Sample records for based multimodal registration

  1. An atlas-based multimodal registration method for 2D images with discrepancy structures.

    PubMed

    Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng

    2018-06-04

    An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.

  2. A hybrid multimodal non-rigid registration of MR images based on diffeomorphic demons.

    PubMed

    Lu, Huanxiang; Cattin, Philippe C; Reyes, Mauricio

    2010-01-01

    In this paper we present a novel hybrid approach for multimodal medical image registration based on diffeomorphic demons. Diffeomorphic demons have proven to be a robust and efficient way for intensity-based image registration. A very recent extension even allows to use mutual information (MI) as a similarity measure to registration multimodal images. However, due to the intensity correspondence uncertainty existing in some anatomical parts, it is difficult for a purely intensity-based algorithm to solve the registration problem. Therefore, we propose to combine the resulting transformations from both intensity-based and landmark-based methods for multimodal non-rigid registration based on diffeomorphic demons. Several experiments on different types of MR images were conducted, for which we show that a better anatomical correspondence between the images can be obtained using the hybrid approach than using either intensity information or landmarks alone.

  3. SU-E-J-110: A Novel Level Set Active Contour Algorithm for Multimodality Joint Segmentation/Registration Using the Jensen-Rényi Divergence.

    PubMed

    Markel, D; Naqa, I El; Freeman, C; Vallières, M

    2012-06-01

    To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.

  4. [Research on non-rigid registration of multi-modal medical image based on Demons algorithm].

    PubMed

    Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang

    2014-02-01

    Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.

  5. Medical image registration based on normalized multidimensional mutual information

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ji, Hongbing; Tong, Ming

    2009-10-01

    Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.

  6. Multi-modality image registration for effective thermographic fever screening

    NASA Astrophysics Data System (ADS)

    Dwith, C. Y. N.; Ghassemi, Pejhman; Pfefer, Joshua; Casamento, Jon; Wang, Quanzeng

    2017-02-01

    Fever screening based on infrared thermographs (IRTs) is a viable mass screening approach during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome (SARS), for temperature monitoring in public places like hospitals and airports. IRTs have been found to be powerful, quick and non-invasive methods for detecting elevated temperatures. Moreover, regions medially adjacent to the inner canthi (called the canthi regions in this paper) are preferred sites for fever screening. Accurate localization of the canthi regions can be achieved through multi-modality registration of infrared (IR) and white-light images. Here we propose a registration method through a coarse-fine registration strategy using different registration models based on landmarks and edge detection on eye contours. We have evaluated the registration accuracy to be within +/- 2.7 mm, which enables accurate localization of the canthi regions.

  7. Fast and Robust Registration of Multimodal Remote Sensing Images via Dense Orientated Gradient Feature

    NASA Astrophysics Data System (ADS)

    Ye, Y.

    2017-09-01

    This paper presents a fast and robust method for the registration of multimodal remote sensing data (e.g., optical, LiDAR, SAR and map). The proposed method is based on the hypothesis that structural similarity between images is preserved across different modalities. In the definition of the proposed method, we first develop a pixel-wise feature descriptor named Dense Orientated Gradient Histogram (DOGH), which can be computed effectively at every pixel and is robust to non-linear intensity differences between images. Then a fast similarity metric based on DOGH is built in frequency domain using the Fast Fourier Transform (FFT) technique. Finally, a template matching scheme is applied to detect tie points between images. Experimental results on different types of multimodal remote sensing images show that the proposed similarity metric has the superior matching performance and computational efficiency than the state-of-the-art methods. Moreover, based on the proposed similarity metric, we also design a fast and robust automatic registration system for multimodal images. This system has been evaluated using a pair of very large SAR and optical images (more than 20000 × 20000 pixels). Experimental results show that our system outperforms the two popular commercial software systems (i.e. ENVI and ERDAS) in both registration accuracy and computational efficiency.

