. FUNDING NUMBERS 6. AUTHOR(S) Aaron P. Schnetzler 7...NALCOMIS. NALCOMIS has two configurations that are used by organizational and intermediate level maintenance activi- ties, Optimized Organizational
ERIC Educational Resources Information Center
Hassink, Jan; Hulsink, Willem; Grin, John
2012-01-01
For agricultural and rural development in Europe, multifunctionality is a leading concept that raises many questions. Care farming is a promising example of multifunctional agriculture that has so far received little attention. An issue that has not been examined thoroughly is the strategic mapping of different care farm organizations in this…
Development and Application of Multifunctional Lanthanide-Doped Nanoparticles in Medical Imaging
NASA Astrophysics Data System (ADS)
Pedraza, Francisco J., III
Medical imaging has become one of the most important tools of modern medicine soon after it was developed. Presently, several imaging modalities are available to clinicians for the detection of skeletal fractures and functional abnormalities of organs and tissues; and also an excellent tool during surgical procedures. Unfortunately, each imaging technique possesses its own strengths and inherent limitations which can be mitigated via the use of multiple imaging modalities and imaging probes. Through the use of multiple imaging modalities, it is possible to gather complementary information for a more reliable diagnosis. Each imaging technique requires its own imaging probes, providing selectivity and improved contrast. However, conventional contrast agents are incapable of providing what the new generation of multifunctional nanomaterials offer. In addition to improved selectivity and contrast, multifunctional materials possess therapeutic capabilities such as photo-thermal therapy and controlled drug delivery. Lanthanide-based nanomaterials are viable candidates for multimodal imaging agents due to possessing multifunctional capabilities, optical and chemical stability, and an intense tunable emission. This doctoral dissertation will delve into the development of lanthanide-based nanoparticles by proposing a novel multifunctional contrast agent for Near Infrared Fluorescence Imaging and Magnetic Resonance Imaging. Furthermore, the study of surface modification effects on upconversion emission and nanoparticle-cell interactions was performed. Results presented will confirm the potential application of multifunctional lanthanide-based nanomaterials as multimodal imaging probes.
Thermal Management in Nanofiber-Based Face Mask
Yang, Ankun; Cai, Lili; Zhang, Rufan; ...
2017-05-15
Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here in this paper, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. Wemore » further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.« less
Thermal Management in Nanofiber-Based Face Mask.
Yang, Ankun; Cai, Lili; Zhang, Rufan; Wang, Jiangyan; Hsu, Po-Chun; Wang, Hongxia; Zhou, Guangmin; Xu, Jinwei; Cui, Yi
2017-06-14
Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5 ) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. We further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.
Thermal Management in Nanofiber-Based Face Mask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ankun; Cai, Lili; Zhang, Rufan
Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here in this paper, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. Wemore » further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.« less
New product development: A batik multifunctional chair
NASA Astrophysics Data System (ADS)
Indrawati, Sri; Sukmaningsih, Nias
2017-11-01
The biggest challenge facing by Batik industry in ASEAN Economic Community (AEC) era is the greater number of fashion competitors both domestically and internationally. Based on that condition, the development of new product variants by considering product performance and price is needed. This research was conducted to develop batik products with a new target market. Products that being developed is batik multifunctional chair using integrated value engineering and analytic hierarchy process methods. This research has been done in several stages, ie. Information stage, creative stage, value analysis and product prototyping. The results of this research shows that the batik multifunctional chair product criteria are aesthetic (29%), multifunctional (34%) and ergonomic (37%). There are three new product design alternatives that successfully being developed. Based on value analysis, the product design alternatives that have the highest value is alternative design 2, the value is 2,37. The production cost for this design is Rp. 500.000,-. Alternative design 2 specification are using Mahoni wood, Batik parang rusak pattern with natural coloring process, can be used as table and fit with customer's body anthropometry. Then a batik multifunctional chair prototype is developed based on the best alternative design.
2013-02-01
supplement the main power supply. Here we report on the use of flexible carbon nanotube (CNT)-based composites for multifunctional structural energy storage...TERMS Micro vehicle, Supercapacitor, Carbon Nanotubes , CNTs, Energy Storage, Multifunctional Materials 16. SECURITY CLASSIFICATION OF: 17...consists of a current collector, a porous electrode layer ( carbon nanotubes [CNTs], in this case) infiltrated with an electrolyte (i.e., a liquid
Li, Yan; Qiang, Xiaoming; Luo, Li; Yang, Xia; Xiao, Ganyuan; Zheng, Yunxiaozhu; Cao, Zhongcheng; Sang, Zhipei; Su, Fu; Deng, Yong
2017-01-15
A series of homoisoflavonoid Mannich base derivatives were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease. It demonstrated that most of the derivatives were selective AChE and MAO-B dual inhibitors with good multifunctional properties. Among them, compound 10d displayed the comprehensive advantages, with excellent AChE and MAO-B inhibitory activities (IC 50 =2.49±0.08nM and 1.74±0.0581μM, respectively), good self- and Cu 2+ -induced Aβ 1-42 aggregation inhibitory potency, antioxidant activity, biometal chelating ability and high BBB permeability. These multifunctional properties make 10d as an excellent candidate for the development of efficient drugs against AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multifunctional materials for bone cancer treatment
Marques, Catarina; Ferreira, José MF; Andronescu, Ecaterina; Ficai, Denisa; Sonmez, Maria; Ficai, Anton
2014-01-01
The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multi-functionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative), cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin), silver nanoparticles, antibiotics (anthracyclines, geldanamycin), and/or analgesics (ibuprofen, fentanyl). The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management) in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies. PMID:24920907
NASA Astrophysics Data System (ADS)
Mi, Qing; Wang, Qi; Zang, Siyao; Chai, Zhaoer; Zhang, Jinnan; Ren, Xiaomin
2018-05-01
In this study, we developed a multifunctional device based on SnO2@rGO-coated fibers utilizing plasma treatment, dip coating, and microwave irradiation in sequence, and finally realized highly sensitive human motion monitoring, relatively good ethanol detection, and an obvious photo response. Moreover, the high level of comfort and compactness derived from highly elastic and comfortable fabrics contributes to the long-term availability and test accuracy. As an attempt at multifunctional integration of smart clothing, this work provides an attractive and relatively practical research direction.
Mi, Qing; Wang, Qi; Zang, Siyao; Chai, Zhaoer; Zhang, Jinnan; Ren, Xiaomin
2018-05-11
In this study, we developed a multifunctional device based on SnO 2 @rGO-coated fibers utilizing plasma treatment, dip coating, and microwave irradiation in sequence, and finally realized highly sensitive human motion monitoring, relatively good ethanol detection, and an obvious photo response. Moreover, the high level of comfort and compactness derived from highly elastic and comfortable fabrics contributes to the long-term availability and test accuracy. As an attempt at multifunctional integration of smart clothing, this work provides an attractive and relatively practical research direction.
3D Printing and Assay Development for Point-of-Care Applications
NASA Astrophysics Data System (ADS)
Jagadeesh, Shreesha
Existing centralized labs do not serve patients adequately in remote areas. To enable universal timely healthcare, there is a need to develop low cost, portable systems that can diagnose multiple disease (Point-of-Care (POC) devices). Future POC diagnostics can be more multi-functional if medical device vendors can develop interoperability standards. This thesis developed the following medical diagnostic modules: Plasma from 25 microl blood was extracted through a filter membrane to demonstrate a 3D printed sample preparation module. Sepsis biomarker, C - reactive protein, was quantified through adsorption on nylon beads to demonstrate bead-based assay suitable for 3D printed disposable cartridge module. Finally, a modular fluorescent detection kit was built using 3D printed parts to detect CD4 cells in a disposable cartridge from ChipCare Corp. Due to the modularity enabled by 3D printing technique, the developed units can be easily adapted to detect other diseases.
Multifunctional fluorescent and magnetic nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Selvan, Subramanian T.
2012-03-01
Hybrid multifunctional nanoparticles (NPs) are emerging as useful probes for magnetic based targeting, delivery, cell separation, magnetic resonance imaging (MRI), and fluorescence-based bio-labeling applications. Assessing from the literature, the development of multifunctional NPs for multimodality imaging is still in its infancy state. This report focuses on our recent work on quantum dots (QDs), magnetic NPs (MNPs) and bi-functional NPs (composed of either QDs or rare-earth NPs, and magnetic NPs - iron oxide or gadolinium oxide) for multimodality imaging based biomedical applications. The combination of MRI and fluorescence would ally each other in improving the sensitivity and resolution, resulting in improved and early diagnosis of the disease. The challenges in this area are discussed.
Machine learning research 1989-90
NASA Technical Reports Server (NTRS)
Porter, Bruce W.; Souther, Arthur
1990-01-01
Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.
A stackable, two-chambered, paper-based microbial fuel cell.
Fraiwan, Arwa; Choi, Seokheun
2016-09-15
We developed a stackable and integrable paper-based microbial fuel cell (MFC) for potentially powering on-chip paper-based devices. Four MFCs were prepared on a T-shaped filter paper which was eventually folded three times to connect these MFCs in series. Each MFC was fabricated by sandwiching multifunctional paper layers for two-chambered fuel cell configuration. One drop of bacteria-containing anolyte into the anodic inlet and another drop of potassium ferricyanide for cathodic reaction flowed through patterned fluidic pathways within the paper matrix, both vertically and horizontally, reaching each of the four MFCs and filling the reservoir of each device. Bacterial respiration then transferred electrons to the anode, which traveled across an external load to the cathode where they combined with protons. The MFC stack connected in series generated a high power density (1.2μW/cm(2)), which is two orders of magnitude higher than the previous report on the paper-based MFC stack. This work will represent the fusion of the art of origami and paper-based MFC technology, which could provide a paradigm shift for the architecture and design of paper-based batteries. Copyright © 2016 Elsevier B.V. All rights reserved.
Ma, Yakun; Ge, Yanxiu; Li, Lingbing
2017-02-01
Nanogel-based multifunctional drug delivery systems, especially hybrid nanogels and multicompartment nanogels have drawn more and more extensive attention from the researchers in pharmacy because it can result in achieving a superior functionality through the synergistic property enhancement of each component. The unique hybrid and compartmentalized structures provide the great potential for co-delivery of multiple agents even the multiple agents with different physicochemical properties. Otherwise the hybrid nanogel encapsulating optical and magnetic resonance imaging contrast can be utilized in imaging technique for disease diagnosis. More importantly through nanogel-based multifunctional drug delivery systems the stimuli-responsive features might be easily employed for the design of targeted release of drug. This review summarizes the construction of diverse hybrid nanogels and multicompartment nanogels. The application in co-delivery of multiple agents and imaging agents for diagnosis as well as the application in the design of stimuli-responsive multifunctional nanogels as drug delivery are also reviewed and discussed. The future prospects in application of multifunctional nanogels will be also discussed in this review. Copyright © 2016 Elsevier B.V. All rights reserved.
Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging.
Hou, Weijia; Liu, Yuan; Jiang, Ying; Wu, Yuan; Cui, Cheng; Wang, Yanyue; Zhang, Liqin; Teng, I-Ting; Tan, Weihong
2018-06-14
We designed an aptamer-based multifunctional ligand which, upon conjugation to the surface of upconversion nanoparticles (UCNPs), could realize phase transfer, covalent photosensitizer (PS) loading, and cancer cell targeting in one simple step. The as-built PDT nanodrug is selectively internalized into cancer cells and it exhibits highly efficient and selective cytotoxicity.
Hrsic, Emin; Keul, Helmut; Möller, Martin
2015-12-01
The preparation of multifunctional polymers and block copolymers by a straightforward one-pot reaction process that combines enzymatic transacylation with light-controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light-controlled polymerization, leading to multifunctional methacrylate-based polymers with well-defined microstructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients
Chrapusta, Ewelina; Kaminski, Ariel; Duchnik, Kornelia; Bober, Beata; Adamski, Michal; Bialczyk, Jan
2017-01-01
Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could be used as active ingredients in sun care products. A promising alternative is the application of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with commercially available filters. Here, we outline a complete characterization of these compounds and discuss their enormous biotechnological potential with special emphasis on their use as sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin renewal, and functional ingredients of UV-protective biomaterials. PMID:29065484
One-step fabrication of multifunctional micromotors
NASA Astrophysics Data System (ADS)
Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.
2015-08-01
Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k
NASA Astrophysics Data System (ADS)
Ni, Zhengyuan; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda
2017-10-01
The research of the multifunctional analyzer which integrates absorbance detection, fluorescence detection, time-resolved fluorescence detection, biochemical luminescence detection methods, can make efficient detection and analysis for a variety of human body nutrients. This article focuses on the absorbance detection and fluorescence detection system. The two systems are modular in design and controlled by embedded system, to achieve automatic measurement according to user settings. In the optical path design, the application of confocal design can improve the optical signal acquisition capability, and reduce the interference. A photon counter is used for detection, and a high performance counter module is designed to measure the output of photon counter. In the experiment, we use neutral density filters and potassium dichromate solution to test the absorbance detection system, and use fluorescein isothiocyanate FITC for fluorescence detection system performance test. The experimental results show that the absorbance detection system has a detection range of 0 4OD, and has good linearity in the detection range, while the fluorescence detection system has a high sensitivity of 1pmol/L concentration.
Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.
Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M
2014-09-01
Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.
Method and system for providing precise multi-function modulation
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Inventor); Sumida, Joe T. (Inventor)
1989-01-01
A method and system is disclosed which provides precise multi-function digitally implementable modulation for a communication system. The invention provides a modulation signal for a communication system in response to an input signal from a data source. A digitized time response is generated from samples of a time domain representation of a spectrum profile of a selected modulation scheme. The invention generates and stores coefficients for each input symbol in accordance with the selected modulation scheme. The output signal is provided by a plurality of samples, each sample being generated by summing the products of a predetermined number of the coefficients and a predetermined number of the samples of the digitized time response. In a specific illustrative implementation, the samples of the output signals are converted to analog signals, filtered and used to modulate a carrier in a conventional manner. The invention is versatile in that it allows for the storage of the digitized time responses and corresponding coefficient lookup table of a number of modulation schemes, any of which may then be selected for use in accordance with the teachings of the invention.
Pant, Hem Raj; Kim, Han Joo; Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In; Hui, K S; Kim, Cheol Sang
2014-01-15
A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways. Copyright © 2013 Elsevier B.V. All rights reserved.
One-step fabrication of multifunctional micromotors.
Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y
2015-09-07
Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.
Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy
Yu, Mi Kyung; Park, Jinho; Jon, Sangyong
2012-01-01
Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217
Single Wall Carbon Nanotube-Based Structural Health Sensing Materials
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.
2004-01-01
Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.
Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration
Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng
2013-10-22
In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.
Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Gongping
2018-05-01
Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.
Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Gongping
2018-07-01
Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.
2013-01-01
Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841
Marciello, Marzia; Pellico, Juan; Fernandez-Barahona, Irene; Herranz, Fernando; Ruiz-Cabello, Jesus
2016-01-01
Nowadays, thanks to the successful discoveries in the biomedical field achieved in the last two decades, a deeper understanding about the complexity of mechanistic aspects of different pathological processes has been obtained. As a consequence, even the standard therapeutic protocols have undergone a vast redesign. In fact, the awareness about the necessity to progress towards a combined multitherapy in order to potentially increase the final healing chances has become a reality. One of the crucial elements of this novel approach is that large amounts of detailed information are highly needed and in vivo imaging techniques represent one of the most powerful tools to visualize and monitor the pathological state of the patient. To this scope, due to their unique features, nanostructured materials have emerged as attractive elements for the development of multifunctional tools for diagnosis and therapy. Hence, in this review, the most recent and relevant advances achieved by applying multifunctional nanostructures in multimodal theranosis of different diseases will be discussed. In more detail, the preparation and application of single multifunctional nano-radiotracers based on iron oxides and enabling PET/MRI dual imaging will be firstly detailed. After that, especially considering their highly promising clinical potential, the preparation and application of multifunctional liposomes useful for multimodal imaging and therapy will be reviewed. In both cases, a special focus will be set on the application of such a multifunctional nanocarriers in cancer as well as cardiovascular diseases. PMID:27920894
Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Noll, Thomas E.; Perry, Boyd, III; Gilbert, Michael G.
1989-01-01
The objective of research in aeroservoelasticity at the NASA Langley Research Center is to enhance the modeling, analysis, and multidisciplinary design methodologies for obtaining multifunction digital control systems for application to flexible flight vehicles. Recent accomplishments are discussed, and a status report on current activities within the Aeroservoelasticity Branch is presented. In the area of modeling, improvements to the Minimum-State Method of approximating unsteady aerodynamics are shown to provide precise, low-order aeroservoelastic models for design and simulation activities. Analytical methods based on Matched Filter Theory and Random Process Theory to provide efficient and direct predictions of the critical gust profile and the time-correlated gust loads for linear structural design considerations are also discussed. Two research projects leading towards improved design methodology are summarized. The first program is developing an integrated structure/control design capability based on hierarchical problem decomposition, multilevel optimization and analytical sensitivities. The second program provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. In terms of methodology validation and application the current activities associated with the Active Flexible Wing project are reviewed.
Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong
2017-03-01
Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA < 5°) at 25 wt % PDMS-PEG copolymer in the paste, and they have an electrical conductivity of over 1000 S m -1 . Patterned superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.
Chen, Fang; Hableel, Ghanim; Zhao, Eric Ruike; Jokerst, Jesse V
2018-07-01
The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Klein, Jeffrey A.; Wolf, Steven A.
2007-01-01
Globalization and shifting societal relations with nature generate change and conflicting politics in rural areas of industrialized nations. In this context, "multifunctionality" has emerged as an important policy logic to stabilize commodity production while encouraging amenity-based development and the production of ecological…
Valencia-Gómez, Enrique; Maestre, Fernando T.; Le Bagousse-Pinguet, Yoann; Quero, José Luis; Tamme, Riin; Börger, Luca; García-Gómez, Miguel; Gross, Nicolas
2015-01-01
SUMMARY We used a functional trait-based approach to assess the impacts of aridity and shrub encroachment on the functional structure of Mediterranean dryland communities (functional diversity and community-weighted mean trait values [CWM]), and to evaluate how these functional attributes ultimately affect multifunctionality (i.e., the provision of several ecosystem functions simultaneously). Shrub encroachment (the increase in the abundance/cover of shrubs) is a major land cover change that is taking place in grasslands worldwide. Studies conducted on drylands have reported positive or negative impacts of shrub encroachment depending on the functions and the traits of the sprouting or non-sprouting shrub species considered. Functional diversity and CWM were equally important as drivers of multifunctionality responses to both aridity and shrub encroachment. Size traits (e.g., vegetative height or lateral spread) and leaf traits (e.g., specific leaf area and leaf dry matter content) captured the effect of shrub encroachment on multifunctionality with a relative high accuracy (r2=0.63). Functional diversity also improved the resistance of multifunctionality along the aridity gradient studied. Maintaining and enhancing functional diversity in plant communities may help to buffer negative effects of ongoing global environmental change on dryland multifunctionality. PMID:25615801
A multifunctional azobenzene-based polymeric adsorbent for effective water remediation
Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong
2014-01-01
The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π–π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials. PMID:25465671
A micromotor based on polymer single crystals and nanoparticles: toward functional versatility
NASA Astrophysics Data System (ADS)
Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.
2014-07-01
We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection.We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S8 and Video S1-S4. See DOI: 10.1039/c4nr02593h
Chen, Xi; Kopsaftopoulos, Fotis; Wu, Qi; Ren, He; Chang, Fu-Kuo
2018-04-29
In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles.
NASA Astrophysics Data System (ADS)
Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari
2016-11-01
Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.
Liang, Fang-Cheng; Kuo, Chi-Ching; Chen, Bo-Yu; Cho, Chia-Jung; Hung, Chih-Chien; Chen, Wen-Chang; Borsali, Redouane
2017-05-17
Novel red-green-blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg 2+ ) were prepared with one type of copolymer (poly(methyl methacrylatete-co-1,8-naphthalimide derivatives-co-rhodamine derivative); poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg 2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg 2+ . The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg 2+ -concentration combination of the solution. The porous ES nanofibers with 30 nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance. The present study demonstrated that the FRET-based full-color-fluorescence porous nanofibrous membranes, which exhibit on-off switching and can be used as naked eye probes, have potential for application in water purification sensing filters.
A micromotor based on polymer single crystals and nanoparticles: toward functional versatility.
Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y
2014-08-07
We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczyk, Gerhard Erich; Miller, Kevin Michael
2011-07-26
There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.
NASA Astrophysics Data System (ADS)
Sugiyama, S.; Hong, Y.-J.; Kasaragod, D.; Makita, S.; Miura, M.; Ikuno, Y.; Yasuno, Y.
2016-03-01
Quantitative evaluation of optical properties of choroid and sclera are performed by multifunctional optical coherence tomography. Five normal eyes, five glaucoma eyes and one choroidal atrophy eye are examined. The refractive error was found to be correlated with choroidal birefringence, polarization uniformity, and flow in addition to scleral birefringence among normal eyes. The significant differences were observed between the normal and the glaucoma eyes, as for choroidal polarization uniformity, flow and scleral birefringence. An automatic segmentation algorithm of retinal pigment epithelium and chorioscleral interface based on multifunctional signals is also presented.
Articles including thin film monolayers and multilayers
Li, DeQuan; Swanson, Basil I.
1995-01-01
Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.
Hansen, Rieke; Pauleit, Stephan
2014-05-01
Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.
Laser-ablative fabrication of nanoparticle inks for 3D inkjetprinting of multifunctional coatings
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.
2017-12-01
We report the fabrication of multifunctional coatings via inkjet printing using water-based nanoinks in the form of selenium (Se) and gold (Au) nanoparticle (NP) colloids, prepared by laser ablation of solid targets in deionized water or 50%-isopropyl alcohol solution. Nanoparticles and NP-based coatings were deposited onto silver films, magnetronsputtered to silica-glass substrates, and characterized by means of scanning and transmission electron microscopy (SEM, TEM), UV-vis-IR, Raman and energy-dispersive X-ray spectroscopies.
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
RF MEMS devices for multifunctional integrated circuits and antennas
NASA Astrophysics Data System (ADS)
Peroulis, Dimitrios
Micromachining and RF Micro-Electro-Mechanical Systems (RF MEMS) have been identified as two of the most significant enabling technologies in developing miniaturized low-cost communications systems and sensor networks. The key components in these MEMS-based architectures are the RF MEMS switches and varactors. The first part of this thesis focuses on three novel RF MEMS components with state-of-the-art performance. In particular, a broadband 6 V capacitive MEMS switch is presented with insertion loss of only 0.04 and 0.17 dB at 10 and 40 GHz respectively. Special consideration is given to particularly challenging issues, such as residual stress, planarity, power handling capability and switching speed. The need for switches operating below 1 GHz is also identified and a spring-loaded metal-to-metal contact switch is developed. The measured on-state contact resistance and off-state series capacitance are 0.5 O and 10 fF respectively for this switch. An analog millimeter-wave variable capacitor is the third MEMS component presented in this thesis. This variable capacitor shows an ultra high measured tuning range of nearly 4:1, which is the highest reported value for the millimeter-wave region. The second part of this thesis primarily concentrates on MEMS-based reconfigurable systems and their potential to revolutionize the design of future RF/microwave multifunctional systems. High-isolation switches and switch packets with isolation of more than 60 dB are designed and implemented. Furthermore, lowpass and bandpass tunable filters with 3:1 and 2:1 tuning ratios respectively are demonstrated. Similar methods have been also applied to the field of slot antennas and a novel design technique for compact reconfigurable antennas has been developed. The main advantage of these antennas is that they essentially preserve their impedance, radiation pattern, polarization, gain and efficiency for all operating frequencies. The thesis concludes by discussing the future challenges of RF MEMS, such as packaging and reliability.
NASA Astrophysics Data System (ADS)
Song, Gangbing; Gu, Haichang; Mo, Yi-Lung
2008-06-01
This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.
Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui
2015-09-01
A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based
Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.
Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen
2016-06-01
A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.
Multifunctional nanopipette for simultaneous ionic current and potential detection of nanoparticles
NASA Astrophysics Data System (ADS)
Panday, Namuna; He, Jin
Nanopipette has been demonstrated as a nanopore type biosensor for DNA, protein, nanoparticle and virus analysis. In the last two decades, nanopore based technologies have made remarkable progress for single entity detection and analysis. Multifunctional nanopipette for multi-parameter detection is a new trend for nanopore based technique. We have developed a technique to fabricate multifunctional nanopipette which contains both nanopore and carbon nanoelectrode (CNE) at the nanopipette tip. It can be quickly, cheaply and reproducibly fabricated from theta pipettes. We have been able to use this multifunctional nanopieptte for simultaneous detection of ionic current and local electrical potential changes during translocation of charged gold nanoparticles (GNPs) which is used as a model experiment. The CNE functions as a local potential probe. We have demonstrated that it can detect the local potential change during translocation of a single GNP as well as collective potential change due to cluster of GNPs outside the nanopore entrance. From the potential change, we can also have insight of motion of GNPs before entering the nanopore. We have also tested insulating and biological NPs with various size and charge. Observed results have shown correlations between ionic current and potential change during translocation of these NPs. Florida International University.
Srinivasan, Supriya; Bhardwaj, Vinay; Nagasetti, Abhignyan; Fernandez-Fernandez, Alicia; McGoron, Anthony J
2016-12-01
This research paper reports the development of a multifunctional anti-cancer prodrug system based on silver nanoparticles. This prodrug system is composed of 70-nm sized nanoparticles and features photodynamic therapeutic properties and active, pH-triggered drug release. The silver nanoparticles are decorated with a folic acid (FA) targeting ligand via an amide bond, and also conjugated to the chemotherapeutic drug doxorubicin (DOX) via an acid-cleavable hydrazone bond. Both FA and DOX are attached to the silver nanoparticles through a polyethylene glycol (PEG) spacer. This prodrug system can preferentially enter cells that over-express folic acid receptors, with subsequent intracellular drug release triggered by reduced intracellular pH. Moreover, the silver nanoparticle carrier system exhibits photodynamic therapeutic (PDT) activity, so that the cell viability of cancer cells that overexpress folate receptors can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of this system. The multifunctional nanoparticles can be probed intracellularly through Surface-Enhanced Raman Spectroscopy (SERS) and fluorescence spectroscopy. The current report explores the applicability of this multifunctional silver nanoparticle-based system for cancer theranostics.
The sensitizing capacity of multifunctional acrylates in the guinea pig.
Björkner, B
1984-10-01
The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers.
Development of a belt-type wearable sensor system with multi-function for home health care
NASA Astrophysics Data System (ADS)
Ban, Yunho; Choi, Samjin; Jiang, Zhongwei; Park, Chanwon
2005-12-01
Some reports show that the physiological information measured in hospital is not enough without the one measured in home. The physiological information monitored in home, therefore, is strongly required recently. The goal of this research is to develop a wearable and tractable sensor system for detecting biomedical signals such as cardiac rhythm, respiration, body movement, and percentage of body fat (%BF) and for home health care. A belt type sensor for this purpose is developed, which consists of sensing materials of PVDF film and conductive fabrics. Also several data processing techniques, such as the discrete wavelet transform, cross correlation and adaptive filtering method, were introduced to eliminate noises and base wandering and to extract the specified components. The ECG and respiration signals obtained by the proposed belt type sensor system gave good agreements with commercial medical system. Furthermore, the body fat (%BF) measurement based on the four-electrode BIA was also built in the belt sensor. The body fat was calculated by measuring the body impedance from the belt type sensor and compared with the predicted %BF measured by the commercial adipometer (TBF-607). The results validated also the efficiency of the belt type sensor system.
Wu, Qiongqiong; Chen, Hongyu; Fang, Aijin; Wu, Xinyang; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo
2017-12-22
Construction of a new multifunctional chemo/biosensing platform for small biomolecules and tumor markers is of great importance in analytical chemistry. Herein, a novel universal multifunctional nanoplatform for biomolecules and enzyme activity detection was proposed based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and target-inducing enlarged gold nanoparticles (AuNPs). The reductive molecule such as H 2 O 2 can act as the reductant to reduce HAuCl 4 , which will make the Au seeds grow. The enlarged AuNPs can effectively quench the fluorescence of UCNPs owing to the good spectral overlap between the absorption band of the AuNPs and the emission band of the UCNPs. Utilizing the FRET between the UCNPs and enlarged AuNPs, good linear relationship between the fluorescence of UCNPs and the concentration of H 2 O 2 can be found. Based on this strategy, H 2 O 2 related molecules such as l-lactate, glucose, and uric acid can also be quantified. On the basis of UCNPs and PVP/HAuCl 4 , a general strategy for other reductants such as ascorbic acid (AA), dopamine (DA), or enzyme activity can be established. Therefore, the universal multifunctional nanoplatform based on UCNPs and the target-inducing in situ enlarged Au NPs will show its potential as a simple method for the detection of some life related reductive molecules, enzyme substrates, as well as enzyme activity.
Moridsadat, Maryam; Golmohammadi, Saeed; Baghban, Hamed
2018-06-01
In this paper, we propose a terahertz (THz) plasmonic structure that supports three resonance modes, including the charge transfer plasmon (CTP), the bonding dipole-dipole plasmon, and the antibonding dipole-dipole plasmon, which can be strongly tuned by geometrical parameters, passively, and the temperature, actively. The structure exhibits a considerable thermal sensitivity of more than 0.01 THz/K. The introduced multiband and tunable THz plasmonic structures offer important applications in thermal switches, thermo-optical modulators, broadband filters, design of multifunctional molecules originating from the multiband specification of the proposed structure, and improvement in plasmonic sensor applications stemming from a detailed study of the CTP mode.
Multi-functional optical signal processing using optical spectrum control circuit
NASA Astrophysics Data System (ADS)
Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki
2015-02-01
Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.
Photonic Multitasking Interleaved Si Nanoantenna Phased Array.
Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L
2016-12-14
Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.
Xu, Xinyuan; Zhang, Dongyue; Gao, Shangwei; Shiba, Toshikazu; Yuan, Quan; Cheng, Kai; Tan, Hong; Li, Jianshu
2018-06-11
Current implant materials have widespread clinical applications together with some disadvantages, the majority of which are the ease with which infections are induced and difficulty in exhibiting biocompatibility. For the efficient improvement of their properties, the development of interface multifunctional modification in a simple, universal, and environmently benign approach becomes a critical challenge and has acquired the attention of numerous scientists. In this study, a lysozyme-polyphosphate composite coating was fabricated for titanium(Ti)-based biomaterial to obtain a multifunctional surface. This coating was easily formed by sequentially soaking the substrate in reduced-lysozyme and polyphosphate solution. Such a composite coating has shown predominant antibacterial activity against Gram-negative bacteria ( E. coli) and improved cell adhesion, proliferation, and differentiation, which are much better than those of the pure substrate. This facile modification endows the biomaterial with anti-infective and potential bone-regenerative performance for clinical applications of biomaterial implants.
Multifunctional hydrogel nano-probes for atomic force microscopy
Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul
2016-01-01
Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165
NASA Astrophysics Data System (ADS)
Biswas, Apratim
In the absence of atmosphere and hydrosphere, there are few collisions between dust particles in the lunar environment. Further, particles become charged in presence of cosmic rays and similarly charged particles repel each other. Hence particles retain sharp edges and often have high aspect ratios. When exposed to lunar dust, humans show symptoms similar to hay fever. Such particles are also damaging to equipment. Humans and robots, used in operations, can bring such dust particles inside the human habitat making them airborne. High efficiency particulate air (HEPA) filters provide an effective way to trap such particles. But due to environment conditions, polymer based filters are susceptible to mechanical erosion. The presence of high energy radiation, due to the absence of atmosphere and magnetic fields, is also damaging to polymers. Ceramic materials are resistant to abrasion and radiation and hence were chosen as the preferred class of materials for the filtration media. Among all the ceramics, TiO2 was selected for its photocatalytic activity which may play a key role in energy-efficient survival in space or lunar stations. Such fibers are multi-functional with the advantage of self-cleaning property in presence of radiation. However ceramic fibers, including TiO 2 fibers, have a significant disadvantage of their own. They are brittle and were considered too prone to failure to be successfully used as a filtration media when they reach nanometer dimensions. This dissertation describes the advances in fabrication and understanding of fundamentals in overcoming these challenges. In absence of crack initiation sites, amorphous ceramic fibers have near theoretical strength and strain to failure. Amorphous TiO2 -SiO2 fibermats, with lower flaw populations and exceptional surface quality, have been developed. They can be rolled to a radius of curvature of 3.4 mm -- exhibiting flexibility. The fibermats are also mechanically robust and can withstand the stress associated with general handling and fixture used for holding the filtration media. Electrospinning was selected as the fabrication method due to superior performance towards fiber diameter uniformity and the ability to decrease fiber diameters to the nm level. Filtration tests have been carried out on such fibermats concerning a number of key variables such as fiber diameter, particle size, pressure drop and more. Multifunctionality, as filter material and as photocatalyst, allows the filters to be regenerable. Furthermore, organic vapors (odors) and plant super hormones (ethylene gas) can be oxidized. This is key for a sustainable human base where food needs to be grown and the level of odors in habitat has to be minimized. Ceramic materials based on TiO2 and titania composites where selected. To enhance the catalytic properties doping with a pentavalent ion, viz. niobium, with varying concentrations was done. Materials were electrospun and characterized. An increase of niobium yields stabilization of the anatase phase at 600°C as evident from XRD patterns. Higher treatment temperatures allow a transformation to rutile. This is important since the semiconductor junction of anatase to rutile decreases electron-hole recombination rate, which enhances the photocatalytic activity. Furthermore, doping anatase with niobium increases the porosity and with it the catalytically active area. In fact the specific surface area of titania fibers increases by almost 6 times when doped with only 2.5 at% niobium. However, in this work reduced photocatalytic activity was observed. It is hypothesized that phase separation of the niobium rather than doping in a solid solution occurred which will change the properties of the semiconductor junction in an unfavorable way. The other possible explanation is the decrease in the anatase -- rutile semiconductor junction in niobium doped titania.
Guimarães, L B de M; Anzanello, M J; Renner, J S
2012-05-01
This paper presents a method for implementing multifunctional work teams in a footwear company that followed the Taylor/Ford system for decades. The suggested framework first applies a Learning Curve (LC) modeling to assess whether rotation between tasks of different complexities affects workers' learning rate and performance. Next, the Macroergonomic Work Analysis (MA) method (Guimarães, 1999, 2009) introduces multifunctional principles in work teams towards workers' training and resources improvement. When applied to a pilot line consisting of 100 workers, the intervention-reduced work related accidents in 80%, absenteeism in 45.65%, and eliminated work related musculoskeletal disorders (WMSD), medical consultations, and turnover. Further, the output rate of the multifunctional team increased average 3% compared to the production rate of the regular lines following the Taylor/Ford system (with the same shoe model being manufactured), while the rework and spoilage rates were reduced 85% and 69%, respectively. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Effective Design of Multifunctional Peptides by Combining Compatible Functions
Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel
2016-01-01
Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600
Bhatt, Shreya; Bhatt, Madhuri; Kumar, Anshu; Vyas, Gaurav; Gajaria, Tejal; Paul, Parimal
2018-07-01
We report a one pot green strategy for the synthesis of carbon dots using tulsi leaves and their potential application in sensing of Cr(VI) selectively. The detection mechanism is based on the phenomenon called inner filter effect (IFE) and a good linear static quenching was observed in the range of 1.6 μM to 50 μM with a detection limit of 4.5 ppb. The reversible switching in fluorescence has been tested and a good recovery in fluorescence was observed up to three consecutive cycles upon addition of ascorbic acid as reducing agent. Also the low toxicity, high fluorescence and photostabilty of the CDs make them excellent imaging and patterning agent. The acid and alkali resistant property of these CDs makes it suitable for real sample analysis. The fluorescent CDs were applied for successful detection of Cr(VI) in water with spike-recoveries ranging from 93 to 99%. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Xi; Wu, Qi; Ren, He; Chang, Fu-Kuo
2018-01-01
In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles. PMID:29710832
2012-02-01
SUBJECT TERMS Carbon nanotubes , CNTs, supercapacitor, multifunctional, energy, structural-Energy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Pulickel M. Ajayan of Rice University for providing us with the vertically aligned carbon nanotube (CNT) forests used in this project and for helpful...10–18) and man-portable unmanned vehicles (19). In related research, ARL has also investigated using carbon nanotube (CNT)-based electrodes for
Multifunctional shape and size specific magneto-polymer composite particles.
Nunes, Janine; Herlihy, Kevin P; Mair, Lamar; Superfine, Richard; DeSimone, Joseph M
2010-04-14
Interest in uniform multifunctional magnetic particles is driven by potential applications in biomedical and materials science. Here we demonstrate the fabrication of highly tailored nanoscale and microscale magneto-polymer composite particles using a template based approach. Regiospecific surface functionalization of the particles was performed by chemical grafting and evaporative Pt deposition. Manipulation of the particles by an applied magnetic field was demonstrated in water and hydrogen peroxide.
2012-08-01
U0=15m/s, Lv =350m Cloud Wind and Clear Sky Gust Simulation Using Dryden PSD* Harvested Energy from Normal Vibration (Red) to...energy control law based on limited energy constraints 4) Experimentally validated simultaneous energy harvesting and vibration control Summary...Experimental Characterization and Validation of Simultaneous Gust Alleviation and Energy Harvesting for Multifunctional Wing Spars AFOSR
2017-01-01
The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings. PMID:28261690
Pramanik, Avijit; Jones, Stacy; Pedraza, Francisco; Vangara, Aruna; Sweet, Carrie; Williams, Mariah S; Ruppa-Kasani, Vikram; Risher, Sean Edward; Sardar, Dhiraj; Ray, Paresh Chandra
2017-02-28
The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings.
Redefining ecosystem multifunctionality.
Manning, Peter; van der Plas, Fons; Soliveres, Santiago; Allan, Eric; Maestre, Fernando T; Mace, Georgina; Whittingham, Mark J; Fischer, Markus
2018-03-01
Recent years have seen a surge of interest in ecosystem multifunctionality, a concept that has developed in the largely separate fields of biodiversity-ecosystem function and land management research. Here we discuss the merit of the multifunctionality concept, the advances it has delivered, the challenges it faces and solutions to these challenges. This involves the redefinition of multifunctionality as a property that exists at two levels: ecosystem function multifunctionality and ecosystem service multifunctionality. The framework presented provides a road map for the development of multifunctionality measures that are robust, quantifiable and relevant to both fundamental ecological science and ecosystem management.
Li, Lei; Jiang, Guohua; Yu, Weijiang; Liu, Depeng; Chen, Hua; Liu, Yongkun; Tong, Zaizai; Kong, Xiangdong; Yao, Juming
2017-01-01
To overcome multiple barriers for oral delivery of insulin, the chitosan-based multifunctional nanocarriers modified by L-valine (LV, used as a target ligand to facilitate the absorption of the small intestine) and phenylboronic acid (PBA, used as a glucose-responsive unit) have been designed and evaluated in this study. The resultant nanocarriers exhibited low cytotoxicity against HT-29 cells and excellent stability against protein solution. The insulin release behaviors were evaluated triggered by pH and glucose in vitro. The chemical stability of loaded insulin against digestive enzyme were established in presence of simulated gastric fluid (SGF) containing pepsin and simulated intestinal fluid (SIF) containing pancreatin, respectively. The uptake behavior of HT-29 cells was evaluated by confocal laser scanning microscope. After oral administration to the diabetic rats, an effective hypoglycemic effect was obtained compared with subcutaneous injection of insulin. This work suggests that L-valine modified chitosan-based multifunctional nanocarriers may be a promising drug delivery carrier for oral administration of insulin. Copyright © 2016 Elsevier B.V. All rights reserved.
Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Nagaoka, Yutaka; Suzuki, Masashi; Fukuda, Takahiro; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair
2013-03-12
A multifunctional biocompatible nanovector based on magnetic nanoparticle and carboxymethyl cellulose (CMC) was developed. The nanoparticles have been characterized using TEM, SEM, DLS, FT-IR spectra, VSM, and TGA studies. We found that the synthesized carboxymethyl cellulose magnetic nanoparticles (CMC MNPs) were spherical in shape with an average size of 150 nm having low aggregation and superparamagnetic properties. We found that the folate-tagged CMC MNPs were delivered to cancer cells by a folate-receptor-mediated endocytosis mechanism. 5-FU was encapsulated as a model drug for delivering cytotoxicity, and we could demonstrate the sustained release of 5-FU. It was also observed that the FITC-labeled CMC MNPs could effectively enter cells, and the fate of nanoparticles was tracked with Lysotracker. The CMC MNPs could induce significant cell death when an alternating magnetic field was applied. These results indicate that the multifunctional CMC MNPs possess a high drug loading efficiency and high biocompatibility and with low cell cytotoxicity and can be considered to be promising candidates for CMC-based targeted drug delivery, cellular imaging, and magnetic hyperthermia (MHT).
Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation.
Lou, Jinwei; Liu, Yang; Wang, Zhongyong; Zhao, Dengwu; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil; Zhang, Wang; Zhang, Di; Tao, Peng; Shang, Wen; Deng, Tao
2016-06-15
Reusing polluted water through various decontamination techniques has appeared as one of the most practical approaches to address the global shortage of clean water. Rather than relying on single decontamination mechanism, herein we report the preparation and utilization of paper-based composites for multifunctional solar-driven clean water generation that is inspired by the multiple water purification approaches in biological systems. The reduced graphene oxide (rGO) sheets within such composites can efficiently remove organic contaminants through physical adsorption mechanism. Under solar irradiation, the floating rGO composites can instantly generate localized heating, which not only can directly generate clean water through distillation mechanism but also significantly enhance adsorption removal performance with the assistance of upward vapor flow. Such porous-structured paper-based composites allow for facile incorporation of photocatalysts to regenerate clean water out of contaminated water with combined adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms. Within a homemade all-in-one water treatment device, the practical applicability of the composites for multifunctional clean water generation has been demonstrated.
Development of algorithmic decision-making models for sea crews
NASA Astrophysics Data System (ADS)
Lisitsyna, L.; Smetyuh, N.; Ivanovskiy, N.
2018-05-01
Modern virtual simulators are multifunctional, i.e. they can be used to develop and enhance the skills as well as to control professional skills and abilities of specialists of diverse profiles under various working conditions. This study is based on the generalization of a large experience in the sphere of applying ready-made multifunctional virtual simulators (MFVS) and developing new ones for the training and retraining of the crews of the Azov-Black Sea fishing vessels. The model is implemented in the multifunctional visual simulator "Trawling and purse-seining" to train the situational awareness among navigators individually and in a team. Interviews with those who employ the graduates of the advanced training courses testify to the adequacy of this model.
A Novel Health Evaluation Strategy for Multifunctional Self-Validating Sensors
Shen, Zhengguang; Wang, Qi
2013-01-01
The performance evaluation of sensors is very important in actual application. In this paper, a theory based on multi-variable information fusion is studied to evaluate the health level of multifunctional sensors. A novel conception of health reliability degree (HRD) is defined to indicate a quantitative health level, which is different from traditional so-called qualitative fault diagnosis. To evaluate the health condition from both local and global perspectives, the HRD of a single sensitive component at multiple time points and the overall multifunctional sensor at a single time point are defined, respectively. The HRD methodology is emphasized by using multi-variable data fusion technology coupled with a grey comprehensive evaluation method. In this method, to acquire the distinct importance of each sensitive unit and the sensitivity of different time points, the information entropy and analytic hierarchy process method are used, respectively. In order to verify the feasibility of the proposed strategy, a health evaluating experimental system for multifunctional self-validating sensors was designed. The five different health level situations have been discussed. Successful results show that the proposed method is feasible, the HRD could be used to quantitatively indicate the health level and it does have a fast response to the performance changes of multifunctional sensors. PMID:23291576
‘One-pot’ synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery
NASA Astrophysics Data System (ADS)
Chen, Xiaoqin; Tang, Yajun; Cai, Bing; Fan, Hongsong
2014-06-01
A novel quantum dots-based multifunctional nanovehicle (DOX-QD-PEG-FA) was designed for targeted drug delivery, fluorescent imaging, tracking, and cancer therapy, in which the GSH-CdTe quantum dots play a key role in imaging and drug delivery. To exert curative effects, the antineoplastic drug doxorubicin hydrochloride (DOX) was loaded on the GSH-CdTe quantum dots through a condensation reaction. Meanwhile, a polyethylene glycol (PEG) shell was introduced to wrap the DOX-QD, thus stabilizing the structure and preventing clearance and drug release during systemic circulation. To actively target cancer cells and prevent the nanovehicles from being absorbed by normal cells, the nanoparticles were further decorated with folic acid (FA), allowing them to target HeLa cells that express the FA receptor. The multifunctional DOX-QD-PEG-FA conjugates were simply prepared using the ‘one pot’ method. In vitro study demonstrated that this simple, multifunctional nanovehicle can deliver DOX to the targeted cancer cells and localize the nanoparticles. After reaching the tumor cells, the FA on the DOX-QD-PEG surface allowed folate receptor recognition and increased the drug concentration to realize a higher curative effect. This novel, multifunctional DOX-QD-PEG-FA system shows great potential for tumor imaging, targeting, and therapy.
Polymer-based composites for aerospace: An overview of IMAST results
NASA Astrophysics Data System (ADS)
Milella, Eva; Cammarano, Aniello
2016-05-01
This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).
Spatio-temporal filtering for determination of common mode error in regional GNSS networks
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Gruszczynski, Maciej; Figurski, Mariusz; Klos, Anna
2015-04-01
The spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually estimated with the regional spatial filtering, such as the "stacking". In this paper, we show the stacking approach for the set of ASG-EUPOS permanent stations, assuming that spatial distribution of the CME is uniform over the whole region of Poland (more than 600 km extent). The ASG-EUPOS is a multifunctional precise positioning system based on the reference network designed for Poland. We used a 5- year span time series (2008-2012) of daily solutions in the ITRF2008 from Bernese 5.0 processed by the Military University of Technology EPN Local Analysis Centre (MUT LAC). At the beginning of our analyses concerning spatial dependencies, the correlation coefficients between each pair of the stations in the GNSS network were calculated. This analysis shows that spatio-temporal behaviour of the GPS-derived time series is not purely random, but there is the evident uniform spatial response. In order to quantify the influence of filtering using CME, the norms L1 and L2 were determined. The values of these norms were calculated for the North, East and Up components twice: before performing the filtration and after stacking. The observed reduction of the L1 and L2 norms was up to 30% depending on the dimension of the network. However, the question how to define an optimal size of CME-analysed subnetwork remains unanswered in this research, due to the fact that our network is not extended enough.
NASA Astrophysics Data System (ADS)
Chen, Jingwen; Sun, Yingqi; Chen, Qian; Wang, Le; Wang, Suhe; Tang, Yun; Shi, Xiangyang; Wang, Han
2016-07-01
Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells.Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells. Electronic supplementary information (ESI) available: Synthesis and characterization data of the nanoprobes; biocompatibility results; confirmation of the tumor cell uptake of the nanoprobes in vitro and in vivo; biodistribution results in vivo. See DOI: 10.1039/c6nr03143a
Multifunctional non-woven fabrics of interfused graphene fibres
Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao
2016-01-01
Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ∼2.8 × 104 S m−1 and prominent thermal conductivity of ∼301.5 W m−1 K−1. Given the low density (0.22 g cm−3), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications. PMID:27901022
Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
Souri, Hamid; Bhattacharyya, Debes
2018-06-05
The demand for stretchable, flexible, and wearable multifunctional devices based on conductive nanomaterials is rapidly increasing considering their interesting applications including human motion detection, robotics, and human-machine interface. There still exists a great challenge to manufacture stretchable, flexible, and wearable devices through a scalable and cost-effective fabrication method. Herein, we report a simple method for the mass production of electrically conductive textiles, made of cotton and wool, by hybridization of graphene nanoplatelets and carbon black particles. Conductive textiles incorporated into a highly elastic elastomer are utilized as highly stretchable and wearable strain sensors and heaters. The electromechanical characterizations of our multifunctional devices establish their excellent performance as wearable strain sensors to monitor various human motions, such as finger, wrist, and knee joint movements, and to recognize sound with high durability. Furthermore, the electrothermal behavior of our devices shows their potential application as stretchable and wearable heaters working at a maximum temperature of 103 °C powered with 20 V.
NASA Astrophysics Data System (ADS)
Tsushima, Natsuki
The purpose of this dissertation is to develop an analytical framework to analyze highly flexible multifunctional wings with integral active and passive control and energy harvesting using piezoelectric transduction. Such multifunctional wings can be designed to enhance aircraft flight performance, especially to support long-endurance flights and to be adaptive to various flight conditions. This work also demonstrates the feasibility of the concept of piezoelectric multifunctional wings for the concurrent active control and energy harvesting to improve the aeroelastic performance of high-altitude long-endurance unmanned air vehicles. Functions of flutter suppression, gust alleviation, energy generation, and energy storage are realized for the performance improvement. The multifunctional wings utilize active and passive piezoelectric effects for the efficient adaptive control and energy harvesting. An energy storage with thin-film lithium-ion battery cells is designed for harvested energy accumulation. Piezoelectric effects are included in a strain-based geometrically nonlinear beam formulation for the numerical studies. The resulting structural dynamic equations are coupled with a finite-state unsteady aerodynamic formulation, allowing for piezoelectric energy harvesting and active actuation with the nonlinear aeroelastic system. This development helps to provide an integral electro-aeroelastic solution of concurrent active piezoelectric control and energy harvesting for wing vibrations, with the consideration of the geometrical nonlinear effects of slender multifunctional wings. A multifunctional structure for active actuation is designed by introducing anisotropic piezoelectric laminates. Linear quadratic regulator and linear quadratic Gaussian controllers are implemented for the active control of wing vibrations including post-flutter limit-cycle oscillations and gust perturbation. An adaptive control algorithm for gust perturbation is then developed. In this research, the active piezoelectric actuation is applied as the primary approach for flutter suppression, with energy harvesting, as a secondary passive approach, concurrently working to provide an additional damping effect on the wing vibration. The multifunctional wing also generates extra energy from residual wing vibration. This research presents a comprehensive approach for an effective flutter suppression and gust alleviation of highly flexible piezoelectric wings, while allowing to harvest the residual vibration energy. Numerical results with the multifunctional wing concept show the potential to improve the aircraft performance from both aeroelastic stability and energy consumption aspects.
Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells
NASA Astrophysics Data System (ADS)
Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En
2011-12-01
Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132a
Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin
2014-10-07
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.
Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.
Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei
2017-11-24
Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Zuwu; Wu, Ming; Li, Zuanfang; Lin, Zhan; Zeng, Jinhua; Sun, Haiyan; Liu, Xiaolong; Liu, Jingfeng; Li, Buhong; Zeng, Yongyi
2018-11-01
Developing multifunctional nanoparticle-based theranostic platform for cancer diagnosis and treatment is highly desirable, however, most of the present theranostic platforms are fabricated via complicated structure/composition design and time-consuming synthesis procedures. Herein, the multifunctional Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform with single nano-structure was fabricated through a facile route, which possessed MR/CT dual-model imaging and chemotherapy ability. The nanoplatform not only exhibited well-defined shapes, tunable compositions and narrow size distributions, but also presented a well anti-cancer effect and MR/CT imaging ability. Therefore, the Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform could be applied for chemotherapy as well as dual-model MR/CT imaging.
Luo, Yufeng; Luo, Nannan; Kong, Weibang; Wu, Hengcai; Wang, Ke; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping
2018-02-01
A multifunctional interlayer, composed of molybdenum diphosphide (MoP 2 ) nanoparticles and a carbon nanotube (CNT) film, is introduced into a lithium-sulfur (Li-S) battery system to suppress polysulfide migration. Molybdenum diphosphide acts as the catalyst and can capture polysulfides and improve the polysulfide conversion activity during the discharge/charge processes. The CNT film acts as a conductive skeleton to support the MoP 2 nanoparticles and to ensure their uniform distribution. The CNT film physically hinders polysulfide migration, acts as a current collector, and provides abundant electron pathways. The Li-S battery containing the multifunctional MoP 2 /CNT interlayer exhibits excellent electrochemical performance. It delivers a reversible specific capacity of 905 mA h g -1 over 100 cycles at 0.2 C, with a capacity decay of 0.152% per cycle. These results suggest the introduction of the multifunctional CNT/MoP 2 interlayer as an effective and practical method for producing high-performance Li-S batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes
Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy
2015-01-01
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335
Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials
NASA Technical Reports Server (NTRS)
Heath, D. M. (Technical Monitor); Smits, Jan M., VI
2005-01-01
Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.
Pedrón, Sara; Peinado, Carmen; Bosch, Paula; S.Anseth, Kristi
2010-01-01
Hyperbranched poly(ester amide) polymer (Hybrane™ S1200; Mn 1200 g/mol) was functionalized with maleic anhydride (MA) and propylene sulfide, to obtain multifunctional crosslinkers with fumaric and thiol-end groups, S1200MA and S1200SH, respectively. The degree of substitution of maleic acid groups (DS) was controlled by varying the molar ratio of MA to S1200 in the reaction mixture. Hydrogels were obtained by UV crosslinking of functionalized S1200 and poly(ethyleneglycol) diacrylate (PEGDA) in aqueous solutions. Compressive modulus increased with decreasing the S1200/PEG ratio and also depended on the DS of the multifunctional crosslinker (S1200). Also, heparin-based macromonomers together with functionalized hyperbranched polymers were used to construct novel functional hydrogels. The multivalent hyperbranched polymers allowed high crosslinking densities in heparin modified gels while introducing biodegradation sites. Both heparin presence and acrylate/thiol ratio have an impact on degradation profiles and morphologies. Hyperbranched crosslinked hydrogels showed no evidence of cell toxicity. Overall, the multifunctional crosslinkers afford hydrogels with promising properties that suggest that these may be suitable for tissue engineering applications. PMID:20561601
NASA Astrophysics Data System (ADS)
Erickson, Dennis C.; Donnelly, Matt K.