  8. Spectral embedding-based registration (SERg) for multimodal fusion of prostate histology and MRI

    NASA Astrophysics Data System (ADS)

    Hwuang, Eileen; Rusu, Mirabela; Karthigeyan, Sudha; Agner, Shannon C.; Sparks, Rachel; Shih, Natalie; Tomaszewski, John E.; Rosen, Mark; Feldman, Michael; Madabhushi, Anant

    2014-03-01

    Multi-modal image registration is needed to align medical images collected from different protocols or imaging sources, thereby allowing the mapping of complementary information between images. One challenge of multimodal image registration is that typical similarity measures rely on statistical correlations between image intensities to determine anatomical alignment. The use of alternate image representations could allow for mapping of intensities into a space or representation such that the multimodal images appear more similar, thus facilitating their co-registration. In this work, we present a spectral embedding based registration (SERg) method that uses non-linearly embedded representations obtained from independent components of statistical texture maps of the original images to facilitate multimodal image registration. Our methodology comprises the following main steps: 1) image-derived textural representation of the original images, 2) dimensionality reduction using independent component analysis (ICA), 3) spectral embedding to generate the alternate representations, and 4) image registration. The rationale behind our approach is that SERg yields embedded representations that can allow for very different looking images to appear more similar, thereby facilitating improved co-registration. Statistical texture features are derived from the image intensities and then reduced to a smaller set by using independent component analysis to remove redundant information. Spectral embedding generates a new representation by eigendecomposition from which only the most important eigenvectors are selected. This helps to accentuate areas of salience based on modality-invariant structural information and therefore better identifies corresponding regions in both the template and target images. The spirit behind SERg is that image registration driven by these areas of salience and correspondence should improve alignment accuracy. In this work, SERg is implemented using Demons to allow the algorithm to more effectively register multimodal images. SERg is also tested within the free-form deformation framework driven by mutual information. Nine pairs of synthetic T1-weighted to T2-weighted brain MRI were registered under the following conditions: five levels of noise (0%, 1%, 3%, 5%, and 7%) and two levels of bias field (20% and 40%) each with and without noise. We demonstrate that across all of these conditions, SERg yields a mean squared error that is 81.51% lower than that of Demons driven by MRI intensity alone. We also spatially align twenty-six ex vivo histology sections and in vivo prostate MRI in order to map the spatial extent of prostate cancer onto corresponding radiologic imaging. SERg performs better than intensity registration by decreasing the root mean squared distance of annotated landmarks in the prostate gland via both Demons algorithm and mutual information-driven free-form deformation. In both synthetic and clinical experiments, the observed improvement in alignment of the template and target images suggest the utility of parametric eigenvector representations and hence SERg for multimodal image registration.

  9. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    PubMed

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  10. Multimodal Image Registration through Simultaneous Segmentation.

    PubMed

    Aganj, Iman; Fischl, Bruce

    2017-11-01

    Multimodal image registration facilitates the combination of complementary information from images acquired with different modalities. Most existing methods require computation of the joint histogram of the images, while some perform joint segmentation and registration in alternate iterations. In this work, we introduce a new non-information-theoretical method for pairwise multimodal image registration, in which the error of segmentation - using both images - is considered as the registration cost function. We empirically evaluate our method via rigid registration of multi-contrast brain magnetic resonance images, and demonstrate an often higher registration accuracy in the results produced by the proposed technique, compared to those by several existing methods.

  11. α-Information Based Registration of Dynamic Scans for Magnetic Resonance Cystography

    PubMed Central

    Han, Hao; Lin, Qin; Li, Lihong; Duan, Chaijie; Lu, Hongbing; Li, Haifang; Yan, Zengmin; Fitzgerald, John

    2015-01-01

    To continue our effort on developing magnetic resonance (MR) cystography, we introduce a novel non–rigid 3D registration method to compensate for bladder wall motion and deformation in dynamic MR scans, which are impaired by relatively low signal–to–noise ratio in each time frame. The registration method is developed on the similarity measure of α–information, which has the potential of achieving higher registration accuracy than the commonly-used mutual information (MI) measure for either mono-modality or multi-modality image registration. The α–information metric was also demonstrated to be superior to both the mean squares and the cross-correlation metrics in multi-modality scenarios. The proposed α–registration method was applied for bladder motion compensation via real patient studies, and its effect to the automatic and accurate segmentation of bladder wall was also evaluated. Compared with the prevailing MI-based image registration approach, the presented α–information based registration was more effective to capture the bladder wall motion and deformation, which ensured the success of the following bladder wall segmentation to achieve the goal of evaluating the entire bladder wall for detection and diagnosis of abnormality. PMID:26087506

  12. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  13. Robust Nonrigid Multimodal Image Registration using Local Frequency Maps*

    PubMed Central

    Jian, Bing; Vemuri, Baba C.; Marroquin, José L.