1995-04-01
The authors present a design concept describing a multifunctional data acquisition and analysis architecture for advanced power system monitoring. The system is tailored to take advantage of the salient features of low energy sensors, particularly optical types. The discussion of the system concept and optical sensors is based on research at BPA and PNL and on progress made at existing BPA installations and other sites in the western power system.
Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display
Glazer, Alexander N.; Cai, Yuping
2007-01-30
The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.
Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display
Glazer, Alexander N.; Cai, Yuping
2007-02-13
The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.
Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display
Glazer, Alexander N.; Cai, Yuping
2003-11-18
The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.
Gao, Xuechuan; Zhai, Manjue; Guan, Weihua; Liu, Jingjuan; Liu, Zhiliang; Damirin, Alatangaole
2017-02-01
As a result of their extraordinarily large surfaces and well-defined pores, the design of a multifunctional metal-organic framework (MOF) is crucial for drug delivery but has rarely been reported. In this paper, a novel drug delivery system (DDS) based on nanoscale MOF was developed for use in cancer diagnosis and therapy. This MOF-based tumor targeting DDS was fabricated by a simple postsynthetic surface modification process. First, magnetic mesoporous nanomaterial Fe-MIL-53-NH 2 was used for encapsulating the drug and served as a magnetic resonance contrast agent. Moreover, the Fe-MIL-53-NH 2 nanomaterial exhibited a high loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, the fluorescence imaging agent 5-carboxyfluorescein (5-FAM) and the targeting reagent folic acid (FA) were conjugated to the 5-FU-loaded Fe-MIL-53-NH 2 , resulting in the advanced DDS Fe-MIL-53-NH 2 -FA-5-FAM/5-FU. Owing to the multifunctional surface modification, the obtained DDS Fe-MIL-53-NH 2 -FA-5-FAM/5-FU shows good biocompatibility, tumor enhanced cellular uptake, strong cancer cell growth inhibitory effect, excellent fluorescence imaging, and outstanding magnetic resonance imaging capability. Taken together, this study integrates diagnostic and treatment aspects into a single platform by a simple and efficient strategy, aiming for facilitating new possibilities for MOF use for multifunctional drug delivery.
Liu, Xiaojie; Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli
2018-04-02
A multifunctional fluorescent probe is synthesized for the determination of adenosine 5'-triphosphate (ATP). The 6-carboxyfluorescein-labeled aptamer (FAM-aptamer) was bound to the surface of magnetite nanoparticles coated with polydopamine (Fe 3 O 4 @PDA) by π-π stacking interaction to form the multifunctional probe. The probe has three functions including recognition, magnetic separation, and yielding a fluorescent signal. In the presence of ATP, FAM-aptamer on the surface of the probe binds to ATP and returns to the solution. Thus, the fluorescence of the supernatant is enhanced and can be related to the concentration of ATP. Fluorescence intensities were measured at excitation/emission wavelengths of 494/526 nm. Response is linear in the 0.1-100 μM ATP concentration range, and the detection limit is 89 nM. The probe was applied to the quantitation of ATP in spiked human urine and serum samples, with recoveries ranging between 94.8 and 102%. Graphical abstract A multifunctional fluorescent probe based on the use of FAM-aptamer and Fe 3 O 4 @PDA is described for the determination of ATP in spiked human urine and serum samples. FAM-aptamer: 6-carboxyfluorescein-labeled aptamer; Fe 3 O 4 @PDA: magnetite nanoparticles coated with polydopamine. ATP: adenosine 5'-triphosphate.
Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok
2013-11-01
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.
Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak
2010-06-22
Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.
Pan, Xin; Qi, Jian-cheng; Long, Ming; Liang, Hao; Chen, Xiao; Li, Han; Li, Guang-bo; Zheng, Hao
2010-01-01
The close phylogenetic relationship between humans and non-human primates makes non-human primates an irreplaceable model for the study of human infectious diseases. In this study, we describe the development of a large-scale automatic multi-functional isolation chamber for use with medium-sized laboratory animals carrying infectious diseases. The isolation chamber, including the transfer chain, disinfection chain, negative air pressure isolation system, animal welfare system, and the automated system, is designed to meet all biological safety standards. To create an internal chamber environment that is completely isolated from the exterior, variable frequency drive blowers are used in the air-intake and air-exhaust system, precisely controlling the filtered air flow and providing an air-barrier protection. A double door transfer port is used to transfer material between the interior of the isolation chamber and the outside. A peracetic acid sterilizer and its associated pipeline allow for complete disinfection of the isolation chamber. All of the isolation chamber parameters can be automatically controlled by a programmable computerized menu, allowing for work with different animals in different-sized cages depending on the research project. The large-scale multi-functional isolation chamber provides a useful and safe system for working with infectious medium-sized laboratory animals in high-level bio-safety laboratories. PMID:20872984
El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan
2016-02-07
With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in catalysis, energy storage, sensing, and biomedicine are presented.
2008-02-01
tu- mor cells. In this regard, herpesvirus samiri (HVS) was de- monstrated to be naturally selectively oncolytic for the pancreatic cancer line PANC-1...the hexon virus. Therefore, Ad can provide a versatile platform for selective binding of AuNPs, resulting in a multifunctional agent capable of...utility remained unaffected. Therefore, Ad can provide a versatile platform for selective binding of nanoparticles, resulting in a multifunctional agent
Electronic Skin with Multifunction Sensors Based on Thermosensation.
Zhao, Shuai; Zhu, Rong
2017-04-01
A multifunctional electronic skin (e-skin) with multimodal sensing capabilities of perceiving mechanical and thermal stimuli, discriminating matter type, and sensing wind is developed using the thermosensation of a platinum ribbon array, whose temperature varies with conductive or convective heat transfer toward the surroundings. Pressure is perceived by a porous elastomer covering on the heated platinum ribbon, which bears mechanical-thermal conversion to allow high integration with other sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser-Based Remote Sensing of Explosives by a Differential Absorption and Scattering Method
NASA Astrophysics Data System (ADS)
Ayrapetyan, V. S.
2018-01-01
A multifunctional IR parametric laser system is developed and tested for remote detection and identification of atmospheric gases, including explosive and chemically aggressive substances. Calculations and experimental studies of remote determination of the spectroscopic parameters of the best known explosive substances TNT, RDX, and PETN are carried out. The feasibility of high sensitivity detection ( 1 ppm) of these substances with the aid of a multifunctional IR parametric light source by differential absorption and scattering is demonstrated.
Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier
2016-10-01
Surface acoustic waves (SAWs) are versatile tools to manipulate fluids at small scales for microfluidics and biological applications. A nonexhaustive list of operations that can be performed with SAW includes sessile droplet displacement, atomization, division, and merging but also the actuation of fluids embedded in microchannels or the manipulation of suspended particles. However, each of these operations requires a specific design of the wave generation system, the so-called interdigitated transducers (IDTs). Depending on the application, it might indeed be necessary to generate focused or plane, propagating or standing, and aligned or shifted waves. Furthermore, the possibilities offered by more complex wave fields such as acoustical vortices for particle tweezing and liquid twisting cannot be explored with classical IDTs. In this paper, we show that the inverse filter technique coupled with an IDTs array enables us to synthesize all classical wave fields used in microfluidics and biological applications with a single multifunctional platform. It also enables us to generate swirling SAWs, whose potential for the on-chip synthesis of tailored acoustical vortices has been demonstrated lately. The possibilities offered by this platform are illustrated by performing many operations successively on sessile droplets with the same system.
Lee, Inhan; Williams, Christopher R.; Athey, Brian D.; Baker, James R.
2010-01-01
Molecular dynamics simulations of nano-therapeutics as a final product and of all intermediates in the process of generating a multi-functional nano-therapeutic based on a poly(amidoamine) (PAMAM) dendrimer were performed along with chemical analyses of each of them. The actual structures of the dendrimers were predicted, based on potentiometric titration, gel permeation chromatography, and NMR. The chemical analyses determined the numbers of functional molecules, based on the actual structure of the dendrimer. Molecular dynamics simulations calculated the configurations of the intermediates and the radial distributions of functional molecules, based on their numbers. This interactive process between the simulation results and the chemical analyses provided a further strategy to design the next reaction steps and to gain insight into the products at each chemical reaction step. PMID:20700476
Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng
2015-08-12
A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.
Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.
Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En
2012-01-07
Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging α(v)β(3) integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.
Yue, Ludan; Wang, Jinlong; Dai, Zhichao; Hu, Zunfu; Chen, Xue; Qi, Yafei; Zheng, Xiuwen; Yu, Dexin
2017-02-15
Multifunctional nanotheranostic agents have been highly commended due to the application to image-guided cancer therapy. Herein, based on the chemically disordered face centered cubic (fcc) FePt nanoparticles (NPs) and graphene oxide (GO), we develop a pH-responsive FePt-based multifunctional theranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging and in situ cancer inhibition. The fcc-FePt will release highly active Fe ions due to the low pH in tumor cells, which would catalyze H 2 O 2 decomposition into reactive oxygen species (ROS) within the cells and further induce cancer cell apoptosis. Conjugated with folic acid (FA), the iron platinum-dimercaptosuccinnic acid/PEGylated graphene oxide-folic acid (FePt-DMSA/GO-PEG-FA) composite nanoassemblies (FePt/GO CNs) could effectively target and show significant toxicity to FA receptor-positive tumor cells, but no obvious toxicity to FA receptor-negative normal cells, which was evaluated by WST-1 assay. The FePt-based multifunctional nanoparticles allow real-time monitoring of Fe release by T 2 -weighted MRI, and the selective contrast enhancement in CT could be estimated in vivo after injection. The results showed that FePt-based NPs displayed excellent biocompatibility and favorable MRI/CT imaging ability in vivo and in vitro. Meanwhile, the decomposition of FePt will dramatically decrease the T 2 -weighted MRI signal and increase the ROS signal, which enables real-time and in situ visualized monitoring of Fe release in tumor cells. In addition, the self-sacrificial decomposition of fcc-FePt will be propitious to the self-clearance of the as-prepared FePt-based nanocomposite in vivo. Therefore, the FePt/GO CNs could serve as a potential multifunctional theranostic nanoplatform of MRI/CT imaging guided cancer diagnosis and therapy in the clinic.
Hu, Jinming; Li, Changhua; Liu, Shiyong
2010-01-19
We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility, biocompatibility, facile incorporation into devices, and the ability of further functionalization for targeted imaging and detection.
Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2017-04-15
We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.
Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik
2017-06-01
The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Locally rare species influence grassland ecosystem multifunctionality
Manning, Peter; Prati, Daniel; Gossner, Martin M.; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H.; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E. Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C.; Rillig, Matthias C.; Schaefer, H. Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A.; Solly, Emily F.; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N.; Weisser, Wolfgang W.; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-01-01
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. PMID:27114572
Locally rare species influence grassland ecosystem multifunctionality.
Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-05-19
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. © 2016 The Author(s).
Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih
2016-11-01
Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wilson, Geoff A.
2008-01-01
Building on normative conceptualisations of multifunctionality as a decision-making spectrum bounded by productivist and non-productivist action and thought, this paper analyses farm-level multifunctional agricultural transitions. First, the paper suggests that it may be possible to categorise different farm types along the…
Mechanics of Multifunctional Materials & Microsystems
2012-03-09
Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self
NASA Astrophysics Data System (ADS)
Yufeng, Wang; Qiang, Fu; Meina, Zhao; Fei, Gao; Huige, Di; Yuehui, Song; Dengxin, Hua
2018-01-01
To monitor the variability and the correlation of multiple atmospheric parameters in the whole troposphere and the lower stratosphere, a ground-based ultraviolet multifunctional Raman lidar system was established to simultaneously measure the atmospheric parameters in Xi'an (34.233°N, 108.911°E). A set of dichroic mirrors (DMs) and narrow-band interference filters (IFs) with narrow angles of incidence were utilized to construct a high-efficiency 5-channel polychromator. A series of high-quality data obtained from October 2013 to December 2015 under different weather conditions were used to investigate the functionality of the Raman lidar system and to study the variability of multiple atmospheric parameters in the whole stratosphere. Their conveying characteristics are also investigated using back trajectories with a hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT). The lidar system can be operated efficiently under weather conditions with a cloud backscattering ratio of less than 18 and an atmospheric visibility of 3 km. We observed an obvious temperature inversion phenomenon at the tropopause height of 17-18 km and occasional temperature inversion layers below the boundary layer. The rapidly changing atmospheric water vapor is mostly concentrated at the lower troposphere, below ∼4-5 km, accounting for ∼90% of the total water vapor content at 0.5-10 km. The back trajectory analysis shows that the air flow from the northwest and the west mainly contributes to the transport of aerosols and water vapor over Xi'an. The simultaneous continuous observational results demonstrate the variability and correlation among the multiple atmospheric parameters, and the accumulated water vapor density in the bottom layer causes an increase in the aerosol extinction coefficient and enhances the relative humidity in the early morning. The long-term observations provide a large amount of reliable atmospheric data below the lower stratosphere, and can be used to study their correlation and to improve local climate change research.
A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment
NASA Astrophysics Data System (ADS)
Pacardo, Dennis B.; Neupane, Bhanu; Rikard, S. Michaela; Lu, Yue; Mo, Ran; Mishra, Sumeet R.; Tracy, Joseph B.; Wang, Gufeng; Ligler, Frances S.; Gu, Zhen
2015-07-01
A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics.A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01568e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Qing; Wei Daixu; Cheng Jiejun
2012-08-15
The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and bothmore » high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.« less
Panday, Namuna; Qian, Gongming; Wang, Xuewen; Chang, Shuai; Pandey, Popular; He, Jin
2016-12-27
Nanopore sensing-based technologies have made significant progress for single molecule and single nanoparticle detection and analysis. In recent years, multimode sensing by multifunctional nanopores shows the potential to greatly improve the sensitivity and selectivity of traditional resistive-pulse sensing methods. In this paper, we showed that two label-free electric sensing modes could work cooperatively to detect the motion of 40 nm diameter spherical gold nanoparticles (GNPs) in solution by a multifunctional nanopipette. The multifunctional nanopipettes containing both nanopore and nanoelectrode (pyrolytic carbon) at the tip were fabricated quickly and cheaply. We demonstrated that the ionic current and local electrical potential changes could be detected simultaneously during the translocation of individual GNPs. We also showed that the nanopore/CNE tip geometry enabled the CNE not only to detect the translocation of single GNP but also to collectively detect several GNPs outside the nanopore entrance. The dynamic accumulation of GNPs near the nanopore entrance resulted in no detectable current changes, but was detected by the potential changes at the CNE. We revealed the motions of GNPs both outside and inside the nanopore, individually and collectively, with the combination of ionic current and potential measurements.
Three-dimensional images of choanoflagellate loricae
Leadbeater, Barry S.C; Yu, QiBin; Kent, Joyce; Stekel, Dov J
2008-01-01
Choanoflagellates are unicellular filter-feeding protozoa distributed universally in aquatic habitats. Cells are ovoid in shape with a single anterior flagellum encircled by a funnel-shaped collar of microvilli. Movement of the flagellum creates water currents from which food particles are entrapped on the outer surface of the collar and ingested by pseudopodia. One group of marine choanoflagellates has evolved an elaborate basket-like exoskeleton, the lorica, comprising two layers of siliceous costae made up of costal strips. A computer graphic model has been developed for generating three-dimensional images of choanoflagellate loricae based on a universal set of ‘rules’ derived from electron microscopical observations. This model has proved seminal in understanding how complex costal patterns can be assembled in a single continuous movement. The lorica, which provides a rigid framework around the cell, is multifunctional. It resists the locomotory forces generated by flagellar movement, directs and enhances water flow over the collar and, for planktonic species, contributes towards maintaining cells in suspension. Since the functional morphology of choanoflagellate cells is so effective and has been highly conserved within the group, the ecological and evolutionary radiation of choanoflagellates is almost entirely dependent on the ability of the external coverings, particularly the lorica, to diversify. PMID:18755674
Latest advances in supercapacitors: from new electrode materials to novel device designs.
Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai; Liu, Zaichun; Zhang, Yi; Fu, Lijun; Zhu, Yusong; Zhou, Qingming; Wu, Yuping; Huang, Wei
2017-11-13
Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO 3 , and RbAg 4 I 5 /graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.
Simulation of the fixed optical path difference of near infrared wind imaging interferometer
NASA Astrophysics Data System (ADS)
Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen
2017-02-01
As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.
Designing multifunctional polymers for cardiovascular implants.
Wischke, Christian; Lendlein, Andreas
2011-01-01
Polymer-based biomaterials are extensively used in all disciplines of clinical medicine and innovations in biomaterial science are building a product pipeline, e.g., of future cardiovascular implants. Still, cardiovascular applications demand a number of extensive requirements of properties and functions to be fulfilled by the polymer matrix. This report provides an overview on some of these issues and how they can be addressed by a tailored design of novel polymer-based biomaterials. Multifunctional shape-memory polymers are highlighted as a class of materials that combine biocompatibility and the capability for stimuli-induced active movements for anchoring of implants with a controlled degradation and drug release profile to enable a functional regeneration of the tissue at the application site.
Biotic homogenization can decrease landscape-scale forest multifunctionality.
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-03-29
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
Biotic homogenization can decrease landscape-scale forest multifunctionality
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-01-01
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952
Sircely, Jason; Naeem, Shahid
2012-01-01
Recent studies indicate that species richness can enhance the ability of plant assemblages to support multiple ecosystem functions. To understand how and when ecosystem services depend on biodiversity, it is valuable to expand beyond experimental grasslands. We examined whether plant diversity improves the capacity of agroecosystems to sustain multiple ecosystem services—production of wood and forage, and two elements of soil formation—in two types of smallholder fallows in western Kenya. In 18 grazed and 21 improved fallows, we estimated biomass and quantified soil organic carbon, soil base cations, sand content, and soil infiltration capacity. For four ecosystem functions (wood biomass, forage biomass, soil base cations, steady infiltration rates) linked to the focal ecosystem services, we quantified ecosystem service multi-functionality as (1) the proportion of functions above half-maximum, and (2) mean percentage excess above mean function values, and assessed whether plant diversity or environmental favorability better predicted multi-functionality. In grazed fallows, positive effects of plant diversity best explained the proportion above half-maximum and mean percentage excess, the former also declining with grazing intensity. In improved fallows, the proportion above half-maximum was not associated with soil carbon or plant diversity, while soil carbon predicted mean percentage excess better than diversity. Grazed fallows yielded stronger evidence for diversity effects on multi-functionality, while environmental conditions appeared more influential in improved fallows. The contrast in diversity-multi-functionality relationships among fallow types appears related to differences in management and associated factors including disturbance and species composition. Complementary effects of species with contrasting functional traits on different functions and multi-functional species may have contributed to diversity effects in grazed fallows. Biodiversity and environmental favorability may enhance the capacity of smallholder fallows to simultaneously provide multiple ecosystem services, yet their effects are likely to vary with fallow management. PMID:23209662
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Petko, Jeannie F.
2004-01-01
Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.
Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers
Lv, Yifan; Hu, Rong; Zhu, Guizhi; Zhang, Xiaobing; Mei, Lei; Liu, Qiaoling; Qiu, Liping; Wu, Cuichen; Tan, Weihong
2016-01-01
We describe a comprehensive protocol for the preparation of multifunctional DNA nanostructures termed nanoflowers (NFs), which are self-assembled from long DNA building blocks generated via rolling-circle replication (RCR) of a designed template. NF assembly is driven by liquid crystallization and dense packaging of building blocks, which eliminates the need for conventional Watson-Crick base pairing. As a result of dense DNA packaging, NFs are resistant to nuclease degradation, denaturation or dissociation at extremely low concentrations. By manually changing the template sequence, many different functional moieties including aptamers, bioimaging agents and drug-loading sites could be easily integrated into NF particles, making NFs ideal candidates for a variety of applications in biomedicine. In this protocol, the preparation of multifunctional DNA NFs with highly tunable sizes is described for applications in cell targeting, intracellular imaging and drug delivery. Preparation and characterization of functional DNA NFs takes ~5 d; the following biomedical applications take ~10 d. PMID:26357007
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.
Experience of creating a multifunctional safety system at the coal mining enterprise
NASA Astrophysics Data System (ADS)
Reshetnikov, V. V.; Davkaev, K. S.; Korolkov, M. V.; Lyakhovets, M. V.
2018-05-01
The principles of creating multifunctional safety systems (MFSS) based on mathematical models with Markov properties are considered. The applicability of such models for the analysis of the safety of the created systems and their effectiveness is substantiated. The method of this analysis and the results of its testing are discussed. The variant of IFSB implementation in the conditions of the operating coal-mining enterprise is given. The functional scheme, data scheme and operating modes of the MFSS are given. The automated workplace of the industrial safety controller is described.
Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.
Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei
2011-04-01
The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multifunctional platinum-based nanoparticles for biomedical applications.
Cheng, Qinqin; Liu, Yangzhong
2017-03-01
Platinum-based anticancer drugs play a central role in current cancer therapy. However, their applicability and efficacy are limited by drug resistance and adverse effects. Nanocarrier-based platinum drug delivery systems are promising alternatives to circumvent the disadvantages of bare platinum drugs. The various properties of nanoparticle chemistry allow for the trend toward multiple functionality. Nanoparticles preferentially accumulate at the tumor site through passive targeting, and the attachment of tumor targeting moieties further enhances their tumor-specific localization as well as tumor cell uptake. The introduction of stimuli-responsive groups into drug delivery systems can further achieve spatially and temporally controlled drug release in response to specific stimuli. Combination therapy strategies have been used to promote synergetic efficacy and overcome the resistance of platinum drugs. The tumor-localized drug delivery strategies exhibit benefits for preventing local tumor recurrence. In addition, the combination of platinum drugs and imaging agents in one unity allows the cancer diagnostics for real-time monitoring the distribution of drug-loaded nanoparticles inside the body and tumor. This review discusses recent scientific advances in multifunctional nanoparticle formulations of platinum drugs, and these designs exhibit new potential of multifunctional nanoparticles for delivering platinum-based anticancer drugs. WIREs Nanomed Nanobiotechnol 2017, 9:e1410. doi: 10.1002/wnan.1410 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Enhanced multifunctional paint for detection of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.
An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.
Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.
Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang
2017-04-25
In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.
Makinde, O A; Mpofu, K; Vrabic, R; Ramatsetse, B I
2017-01-01
The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula: see text] and [Formula: see text]), normal forces ([Formula: see text]) and total load [Formula: see text] acting on the teeth of the worm-gear module of the multifunctional robotic end-effector during the gripping of worn-out or new RVS machine subsystems, which are 978.547, 1245.06 and 1016.406 N, respectively, were satisfactory. The nominal bending and torsional stresses acting on the shoulder of the socket module of the multifunctional robotic end-effector during the loosing and tightening of bolts, which are 1450.72 and 179.523 MPa, respectively, were satisfactory. The hammering and unpinning forces utilized by the electric cylinder actuator module of the multifunctional robotic end-effector during the unpinning and hammering of screen panel pins out of and into the screen panels were satisfactory.
Plant species richness and ecosystem multifunctionality in global drylands
Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli
2012-01-01
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Plant species richness and ecosystem multifunctionality in global drylands
Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli
2013-01-01
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775
Shen, Ai-Jun; Li, Dong-Liang; Cai, Xiao-Jun; Dong, Chun-Yan; Dong, Hai-Qing; Wen, Hui-Yun; Dai, Gong-Hua; Wang, Pei-Jun; Li, Yong-Yong
2012-09-01
Because of its unique chemical and physical properties, graphene oxide (GO) has attracted a large number of researchers to explore its biomedical applications in the past few years. Here, we synthesized a novel multifunctional nanocomposite based on GO and systemically investigated its applications for in vitro hepatocarcinoma diagnosis and treatment. This multifunctional nanocomposite named GO-PEG-FA/Gd/DOX was obtained as the following procedures: gadolinium-diethylenetriamine-pentaacetic acid-poly(diallyl dimethylammonium) chloride (Gd-DTPA-PDDA) as magnetic resonance imaging (MRI) probe was applied to modify GO by simple physical sorption with a loading efficiency of Gd(3+) up to 0.314 mg mg(-1). In order to improve its tumor targeting imaging and treatment efficiency, the obtained intermediate product was further modified with folic acid (FA). Finally, the nanocomposite was allowed to load anticancer drug doxorubicin hydrochloride via π-π stacking and hydrophobic interaction with the loading capacity reaching 1.38 mg mg(-1). MRI test revealed that GO-PEG-FA/Gd/DOX exhibit superior tumor targeting imaging efficiency over free Gd(3+). The in vitro release of DOX from the nanocomposite under tumor relevant condition (pH 5.5) was fast at the initial 10 h and then become relatively slow afterward. Moreover, we experimentally demonstrated that the multifunctional nanocomposite exhibited obviously cytotoxic effect upon cancer cells. Above results are promising for the next in vivo experiment and make it possible to be a potential candidate for malignancy early detection and specific treatment. Copyright © 2012 Wiley Periodicals, Inc.
Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations †
Pidaparti, Ramana M.; Cartin, Charles; Su, Guoguang
2017-01-01
In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications. PMID:28952516
Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.
Gujrati, Maneesh; Vaidya, Amita; Lu, Zheng-Rong
2016-01-20
RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in in vitro and in vivo siRNA delivery and gene silencing.
Multi-Criteria Approach in Multifunctional Building Design Process
NASA Astrophysics Data System (ADS)
Gerigk, Mateusz
2017-10-01
The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.
Bradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; Bonkowski, Michael; Eggers, Till; Grayston, Susan J.; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T. Hefin
2014-01-01
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such “multifunctionality” has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson’s paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding—and in management decisions—about how biodiversity is related to the provision of multiple ecosystem services. PMID:25246582
"Clickable", trifunctional magnetite nanoparticles and their chemoselective biofunctionalization.
Das, Manasmita; Bandyopadhyay, Debarati; Mishra, Debasish; Datir, Satyajit; Dhak, Prasanta; Jain, Sanyog; Maiti, Tapas Kumar; Basak, Amit; Pramanik, Panchanan
2011-06-15
A multifunctional iron oxide based nanoformulation for combined cancer-targeted therapy and multimodal imaging has been meticulously designed and synthesized using a chemoselective ligation approach. Novel superparamagnetic magnetite nanoparticles simultaneously functionalized with amine, carboxyl, and azide groups were fabricated through a sequence of stoichiometrically controllable partial succinylation and Cu (II) catalyzed diazo transfer on the reactive amine termini of 2-aminoethylphosphonate grafted magnetite nanoparticles (MNPs). Functional moieties associated with MNP surface were chemoselectively conjugated with rhodamine B isothiocyanate (RITC), propargyl folate (FA), and paclitaxel (PTX) via tandem nucleophic addition of amine to isothithiocyanates, Cu (I) catalyzed azide--alkyne click chemistry and carbodiimide-promoted esterification. An extensive in vitro study established that the bioactives chemoselectively appended to the magnetite core bequeathed multifunctionality to the nanoparticles without any loss of activity of the functional molecules. Multifunctional nanoparticles, developed in the course of the study, could selectively target and induce apoptosis to folate-receptor (FR) overexpressing cancer cells with enhanced efficacy as compared to the free drug. In addition, the dual optical and magnetic properties of the synthesized nanoparticles aided in the real-time tracking of their intracellular pathways also as apoptotic events through dual fluorescence and MR-based imaging.
Photoluminescent silicon nanocrystal-based multifunctional carrier for pH-regulated drug delivery.
Xu, Zhigang; Wang, Dongdong; Guan, Min; Liu, Xiaoyan; Yang, Yanjie; Wei, Dongfeng; Zhao, Chunyan; Zhang, Haixia
2012-07-25
A core-shell structured multifunctional carrier with nanocrystalline silicon (ncSi) as the core and a water-soluble block copolymer as the shell based on a poly(methacrylic acid) (PMAA) inner shell and polyethylene glycol (MPEG) outer shell (ncSi-MPM) was synthesized for drug delivery. The morphology, composition, and properties of the resulting ncSi-MPM were determined by comprehensive multianalytical characterization, including (1)H NMR spectroscopy, FTIR spectroscopy, XPS spectroscopy, TEM, DLS, and fluorescence spectroscopy analyses. The size of the resulting ncSi-MPM nanocarriers ranged from 40 to 110 nm under a simulated physiological environment. The loading efficiency of model drug doxorubicin (DOX) was approximately 6.1-7.4 wt % for ncSi-MPM and the drug release was pH controlled. Cytotoxicity studies demonstrated that DOX-loaded ncSi-MPM showed high anticancer activity against Hela cells. Hemolysis percentages (<2%) of ncSi-MPM were within the scope of safe values. Fluorescent imaging studies showed that the nanocarriers could be used as a tracker at the cellular level. Integration of the above functional components may result in ncSi-MPM becoming a promising multifunctional carrier for drug delivery and biomedical applications.
Zhou, Tao; Jia, Lei; Luo, Yi-Feng; Xu, Jun; Chen, Ru-Hua; Ge, Zhi-Jun; Ma, Tie-Liang; Chen, Hong; Zhu, Tao-Feng
2016-01-01
A novel multifunctional halloysite nanotube (HNT)-based Fe3O4@HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane)3 nanocomposite (Fe-HNT-Eu NC) with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI) contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers. PMID:27698562
Zhou, Tao; Jia, Lei; Luo, Yi-Feng; Xu, Jun; Chen, Ru-Hua; Ge, Zhi-Jun; Ma, Tie-Liang; Chen, Hong; Zhu, Tao-Feng
A novel multifunctional halloysite nanotube (HNT)-based Fe 3 O 4 @HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane) 3 nanocomposite (Fe-HNT-Eu NC) with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI) contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T 2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers.
Study of repeater technology for advanced multifunctional communications satellites
NASA Technical Reports Server (NTRS)
1972-01-01
Investigations are presented concerning design concepts and implementation approaches for the satellite communication repeater subsystems of advanced multifunctional satellites. In such systems the important concepts are the use of multiple antenna beams, repeater switching (routing), and efficient spectrum utilization through frequency reuse. An information base on these techniques was developed and tradeoff analyses were made of repeater design concepts, with the work design taken in a broad sense to include modulation beam coverage patterns. There were five major areas of study: requirements analysis and processing; study of interbeam interference in multibeam systems; characterization of multiple-beam switching repeaters; estimation of repeater weight and power for a number of alternatives; and tradeoff analyses based on these weight and power data.
Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components
NASA Astrophysics Data System (ADS)
Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.
2018-01-01
There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).
NASA Astrophysics Data System (ADS)
Sugino, C.; Erturk, A.
2018-05-01
Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from locally resonant metastructures without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, integrating energy harvesters into a locally resonant metastructure enables a new potential for multifunctional locally resonant metastructures that can host self-powered sensors.
Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra
2015-05-27
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.
Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong
2015-03-12
Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.
NASA Astrophysics Data System (ADS)
Clemens, D. P.; Sarcia, D.; Tollestrup, E. V.; Grabau, A.; Bosh, A.; Buie, M.; Taylor, B.; Dunham, E.
2004-12-01
The Mimir instrument completed its 5-year development in our Boston University lab and was delivered this past July to Flagstaff, Arizona and the Perkins telescope for commissioning. Mimir is a "facility-class" multi-function near-infrared imager, spectrometer, and polarimeter developed under a joint program by Boston University and Lowell Observatory scientists, staff, and engineers. It fully covers the wavelength range 1-5 microns onto its 1024x1024 Aladdin III InSb array detector. In its wide-field imaging mode, a 10x10 arcmin field is sampled at 0.6 arcsec per pixel. In its narrow-field mode, the field is 3x3 arcmin, sampled at 0.2 arcsec per pixel. A full complement of JHKsL'M' broad-band filters are present in its four filter wheels. Spectroscopy is accomplished using a matched slit-plate and selector system, three grisms, and special spectroscopy filters (for order suppression). Polarimetry is accomplished using rotating half-wave plates and a fixed wire grid. All of these modes were certified in the lab; all have been certified at the Perkins telescope during the August/September commissioning run. Mode switches are accomplished in a matter of only seconds, making Mimir exceedingly versatile. The poster highlights the designs and components of Mimir as well as examples of images, spectra, and polarimetry from the commissioning telescope runs this past fall. Internal, shared-risk observations with Mimir begin this quarter. Mimir design and development has been funded by NASA, NSF, and the W.M. Keck Foundation.
Benchmark data for identifying multi-functional types of membrane proteins.
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2016-09-01
Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.
2015-09-24
AFRL-AFOSR-VA-TR-2015-0304 Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and Neutralization Hae Chang...Contract/Grant Title: Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and...using multifunctional mechanized materials for threats precognition and neutralization. The main design
Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles
NASA Astrophysics Data System (ADS)
Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres
2017-08-01
In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.
Delgado-Baquerizo, Manuel; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Singh, Brajesh K; Maestre, Fernando T
2017-10-01
The relationship between soil microbial communities and the resistance of multiple ecosystem functions linked to C, N and P cycling (multifunctionality resistance) to global change has never been assessed globally in natural ecosystems. We collected soils from 59 dryland ecosystems worldwide to investigate the importance of microbial communities as predictor of multifunctionality resistance to climate change and nitrogen fertilisation. Multifunctionality had a lower resistance to wetting-drying cycles than to warming or N deposition. Multifunctionality resistance was regulated by changes in microbial composition (relative abundance of phylotypes) but not by richness, total abundance of fungi and bacteria or the fungal: bacterial ratio. Our results suggest that positive effects of particular microbial taxa on multifunctionality resistance could potentially be controlled by altering soil pH. Together, our work demonstrates strong links between microbial community composition and multifunctionality resistance in dryland soils from six continents, and provides insights into the importance of microbial community composition for buffering effects of global change in drylands worldwide. © 2017 John Wiley & Sons Ltd/CNRS.
Morsi, Rania E; Alsabagh, Ahmed M; Nasr, Shimaa A; Zaki, Manal M
2017-04-01
Multifunctional nanocomposites of chitosan with silver nanoparticles, copper nanoparticles and carbon nanotubes either as bi- or multifunctional nanocomposites were prepared. Change in the overall morphology of the prepared nanocomposites was observed; carbon nanotubes, Ag NPs and Cu NPs are distributed homogeneously inside the polymer matrix individually in the case of the bi-nanocomposites while a combination of different dimensional shapes; spherical NPs and nanotubes was observed in the multifunctional nanocomposite. Multifunctional nanocomposites has a higher antimicrobial activity, in relative short contact times, against both Gram negative and Gram positive bacteria; E. coli, Staphylococcus aureus; respectively in addition to the fungal strain; Aspergillus flavus isolated from local wastewater sample. The nanocomposites are highly differentiable at the low contact time and low concentration; 1% concentration of the multifunctional nanocomposite is very effective against the tested microbes at contact time of only 10min. Copyright © 2017 Elsevier B.V. All rights reserved.
Barnes, A P
2006-09-01
Recent policy changes within the Common Agricultural Policy have led to a shift from a solely production-led agriculture towards the promotion of multi-functionality. Conversely, the removal of production-led supports would indicate that an increased concentration on production efficiencies would seem a critical strategy for a country's future competitiveness. This paper explores the relationship between the 'multi-functional' farming attitude desired by policy makers and its effect on technical efficiency within Scottish dairy farming. Technical efficiency scores are calculated by applying the non-parametric data envelopment analysis technique and then measured against causes of inefficiency. Amongst these explanatory factors is a constructed score of multi-functionality. This research finds that, amongst other factors, a multi-functional attitude has a significant positive effect on technical efficiency. Consequently, this seems to validate the promotion of a multi-functional approach to farming currently being championed by policy-makers.
NASA Astrophysics Data System (ADS)
Shevchenko, Konstantin G.; Cherkasov, Vladimir R.; Nikitina, Irina L.; Babenyshev, Andrey V.; Nikitin, Maxim P.
2018-02-01
The great diversity of nanomaterials provides ample opportunities for constructing effective agents for biomedical applications ranging from biosensing to drug delivery. Multifunctional nanoagents that combine several features in a single particle are of special interest due to capabilities that substantially exceed those of molecular drugs. An ideal theranostic agent should simultaneously be an advanced biosensor to identify a disease and report the diagnosis and a biomedical actuator to treat the disease. While many approaches were developed to load a nanoparticle with various drugs for actuation of the diseased cells (e.g., to kill them), the nanoparticle-based approaches for the localized biosensing with real-time reporting of the marker concentration severely lag behind. Here, we show a smart in situ nanoparticle-based biosensor/actuator system that dynamically and reversibly changes its structural and optical properties in response to a small molecule marker to allow real-time monitoring of the marker concentration and adjustment of the system ability to bind its biomedical target. Using the synergistic combination of signal readout based on the localized surface plasmon resonance and an original method of fabrication of smart ON/OFF-switchable nanoagents, we demonstrate reversible responsiveness of the system to a model small molecule marker (antibiotic chloramphenicol) in a wide concentration range. The proposed approach can be used for the development of advanced multifunctional nanoagents for theranostic applications.
Self-assembled hierarchically structured organic-inorganic composite systems.
Tritschler, Ulrich; Cölfen, Helmut
2016-05-13
Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.
A Multifunctional Smart Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.
2012-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This
NASA Astrophysics Data System (ADS)
Wang, Meihua; Li, Rongshuai; Zhang, Wenze
2017-11-01
Multi-function construction platforms (MCPs) as an “old construction technology, new application” of the building facade construction equipment, its efforts to reduce labour intensity, improve labour productivity, ensure construction safety, shorten the duration of construction and other aspects of the effect are significant. In this study, the functional analysis of the multi-function construction platforms is carried out in the construction of the assembly building. Based on the general finite element software ANSYS, the static calculation and dynamic characteristics analysis of the MCPs structure are analysed, the simplified finite element model is constructed, and the selection of the unit, the processing and solution of boundary are under discussion and research. The maximum deformation value, the maximum stress value and the structural dynamic characteristic model are obtained. The dangerous parts of the platform structure are analysed, too. Multiple types of MCPs under engineering construction conditions are calculated, so as to put forward the rationalization suggestions for engineering application of the MCPs.
Luo, Yanan; Cai, Xiaoli; Li, He; Lin, Yuehe; Du, Dan
2016-02-17
Considering the urgent need to explore multifunctional drug delivery system for overcoming multidrug resistance, we prepared a new nanocarbon material Q-Graphene as a nanocarrier for killing drug-resistant lung cancer cells. Attributing to the introduction of hyaluronic acid and rhodamine B isothiocyanate (RBITC), the Q-Graphene-based drug delivery system was endowed with dual function of targeted drug delivery and fluorescence imaging. Additionally, doxorubicin (DOX) as a model drug was loaded on the surface of Q-Graphene via π-π stacking. Interestingly, the fluorescence of DOX was quenched by Q-Graphene due to its strong electron-accepting capability, and a significant recovery of fluorescence was observed, while DOX was released from Q-Graphene. Because of the RBITC labeling and the effect of fluorescence quenching/restoring of Q-Graphene, the uptake of nanoparticles and intracellular DOX release can be tracked. Overall, a highly promising multifunctional nanoplatform was developed for tracking and monitoring targeted drug delivery for efficiently killing drug-resistant cancer cells.
Zhou, Jianhong; Zhao, Lingzhou
2016-01-01
Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337
Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality.
Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A; Schimmel, Paul; Yang, Xiang-Lei
2010-01-01
Protein multifunctionality is an emerging explanation for the complexity of higher organisms. In this regard, aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, but some also act in pathways for inflammation, angiogenesis and apoptosis. It is unclear how these multiple functions evolved and how they relate to the active site. Here structural modeling analysis, mutagenesis and cell-based functional studies show that the potent angiostatic, natural fragment of human tryptophanyl-tRNA synthetase (TrpRS) associates via tryptophan side chains that protrude from its cognate cellular receptor vascular endothelial cadherin (VE-cadherin). VE-cadherin's tryptophan side chains fit into the tryptophan-specific active site of the synthetase. Thus, specific side chains of the receptor mimic amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multifunctionality of human tRNA synthetases and other proteins.
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.
2010-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.
Multifunctionality assessment of urban agriculture in Beijing City, China.
Peng, Jian; Liu, Zhicong; Liu, Yanxu; Hu, Xiaoxu; Wang, An
2015-12-15
As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent. Copyright © 2015 Elsevier B.V. All rights reserved.
Multifunctional polymeric micelles for delivery of drugs and siRNA
Jhaveri, Aditi M.; Torchilin, Vladimir P.
2014-01-01
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633
Skop, Nolan B; Calderon, Frances; Cho, Cheul H; Gandhi, Chirag D; Levison, Steven W
2016-10-01
Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film. Fetal rat neural precursors plated onto this multifunctional film proliferated and remained multipotent for at least 3 days without providing soluble FGF-2. Moreover, they remained less mature and more highly proliferative than cells maintained on fibronectin-coated substrates in culture medium supplemented with soluble FGF-2. To create a vehicle for cell transplantation, a 3% chitosan solution was electrosprayed into a coagulation bath to generate microspheres (range 30-100 µm, mean 64 µm) that were subsequently modified. Radial glial cells seeded onto these multifunctional microspheres proliferated for at least 7 days in culture and the microspheres containing cells were small enough to be injected, using 23 Gauge Hamilton syringes, into the brains of adult rats that had previously sustained cortical contusion injuries. When analysed 3 days later, the transplanted RGCs were positive for the stem cell/progenitor marker Nestin. These results demonstrate that this multifunctional scaffold can be used as a cellular and growth factor delivery vehicle for the use in developing cell transplantation therapies for traumatic brain injuries. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Modulation power of porous materials and usage as ripple filter in particle therapy.
Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli
2017-04-07
Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.
Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo
2014-09-08
We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.
Multifunctional Parylene-C Microfibrous Thin Films
NASA Astrophysics Data System (ADS)
Chindam, Chandraprakash
Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all columnar muFTFs and bulk films. The static hydrophobicity of columnar muFTFs was found to be anisotropic and can be maximized by a proper choice of monomer deposition angle. In contrast, the hydrophobicity of bulk film is isotropic. 2. Mechanical properties: Dynamic storage and loss moduli of columnar muFTFs were determined in the 1 to 80 Hz frequency range for temperatures between -40 °C and 125 °C in one of two orthogonal directions lying wholly in the substrate plane: either (i) normal or (ii) parallel to the morphologically significant plane of the muFTF. The storage and loss moduli for normal loading did not exceed their counterparts for parallel loading. All columnar muFTFs were found to be softer than a bulk film. In both bulk and columnar forms, Parylene C was found to be rheologically not simple. 3. Relative permittivity: The charge-storage and absorption properties measured for the columnar muFTFs in the 100 Hz-1 MHz frequency range over temperatures between -40 °C and 125 °C were lower than the bulk film. Internal surfaces of the columnar muFTFs were found to increase the charge-storage capacity. The lower charge-storage capability of columnar muFTFs suggests their possible applications as interlayer dielectrics. The frequency dependence of the relative permittivity of the columnar muFTFs was identified in terms of the Hashin-Shrtikmann model. The elastodynamic bandgaps of Parylene-C muFTFs as phononic crystals were computationally determined for the columnar, chevronic, and chiral muFTFs. Microfibers were arranged either on a square or a hexagonal lattice with the host medium as either water or air. Following are the significant findings: 1. All bandgaps were observed to lie in the 0.01-162.9-MHz regime. The upper limit of the frequency of bandgaps was the highest for the columnar muFTFs and the lowest for the chiral muFTFs. More bandgaps were found to exist when the host medium is water than air. The presence of complete bandgaps suggests their use as bulk-acoustic-wave and surface-acoustic-wave filters. The softness of the Parylene-C muFTFs makes them mechanically tunable, and their bandgaps can be exploited in multiband ultrasonic filters. An investigation was made to demonstrate Parylene-C muFTFs as circular-polarization filters. 1. The relative permittivity of bulk Parylene C was determined as a function of frequency between 15 THz and 149 THz. Potential application of chiral muFTFs as reflectors of thermal energy was identified. The circular Bragg regime for chiral muFTFs of Parylene C was identified as 31.8-35.2 THz, making them useful as circular-polarization band-rejection filters.
Emergency sacrificial sealing method in filters, equipment, or systems
Brown, Erik P
2014-09-30
A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.
A microprocessor based anti-aliasing filter for a PCM system
NASA Technical Reports Server (NTRS)
Morrow, D. C.; Sandlin, D. R.
1984-01-01
Described is the design and evaluation of a microprocessor based digital filter. The filter was made to investigate the feasibility of a digital replacement for the analog pre-sampling filters used in telemetry systems at the NASA Ames-Dryden Flight Research Facility (DFRF). The digital filter will utilize an Intel 2920 Analog Signal Processor (ASP) chip. Testing includes measurements of: (1) the filter frequency response and, (2) the filter signal resolution. The evaluation of the digital filter was made on the basis of circuit size, projected environmental stability and filter resolution. The 2920 based digital filter was found to meet or exceed the pre-sampling filter specifications for limited signal resolution applications.
Filter replacement lifetime prediction
Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.
2017-10-25
Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.
Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A
2014-07-15
CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments. We begin by reviewing the current state of stimuli-responsive supramolecular assemblies formed by host-guest interactions, discussing how to transfer host-guest chemistry from solution onto surfaces required for fabricating multifunctional biosurfaces and biointerfaces. Then, we present different stimuli-responsive biosurfaces and biointerfaces, which have been prepared through a combination of cyclodextrin- or cucurbituril-based host-guest chemistry and various surface technologies such as self-assembled monolayers or layer-by-layer assembly. Moreover, we discuss the applications of these biointerfaces and biosurfaces in the fields of drug release, reversible adsorption and release of some organic molecules, peptides, proteins, and cells, and photoswitchable bioelectrocatalysis. In addition, we summarize the merits and current limitations of these methods for fabricating multifunctional stimuli-responsive biointerfaces in a dynamic noncovalent manner. Finally, we present possible strategies for future designs of stimuli-responsive multifunctional biointerfaces and biosurfaces by combining host-guest chemistry with surface science, which will lead to further critical development of supramolecular chemistry at interfaces.
1991-02-01
MULTIFUNCTIONAL MATERIALS *MULTIFUNCTIONAL MOLECULAR AND POLYMERIC MATERIALS FOR NONLINEAR OPTICS AND PHOTONICS 79 Paras N. Prasad ENHANCEMENT OF...in solution 121. Only the ortho photo-Fries product can be formed for the polymer as well as for 5 since the para positions in both cases are blocked...fhII11111 Itf 111111111ll1111111II 111 111 , 9 MULTIFUNCTIONAL MOLECULAR AND POLYMERIC MATERIALS FOR NONLINEAR OPTICS AND PHOTONICS PARAS N. PRASAD
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Improving Multi-Functional Properties in Polymer Based Nano Composites by Interfacial
NASA Astrophysics Data System (ADS)
Tajaddod, Navid
Polymer nanocomposites (PNCs) have become an area of increasing interest for study in the field of polymer science and technology since the rise of nanotechnology research. Despite the significant amount of progress being made towards producing high quality PNC materials, improvement in the mechanical, electrical, thermal and other functional properties still remain a challenge. To date, these properties are only a fraction of the expected theoretical values predicted for these materials. Development of interfacial regions between the filler and matrix within the composite has been found to be an important focus in terms of processing. Proper interfacial control and development may ensure excellent interaction and property transfer between the filler and polymer matrix in addition to improvement of multi-functional properties of PNCs. The property-structure importance for the existence of the interfacial and interphase region within PNCs is discussed in this thesis work. Two specific PNC systems are selected for study as part of this dissertation in order to understand the effect of interfacial region development on influencing multi-functional property trends. Polyethylene (PE)/boron nitride (BN) and polyacrylonitrile (PAN)/carbon nanotube (CNT) composites were selected to investigate their mechanical performance and thermal and electrical conductivity properties, respectively. For these systems it was found that the interfacial region structure is directly related to the enhancement of the subsequent multi-functional properties.
2016-01-01
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.
2011-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.
Laser fabrication of perfect absorbers
NASA Astrophysics Data System (ADS)
Mizeikis, V.; Faniayeu, I.
2018-01-01
We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.
Chen, Daquan; Lian, Shengnan; Sun, Jingfang; Liu, Zongliang; Zhao, Feng; Jiang, Yongtao; Gao, Mingming; Sun, Kaoxiang; Liu, Wanhui; Fu, Fenghua
2016-01-01
In this study, to develop a multifunctional targeting nano-carrier drug delivery system for cancer therapy, the novel pH-sensitive ketal based oligosaccharides of hyaluronan (oHA) conjugates were synthesized by chemical conjugation of hydrophobic menthone 1,2-glycerol ketal (MGK) to the backbone of oHA with the histidine as the linker of proton sponge effect. The multifunctional oHA conjugates, oHA-histidine-MGK (oHM) carried the pH-sensitive MGK as hydrophobic moieties and oHA as the target of CD44 receptor. The oHM could self-assemble to nano-sized spherical shape with the average diameters of 128.6 nm at pH 7.4 PBS conditions. The oHM nanoparticles (oHMN) could release encapsulated curcumin (Cur) with 82.6% at pH 5.0 compared with 49.3% at pH 7.4. The results of cytotoxicity assay indicated that encapsulated Cur in oHMN (Cur-oHMN) were stable and have less toxicity compared to Cur suspension. The anti-tumor efficacy in vivo suggested that Cur-oHMN suppressed tumor growth most efficiently. These results present the promising potential of oHMN as a stable and effective nano-sized pH-sensitive drug delivery system for cancer treatment.
Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel
2016-07-01
The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.
Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong
2013-11-06
DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via rolling circle replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery.
Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications
Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong
2013-01-01
DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via Rolling Circle Replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery. PMID:24164620
Li, Na; Yang, Qiao; Liu, Xing; Huang, Xuankai; Zhang, Haiyan; Wang, Chengxin
2017-12-06
Three-dimensional (3D) microstructured building units have replaced layer-to-layer stacked designs in transparent graphene films to fully exploit the advantages of two-dimensional graphene. However, it is still challenging to precisely control the size and microstructures of these building blocks to develop multifunctional graphene-based materials that satisfy the performance requirements of diverse applications. In this study, we propose a controllable method to regulate the microstructures of building units to form structures ranging from opened bubbles and cubes, while the size decreased from 20 to 3 μm, via an in situ template-modulating technology. NaCl was used as either a liquid or solid template by changing the dc bias. The reduced size and dense arrangement of the building units not only provide an improved mass loading for the transparent films but also build multiple pathways for fast ion/electron transmission, enhancing their promise for various practical applications. Generally, we provide a convenient protocol for finely regulating the microstructure and size of these building units, resulting in multifunctional films with a controllable transmittance, which enables the use of these graphene-based architectures as transparent electrodes in various applications and extends the family of multifunctional materials that will present new possibilities for electronics and other devices.
van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C.; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-01-01
There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity' and ‘selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world's ecosystems. PMID:27010076
van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-03-24
There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.
Sun, Bingfeng; Deng, Chao; Meng, Fenghua; Zhang, Jian; Zhong, Zhiyuan
2016-11-01
The clinical success of cancer nanomedicines critically depends on availability of simple, safe and highly efficient nanocarriers. Here, we report that robust and multifunctional nanoparticles self-assembled from hyaluronic acid-g-poly(γ-benzyl-l-glutamate)-lipoic acid conjugates achieve a remarkably high loading (up to 25.8wt.%) and active targeted delivery of doxorubicin (DOX) to human breast tumor xenograft in vivo. DOX-loaded nanoparticles following auto-crosslinking (DOX-CLNPs) are highly stable with little drug leakage under physiological conditions while quickly release ca. 92% DOX in 30h under a cytoplasmic-mimicking reductive environment. The in vitro assays reveal that DOX-CLNPs possess a superior selectivity and antitumor activity to clinically used pegylated liposomal doxorubicin hydrochloride (DOX-LPs) in CD44 receptor overexpressing MCF-7 human breast cancer cells. Strikingly, DOX-CLNPs exhibit a superb tolerated dose of over 100mg DOX equiv./kg, which is more than 5 times higher than DOX-LPs, and an extraordinary breast tumor accumulation of 8.6%ID/g in mice. The in vivo therapeutic studies in MCF-7 human breast tumor-bearing nude mice show that DOX-CLNPs effectively inhibit tumor growth, improve survival rate, and significantly decrease adverse effects as compared to DOX-LPs. DOX-CLNPs based on natural endogenous materials with high drug loading, great stability and CD44-targetability are highly promising for precision cancer chemotherapy. We demonstrate that with rational design, simple and multifunctional anticancer nanotherapeutics can be developed to achieve highly efficient and targeted cancer chemotherapy. Doxorubicin-loaded multifunctional nanoparticles based on hyaluronic acid-g-poly(γ-benzyl-l-glutamate)-lipoic acid conjugates exhibit a high drug loading, superior stability, fast bioresponsivity, high tolerability, and obvious selectivity toward CD44-overexpressing tumors in vivo. These nanotherapeutics achieve effective tumor suppression, drastically improved survival rate and reduced side effects as compared to clinically used pegylated liposomal doxorubicin in MCF-7 human breast tumor-bearing nude mice. Unlike previously reported multifunctional nanomedicines, the present nanotherapeutics primarily based on natural endogenous materials are simple and straightforward to fabricate, which makes them potentially interesting for clinical translation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Adaptive filtering with the self-organizing map: a performance comparison.
Barreto, Guilherme A; Souza, Luís Gustavo M
2006-01-01
In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input-output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input-output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS-Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.
Design of multi-function sensor detection system in coal mine based on ARM
NASA Astrophysics Data System (ADS)
Ge, Yan-Xiang; Zhang, Quan-Zhu; Deng, Yong-Hong
2017-06-01
The traditional coal mine sensor in the specific measurement points, the number and type of channel will be greater than or less than the number of monitoring points, resulting in a waste of resources or cannot meet the application requirements, in order to enable the sensor to adapt to the needs of different occasions and reduce the cost, a kind of multi-functional intelligent sensor multiple sensors and ARM11 the S3C6410 processor is used to design and realize the dust, gas, temperature and humidity sensor functions together, and has storage, display, voice, pictures, data query, alarm and other new functions.
Ojeda, Rafael; de Paz, Jose Luis; Barrientos, Africa G; Martín-Lomas, Manuel; Penadés, Soledad
2007-02-26
A novel platform for anticancer vaccines has been prepared using glyconanotechnology recently developed in our laboratory. Ten different multifunctional gold glyconanoparticles incorporating sialylTn and Lewis(y) antigens, T-cell helper peptides (TT) and glucose in well defined average proportions and with differing density have been synthesised in one step and characterised using NMR and TEM. Size and nature of the linker were crucial to control kinetics of S-Au bond formation and to achieve the desired ligand ratio on the gold clusters. The technology presented here opens the way for tailoring polyvalent anticancer vaccines candidates and drug delivery carriers with defined average chemical composition.
NASA Astrophysics Data System (ADS)
Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny
2017-10-01
Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.
Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy
NASA Astrophysics Data System (ADS)
Amiji, Mansoor M.
2016-05-01
Recent advances in biomedical sciences, especially in the field of human genetics, is increasingly considered to facilitate a new frontier in development of novel disease-modifying therapeutics. One of major challenges in the development of nucleic acid therapeutics is efficient and specific delivery of the molecules to the target tissue and cell upon systemic administration. In this report, I discuss our strategy to develop combinatorial-designed multifunctional nanoparticle assemblies based on natural biocompatible and biodegradable polymers for nucleic acid delivery in: (1) overcoming tumor drug resistance and (2) genetic modulation of macrophage functional phenotype from M1 to M2 in treatment of inflammatory diseases.
NASA Astrophysics Data System (ADS)
Liu, Chang; Wang, Ning; Long, Yi
2013-10-01
Vanadium dioxide (VO2) has a great potential to be utilized as solar energy switching glazing, even though there exist some intrinsic problems of low luminous transmittance (Tlum) and poor oxidation resistance. Si-Al based anti-reflection (AR) sol-gel coatings processed at low temperature have been developed to tackle these issues assisted by adjusting ramping rate and annealing temperature. Si-Al based AR coating gives large relative enhancement on the transmittance (22% for Tlum, 14% for the whole solar spectrum Tsol,) and successfully maintains IR contrast at 2500 nm wavelength with 18% relative increase in solar modulation (ΔTsol). The optimized Si-Al based AR coating annealing conditions are recorded at 3 °C/min ramping rate and 100 °C annealing temperature. Fluorinated-Si based gel offers a new direction of multifunctional overcoat on thermochromic smart windows with hydrophobicity (contact angle 111°), averaged 14% relatively increased luminous transmittance and enhanced oxidation resistance.
Recreation and Agroforestry: Examining New Dimensions of Multifunctionality in Family Farms
ERIC Educational Resources Information Center
Barbieri, Carla; Valdivia, Corinne
2010-01-01
Multifunctionality serves as an analytical framework to recognize many services that farms provide to their surrounding communities and society. This study explores an often overlooked dimension of multifunctionality by examining different recreational services provided by landowners in Missouri and analyzing the relationship between recreational…
Adaptive noise Wiener filter for scanning electron microscope imaging system.
Sim, K S; Teh, V; Nia, M E
2016-01-01
Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. © Wiley Periodicals, Inc.
Emergency sacrificial sealing method in filters, equipment, or systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Erik P.
A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment componentmore » to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.« less
Integrating the ECG power-line interference removal methods with rule-based system.
Kumaravel, N; Senthil, A; Sridhar, K S; Nithiyanandam, N
1995-01-01
The power-line frequency interference in electrocardiographic signals is eliminated to enhance the signal characteristics for diagnosis. The power-line frequency normally varies +/- 1.5 Hz from its standard value of 50 Hz. In the present work, the performances of the linear FIR filter, Wave digital filter (WDF) and adaptive filter for the power-line frequency variations from 48.5 to 51.5 Hz in steps of 0.5 Hz are studied. The advantage of the LMS adaptive filter in the removal of power-line frequency interference even if the frequency of interference varies by +/- 1.5 Hz from its normal value of 50 Hz over other fixed frequency filters is very well justified. A novel method of integrating rule-based system approach with linear FIR filter and also with Wave digital filter are proposed. The performances of Rule-based FIR filter and Rule-based Wave digital filter are compared with the LMS adaptive filter.
Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications
Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu
2015-01-01
Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034
Microbial diversity drives multifunctionality in terrestrial ecosystems
Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.
2016-01-01
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514
Microbial diversity drives multifunctionality in terrestrial ecosystems.
Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K
2016-01-28
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
Genome-Wide Detection and Analysis of Multifunctional Genes
Pritykin, Yuri; Ghersi, Dario; Singh, Mona
2015-01-01
Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655
Supercritical carbon dioxide design strategies: from drug carriers to soft killers.
Aguiar-Ricardo, Ana; Bonifácio, Vasco D B; Casimiro, Teresa; Correia, Vanessa G
2015-12-28
The integrated use of supercritical carbon dioxide (scCO(2)) and micro- and nanotechnologies has enabled new sustainable strategies for the manufacturing of new medications. 'Green' scCO(2)-based methodologies are well suited to improve either the synthesis or materials processing leading to the assembly of three-dimensional multifunctional constructs. By using scCO(2) either as C1 feedstock or as solvent, simple, economic, efficient and clean routes can be designed to synthesize materials with unique properties such as polyurea dendrimers and oxazoline-based polymers/oligomers. These new biocompatible, biodegradable and water-soluble polymeric materials can be engineered into multifunctional constructs with antimicrobial activity, targeting moieties, labelling units and/or efficiently loaded with therapeutics. This mini-review highlights the particular features exhibited by these materials resulting directly from the followed supercritical routes. © 2015 The Author(s).
A Rotaxane Scaffold for the Construction of Multiporphyrinic Light-Harvesting Devices.
Delavaux-Nicot, Béatrice; Ben Aziza, Haifa; Nierengarten, Iwona; Minh Nguyet Trinh, Thi; Meichsner, Eric; Chessé, Matthieu; Holler, Michel; Abidi, Rym; Maisonhaute, Emmanuel; Nierengarten, Jean-François
2018-01-02
A sophisticated photoactive molecular device has been prepared by combining recent concepts for the preparation of multifunctional nanomolecules (click chemistry on multifunctional scaffolds) with supramolecular chemistry (self-assembly to prepare rotaxanes). Specifically, a clickable [2]rotaxane scaffold incorporating a free-base porphyrin stopper has been prepared and functionalized with ten peripheral Zn(II)-porphyrin moieties. Electrochemical investigations of the final compound revealed a peculiar behavior resulting from the intramolecular coordination of the Zn(II) porphyrin moieties to 1,2,3-triazole units. Finally, steady state investigations of the compound combining Zn(II) and free-base porphyrin moieties have shown that this compound is a light-harvesting device capable of channeling the light energy from the peripheral Zn(II)-porphyrin subunits to the core by singlet-singlet energy transfer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Yaohua; Yang, Cuihong; Liu, Xue; Ma, Rujiang; Kong, Deling; Shi, Linqi
2012-02-01
A multifunctional drug delivery system based on MCM-41-type mesoporous silica nanoparticles is described that behaves as if nanogates were covalently attached to the outlets of the mesopores through a highly acid-sensitive benzoic-imine linker. Tumor-specific uptake and intracellular delivery results from the pH-dependent progressive hydrolysis of the benzoic-imine linkage that starts at tumor extracellular pH = 6.8 and increases with decreasing pH. The cleavage of the benzoic-imine bond leads to the removal of the polypseudorotaxane caps and subsequent release of the payload drugs at tumor sites. At the same time, the carrier surface becomes positively charged, which further facilitates cellular uptake of the nanocarriers, thus offering a tremendous potential for targeted tumor therapy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, E.; Wong, S.; Zhou, H.
2010-02-05
A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe{sub 3}O{sub 4} nanoparticles (NPs) within a SiO{sub 2}-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors ofmore » HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.« less
Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application
Zhang, Ping; Li, Wenjun; Sun, Hua
2016-01-01
Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747
Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application.
Zhang, Ping; Li, Wenjun; Sun, Hua
2016-01-01
Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy.
NASA Astrophysics Data System (ADS)
Song, Da
2008-02-01
One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.
A Segway RMP-based robotic transport system
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia
2004-12-01
In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.
Mandla A. Tshabalala; Peter Kingshott; Mark R. VanLandingham; David Plackett
2003-01-01
Sol-gel surface deposition of a hydrophobic polysiloxane coating on wood was accomplished by using a mixture of a low molecular weight multifunctional alkoxysilane, methyltrimethoxysilane (MTMOS), and a high molecular weight multifunctional alkoxysilane, hexadecyltrimethoxysilane (HDTMOS). Investigation of the surface chemistry and morphology of the wood specimens by...
Chen, Hsiao-Ping; Liao, Hui-Ju; Huang, Chih-Min; Wang, Shau-Chun; Yu, Sung-Nien
2010-04-23
This paper employs one chemometric technique to modify the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram between two consecutive wavelet-based low-pass filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. Although similar techniques of using other sets of low-pass procedures such as matched filters have been published, the procedures developed in this work are able to avoid peak broadening disadvantages inherent in matched filters. In addition, unlike Fourier transform-based low-pass filters, wavelet-based filters efficiently reject noises in the chromatograms directly in the time domain without distorting the original signals. In this work, the low-pass filtering procedures sequentially convolve the original chromatograms against each set of low pass filters to result in approximation coefficients, representing the low-frequency wavelets, of the first five resolution levels. The tedious trials of setting threshold values to properly shrink each wavelet are therefore no longer required. This noise modification technique is to multiply one wavelet-based low-pass filtered LC-MS/MS chromatogram with another artificial chromatogram added with thermal noises prior to the other wavelet-based low-pass filter. Because low-pass filter cannot eliminate frequency components below its cut-off frequency, more efficient peak S/N ratio improvement cannot be accomplished using consecutive low-pass filter procedures to process LC-MS/MS chromatograms. In contrast, when the low-pass filtered LC-MS/MS chromatogram is conditioned with the multiplication alteration prior to the other low-pass filter, much better ratio improvement is achieved. The noise frequency spectrum of low-pass filtered chromatogram, which originally contains frequency components below the filter cut-off frequency, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the high frequency regimes, the other low-pass filter is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS/MS chromatograms, of which typically less than 6-fold peak S/N ratio improvement achieved with two consecutive wavelet-based low-pass filters remains the same S/N ratio improvement using one-step wavelet-based low-pass filter, are improved to accomplish much better ratio enhancement 25-folds to 40-folds typically when the noise frequency spectrum is modified between two low-pass filters. The linear standard curves using the filtered LC-MS/MS signals are validated. The filtered LC-MS/MS signals are also reproducible. The more accurate determinations of very low concentration samples (S/N ratio about 7-9) are obtained using the filtered signals than the determinations using the original signals. Copyright 2010 Elsevier B.V. All rights reserved.
Xu, Fang; Poon, Andrew W
2008-06-09
We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.
Multifunctional polymer nano-composite based superhydrophobic surface
NASA Astrophysics Data System (ADS)
Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos
2014-11-01
Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.
NASA Astrophysics Data System (ADS)
Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi
2014-10-01
Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.
NASA Astrophysics Data System (ADS)
Liao, Yang; Lin, Jintian; Cheng, Ya
2013-12-01
Recently, hybrid integration of multifunctional micro-components for creating complex, intelligent micro/nano systems has attracted significant attention. These micro-/nano-systems have important applications in a variety of areas, such as healthcare, environment, communication, national security, and so on. However, fabrication of micro/nano systems incorporated with different functions is still a challenging task, which generally requires fabrication of discrete microcomponents beforehand followed by assembly and packaging procedures. Furthermore, current micro-/nano-fabrication techniques are mainly based on the well-established planar lithographic approach, which suffer from severe issues in producing three dimensional (3D) structures with complex geometries and arbitrary configurations. In recent years, the rapid development of femtosecond laser machining technology has enabled 3D direct fabrication and integration of multifunctional components, such as microfluidics, microoptics, micromechanics, microelectronics, etc., into single substrates. In this invited talk, we present our recent progress in this active area. Particularly, we focus on fabrication of 3D micro- and nanofluidic devices and 3D high-Q microcavities in glass substrates by femtosecond laser direct writing.
Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi
2016-03-01
Polypyrrole were prepared via in-situ chemical oxidative polymerization in the presence of multisulfonate acid dye (acid violet 19). In this work, acid violet 19 could play the role as dopant, surfactant and physical cross-linker for pyrrole polymerization, and had impact on the morphology, dispersion stability, thermal stability, electrical conductivity and electrochemical behavior of the samples. The thermal stability of the dye doped polypyrrole was enhanced than pure polypyrrole due to the strong interactions between polypyrrole and acid violet 19. The dispersion stability of the samples in water was also improved by incorporating an appropriate amount of acid violet 19. The sample with 20% of acid violet 19 showed granular morphology with the smallest diameter of -50 nm and possessed the maximum electrical conductivity of 39.09 S/cm. The as-prepared multifunctional dye doped polypyrrole samples were used to fabricate electrodes and exhibited a mass specific capacitance of 379-206 F/g in the current density range of 0.2-1.0 A/g. The results indicated that the multifunctional dye could improve the performances of polypyrrole as electrode material for supercapacitors.
NASA Astrophysics Data System (ADS)
Chen, Haiyan; di, Yingfeng; Chen, Dan; Madrid, Kyle; Zhang, Min; Tian, Caiping; Tang, Liping; Gu, Yueqing
2015-05-01
A polyelectrolyte microcapsule-based, cancer-targeting, and controlled drug delivery system has been developed as a multifunctional theranostic agent for synergistic cancer treatment. This new system, called FA-MC@GNR, is composed of folic acid (FA)-modified, multi-layered, hollow microcapsules loaded with gold nanorods (GNRs), and undergoes thermal degradation under near infrared (NIR) light. Either an NIR dye (MPA) or anti-cancer drug (doxorubicin, DOX) was loaded into the microcapsules via physical adsorption, yielding FA-MC@GNRs/MPA or FA-MC@GNRs/DOX, both of which exhibit no obvious toxicity, high stability, and remarkably improved tumor-targeting capabilities in vivo. Utilizing the strong NIR absorption of FA-MC@GNRs/DOX, we demonstrate the system's ability to simultaneously elicit photothermal therapy and controlled chemotherapy, achieving synergistic cancer treatment both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional micro-carrier for the delivery of chemotherapeutic drugs and photothermal agents, which has been shown to be an effective therapeutic approach for combined cancer treatment.
USDA Biochar Research: Land Application Advances to Reap Its Multifunctional Abilities
NASA Astrophysics Data System (ADS)
Ippolito, J.; Spokas, K.; Novak, J.; Lentz, R. D.; Stromberger, M.; Ducey, T.; Johnson, M.
2014-12-01
Biochar is the solid byproduct from the pyrolysis of agricultural crop residues, manures, green wastes and wood-based materials. Pyrolyzing biomass causes inorganic and organic compounds to be concentrated within the carbonized remains of the original lignin and cellulose structure. It is through this complex mixture of organic aromatic structures and inorganic elements that potentially imparts biochars with special multi-functional capabilities. Our current research has focused on developing biochar to simultaneously sequester soil carbon and remediate degraded soils. This is accomplished by directly improving soil nutrient and moisture contents, sorbing pollutants, as well as altering microbial signaling. Maintaining these improvements needs to account for biochar physical degradation, which may be overcome by biochar-mineral associations. Additional research is focused on biochar use that minimizes soil microorganism population shifts in order to maintain current ecosystem services. Future USDA research involves more evaluations to understand the multifunctional role of biochar in the agricultural and environmental sectors (e.g., USEPA superfund locations). This presentation will provide highlights of current and future coordinated biochar research efforts from several key laboratory locations across the US.
Li, Ling; Li, Xia; Wu, Yuzhe; Song, Linjiang; Yang, Xi; He, Tao; Wang, Ning; Yang, Suleixin; Zeng, Yan; Wu, Qinjie; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang
2017-01-01
Cancer stem cell-like cells (CSCL) are responsible for tumor recurrence associated with conventional therapy (e.g. surgery, radiation, and chemotherapy). Here, we developed a novel multifunctional nucleus-targeting nanoparticle-based gene delivery system which is capable of targeting and eradicating CSCL. These nanoparticles can facilitate efficient endosomal escape and spontaneously penetrate into nucleus without additional nuclear localization signal. They also induced extremely high gene transfection efficiency (>95%) even in culture medium containing 30% serum, which significantly surpassed that of some commercial transfection reagents, such as Lipofectamine 2000 and Lipofectamine 3000 etc. Especially, when loaded with the TRAIL gene, this system mediated remarkable depletion of CSCL. Upon systemic administration, the nanoparticles accumulated in tumor sites while sparing the non-cancer tissues and significantly inhibited the growth of tumors with no evident systemic toxicity. Taken together, our results suggest that these novel multifunctional, nucleus-targeting nanoparticles are a very promising in vivo gene delivery system capable of targeting CSCL and represent a new treatment candidate for improving the survival of cancer patients. PMID:28529641
Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel
2009-01-01
Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939
Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.
Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin
2017-05-10
Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.
Wang, Chungang; Irudayaraj, Joseph
2010-01-01
Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.
Zor, Erhan; Morales-Narváez, Eden; Zamora-Gálvez, Alejandro; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben
2015-09-16
Due to their size and difficulty to obtain, cost/effective biological or synthetic receptors (e.g., antibodies or aptamers, respectively), organic toxic compounds (e.g., less than 1 kDa) are generally challenging to detect using simple platforms such as biosensors. This study reports on the synthesis and characterization of a novel multifunctional composite material, magnetic silica beads/graphene quantum dots/molecularly imprinted polypyrrole (mSGP). mSGP is engineered to specifically and effectively capture and signal small molecules due to the synergy among chemical, magnetic, and optical properties combined with molecular imprinting of tributyltin (291 Da), a hazardous compound, selected as a model analyte. Magnetic and selective properties of the mSGP composite can be exploited to capture and preconcentrate the analyte onto its surface, and its photoluminescent graphene quantum dots, which are quenched upon analyte recognition, are used to interrogate the presence of the contaminant. This multifunctional material enables a rapid, simple and sensitive platform for small molecule detection, even in complex mediums such as seawater, without any sample treatment.
NASA Astrophysics Data System (ADS)
Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho
2017-10-01
We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.
Orthogonal use of a human tRNA synthetase active site to achieve multi-functionality
Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B.; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A.; Schimmel, Paul; Yang, Xiang-Lei
2011-01-01
Protein multi-functionality is an emerging explanation for the complexity of higher organisms. In this regard, while aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, some also act in pathways for inflammation, angiogenesis, and apoptosis. How multiple functions evolved and their relationship to the active site is not clear. Here structural modeling analysis, mutagenesis, and cell-based functional studies show that the potent angiostatic, natural fragment of human TrpRS associates via Trp side chains that protrude from the cognate cellular receptor VE-cadherin. Modeling indicates that (I prefer the way it was because the conclusion was reached not only by modeling, but more so by experimental studies.)VE-cadherin Trp side chains fit into the Trp-specific active site of the synthetase. Thus, specific side chains of the receptor mimic (?) amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multi-functionality of human tRNA synthetases and other proteins. PMID:20010843
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
Singh, Varun Kumar; Ravi, Sai Kishore; Sun, Wanxin; Tan, Swee Ching
2017-02-01
Alarming levels of particulate matter pollution in air pose a serious health threat in several countries, therefore intriguing a strong need for an economic and a viable technology of air filtration. Current air purification technology is rather expensive with certain types even having the risk of emitting hazardous by-products. The authors have developed a multifunctional air filter inspired from the nasal hairs possessing an ability to specifically trap/exhale the foreign particles and allergens while still letting the air flow. This design is achieved by introducing different functionalities at different dimensional scale employing a bottom-up approach starting with an organic molecule which is further self-organized to form nanoparticles and ultimately to a nanofibrous mesh. While the molecular building block inherently possesses the property of shielding Ultraviolet (UV) rays, the nanofibrous mesh built up from it aids in trapping the particulate matter while maintaining good air flow. By controlling the concentration of the organic molecule, the formation of fibers has been enabled in the nanoscale regime to obtain high particle-capture possibilities. The self-assembled nanofibrous filter thus designed has achieved a high filtration efficiency of ≈90% for the PM 2.5 particle in congruence with the ability to block the harmful UV radiations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grace, Maebh A; Healy, Mark G; Clifford, Eoghan
2015-06-15
Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.
Computational Design for Multifunctional Microstructural Composites
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Zhou, Shiwei; Li, Qing
As an important class of natural and engineered materials, periodic microstructural composites have drawn substantial attention from the material research community for their excellent flexibility in tailoring various desirable physical behaviors. To develop periodic cellular composites for multifunctional applications, this paper presents a unified design framework for combining stiffness and a range of physical properties governed by quasi-harmonic partial differential equations. A multiphase microstructural configuration is sought within a periodic base-cell design domain using topology optimization. To deal with conflicting properties, e.g. conductivity/permeability versus bulk modulus, the optimum is sought in a Pareto sense. Illustrative examples demonstrate the capability of the presented procedure for the design of multiphysical composites and tissue scaffolds.
NASA Technical Reports Server (NTRS)
Brown, Christopher A.
1993-01-01
The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.
Lima, Ravi M A P; Alcaraz-Espinoza, Jose Jarib; da Silva, Fernando A G; de Oliveira, Helinando P
2018-04-25
Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g -1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.
Pan, Uday Narayan; Khandelia, Rumi; Sanpui, Pallab; Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun
2017-06-14
We report a simple approach for fabricating plasmonic and magneto-luminescent multifunctional nanocarriers (MFNCs) by assembling gold nanorods, iron oxide nanoparticles, and gold nanoclusters within BSA nanoparticles. The MFNCs showed self-tracking capability through single- and two-photon imaging, and the potential for magnetic targeting in vitro. Appreciable T 2 -relaxivity exhibited by the MFNCs indicated favorable conditions for magnetic resonance imaging. In addition to successful plasmonic-photothermal therapy of cancer cells (HeLa) in vitro, the MFNCs demonstrated efficient loading and delivery of doxorubicin to HeLa cells leading to significant cell death. The present MFNCs with their multimodal imaging and therapeutic capabilities could be eminent candidates for cancer theranostics.
Kaewsaneha, Chariya; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid
2015-10-28
Fluorescent-magnetic particles (FMPs) play important roles in modern materials, especially as nanoscale devices in the biomedical field. The interesting features of FMPs are attributed to their dual detection ability, i.e., fluorescent and magnetic modes. Functionalization of FMPs can be performed using several types of polymers, allowing their use in various applications. The synergistic potentials for unique multifunctional, multilevel targeting nanoscale devices as well as combination therapies make them particularly attractive for biomedical applications. However, the synthesis of FMPs is challenging and must be further developed. In this review article, we summarized the most recent representative works on polymer-based FMP systems that have been applied particularly in the bioanalytical field.
Multifunctional hybrid Fe 2O 3-Au nanoparticles for efficient plasmonic heating
Murph, Simona E. Hunyadi; Larsen, George K.; Lascola, Robert J.
2016-02-20
We describe the synthesis and properties of multifunctional Fe 2O 3-Au nanoparticles produced by a wet chemical approach and investigate their photothermal properties using laser irradiation. Here, the composite Fe 2O 3-Au nanoparticles retain the properties of both materials, creating a multifunctional structure with excellent magnetic and plasmonic properties.
Advanced Architectures for Modern Weather/Multifunction Radars
2017-03-01
Advanced Architectures for Modern Weather /Multifunction Radars Caleb Fulton The University of Oklahoma Advanced Radar Research Center Norman...and all of them are addressing the need to lower cost while improving beamforming flexibility in future weather radar systems that will be tasked...with multiple non- weather functions. Keywords: Phased arrays, digital beamforming, multifunction radar. Introduction and Overview As the performance
Design of a composite filter realizable on practical spatial light modulators
NASA Technical Reports Server (NTRS)
Rajan, P. K.; Ramakrishnan, Ramachandran
1994-01-01
Hybrid optical correlator systems use two spatial light modulators (SLM's), one at the input plane and the other at the filter plane. Currently available SLM's such as the deformable mirror device (DMD) and liquid crystal television (LCTV) SLM's exhibit arbitrarily constrained operating characteristics. The pattern recognition filters designed with the assumption that the SLM's have ideal operating characteristic may not behave as expected when implemented on the DMD or LCTV SLM's. Therefore it is necessary to incorporate the SLM constraints in the design of the filters. In this report, an iterative method is developed for the design of an unconstrained minimum average correlation energy (MACE) filter. Then using this algorithm a new approach for the design of a SLM constrained distortion invariant filter in the presence of input SLM is developed. Two different optimization algorithms are used to maximize the objective function during filter synthesis, one based on the simplex method and the other based on the Hooke and Jeeves method. Also, the simulated annealing based filter design algorithm proposed by Khan and Rajan is refined and improved. The performance of the filter is evaluated in terms of its recognition/discrimination capabilities using computer simulations and the results are compared with a simulated annealing optimization based MACE filter. The filters are designed for different LCTV SLM's operating characteristics and the correlation responses are compared. The distortion tolerance and the false class image discrimination qualities of the filter are comparable to those of the simulated annealing based filter but the new filter design takes about 1/6 of the computer time taken by the simulated annealing filter design.
Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline
NASA Astrophysics Data System (ADS)
Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng
2018-05-01
Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.
Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun
2015-02-07
A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.
Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond
NASA Astrophysics Data System (ADS)
Kim, Y.; Pham, C.; Chang, J. P.
2015-02-01
This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.
Controlled fabrication of luminescent and magnetic nanocomposites
NASA Astrophysics Data System (ADS)
Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren
2018-03-01
Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.
Design and control of multifunctional sorting and training platform based on PLC control
NASA Astrophysics Data System (ADS)
Wan, Hongqiang; Ge, Shuai; Han, Peiying; Li, Fancong; Zhang, Simiao
2018-05-01
Electromechanical integration, as a multi-disciplinary subject, has been paid much attention by universities and is widely used in the automation production of enterprises. Aiming at the problem of the lack of control among enterprises and the lack of training among colleges and universities, this paper presents a design of multifunctional sorting training platform based on PLC control. Firstly, the structure of the platform is determined and three-dimensional modeling is done. Then design the platform's aerodynamic control and electrical control. Finally, realize the platform sorting function through PLC programming and configuration software development. The training platform can be used to design the practical training experiment, which has a strong advance and pertinence in the electromechanical integration teaching. At the same time, the platform makes full use of modular thinking to make the sorting modules more flexible. Compared with the traditional training platform, its teaching effect is more significant.
NASA Astrophysics Data System (ADS)
Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo
2017-10-01
We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.
Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki
2014-01-01
Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888
NASA Astrophysics Data System (ADS)
Phan, Thi Tuong Vy; Bui, Nhat Quang; Moorthy, Madhappan Santha; Lee, Kang Dae; Oh, Junghwan
2017-10-01
Multifunctional nano-platform for the combination of photo-based therapy and photoacoustic imaging (PAI) for cancer treatment has recently attracted much attention to nanotechnology development. In this study, we developed iron-platinum nanoparticles (FePt NPs) with the polypyrrole (PPy) coating as novel agents for combined photothermal therapy (PTT) and PAI. The obtained PPy-coated FePt NPs (FePt@PPy NPs) showed excellent biocompatibility, photothermal stability, and high near-infrared (NIR) absorbance for the combination of PTT and PAI. In vitro investigation experimentally demonstrated the effectiveness of FePt@PPy NPs in killing cancer cells with NIR laser irradiation. Moreover, the phantom test of PAI used in conjunction with FePt@PPy NPs showed a strong photoacoustic signal. Thus, the novel FePt@PPy NPs could be considered as promising multifunctional nanoparticles for further applications of photo-based diagnosis and treatment.
On Multifunctional Collaborative Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2001-01-01
Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.
NASA Astrophysics Data System (ADS)
Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo
2005-06-01
We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.
Lee, Seul Ah; You, Ga Rim; Choi, Ye Won; Jo, Hyun Yong; Kim, Ah Ram; Noh, Insup; Kim, Sung-Jin; Kim, Youngmee; Kim, Cheal
2014-05-14
A multifunctional fluorescent and colorimetric receptor 1 ((E)-N'-((8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methylene)benzohydrazide) for the detection of both Al(3+) and CN(-) in aqueous solution has been developed. Receptor 1 exhibited an excellent selective fluorescence response toward Al(3+). The sensitivity of the fluorescent based assay (0.193 μM) for Al(3+) is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.41 μM). In addition, receptor 1 showed an excellent detection ability in a wide pH range of 4-10 and also in living cells. Moreover, receptor 1 showed a highly selective colorimetric response to CN(-) by changing its color from colorless to yellow immediately without any interference from other anions.
Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors
NASA Astrophysics Data System (ADS)
Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine
2013-03-01
The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.
NASA Astrophysics Data System (ADS)
Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun
A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
NASA Astrophysics Data System (ADS)
Zhang, X.; Wan, C. H.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Wu, H.; Zhang, Q. T.; Tao, B. S.; Han, X. F.
2017-04-01
Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices.
Fouty, Nicholas J.; Carrasco, Juan C.; Lima, Fernando V.
2017-01-01
Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m2·atm1/4) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor models and designs for natural gas utilization and other chemical reaction systems. PMID:28850068
Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P
2015-01-01
A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.
Entropy-guided switching trimmed mean deviation-boosted anisotropic diffusion filter
NASA Astrophysics Data System (ADS)
Nnolim, Uche A.
2016-07-01
An effective anisotropic diffusion (AD) mean filter variant is proposed for filtering of salt-and-pepper impulse noise. The implemented filter is robust to impulse noise ranging from low to high density levels. The algorithm involves a switching scheme in addition to utilizing the unsymmetric trimmed mean/median deviation to filter image noise while greatly preserving image edges, regardless of impulse noise density (ND). It operates with threshold parameters selected manually or adaptively estimated from the image statistics. It is further combined with the partial differential equations (PDE)-based AD for edge preservation at high NDs to enhance the properties of the trimmed mean filter. Based on experimental results, the proposed filter easily and consistently outperforms the median filter and its other variants ranging from simple to complex filter structures, especially the known PDE-based variants. In addition, the switching scheme and threshold calculation enables the filter to avoid smoothing an uncorrupted image, and filtering is activated only when impulse noise is present. Ultimately, the particular properties of the filter make its combination with the AD algorithm a unique and powerful edge-preservation smoothing filter at high-impulse NDs.
Multifunctional Nanotechnology Research
2016-03-01
MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol
Multifunctional thin film surface
Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.
2015-10-13
A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.
2016-04-01
SUBJECT TERMS carbon nanotubes, composite, electromagnetic shielding , extreme environments, magnetism , fibers, woven composite, boron nitride...AFRL-AFOSR-VA-TR-2016-0158 Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments Konstantin...From - To) 15 Sep 2012 to 14 Nov 2017 4. TITLE AND SUBTITLE Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for
Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping
2012-03-01
undesired PMA attached to microbubble surface. Figure 1: One-pot polymer -lipid microbubbles. (a) Synthesis of thiolated poly(acrylic acid) with...Award Number: W81XWH-11-1-0215 TITLE: Multifunctional Polymer Microbubbles for Advanced Sentinel...February 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b
Synthesis and evaluation of multifunctional ferulic and caffeic acid dimers for Alzheimer's disease.
He, Xi-Xin; Yang, Xiao-Hong; Ou, Rui-Ying; Ouyang, Ying; Wang, Sheng-Nan; Chen, Zi-Wei; Wen, Shi-Jun; Pi, Rong-Biao
2017-03-01
In this study, a series of novel ferulic and caffeic acid dimers was designed and synthesised, and their multifunctional properties against Alzheimer's disease (AD) were evaluated. Results showed that our multifunctional strategy was great supported by enhancing the inhibition of Aβ 1-42 self-induced aggregation. Moreover, 7b also had potent protective effects against glutamate-induced cell death without significant cell toxicity in mouse hippocampal neuronal HT22 cells and 10c effectively scavenged diphenylpicrylhydrazyl free radicals. Collectively, these data strongly encourage further optimisation of 7b as a new hit to develop multifunctional agents for the treatment of AD.
Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.
2018-01-01
This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.
Song, Xiao-li; Ju, Rui-jun; Xiao, Yao; Wang, Xin; Liu, Shuang; Fu, Min; Liu, Jing-jing; Gu, Li-yan; Li, Xue-tao; Cheng, Lan
2017-01-01
Chemotherapy for aggressive non-small-cell lung cancer (NSCLC) usually results in a poor prognosis due to tumor metastasis, vasculogenic mimicry (VM) channels, limited killing of tumor cells, and severe systemic toxicity. Herein, we developed a kind of multifunctional targeting epirubicin liposomes to enhance antitumor efficacy for NSCLC. In the liposomes, octreotide was modified on liposomal surface for obtaining a receptor-mediated targeting effect, and honokiol was incorporated into the lipid bilayer for inhibiting tumor metastasis and eliminating VM channels. In vitro cellular assays showed that multifunctional targeting epirubicin liposomes not only exhibited the strongest cytotoxic effect on Lewis lung tumor cells but also showed the most efficient inhibition on VM channels. Action mechanism studies showed that multifunctional targeting epirubicin liposomes could downregulate PI3K, MMP-2, MMP-9, VE-Cadherin, and FAK and activate apoptotic enzyme caspase 3. In vivo results exhibited that multifunctional targeting epirubicin liposomes could accumulate selectively in tumor site and display an obvious antitumor efficacy. In addition, no significant toxicity of blood system and major organs was observed at a test dose. Therefore, multifunctional targeting epirubicin liposomes may provide a safe and efficient therapy strategy for NSCLC. PMID:29066893
Zhang, Tao; Zhu, Yongyun; Zhou, Feng; Yan, Yaxiong; Tong, Jinwu
2017-06-17
Initial alignment of the strapdown inertial navigation system (SINS) is intended to determine the initial attitude matrix in a short time with certain accuracy. The alignment accuracy of the quaternion filter algorithm is remarkable, but the convergence rate is slow. To solve this problem, this paper proposes an improved quaternion filter algorithm for faster initial alignment based on the error model of the quaternion filter algorithm. The improved quaternion filter algorithm constructs the K matrix based on the principle of optimal quaternion algorithm, and rebuilds the measurement model by containing acceleration and velocity errors to make the convergence rate faster. A doppler velocity log (DVL) provides the reference velocity for the improved quaternion filter alignment algorithm. In order to demonstrate the performance of the improved quaternion filter algorithm in the field, a turntable experiment and a vehicle test are carried out. The results of the experiments show that the convergence rate of the proposed improved quaternion filter is faster than that of the tradition quaternion filter algorithm. In addition, the improved quaternion filter algorithm also demonstrates advantages in terms of correctness, effectiveness, and practicability.
Transistor-based filter for inhibiting load noise from entering a power supply
Taubman, Matthew S
2013-07-02
A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.
Transistor-based filter for inhibiting load noise from entering a power supply
Taubman, Matthew S
2015-02-24
A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.
Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)
2001-01-01
Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.
Measuring Learner's Performance in E-Learning Recommender Systems
ERIC Educational Resources Information Center
Ghauth, Khairil Imran; Abdullah, Nor Aniza
2010-01-01
A recommender system is a piece of software that helps users to identify the most interesting and relevant learning items from a large number of items. Recommender systems may be based on collaborative filtering (by user ratings), content-based filtering (by keywords), and hybrid filtering (by both collaborative and content-based filtering).…
Method and system for determining induction motor speed
Parlos, Alexander G.; Bharadwaj, Raj M.
2004-03-30
A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.
Design of order statistics filters using feedforward neural networks
NASA Astrophysics Data System (ADS)
Maslennikova, Yu. S.; Bochkarev, V. V.
2016-08-01
In recent years significant progress have been made in the development of nonlinear data processing techniques. Such techniques are widely used in digital data filtering and image enhancement. Many of the most effective nonlinear filters based on order statistics. The widely used median filter is the best known order statistic filter. Generalized form of these filters could be presented based on Lloyd's statistics. Filters based on order statistics have excellent robustness properties in the presence of impulsive noise. In this paper, we present special approach for synthesis of order statistics filters using artificial neural networks. Optimal Lloyd's statistics are used for selecting of initial weights for the neural network. Adaptive properties of neural networks provide opportunities to optimize order statistics filters for data with asymmetric distribution function. Different examples demonstrate the properties and performance of presented approach.
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-28
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.
Multi-function magnetic jack control drive mechanism
Bollinger, L.R.; Crawford, D.C.
1983-10-06
A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.
Multi-function magnetic jack control drive mechanism
Bollinger, Lawrence R.; Crawford, Donald C.
1986-01-01
A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.
Yang, Cheng; Xu, Yuanyuan; Wang, Minghong; Li, Tianming; Huo, Yanyan; Yang, Chuanxi; Man, Baoyuan
2018-04-16
The development of paper-based SERS substrates that can allow multi-component detection in real-word scenarios is of great value for applications in molecule detection under complex conditions. Here, a multifunctional SERS-based paper sensing substrate has been developed through the uniform patterning of high-density arrays of GO-isolated Ag nanoparticles on the hydrophilic porous cellulose paper strip (GO@AgNP@paper). Wet-chemical synthesis was used to provide the cover of SERS hot spots on any part of the paper, not just limited surface deposition. In virtue of the inherent ability of paper to deliver analytes by the capillary force, the detection ability of the GO@AgNP@paper substrate was greatly promoted, allowing as low as 10 -19 M R6G detection from microliter-volume (50 μL) samples. For the components with different polarity, the paper substrate can be used as an all-in-one machine to achieve the integration of separation and high-sensitive detection for ultralow mixture components, which improves the practical application value of SERS-based paper devices.
Comparative review of multifunctionality and ecosystem services in sustainable agriculture.
Huang, Jiao; Tichit, Muriel; Poulot, Monique; Darly, Ségolène; Li, Shuangcheng; Petit, Caroline; Aubry, Christine
2015-02-01
Two scientific communities with broad interest in sustainable agriculture independently focus on multifunctional agriculture or ecosystem services. These communities have limited interaction and exchange, and each group faces research challenges according to independently operating paradigms. This paper presents a comparative review of published research in multifunctional agriculture and ecosystem services. The motivation for this work is to improve communication, integrate experimental approaches, and propose areas of consensus and dialog for the two communities. This extensive analysis of publication trends, ideologies, and approaches enables formulation of four main conclusions. First, the two communities are closely related through their use of the term "function." However, multifunctional agriculture considers functions as agricultural activity outputs and prefers farm-centred approaches, whereas ecosystem services considers ecosystem functions in the provision of services and prefers service-centred approaches. Second, research approaches to common questions in these two communities share some similarities, and there would be great value in integrating these approaches. Third, the two communities have potential for dialog regarding the bundle of ecosystem services and the spectrum of multifunctional agriculture, or regarding land sharing and land sparing. Fourth, we propose an integrated conceptual framework that distinguishes six groups of ecosystem services and disservices in the agricultural landscape, and combines the concepts of multifunctional agriculture and ecosystem services. This integrated framework improves applications of multifunctional agriculture and ecosystem services for operational use. Future research should examine if the framework can be readily adapted for modelling specific problems in agricultural management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Complete filter-based cerebral embolic protection with transcatheter aortic valve replacement.
Van Gils, Lennart; Kroon, Herbert; Daemen, Joost; Ren, Claire; Maugenest, Anne-Marie; Schipper, Marguerite; De Jaegere, Peter P; Van Mieghem, Nicolas M
2018-03-01
To evaluate the value of left vertebral artery filter protection in addition to the current filter-based embolic protection technology to achieve complete cerebral protection during TAVR. The occurrence of cerebrovascular events after transcatheter aortic valve replacement (TAVR) has fueled concern for its potential application in younger patients with longer life expectancy. Transcatheter cerebral embolic protection (TCEP) devices may limit periprocedural cerebrovascular events by preventing macro and micro-embolization to the brain. Conventional filter-based TCEP devices cover three extracranial contributories to the brain, yet leave the left vertebral artery unprotected. Patients underwent TAVR with complete TCEP. A dual-filter system was deployed in the brachiocephalic trunk and left common carotid artery with an additional single filter in the left vertebral artery. After TAVR all filters were retrieved and sent for histopathological evaluation by an experienced pathologist. Eleven patients received a dual-filter system and nine of them received an additional left vertebral filter. In the remaining two patients, the left vertebral filter could not be deployed. No periprocedural strokes occurred. We found debris in all filters, consisting of thrombus, tissue derived debris, and foreign body material. The left vertebral filter contained debris in an equal amount of patients as the Sentinel filters. The size of the captured particles was similar between all filters. The left vertebral artery is an important entry route for embolic material to the brain during TAVR. Selective filter protection of the left vertebral artery revealed embolic debris in all patients. The clinical value of complete filter-based TCEP during TAVR warrants further research. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rosy, Noked, Malachi
2018-04-01
Realization of rechargeable batteries with alkali metal anodes is challenged by their high reactivity and dendritic growth. Now, an alloy-based, artificial solid electrolyte interphase is shown to allow smooth metal deposition, enhance interfacial charge transfer, protect against parasitic reactions and offer extra energy storage.
A Comparison of Filter-based Approaches for Model-based Prognostics
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Saha, Bhaskar; Goebel, Kai
2012-01-01
Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is generally divided into two sequential problems: a joint state-parameter estimation problem, in which, using the model, the health of a system or component is determined based on the observations; and a prediction problem, in which, using the model, the stateparameter distribution is simulated forward in time to compute end of life and remaining useful life. The first problem is typically solved through the use of a state observer, or filter. The choice of filter depends on the assumptions that may be made about the system, and on the desired algorithm performance. In this paper, we review three separate filters for the solution to the first problem: the Daum filter, an exact nonlinear filter; the unscented Kalman filter, which approximates nonlinearities through the use of a deterministic sampling method known as the unscented transform; and the particle filter, which approximates the state distribution using a finite set of discrete, weighted samples, called particles. Using a centrifugal pump as a case study, we conduct a number of simulation-based experiments investigating the performance of the different algorithms as applied to prognostics.
Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai
2015-07-28
Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the protein associated with opening and closing of the active site that seem to bear relevance for catalysis are observed as covalent intermediates are exclusively observed in the "closed" conformation of the active site. Pre-steady-state kinetics are used to monitor catalytic processes and structural transitions and to refine the kinetic framework of TAL catalysis.
Kubo, N
1995-04-01
To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.
Protein Multifunctionality: Principles and Mechanisms
Zaretsky, Joseph Z.; Wreschner, Daniel H.
2008-01-01
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747
2017-06-07
AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d...Insight Into Multifunctional Reactive Adsorbents: Engaging Chemistry , Porosity, Photoactivity and Conductivity into Decontamination Process The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 CWA decontamination, multifunctional adsorbents, porosity, surface chemistry
2015-02-01
nanoparticles, , multifunction porous metal oxide -silica composites, porous silicon - Titania and PSi-silver heterojunctions ) have been successfully...nanoparticles, multifunctional porous metal oxide -silica composites, porous silicon -Titania and PSi-silver heterojunctions ) have been successfully...generated charge separation and enhance the photocatalytic oxidation . In the PSi-Ag heterojunctions , Ag can not only act as time-honored antibacterial
NASA Astrophysics Data System (ADS)
Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No
2017-02-01
In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.
GAO, L.; HAGEN, N.; TKACZYK, T.S.
2012-01-01
Summary We implement a filterless illumination scheme on a hyperspectral fluorescence microscope to achieve full-range spectral imaging. The microscope employs polarisation filtering, spatial filtering and spectral unmixing filtering to replace the role of traditional filters. Quantitative comparisons between full-spectrum and filter-based microscopy are provided in the context of signal dynamic range and accuracy of measured fluorophores’ emission spectra. To show potential applications, a five-colour cell immunofluorescence imaging experiment is theoretically simulated. Simulation results indicate that the use of proposed full-spectrum imaging technique may result in three times improvement in signal dynamic range compared to that can be achieved in the filter-based imaging. PMID:22356127
Scattering property based contextual PolSAR speckle filter
NASA Astrophysics Data System (ADS)
Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred
2017-12-01
Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.
SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology
2014-01-01
Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240
SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.
Youn, Seongwook
2014-01-01
Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.
NASA Astrophysics Data System (ADS)
Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu
2013-06-01
The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00835e
Nuclear counting filter based on a centered Skellam test and a double exponential smoothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan
2015-07-01
Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activitymore » occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)« less
2018-01-01
ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a
System status display evaluation
NASA Technical Reports Server (NTRS)
Summers, Leland G.
1988-01-01
The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.
A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution
NASA Astrophysics Data System (ADS)
Wei, Guo; Shida, Katsunori
This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.
In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.
Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma
2016-01-20
Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multifactor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multi-factor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Reliability enumeration model for the gear in a multi-functional machine
NASA Astrophysics Data System (ADS)
Nasution, M. K. M.; Ambarita, H.
2018-02-01
The angle and direction of motion play an important role in the ability of a multifunctional machine to be able to perform the task to be charged. The movement can be a rotational action that appears to perform a round, by which the rotation can be done by connecting the generator by hand through the help of a hinge formed from two rounded surfaces. The rotation of the entire arm can be carried out by the interconnection between two surfaces having a jagged ring. This link will change according to the angle of motion, and any yeast of the serration will have a share in the success of this process, therefore a robust hand measurement model is established based on canonical provisions.
Large Format Multifunction 2-Terabyte Optical Disk Storage System
NASA Technical Reports Server (NTRS)
Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.
1996-01-01
The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.
Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites
Khlebtsov, Nikolai; Bogatyrev, Vladimir; Dykman, Lev; Khlebtsov, Boris; Staroverov, Sergey; Shirokov, Alexander; Matora, Larisa; Khanadeev, Vitaly; Pylaev, Timofey; Tsyganova, Natalia; Terentyuk, Georgy
2013-01-01
Gold nanoparticles (GNPs) and GNP-based multifunctional nanocomposites are the subject of intensive studies and biomedical applications. This minireview summarizes our recent efforts in analytical and theranostic applications of engineered GNPs and nanocomposites by using plasmonic properties of GNPs and various optical techniques. Specifically, we consider analytical biosensing; visualization and bioimaging of bacterial, mammalian, and plant cells; photodynamic treatment of pathogenic bacteria; and photothermal therapy of xenografted tumors. In addition to recently published reports, we discuss new data on dot immunoassay diagnostics of mycobacteria, multiplexed immunoelectron microscopy analysis of Azospirillum brasilense, materno-embryonic transfer of GNPs in pregnant rats, and combined photodynamic and photothermal treatment of rat xenografted tumors with gold nanorods covered by a mesoporous silica shell doped with hematoporphyrin. PMID:23471188
Brain and language: evidence for neural multifunctionality.
Cahana-Amitay, Dalia; Albert, Martin L
2014-01-01
This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.
Warming and top predator loss drive ecosystem multifunctionality.
Antiqueira, Pablo Augusto P; Petchey, Owen L; Romero, Gustavo Quevedo
2018-01-01
Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes. © 2017 John Wiley & Sons Ltd/CNRS.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based...: If * * * Your system must * * * (a) The turbidity of an individual filter (or the turbidity of combined filter effluent (CFE) for systems with 2 filters that monitor CFE in lieu of individual filters...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based...: If * * * Your system must * * * (a) The turbidity of an individual filter (or the turbidity of combined filter effluent (CFE) for systems with 2 filters that monitor CFE in lieu of individual filters...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based...: If * * * Your system must * * * (a) The turbidity of an individual filter (or the turbidity of combined filter effluent (CFE) for systems with 2 filters that monitor CFE in lieu of individual filters...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based...: If * * * Your system must * * * (a) The turbidity of an individual filter (or the turbidity of combined filter effluent (CFE) for systems with 2 filters that monitor CFE in lieu of individual filters...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based...: If * * * Your system must * * * (a) The turbidity of an individual filter (or the turbidity of combined filter effluent (CFE) for systems with 2 filters that monitor CFE in lieu of individual filters...
NASA Technical Reports Server (NTRS)
Stoica, A.; Keymeulen, D.; Zebulum, R. S.; Ferguson, M. I.; Guo, X.
2002-01-01
This paper comments on some directions of growth for evolvable hardware, proposes research directions that address the scalability problem and gives examples of results in novel areas approached by EHW.
Multifunctional cellulase and hemicellulase
Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.
2015-09-29
A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.
Multifunctional Battalion Task Force Training: Slovenian Armed Forces Battalion Training Cycle
2016-06-10
MULTIFUNCTIONAL BATTALION TASK FORCE TRAINING: SLOVENIAN ARMED FORCES BATTALION TRAINING CYCLE A thesis presented to...Forces Battalion Training Cycle 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Major Ales Avsec 5d...Bn TF) training cycle . It focuses on how the SAF is conducting the infantry and multifunctional Bn TF training. In particular, it deals with mission
NASA Astrophysics Data System (ADS)
Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan
2015-03-01
Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.
Xiao, Ganyuan; Li, Yan; Qiang, Xiaoming; Xu, Rui; Zheng, Yunxiaozhu; Cao, Zhongcheng; Luo, Li; Yang, Xia; Sang, Zhipei; Su, Fu; Deng, Yong
2017-02-01
A series of 4'-aminochalcone-revastigmine hybrids were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease. The results showed that most of these compounds exhibited good multifunctional activities. In particular, compound 6c displayed the best inhibitory potency on acetylcholinesterase (IC 50 =4.91μM), and significant antioxidative activity with a value 2.83-fold of Trolox. The kinetic analysis of AChE inhibition revealed that 6c showed mixed-type inhibition, binding simultaneously to the catalytic active site and peripheral anionic site of AChE. In addition, 6c inhibited self-induced Aβ 1-42 aggregation and Cu 2+ -induced Aβ 1-42 aggregation by 89.5% and 79.7% at 25μM respectively, as well as acted as a selective monoamine oxidase B inhibitor (IC 50 =0.29μM) and a selective biometal chelator. Furthermore, 6c could cross the blood-brain barrier in vitro. Based on these results, Compound 6c could be considered as a very promising lead compound for Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces
NASA Astrophysics Data System (ADS)
Loffreda, David
2006-05-01
Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.
Multifunctional clickable and protein-repellent magnetic silica nanoparticles.
Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel
2016-02-07
Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.
Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.
Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog
2017-09-07
We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.
Evidence-Based Evaluation of Inferior Vena Cava Filter Complications Based on Filter Type
Deso, Steven E.; Idakoji, Ibrahim A.; Kuo, William T.
2016-01-01
Many inferior vena cava (IVC) filter types, along with their specific risks and complications, are not recognized. The purpose of this study was to evaluate the various FDA-approved IVC filter types to determine device-specific risks, as a way to help identify patients who may benefit from ongoing follow-up versus prompt filter retrieval. An evidence-based electronic search (FDA Premarket Notification, MEDLINE, FDA MAUDE) was performed to identify all IVC filter types and device-specific complications from 1980 to 2014. Twenty-three IVC filter types (14 retrievable, 9 permanent) were identified. The devices were categorized as follows: conical (n = 14), conical with umbrella (n = 1), conical with cylindrical element (n = 2), biconical with cylindrical element (n = 2), helical (n = 1), spiral (n = 1), and complex (n = 1). Purely conical filters were associated with the highest reported risks of penetration (90–100%). Filters with cylindrical or umbrella elements were associated with the highest reported risk of IVC thrombosis (30–50%). Conical Bard filters were associated with the highest reported risks of fracture (40%). The various FDA-approved IVC filter types were evaluated for device-specific complications based on best current evidence. This information can be used to guide and optimize clinical management in patients with indwelling IVC filters. PMID:27247477
A motion-constraint logic for moving-base simulators based on variable filter parameters
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.
1974-01-01
A motion-constraint logic for moving-base simulators has been developed that is a modification to the linear second-order filters generally employed in conventional constraints. In the modified constraint logic, the filter parameters are not constant but vary with the instantaneous motion-base position to increase the constraint as the system approaches the positional limits. With the modified constraint logic, accelerations larger than originally expected are limited while conventional linear filters would result in automatic shutdown of the motion base. In addition, the modified washout logic has frequency-response characteristics that are an improvement over conventional linear filters with braking for low-frequency pilot inputs. During simulated landing approaches of an externally blown flap short take-off and landing (STOL) transport using decoupled longitudinal controls, the pilots were unable to detect much difference between the modified constraint logic and the logic based on linear filters with braking.
Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system
NASA Astrophysics Data System (ADS)
Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong
2017-06-01
The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.
Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
Lim, Sungoh; Kim, Yohan; Lee, Jeongno; Han, Chul Jong; Kang, Jungwon; Kim, Jiwan
2014-12-01
Colloidal quantum dots (QD)-based solar cells with near infrared (NIR) emission have been investigated. Lead sulfide (PbS) QDs, which have narrow band-gap and maximize the absorption of NIR spectrum, were chosen as active materials for efficient solar cells. The inverted structure of indium tin oxide/titanium dioxide/PbS QDs/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/silver (ITO/TiO2/PbS QDs/ PSS/Ag) was applied for favorable electron and hole seperation from the PbS QD. Through the ligand exchange by 1,2-Ethanedithiol (EDT), the interparticle distance of the PbS QDs in thin film became closer and the performance of the PbS QD-based solar cells was improved. Our PbS QD-based inverted solar cells showed open circuit voltages (V(oc)) of 0.33 V, short circuit current density (J(sc)) of 10.89 mA/cm2, fill factor (FF) of 30%, and power conversion efficiency (PCE) of 1.11%. In our PbS QD-based multifunctional solar cell, the NIR light emission intensity was simply detected with photodiode system, which implies the potential of multi-functional diode device for various applications.
Lizundia, Erlantz; Goikuria, Uribarri; Vilas, José Luis; Cristofaro, Francesco; Bruni, Giovanna; Fortunati, Elena; Armentano, Ilaria; Visai, Livia; Torre, Luigi
2018-04-25
The dispersion of nanoparticles having different size-, shape-, and composition-dependent properties is an exciting approach to design and synthesize multifunctional materials and devices. This work shows a detailed investigation of the preparation and properties of free-standing nanocomposite films based on cellulose nanocrystals (CNC) loaded with three different types of metal nanoparticles. CNC-based nanocomposites having zinc oxide (ZnO), titanium dioxide (TiO 2 ), and silver oxide (Ag 2 O) have been obtained through evaporation-induced self-assembly (EISA) in acqueous solution. Morphological and optical characteristics, chemical properties, wettability, and antimicrobial assays of the produced films were conducted. Furthermore, disintegrability in composting condition of CNC based nanocomposites was here investigated for the first time. The morphological observations revealed the formation of a chiral nematic structure with uniformly distributed nanoparticles. The bionanocomposite films based on the metal nanoparticles had effective antimicrobial activity, killing both Escherichia coli RB ( E. coli RB) and Staphylococcus aureus 8325-4 ( S. aureus 8325-4). The simplicity method of film preparation, the large quantity of cellulose in the world, and the free-standing nature of the nanocomposite films offer highly advantageous characteristics that can for the new development of multifunctional materials.
Microwave active filters based on coupled negative resistance method
NASA Astrophysics Data System (ADS)
Chang, Chi-Yang; Itoh, Tatsuo
1990-12-01
A novel coupled negative resistance method for building a microwave active bandpass filter is introduced. Based on this method, four microstrip line end-coupled filters were built. Two are fixed-frequency one-pole and two-pole filters, and two are tunable one-pole and two-pole filters. In order to broaden the bandwidth of the end-coupled filter, a modified end-coupled structure is proposed. Using the modified structure, an active filter with a bandwidth up to 7.5 percent was built. All of the filters show significant passband performance improvement. Specifically, the passband bandwidth was broadened by a factor of 5 to 20.
Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters
NASA Astrophysics Data System (ADS)
Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.
1990-02-01
A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.
CNT-based Thermal Interface Materials for Load-Bearing Aerospace Applications
2012-08-01
CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications Michael Bifano, Pankaj Kaul and Vikas Prakash (PI) Department...4. TITLE AND SUBTITLE CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Z39-18 Objective Develop multifunctional CNT -epoxy Thermal Interface Materials (TIMs) for load bearing aerospace applications. Emphasis - To
Color Sparse Representations for Image Processing: Review, Models, and Prospects.
Barthélemy, Quentin; Larue, Anthony; Mars, Jérôme I
2015-11-01
Sparse representations have been extended to deal with color images composed of three channels. A review of dictionary-learning-based sparse representations for color images is made here, detailing the differences between the models, and comparing their results on the real and simulated data. These models are considered in a unifying framework that is based on the degrees of freedom of the linear filtering/transformation of the color channels. Moreover, this allows it to be shown that the scalar quaternionic linear model is equivalent to constrained matrix-based color filtering, which highlights the filtering implicitly applied through this model. Based on this reformulation, the new color filtering model is introduced, using unconstrained filters. In this model, spatial morphologies of color images are encoded by atoms, and colors are encoded by color filters. Color variability is no longer captured in increasing the dictionary size, but with color filters, this gives an efficient color representation.
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
Multiple ecosystem services landscape index: a tool for multifunctional landscapes conservation.
Rodríguez-Loinaz, Gloria; Alday, Josu G; Onaindia, Miren
2015-01-01
The contribution of ecosystems to human well-being has been widely recognised. Taking into account existing trade-offs between ecosystem services (ES) at the farm scale and the dependence of multiple ES on processes that take place at the landscape scale, long-term preservation of multifunctional landscapes must be a priority. Studies carried out from such perspective, and those that develop appropriate indicators, could provide useful tools for integrating ES in landscape planning. In this study we propose a new integrative environmental indicator based on the ES provided by the landscape and named "multiple ecosystem services landscape index" (MESLI). Because synergies and trade-offs between ES are produced at regional or local levels, being different from those perceived at larger scales, MESLI was developed at municipality level. Furthermore, in order to identify main drivers of change in ES provision at the landscape scale an analysis of the relationship between the environmental and the socioeconomic characteristics of the municipalities was carried out. The study was located in the Basque Country and the results demonstrated that the MESLI index is a good tool to measure landscape multifunctionality at local scales. It is effective evaluating landscapes, distinguishing between municipalities based on ES provision, and identifying the drivers of change and their effects. This information about ES provisioning at the local level is usually lacking; therefore, MESLI would be very useful for policy-makers and land managers because it provides relevant information to local scale decision-making. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miller, David J; Nelson, Carl A; Oleynikov, Dmitry
2009-05-01
With a limited number of access ports, minimally invasive surgery (MIS) often requires the complete removal of one tool and reinsertion of another. Modular or multifunctional tools can be used to avoid this step. In this study, soft computing techniques are used to optimally arrange a modular tool's functional tips, allowing surgeons to deliver treatment of improved quality in less time, decreasing overall cost. The investigators watched University Medical Center surgeons perform MIS procedures (e.g., cholecystectomy and Nissen fundoplication) and recorded the procedures to digital video. The video was then used to analyze the types of instruments used, the duration of each use, and the function of each instrument. These data were aggregated with fuzzy logic techniques using four membership functions to quantify the overall usefulness of each tool. This allowed subsequent optimization of the arrangement of functional tips within the modular tool to decrease overall time spent changing instruments during simulated surgical procedures based on the video recordings. Based on a prototype and a virtual model of a multifunction laparoscopic tool designed by the investigators that can interchange six different instrument tips through the tool's shaft, the range of tool change times is approximately 11-13 s. Using this figure, estimated time savings for the procedures analyzed ranged from 2.5 to over 32 min, and on average, total surgery time can be reduced by almost 17% by using the multifunction tool.
Sheng, Ouwei; Jin, Chengbin; Luo, Jianmin; Yuan, Huadong; Huang, Hui; Gan, Yongping; Zhang, Jun; Xia, Yang; Liang, Chu; Zhang, Wenkui; Tao, Xinyong
2018-05-09
High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg 2 B 2 O 5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg 2 B 2 O 5 and PEO-LiTFSI. Moreover, the interaction between Mg 2 B 2 O 5 and -SO 2 - in TFSI - anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg 2 B 2 O 5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO 4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g -1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg 2 B 2 O 5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.
Endothelialization of TiO2 Nanorods Coated with Ultrathin Amorphous Carbon Films
NASA Astrophysics Data System (ADS)
Chen, Hongpeng; Tang, Nan; Chen, Min; Chen, Dihu
2016-03-01
Carbon plasma nanocoatings with controlled fraction of sp3-C bonding were deposited on TiO2 nanorod arrays (TNAs) by DC magnetic-filtered cathodic vacuum arc deposition (FCVAD). The cytocompatibility of TNA/carbon nanocomposites was systematically investigated. Human umbilical vein endothelial cells (HUVECs) were cultured on the nanocomposites for 4, 24, and 72 h in vitro. It was found that plasma-treated TNAs exhibited excellent cell viability as compared to the untreated. Importantly, our results show that cellular responses positively correlate with the sp3-C content. The cells cultured on high sp3-C-contented substrates exhibit better attachment, shape configuration, and proliferation. These findings indicate that the nanocomposites with high sp3-C content possessed superior cytocompatibility. Notably, the nanocomposites drastically reduced platelet adhesion and activation in our previous studies. Taken together, these findings suggest the TNA/carbon scaffold may serve as a guide for the design of multi-functionality devices that promotes endothelialization and improves hemocompatibility.
A new multifunction acousto-optic signal processor
NASA Technical Reports Server (NTRS)
Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.
1984-01-01
An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.
NASA Astrophysics Data System (ADS)
Wu, Nan; Wan, Lynn Yuqin; Wang, Yingde; Ko, Frank
2017-12-01
Hydrophobic ceramic nanofibrous membranes have wide applications in the fields of high-temperature filters, oil/water separators, catalyst supports and membrane reactors, for their water repellency property, self-cleaning capability, good environmental stability and long life span. In this work, we fabricated an inherently hydrophobic ceramic nanofiber membrane without any surface modification through pyrolysis of electrospun polycarbosilane nanofibers. The hydrophobicity was introduced by the hierarchical microstructure formed on the surface of the nanofibers and the special surface composition by the addition of trace amounts of palladium. Furthermore, the flexible ceramic mats demonstrated robust chemical resistance properties with consistent hydrophobicity over the entire pH value range and effective water-in-oil emulsion separation performance. Interestingly, a highly cohesive force was found between water droplet and the ceramic membranes, suggesting their great potentials in micro-liquid transportation. This work provides a new route for adjusting the composition of ceramic surface and flexible, recyclable and multifunctional ceramic fibrous membranes for utilization in harsh environments.
Tunable photonic multilayer sensors from photo-crosslinkable polymers
NASA Astrophysics Data System (ADS)
Chiappelli, Maria; Hayward, Ryan
2014-03-01
The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.
Microprocessor realizations of range rate filters
NASA Technical Reports Server (NTRS)
1979-01-01
The performance of five digital range rate filters is evaluated. A range rate filter receives an input of range data from a radar unit and produces an output of smoothed range data and its estimated derivative range rate. The filters are compared through simulation on an IBM 370. Two of the filter designs are implemented on a 6800 microprocessor-based system. Comparisons are made on the bases of noise variance reduction ratios and convergence times of the filters in response to simulated range signals.
Rodgers, John C.; McFarland, Andrew R.; Ortiz, Carlos A.
1995-01-01
A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.
Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed
2018-01-01
The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA). PMID:29535925
Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed
2018-01-01
The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA).
Two-Way Pattern Design for Distributed Subarray Antennas
2012-09-01
GUI Graphical User Interface HPBW Half-power Beamwidth MFR Multifunction Radar RCS Radar Cross Section RRE Radar Range Equation...The Aegis ships in the US Navy use phased arrays for the AN/SPY-1 multifunction radar ( MFR ) [2]. The phased array for the AN/SPY-1 radar is shown in...arrays. This is a challenge for design of antenna apertures for shipboard radar systems. One design approach is to use multi-function subarray
NASA Astrophysics Data System (ADS)
Khazhibekov, R. R.; Zabolotsky, A. M.
2018-05-01
The authors consider Ethernet protection devices based on modal filtering. Radiated emission measurement results for three modal filter constructions are presented. It is shown that the improved construction of a non-resistive filter has lower emission levels than the original one.
Phage-based biomolecular filter for the capture of bacterial pathogens in liquid streams
NASA Astrophysics Data System (ADS)
Du, Songtao; Chen, I.-Hsuan; Horikawa, Shin; Lu, Xu; Liu, Yuzhe; Wikle, Howard C.; Suh, Sang Jin; Chin, Bryan A.
2017-05-01
This paper investigates a phage-based biomolecular filter that enables the evaluation of large volumes of liquids for the presence of small quantities of bacterial pathogens. The filter is a planar arrangement of phage-coated, strip-shaped magnetoelastic (ME) biosensors (4 mm × 0.8 mm × 0.03 mm), magnetically coupled to a filter frame structure, through which a liquid of interest flows. This "phage filter" is designed to capture specific bacterial pathogens and allow non-specific debris to pass, eliminating the common clogging issue in conventional bead filters. ANSYS Maxwell was used to simulate the magnetic field pattern required to hold ME biosensors densely and to optimize the frame design. Based on the simulation results, a phage filter structure was constructed, and a proof-in-concept experiment was conducted where a Salmonella solution of known concentration were passed through the filter, and the number of captured Salmonella was quantified by plate counting.
NASA Astrophysics Data System (ADS)
do Lago, Naydson Emmerson S. P.; Kardec Barros, Allan; Sousa, Nilviane Pires S.; Junior, Carlos Magno S.; Oliveira, Guilherme; Guimares Polisel, Camila; Eder Carvalho Santana, Ewaldo
2018-01-01
This study aims to develop an algorithm of an adaptive filter to determine the percentage of body fat based on the use of anthropometric indicators in adolescents. Measurements such as body mass, height and waist circumference were collected for a better analysis. The development of this filter was based on the Wiener filter, used to produce an estimate of a random process. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The LMS algorithm was also studied for the development of the filter because it is important due to its simplicity and facility of computation. Excellent results were obtained with the filter developed, being these results analyzed and compared with the data collected.
Development and evaluation of evidence-based nursing (EBN) filters and related databases*
Lavin, Mary A.; Krieger, Mary M.; Meyer, Geralyn A.; Spasser, Mark A.; Cvitan, Tome; Reese, Cordie G.; Carlson, Judith H.; Perry, Anne G.; McNary, Patricia
2005-01-01
Objectives: Difficulties encountered in the retrieval of evidence-based nursing (EBN) literature and recognition of terminology, research focus, and design differences between evidence-based medicine and nursing led to the realization that nursing needs its own filter strategies for evidence-based practice. This article describes the development and evaluation of filters that facilitate evidence-based nursing searches. Methods: An inductive, multistep methodology was employed. A sleep search strategy was developed for uniform application to all filters for filter development and evaluation purposes. An EBN matrix was next developed as a framework to illustrate conceptually the placement of nursing-sensitive filters along two axes: horizontally, an adapted nursing process, and vertically, levels of evidence. Nursing diagnosis, patient outcomes, and primary data filters were developed recursively. Through an interface with the PubMed search engine, the EBN matrix filters were inserted into a database that executes filter searches, retrieves citations, and stores and updates retrieved citations sets hourly. For evaluation purposes, the filters were subjected to sensitivity and specificity analyses and retrieval set comparisons. Once the evaluation was complete, hyperlinks providing access to any one or a combination of completed filters to the EBN matrix were created. Subject searches on any topic may be applied to the filters, which interface with PubMed. Results: Sensitivity and specificity for the combined nursing diagnosis and primary data filter were 64% and 99%, respectively; for the patient outcomes filter, the results were 75% and 71%, respectively. Comparisons were made between the EBN matrix filters (nursing diagnosis and primary data) and PubMed's Clinical Queries (diagnosis and sensitivity) filters. Additional comparisons examined publication types and indexing differences. Review articles accounted for the majority of the publication type differences, because “review” was accepted by the CQ but was “NOT'd” by the EBN filter. Indexing comparisons revealed that although the term “nursing diagnosis” is in Medical Subject Headings (MeSH), the nursing diagnoses themselves (e.g., sleep deprivation, disturbed sleep pattern) are not indexed as nursing diagnoses. As a result, abstracts deemed to be appropriate nursing diagnosis by the EBN filter were not accepted by the CQ diagnosis filter. Conclusions: The EBN filter capture of desired articles may be enhanced by further refinement to achieve a greater degree of filter sensitivity. Retrieval set comparisons revealed publication type differences and indexing issues. The EBN matrix filter “NOT'd” out “review,” while the CQ filter did not. Indexing issues were identified that explained the retrieval of articles deemed appropriate by the EBN filter matrix but not included in the CQ retrieval. These results have MeSH definition and indexing implications as well as implications for clinical decision support in nursing practice. PMID:15685282
Signal Processing for Time-Series Functions on a Graph
2018-02-01
as filtering to functions supported on graphs. These methods can be applied to scalar functions with a domain that can be described by a fixed...classical signal processing such as filtering to account for the graph domain. This work essentially divides into 2 basic approaches: graph Laplcian...based filtering and weighted adjacency matrix-based filtering . In Shuman et al.,11 and elaborated in Bronstein et al.,13 filtering operators are
Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining
Sadesh, S.; Suganthe, R. C.
2015-01-01
Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626
Lightweight composites for modular panelized construction
NASA Astrophysics Data System (ADS)
Vaidya, Amol S.
Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction site. Keywords: Modular panelized construction, sandwich composites, composite structural insulated panels (CSIPs).
Bayer Filter Snapshot Hyperspectral Fundus Camera for Human Retinal Imaging
Liu, Wenzhong; Nesper, Peter; Park, Justin; Zhang, Hao F.; Fawzi, Amani A.
2016-01-01
Purpose To demonstrate the versatility and performance of a compact Bayer filter snapshot hyperspectral fundus camera for in-vivo clinical applications including retinal oximetry and macular pigment optical density measurements. Methods 12 healthy volunteers were recruited under an Institutional Review Board (IRB) approved protocol. Fundus images were taken with a custom hyperspectral camera with a spectral range of 460–630 nm. We determined retinal vascular oxygen saturation (sO2) for the healthy population using the captured spectra by least squares curve fitting. Additionally, macular pigment optical density was localized and visualized using multispectral reflectometry from selected wavelengths. Results We successfully determined the mean sO2 of arteries and veins of each subject (ages 21–80) with excellent intrasubject repeatability (1.4% standard deviation). The mean arterial sO2 for all subjects was 90.9% ± 2.5%, whereas the mean venous sO2 for all subjects was 64.5% ± 3.5%. The mean artery–vein (A–V) difference in sO2 varied between 20.5% and 31.9%. In addition, we were able to reveal and quantify macular pigment optical density. Conclusions We demonstrated a single imaging tool capable of oxygen saturation and macular pigment density measurements in vivo. The unique combination of broad spectral range, high spectral–spatial resolution, rapid and robust imaging capability, and compact design make this system a valuable tool for multifunction spectral imaging that can be easily performed in a clinic setting. PMID:27767345
Collaborative filtering to improve navigation of large radiology knowledge resources.
Kahn, Charles E
2005-06-01
Collaborative filtering is a knowledge-discovery technique that can help guide readers to items of potential interest based on the experience of prior users. This study sought to determine the impact of collaborative filtering on navigation of a large, Web-based radiology knowledge resource. Collaborative filtering was applied to a collection of 1,168 radiology hypertext documents available via the Internet. An item-based collaborative filtering algorithm identified each document's six most closely related documents based on 248,304 page views in an 18-day period. Documents were amended to include links to their related documents, and use was analyzed over the next 5 days. The mean number of documents viewed per visit increased from 1.57 to 1.74 (P < 0.0001). Collaborative filtering can increase a radiology information resource's utilization and can improve its usefulness and ease of navigation. The technique holds promise for improving navigation of large Internet-based radiology knowledge resources.
Development of ionic gels using thiol-based monomers in ionic liquid
NASA Astrophysics Data System (ADS)
Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.
Design of multifunction anti-terrorism robotic system based on police dog
NASA Astrophysics Data System (ADS)
You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie
2007-11-01
Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.
Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing
2018-01-17
In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.
A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.
Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca
2013-06-01
Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.
Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.
Zhuang, Yuyang; Chen, Heming; Ji, Ke
2017-05-10
We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.
Wang, Lutao; Xiao, Jun; Chai, Hua
2015-08-01
The successful suppression of clutter arising from stationary or slowly moving tissue is one of the key issues in medical ultrasound color blood imaging. Remaining clutter may cause bias in the mean blood frequency estimation and results in a potentially misleading description of blood-flow. In this paper, based on the principle of general wall-filter, the design process of three classes of filters, infinitely impulse response with projection initialization (Prj-IIR), polynomials regression (Pol-Reg), and eigen-based filters are previewed and analyzed. The performance of the filters was assessed by calculating the bias and variance of a mean blood velocity using a standard autocorrelation estimator. Simulation results show that the performance of Pol-Reg filter is similar to Prj-IIR filters. Both of them can offer accurate estimation of mean blood flow speed under steady clutter conditions, and the clutter rejection ability can be enhanced by increasing the ensemble size of Doppler vector. Eigen-based filters can effectively remove the non-stationary clutter component, and further improve the estimation accuracy for low speed blood flow signals. There is also no significant increase in computation complexity for eigen-based filters when the ensemble size is less than 10.
Plasmonic Paper as a Novel Chem/Bio Detection Platform
NASA Astrophysics Data System (ADS)
Tian, Limei
The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi-)functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS/LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research.
NASA Astrophysics Data System (ADS)
Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei
2013-06-01
Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33632h
Multifunctional clickable and protein-repellent magnetic silica nanoparticles
NASA Astrophysics Data System (ADS)
Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel
2016-01-01
Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing. Electronic supplementary information (ESI) available: Detailed synthetic procedures and additional experimental light scattering and zeta-potential data. See DOI: 10.1039/c5nr08258g
Multifunctional epitaxial systems on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968
2016-09-15
Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less
2016-02-23
Materials from Programmable Colloids" 9:05 pm - 9:25 pm Discussion 9:25 pm - 9:30 pm General Discussion Tuesday 7:30 am - 8:30 am Breakfast 9:00 am...2016 Multifunctional Materials and Structures: Science of Autonomic, Adaptive and Self-Sustaining Systems GRC Operational Summary The Gordon...Research Conference (GRC) on Multifunctional Materials & Structures was held at the Four Points Sheraton in Ventura, California from January 31-February
A review of multifunctional structure technology for aerospace applications
NASA Astrophysics Data System (ADS)
Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.
2016-03-01
The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.
Li, Dan; Duan, Huazhen; Ma, Yadan; Deng, Wei
2018-05-01
This study demonstrates a novel strategy for colorimetric/surface-enhanced Raman scattering (SERS) dual-mode sensing of sulfur dioxide (SO 2 ) by coupling headspace sampling (HS) with paper-based analytical device (PAD). The smart and multifunctional PAD is fabricated with a vacuum filtration method in which 4-mercaptopyridine (Mpy)-modified gold nanorods (GNRs)-reduced graphene oxide (rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol, and starch-iodine complex are immobilized into cellulose-based filter papers. The resultant PAD exhibits a deep-blue color with a strong absorption peak at 600 nm due to the formation of an intermolecular charge-transfer complex between starch and iodine. However, the addition of SO 2 induces the Karl Fischer reaction, resulting in the decrease of color and increase of SERS signals. Therefore, the PAD can be used not only as a naked-eye indicator of SO 2 changed from blue to colorless but also as a highly sensitive SERS substrates because of the SO 2 -triggered conversion of Mpy to pyridine methyl sulfate on the GNRs. A distinguishable change in the color was observed at a SO 2 concentration of 5 μM by the naked eye, and a detection limit as low as 1.45 μM was obtained by virtue of UV-vis spectroscopy. The PAD-based SERS method is effective over a wide range of concentrations (1 μM to 2000 μM) for SO 2 , and the detection limit for SO 2 is found to be 1 μM. The HS-PAD based colorimetric/SERS method is applied for the determination of SO 2 in wine, and the detection results match well with those obtained from the traditional Monier-Williams method. This study not only offers a new method for on-site monitoring of SO 2 but also provides a new strategy for designing of paper-based sensing platform for a wide range of field-test applications.
Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems.
Fanin, Nicolas; Gundale, Michael J; Farrell, Mark; Ciobanu, Marcel; Baldock, Jeff A; Nilsson, Marie-Charlotte; Kardol, Paul; Wardle, David A
2018-02-01
Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.
Advancing cellulose-based nanotechnology
Theodore H. Wegner; Philip E. Jones
2006-01-01
Nanotechnology has applications across most economic sectors and allows the development of new enabling science with broad commercial potential. Cellulose and lignocellulose have great potential as nanomaterials because they are abundant, renewable, have a nanofibrillar structure, can be made multifunctional, and self-assemble into well-defined architectures. To...
Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José
2008-01-07
We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.
Liu, Tongyao; Liu, Bin; Wang, Jing; Yang, Linfen; Ma, Xinlong; Li, Hao; Zhang, Yihong; Yin, Shu; Sato, Tsugio; Sekino, Tohru; Wang, Yuhua
2016-01-01
A series of smart window coated multifunctional NIR shielding-photocatalytic films were fabricated successfully through KxWO3 and F-TiO2 in a low-cost and environmentally friendly process. Based on the synergistic effect of KxWO3 and F-TiO2, the optimal proportion of KxWO3 to F-TiO2 was investigated and the FT/2KWO nanocomposite film exhibited strong near-infrared, ultraviolet light shielding ability, good visible light transmittance, high photocatalytic activity and excellent hydrophilic capacity. This film exhibited better thermal insulation capacity than ITO and higher photocatalytic activity than P25. Meanwhile, the excellent stability of this film was examined by the cycle photocatalytic degradation and thermal insulation experiments. Overall, this work is expected to provide a possibility in integrating KxWO3 with F-TiO2, so as to obtain a multifunctional NIR shielding-photocatalytic nanocomposite film in helping solve the energy crisis and deteriorating environmental issues. PMID:27265778
Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin
2014-09-08
Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genchi, Giada Graziana; Marino, Attilio; Tapeinos, Christos; Ciofani, Gianni
2017-01-01
With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities), underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.
Yang, Zhiqing; Wang, Yi; Zhang, Dun
2017-12-15
A novel fast, sensitive, and specific multifunctional electrochemical platform has been proposed for simultaneous detection, elimination, and inactivation of pathogenic bacteria for the first time. The platform is constituted with three-dimensional ZnO nanorod arrays (3D-ZnO) decorated with sliver nanoparticles (AgNPs) and functionalized with vancomycin (Van). Based on the specific recognition of Van for Gram-positive bacteria, the fabricated electrochemical platform has presented high detection sensitivity to Staphylococcus aureus with a low detection limit of 330cfu/mL and adaptable bacterial-elimination efficiency (50%) at low concentrations (1000-2000cfu/mL). Moreover, the platform has shown high antibacterial activity (99.99%) arising from the synergistic germicidal effect of the composited antibacterial AgNPs and Van units. The current work could provide new strategies to construct advanced platforms for simultaneous detection, elimination, and inactivation of various pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.
2016-01-01
Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223
Trapping or tethering stones (TS): A multifunctional device in the Pastoral Neolithic of the Sahara
di Lernia, Savino
2018-01-01
The Pierres de Ben Barour, also known as trapping or tethering stones (TS), are stone artefacts with notches or grooves usually interpreted as hunting devices on the basis of rock art engravings. Though their presence is a peculiar feature of desert landscapes from the Sahara to the Arabian Peninsula, we know little about their age, context and function. Here we present a new approach to the study of these artefacts based on a large dataset (837 items) recorded in the Messak plateau (SW Libya). A statistically-based geoarchaeological survey carried out between 2007 and 2011 in Libya, alongside landscape and intra-site analyses of specific archaeological features (such as rock art, settlement and ceremonial contexts), reveal that these artefacts were used for a prolonged period, probably from the early Holocene. This was followed by a multifunctional use of these devices, particularly during the Pastoral Neolithic phase (ca. 6400–3000 cal BC), with the highest concentrations being found near ceremonial contexts related to cattle burials. PMID:29370242
Nanocomposites in Multifuntional Structures for Spacecraft Platforms
NASA Astrophysics Data System (ADS)
Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.
2012-07-01
The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.
Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu
2015-12-01
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ijiri, Masataka; Yoshimura, Toshihiko
2018-02-01
Low-alloy steels are based on carbon steel in combination with several percent or less (in many cases, 1 mass%) alloying elements, and they offer improved resistance to corrosion at a cost slightly higher than that of carbon steel. However, these materials do not exhibit the same corrosion resistance as stainless steel. The authors have previously developed a novel multifunction cavitation (MFC) technique, which combines ultrasonic cavitation with water jet cavitation. In this study, MFC was used to modify the surface of Cr-Mo steel (SCM435) and Ni-Cr-Mo steel (SNCM630). MFC was found to improve the residual stress value of the material as the result of surface modification while also imparting high strength and superior corrosion resistance.
NASA Astrophysics Data System (ADS)
Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.
1990-10-01
Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.
Multifunctionalities driven by ferroic domains
NASA Astrophysics Data System (ADS)
Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.
2014-08-01
Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
NASA Astrophysics Data System (ADS)
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
Ling, Yonghong; Huang, Lirong; Hong, Wei; Liu, Tongjun; Jing, Luan; Liu, Wenbin; Wang, Ziyong
2017-11-27
Realizing versatile functionalities in a single photonic device is crucial for photonic integration. We here propose a polarization-switchable and wavelength-controllable multi-functional metasurface. By changing the polarization state of incident light, its functionality can be switched between the flat focusing lens and exciting surface-plasmon-polariton (SPP) wave. Interestingly, by tuning the wavelength of incident light, the generated SPP waves can also be controlled at desired interfaces, traveling along the upper or lower interface of the metasurface, or along both of them, depending on whether the incident light satisfies the first or second Kerker condition. This polarization-switchable and wavelength-controllable multifunctional metasurface may provide flexibility in designing tunable or multifunctional metasurfaces and may find potential applications in highly integrated photonic systems.
Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy.
Ramishetti, Srinivas; Huang, Leaf
2012-12-01
Nanotechnology is rapidly evolving and dramatically changing the paradigms of drug delivery. The small sizes, unique chemical properties, large surface areas, structural diversity and multifunctionality of nanoparticles prove to be greatly advantageous for combating notoriously therapeutically evasive diseases such as cancer. Multifunctional nanoparticles have been designed to enhance tumor uptake through either passive or active targeting, while also avoiding reticuloendothelial system uptake through the incorporation of PEG onto the surface. First-generation nanoparticle systems, such as liposomes, are good carriers for drugs and nucleic acid therapeutics, although they have some limitations. These lipid bilayers are now being utilized as excellent carriers for drug-loaded, solid core particles such as iron oxide, mesoporus silica and calcium phosphate. In this article, their design, as well as their multifunctional role in cancer therapy are discussed.
Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid-Crystal Microflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuennet, J. G.; Vasdekis, Andreas E.; Psaltis, D.
The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy; by integrating the distance dependent color filter with a dye-filled micro-channel, themore » absorption spectrum of a dye could be measured. Liquid crystal microflows simplify substantially the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.« less
Polymeric electrolytes based on hydrosilyation reactions
Kerr, John Borland [Oakland, CA; Wang, Shanger [Fairfield, CA; Hou, Jun [Painted Post, NY; Sloop, Steven Edward [Berkeley, CA; Han, Yong Bong [Berkeley, CA; Liu, Gao [Oakland, CA
2006-09-05
New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
NASA Technical Reports Server (NTRS)
Reid, Max B.; Ma, Paul W.; Downie, John D.
1990-01-01
An optical correlation-based system is demonstrated which recognizes an object and determines its angular orientation by traversing a hierarchical data base of binary filters. The data-base architecture is made possible by the development of binary synthetic discriminant function filters.
Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images
NASA Astrophysics Data System (ADS)
Zhu, Yuhong; Li, Hongyang; Jiang, Huageng
2017-12-01
This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.
NASA Astrophysics Data System (ADS)
Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2018-07-01
In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.
Change Detection via Selective Guided Contrasting Filters
NASA Astrophysics Data System (ADS)
Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.
2017-05-01
Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented filters provide the robustness relative to weak geometrical discrepancy of compared images. Selective guided contrasting based on morphological opening/closing and thresholded morphological correlation demonstrates the best change detection result.
Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Suh, Eric J. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)
2015-01-01
Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.
NASA Astrophysics Data System (ADS)
Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.
2017-12-01
Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.
Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems
NASA Technical Reports Server (NTRS)
Karkkainen, Ryan L.; Hunter, Roger C.; Baker, Christopher
2017-01-01
This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability.
Edge Preserved Speckle Noise Reduction Using Integrated Fuzzy Filters
Dewal, M. L.; Rohit, Manoj Kumar
2014-01-01
Echocardiographic images are inherent with speckle noise which makes visual reading and analysis quite difficult. The multiplicative speckle noise masks finer details, necessary for diagnosis of abnormalities. A novel speckle reduction technique based on integration of geometric, wiener, and fuzzy filters is proposed and analyzed in this paper. The denoising applications of fuzzy filters are studied and analyzed along with 26 denoising techniques. It is observed that geometric filter retains noise and, to address this issue, wiener filter is embedded into the geometric filter during iteration process. The performance of geometric-wiener filter is further enhanced using fuzzy filters and the proposed despeckling techniques are called integrated fuzzy filters. Fuzzy filters based on moving average and median value are employed in the integrated fuzzy filters. The performances of integrated fuzzy filters are tested on echocardiographic images and synthetic images in terms of image quality metrics. It is observed that the performance parameters are highest in case of integrated fuzzy filters in comparison to fuzzy and geometric-fuzzy filters. The clinical validation reveals that the output images obtained using geometric-wiener, integrated fuzzy, nonlocal means, and details preserving anisotropic diffusion filters are acceptable. The necessary finer details are retained in the denoised echocardiographic images. PMID:27437499
Silica dust exposure: Effect of filter size to compliance determination
NASA Astrophysics Data System (ADS)
Amran, Suhaily; Latif, Mohd Talib; Khan, Md Firoz; Leman, Abdul Mutalib; Goh, Eric; Jaafar, Shoffian Amin
2016-11-01
Monitoring of respirable dust was performed using a set of integrated sampling system consisting of sampling pump attached with filter media and separating device such as cyclone or special cassette. Based on selected method, filter sizes are either 25 mm or 37 mm poly vinyl chloride (PVC) filter. The aim of this study was to compare performance of two types of filter during personal respirable dust sampling for silica dust under field condition. The comparison strategy focused on the final compliance judgment based on both dataset. Eight hour parallel sampling of personal respirable dust exposure was performed among 30 crusher operators at six quarries. Each crusher operator was attached with parallel set of integrated sampling train containing either 25 mm or 37 mm PVC filter. Each set consisted of standard flow SKC sampler, attached with SKC GS3 cyclone and 2 pieces cassette loaded with 5.0 µm of PVC filter. Samples were analyzed by gravimetric technique. Personal respirable dust exposure between the two types of filters indicated significant positive correlation (p < 0.05) with moderate relationship (r2 = 0.6431). Personal exposure based on 25 mm PVC filter indicated 0.1% non-compliance to overall data while 37 mm PVC filter indicated similar findings at 0.4 %. Both data showed similar arithmetic mean(AM) and geometric mean(GM). In overall we concluded that personal respirable dust exposure either based on 25mm or 37mm PVC filter will give similar compliance determination. Both filters are reliable to be used in respirable dust monitoring for silica dust related exposure.
Compact planar microwave blocking filters
NASA Technical Reports Server (NTRS)
U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)
2012-01-01
A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.
USDA-ARS?s Scientific Manuscript database
A laboratory investigation was conducted to evaluate four iron-based filter materials for trace element contaminant water treatment. The iron-based filter materials evaluated were zero valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/hydroxide (IOH). Only fi...
Kumar, M; Mishra, S K
2017-01-01
The clinical magnetic resonance imaging (MRI) images may get corrupted due to the presence of the mixture of different types of noises such as Rician, Gaussian, impulse, etc. Most of the available filtering algorithms are noise specific, linear, and non-adaptive. There is a need to develop a nonlinear adaptive filter that adapts itself according to the requirement and effectively applied for suppression of mixed noise from different MRI images. In view of this, a novel nonlinear neural network based adaptive filter i.e. functional link artificial neural network (FLANN) whose weights are trained by a recently developed derivative free meta-heuristic technique i.e. teaching learning based optimization (TLBO) is proposed and implemented. The performance of the proposed filter is compared with five other adaptive filters and analyzed by considering quantitative metrics and evaluating the nonparametric statistical test. The convergence curve and computational time are also included for investigating the efficiency of the proposed as well as competitive filters. The simulation outcomes of proposed filter outperform the other adaptive filters. The proposed filter can be hybridized with other evolutionary technique and utilized for removing different noise and artifacts from others medical images more competently.
System reliability analysis of granular filter for protection against piping in dams
NASA Astrophysics Data System (ADS)
Srivastava, A.; Sivakumar Babu, G. L.
2015-09-01
Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.
A hybrid filtering method based on a novel empirical mode decomposition for friction signals
NASA Astrophysics Data System (ADS)
Li, Chengwei; Zhan, Liwei
2015-12-01
During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods.
Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk
2009-01-01
For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994
Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk
2009-09-01
For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.
United States Air Force Summer Faculty Research Program (1983). Technical Report. Volume 2
1983-12-01
filters are given below: (1) Inverse filter - Based on the model given in Eq. (2) and the criterion of minimizing the norm (i.e., power ) of the...and compared based on their performances In machine classification under a variety of blur and noise conditions. These filters are analyzed to...criteria based on various assumptions of the Image models* In practice filter performance varies with the type of image, the blur and the noise conditions
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
Hsu, Chih-Yuan; Pan, Zhen-Ming; Hu, Rei-Hsing; Chang, Chih-Chun; Cheng, Hsiao-Chun; Lin, Che; Chen, Bor-Sen
2015-01-01
In this study, robust biological filters with an external control to match a desired input/output (I/O) filtering response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the field of synthetic biology, the biological filter system serves as a powerful detector or sensor to sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. The proposed systematic design method of robust biological filters is summarized into three steps. Firstly, several well-characterized promoter-RBS libraries are established for biological filter design by identifying and collecting the quantitative and qualitative characteristics of their promoter-RBS components via nonlinear parameter estimation method. Then, the topology of synthetic biological filter is decomposed into three cascade gene regulatory modules, and an appropriate promoter-RBS library is selected for each module to achieve the desired I/O specification of a biological filter. Finally, based on the proposed systematic method, a robust externally tunable biological filter is engineered by searching the promoter-RBS component libraries and a control inducer concentration library to achieve the optimal reference match for the specified I/O filtering response.
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2011-01-01
An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445
An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks
NASA Astrophysics Data System (ADS)
El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros
2007-12-01
The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.
Li, Sui-Xian
2018-05-07
Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI). However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ₂ norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.
Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya
2005-05-30
We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.
Shaper-Based Filters for the compensation of the load cell response in dynamic mass measurement
NASA Astrophysics Data System (ADS)
Richiedei, Dario; Trevisani, Alberto
2018-01-01
This paper proposes a novel model-based signal filtering technique for dynamic mass measurement through load cells. Load cells are sensors with an underdamped oscillatory response which usually imposes a long settling time. Real-time filtering is therefore necessary to compensate for such a dynamics and to quickly retrieve the mass of the measurand (which is the steady state value of the load cell response) before the measured signal actually settles. This problem has a big impact on the throughput of industrial weighing machines. In this paper a novel solution to this problem is developed: a model-based filtering technique is proposed to ensure accurate, robust and rapid estimation of the mass of the measurand. The digital filters proposed are referred to as Shaper-Based Filters (SBFs) and are based on the convolution of the load cell output signal with a sequence of few impulses (typically, between 2 and 5). The amplitudes and the instants of application of such impulses are computed through the analytical development of the load cell step response, by imposing the admissible residual oscillation in the steady-state filtered signal and by requiring the desired sensitivity of the filter. The inclusion of robustness specifications tackles effectively the unavoidable uncertainty and variability in the load cell frequency and damping. The effectiveness of the proposed filters is proved experimentally through an industrial set up: the load-cell-instrumented weigh bucket of a multihead weighing machine for packaging. A performance comparison with other benchmark filters is provided and discussed too.
Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning
NASA Astrophysics Data System (ADS)
Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo
2018-07-01
In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.
Su, Gui-yang; Li, Jian-hua; Ma, Ying-hua; Li, Sheng-hong
2004-09-01
With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, David
2012-12-31
The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of themore » mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Quli; Cheng, Kai; Hu, Xiang
Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (<10 nm) water-soluble melanin nanoparticle (MNP) was developed and showed unique photoacoustic property and natural binding ability with metal ions (for example, 64Cu 2+, Fe 3+). Therefore, MNP can serve not only as a photoacoustic contrast agent,more » but also as a nanoplatform for positron emission tomography (PET) and magnetic resonance imaging (MRI). Traditional passive nanoplatforms require complicated and time-consuming processes for prebuilding reporting moieties or chemical modifications using active groups to integrate different contrast properties into one entity. In comparison, utilizing functional biomarker melanin can greatly simplify the building process. We further conjugated α vβ 3 integrins, cyclic c(RGDfC) peptide, to MNPs to allow for U87MG tumor accumulation due to its targeting property combined with the enhanced permeability and retention (EPR) effect. As a result, the multimodal properties of MNPs demonstrate the high potential of endogenous materials with multifunctions as nanoplatforms for molecular theranostics and clinical translation.« less
Khutale, Ganesh V; Casey, Alan
2017-10-01
A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr; Chung, Jeong Min; Yun, Hyung Joong
Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stressmore » by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.« less
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-03-03
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1 S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-01-01
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608
Multifunctional polymeric nanoconstructs for biomedical applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Decuzzi, Paolo
2016-09-01
Multifunctional nanoconstructs are particle-based nano-scale systems designed for the `smart' delivery of therapeutic and imaging agents. The Laboratory of Nanotechnology for Precision Medicine at the Italian Institute of Technology synthesizes polymeric nanoconstructs with different sizes, ranging from a few tens of nanometers to a few microns; shapes, including spherical, cubical and discoidal; surface properties, with positive, negative, neutral coatings; and mechanical stiffness, varying from that of cells to rigid, inorganic materials, such as iron oxide. These are the 4S parameters - size, shape, surface, stiffness - which can be precisely tuned in the synthesis process enabling disease- and patient-specific designs of multifunctional nanoconstructs. In this lecture, the application of these nanoconstructs to the detection and treatment of cancer lesions and cardiovascular diseases, such as thrombosis and atherosclerosis, is discussed. The contribution of the 4S parameters in modulating nanoconstruct sequestration by the mononuclear phagocyte system, organ specific accumulation, and blood longevity is also critically presented. These polymeric nanoconstructs can be loaded with a variety of therapeutic payloads - anti-cancer molecules (docetaxel, paclitaxel, doxorubicin), anti-inflammatory molecules (curcumin, diclofenac, celecoxib) and small biologicals (peptides, siRNAs, miRNAs); and imaging agents - optical probes; Gd and iron oxide nanoparticles for MR imaging; and radio-isotopes for Nuclear Imaging.
NASA Astrophysics Data System (ADS)
Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No
2016-05-01
Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.
Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy
Ramishetti, Srinivas; Huang, Leaf
2013-01-01
Nanotechnology is rapidly evolving and dramatically changing the paradigms of drug delivery. The small sizes, unique chemical properties, large surface areas, structural diversity and multifunctionality of nanoparticles prove to be greatly advantageous for combating notoriously therapeutically evasive diseases such as cancer. Multifunctional nanoparticles have been designed to enhance tumor uptake through either passive or active targeting, while also avoiding reticuloendothelial system uptake through the incorporation of PEG onto the surface. First-generation nanoparticle systems, such as liposomes, are good carriers for drugs and nucleic acid therapeutics, although they have some limitations. These lipid bilayers are now being utilized as excellent carriers for drug-loaded, solid core particles such as iron oxide, mesoporus silica and calcium phosphate. In this article, their design, as well as their multifunctional role in cancer therapy are discussed. PMID:23323560
Vision-Based Position Estimation Utilizing an Extended Kalman Filter
2016-12-01
POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER by Joseph B. Testa III December 2016 Thesis Advisor: Vladimir Dobrokhodov Co...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE VISION-BASED POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER 5. FUNDING...spots” and network relay between the boarding team and ship. 14. SUBJECT TERMS UAV, ROS, extended Kalman filter , Matlab
Winston, Richard B.; Shapiro, Allen M.
2007-01-01
The BAT3 Analyzer provides real-time display and interpretation of fluid pressure responses and flow rates measured during geochemical sampling, hydraulic testing, or tracer testing conducted with the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3) (Shapiro, 2007). Real-time display of the data collected with the Multifunction BAT3 allows the user to ensure that the downhole apparatus is operating properly, and that test procedures can be modified to correct for unanticipated hydraulic responses during testing. The BAT3 Analyzer can apply calibrations to the pressure transducer and flow meter data to display physically meaningful values. Plots of the time-varying data can be formatted for a specified time interval, and either saved to files, or printed. Libraries of calibrations for the pressure transducers and flow meters can be created, updated and reloaded to facilitate the rapid set up of the software to display data collected during testing with the Multifunction BAT3. The BAT3 Analyzer also has the functionality to estimate calibrations for pressure transducers and flow meters using data collected with the Multifunction BAT3 in conjunction with corroborating check measurements. During testing with the Multifunction BAT3, and also after testing has been completed, hydraulic properties of the test interval can be estimated by comparing fluid pressure responses with model results; a variety of hydrogeologic conceptual models of the formation are available for interpreting fluid-withdrawal, fluid-injection, and slug tests.
Li, Shihong; Goins, Beth; Zhang, Lujun; Bao, Ande
2012-06-20
Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with noninvasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The premanufactured liposomes were composed of DSPC/cholesterol/Gd-DOTA-DSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively postinserted into the premanufactured liposomes. Doxorubicin could be effectively postloaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with (99m)Tc or (64)Cu for single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high-resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT, and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing noninvasive multimodality NIR fluorescent, MR, SPECT, and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality.
2004-05-12
Structural Engineering, La Jolla, CA 92093 14. ABSTRACT Tunable optical filters based on a Fabry - Perot element are a critical component in many...wavelength based fiber optic sensor systems. This report compares the performance of two fiber-pigtailed tunable optical filters, the fiber Fabry - Perot (FFP...both filters suggests that they can operate at frequencies up to 20 kHz and possibly as high as 100 kHz. 15. SUBJECT TERMS Tunable Fabry - Perot filters
Thin Film Sensors for Surface Measurements
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.
2001-01-01
Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.
Hwang, Sun Hye; Song, Hee; Lee, Jungsup; Jang, Jyongsik
2014-09-26
Designing the photoanode structure in dye-sensitized solar cells (DSSCs) is vital to realizing enhanced power conversion efficiency (PCE). Herein, novel multifunctional silver-decorated porous titanium dioxide nanofibers (Ag/pTiO2 NFs) made by simple electrospinning, etching, and chemical reduction processes are introduced. The Ag/pTiO2 NFs with a high surface area of 163 m(2) g(-1) provided sufficient dye adsorption for light harvesting. Moreover, the approximately 200 nm diameter and rough surface of the Ag/pTiO2 NFs offered enough light scattering, and the enlarged interpores among the NFs in the photoanode also permitted electrolyte circulation. Ag nanoparticles (NPs) were well dispersed on the surface of the TiO2 NFs, which prevented aggregation of the Ag NPs after calcination. Furthermore, a localized surface plasmon resonance effect by the Ag NPs served to increase the light absorption at visible wavelengths. The surface area and amount of Ag NPs was optimized. The PCE of pTiO2 NF-based DSSCs was 27 % higher (from 6.2 to 7.9 %) than for pure TiO2 NFs, whereas the PCE of Ag/pTiO2 NF-based DSSCs increased by about 12 % (from 7.9 to 8.8 %). Thus, the PCE of the multifunctional pTiO2 NFs was improved by 42 %, that is, from 6.2 to 8.8 %. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Yuan, B.; Jin, M.
2012-07-01
Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
Stimuli-responsive chitosan-based nanocarriers for cancer therapy
Fathi, Marziyeh; Sahandi Zangabad, Parham; Majidi, Sima; Barar, Jaleh; Erfan-Niya, Hamid
2017-01-01
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli. PMID:29435435
Stimuli-responsive chitosan-based nanocarriers for cancer therapy.
Fathi, Marziyeh; Sahandi Zangabad, Parham; Majidi, Sima; Barar, Jaleh; Erfan-Niya, Hamid; Omidi, Yadollah
2017-01-01
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli.
Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R.
2015-01-01
The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape – both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642
Weighted hybrid technique for recommender system
NASA Astrophysics Data System (ADS)
Suriati, S.; Dwiastuti, Meisyarah; Tulus, T.
2017-12-01
Recommender system becomes very popular and has important role in an information system or webpages nowadays. A recommender system tries to make a prediction of which item a user may like based on his activity on the system. There are some familiar techniques to build a recommender system, such as content-based filtering and collaborative filtering. Content-based filtering does not involve opinions from human to make the prediction, while collaborative filtering does, so collaborative filtering can predict more accurately. However, collaborative filtering cannot give prediction to items which have never been rated by any user. In order to cover the drawbacks of each approach with the advantages of other approach, both approaches can be combined with an approach known as hybrid technique. Hybrid technique used in this work is weighted technique in which the prediction score is combination linear of scores gained by techniques that are combined.The purpose of this work is to show how an approach of weighted hybrid technique combining content-based filtering and item-based collaborative filtering can work in a movie recommender system and to show the performance comparison when both approachare combined and when each approach works alone. There are three experiments done in this work, combining both techniques with different parameters. The result shows that the weighted hybrid technique that is done in this work does not really boost the performance up, but it helps to give prediction score for unrated movies that are impossible to be recommended by only using collaborative filtering.
Robust failure detection filters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sanmartin, A. M.
1985-01-01
The robustness of detection filters applied to the detection of actuator failures on a free-free beam is analyzed. This analysis is based on computer simulation tests of the detection filters in the presence of different types of model mismatch, and on frequency response functions of the transfers corresponding to the model mismatch. The robustness of detection filters based on a model of the beam containing a large number of structural modes varied dramatically with the placement of some of the filter poles. The dynamics of these filters were very hard to analyze. The design of detection filters with a number of modes equal to the number of sensors was trivial. They can be configured to detect any number of actuator failure events. The dynamics of these filters were very easy to analyze and their robustness properties were much improved. A change of the output transformation allowed the filter to perform satisfactorily with realistic levels of model mismatch.
Highly efficient multifunctional metasurface for high-gain lens antenna application
NASA Astrophysics Data System (ADS)
Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing
2017-07-01
In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.
Milane, Lara; Ganesh, Shanthi; Shah, Shruti; Duan, Zhen-feng; Amiji, Mansoor
2011-01-01
Inefficiency in systemic drug delivery and tumor residence as well microenvironmental selection pressures contribute to the development of multidrug resistance (MDR) in cancer. Characteristics of MDR include abnormal vasculature, regions of hypoxia, up-regulation of ABC-transporters, aerobic glycolysis, and an elevated apoptotic threshold. Nano-sized delivery vehicles are ideal for treating MDR cancer as they can improve the therapeutic index of drugs and they can be engineered to achieve multifunctional parameters. The multifunctional ability of nanocarriers makes them more adept at treating heterogeneous tumor mass than traditional chemotherapy. Nanocarriers also have preferential tumor accumulation via the EPR effect; this accumulation can be further enhanced by actively targeting the biological profile of MDR cells. Perhaps the most significant benefit of using nanocarrier drug delivery to treat MDR cancer is that nanocarrier delivery diverts the effects of ABC-transporter mediated drug efflux; which is the primary mechanism of MDR. This review discusses the capabilities, applications, and examples of multifunctional nanocarriers for the treatment of MDR. This review emphasizes multifunctional nanocarriers that enhance drug delivery efficiency, the application of RNAi, modulation of the tumor apoptotic threshold, and physical approaches to overcome MDR. PMID:21497176
Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.
Grosse-Holz, Friederike M; van der Hoorn, Renier A L
2016-05-01
Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Li, Zhong-xiao; Li, Zhen-chun
2016-09-01
The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.
Design and Diagnosis Problem Solving with Multifunctional Technical Knowledge Bases
1992-09-29
STRUCTURE METHODOLOGY Design problem solving is a complex activity involving a number of subtasks. and a number of alternative methods potentially available...Conference on Artificial Intelligence. London: The British Computer Society, pp. 621-633. Friedland, P. (1979). Knowledge-based experimental design ...Computing Milieuxl: Management of Computing and Information Systems- -ty,*m man- agement General Terms: Design . Methodology Additional Key Words and Phrases
2015-05-07
6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes
SCIENTIFIC-RESEARCH WORK IN THE FIELD OF ADDITIVE CHEMISTRY,
multifunctional oil additives is reviewed. Antioxidants based on nitrogen-containing compounds were prepared by condensation of alkylphenols with formaldehyde and... alkylphenols or their sulfides with formaldehyde and amines or aniline and reaction with phosphorus trichloride are effective additives. AzNII-10 is based...on p-tert. amylphenol. INKhP-21 and INKhP-25, condensation products of alkylphenols , formaldehyde, and an amine treated with phosphorus pentachloride
Log-polar mapping-based scale space tracking with adaptive target response
NASA Astrophysics Data System (ADS)
Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing
2017-05-01
Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Menon, Madhu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
The role of computational nanotechnology in developing next generation of multifunctional materials, molecular scale electronic and computing devices, sensors, actuators, and machines is described through a brief review of enabling computational techniques and few recent examples derived from computer simulations of carbon nanotube based molecular nanotechnology.
In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...
A Combined Laser-Communication and Imager for Microspacecraft (ACLAIM)
NASA Technical Reports Server (NTRS)
Hemmati, H.; Lesh, J.
1998-01-01
ACLAIM is a multi-function instrument consisting of a laser communication terminal and an imaging camera that share a common telescope. A single APS- (Active Pixel Sensor) based focal-plane-array is used to perform both the acquisition and tracking (for laser communication) and science imaging functions.
Synthesis and application of a natural plasticizer based on cardanol for poly(vinyl chloride)
USDA-ARS?s Scientific Manuscript database
A natural plasticizer with multifunctional groups, similar in structure to phthalates, cardanol derivatives glycidyl ether (CGE) was synthesized from cardanol by a two-step modification process and characterized by FT-IR, 1-HNMR, and 13-CNMR. The resulting product was incorporated to PVC (CGE/PVC), ...
Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics
NASA Astrophysics Data System (ADS)
Yang, Fang; Gu, Zhu-Xiao; Jin, Xin; Wang, Hao-Yao; Gu, Ning
2013-10-01
Generation of magnetic micrbubbles and their basic magnetic and acoustic mechanism are reviewed. The ultrasound (US) and magnetic resonance (MR) dual imaging, the controlled therapeutic delivery, as well as theranostic multifunctions are all introduced based on recent research results. Some on-going research is also discussed.
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-01
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation. Electronic supplementary information (ESI) available: Additional figures (Tables S1-S3 and Fig. S1-S6). See DOI: 10.1039/c6nr01072e
NASA Technical Reports Server (NTRS)
Rajan, P. K.; Khan, Ajmal
1993-01-01
Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.
Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang
2007-08-01
The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.
Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.
Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun
2010-12-29
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.
Three-dimensional multifunctional optical coherence tomography for skin imaging
NASA Astrophysics Data System (ADS)
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki
2016-02-01
Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.
Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures
NASA Astrophysics Data System (ADS)
Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.
2015-05-01
Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.
LLSURE: local linear SURE-based edge-preserving image filtering.
Qiu, Tianshuang; Wang, Aiqi; Yu, Nannan; Song, Aimin
2013-01-01
In this paper, we propose a novel approach for performing high-quality edge-preserving image filtering. Based on a local linear model and using the principle of Stein's unbiased risk estimate as an estimator for the mean squared error from the noisy image only, we derive a simple explicit image filter which can filter out noise while preserving edges and fine-scale details. Moreover, this filter has a fast and exact linear-time algorithm whose computational complexity is independent of the filtering kernel size; thus, it can be applied to real time image processing tasks. The experimental results demonstrate the effectiveness of the new filter for various computer vision applications, including noise reduction, detail smoothing and enhancement, high dynamic range compression, and flash/no-flash denoising.
Photonic crystal ring resonator based optical filters for photonic integrated circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, S., E-mail: mail2robinson@gmail.com
In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which ismore » highly suitable of photonic integrated circuits.« less