    2008-01-01

    Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency. The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L2E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments. PMID:17354721

  14. Hierarchical patch-based co-registration of differently stained histopathology slides

    NASA Astrophysics Data System (ADS)

    Yigitsoy, Mehmet; Schmidt, Günter

    2017-03-01

    Over the past decades, digital pathology has emerged as an alternative way of looking at the tissue at subcellular level. It enables multiplexed analysis of different cell types at micron level. Information about cell types can be extracted by staining sections of a tissue block using different markers. However, robust fusion of structural and functional information from different stains is necessary for reproducible multiplexed analysis. Such a fusion can be obtained via image co-registration by establishing spatial correspondences between tissue sections. Spatial correspondences can then be used to transfer various statistics about cell types between sections. However, the multi-modal nature of images and sparse distribution of interesting cell types pose several challenges for the registration of differently stained tissue sections. In this work, we propose a co-registration framework that efficiently addresses such challenges. We present a hierarchical patch-based registration of intensity normalized tissue sections. Preliminary experiments demonstrate the potential of the proposed technique for the fusion of multi-modal information from differently stained digital histopathology sections.

  15. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  16. Validation of 3D multimodality roadmapping in interventional neuroradiology

    NASA Astrophysics Data System (ADS)

    Ruijters, Daniel; Homan, Robert; Mielekamp, Peter; van de Haar, Peter; Babic, Drazenko

    2011-08-01

    Three-dimensional multimodality roadmapping is entering clinical routine utilization for neuro-vascular treatment. Its purpose is to navigate intra-arterial and intra-venous endovascular devices through complex vascular anatomy by fusing pre-operative computed tomography (CT) or magnetic resonance (MR) with the live fluoroscopy image. The fused image presents the real-time position of the intra-vascular devices together with the patient's 3D vascular morphology and its soft-tissue context. This paper investigates the effectiveness, accuracy, robustness and computation times of the described methods in order to assess their suitability for the intended clinical purpose: accurate interventional navigation. The mutual information-based 3D-3D registration proved to be of sub-voxel accuracy and yielded an average registration error of 0.515 mm and the live machine-based 2D-3D registration delivered an average error of less than 0.2 mm. The capture range of the image-based 3D-3D registration was investigated to characterize its robustness, and yielded an extent of 35 mm and 25° for >80% of the datasets for registration of 3D rotational angiography (3DRA) with CT, and 15 mm and 20° for >80% of the datasets for registration of 3DRA with MR data. The image-based 3D-3D registration could be computed within 8 s, while applying the machine-based 2D-3D registration only took 1.5 µs, which makes them very suitable for interventional use.

  17. SU-F-BRF-10: Deformable MRI to CT Validation Employing Same Day Planning MRI for Surrogate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Stoyanova, R; Johnson, P

    Purpose: To compare rigid and deformable registrations of the prostate in the multi-modality setting (diagnostic-MRI to planning-CT) by utilizing a planning-MRI as a surrogate. The surrogate allows for the direct quantitative analysis which can be difficult in the multi-modality domain where intensity mapping differs. Methods: For ten subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day in which the planning CT was collected (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets.more » The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. The deformed MRI was then rigidly aligned to the planning MRI which was used as the surrogate for the planning-CT. Agreement between the two MRI datasets was scored using intensity based metrics including Pearson correlation and normalized mutual information, NMI. A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb and combined areas. A similar method was used to assess a rigid registration between the diagnostic-MRI and planning-CT. Results: Utilizing the NMI, the deformable registrations were superior to the rigid registrations in 9 of 10 cases demonstrating a 15.94% improvement (p-value < 0.001) within the combined area. The Pearson correlation showed similar results with the deformable registration superior in the same number of cases and demonstrating a 6.97% improvement (p-value <0.011). Conclusion: Validating deformable multi-modality registrations using spatial intensity based metrics is difficult due to the inherent differences in intensity mapping. This population provides an ideal testing ground for MRI to CT deformable registrations by obviating the need for multi-modality comparisons which are inherently more challenging. Deformable registrations generated in this work significantly outperformed rigid alignments. Research reported in this abstract was supported by the NIH National Cancer Institute R21CA153826 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer” and Bankhead-Coley Cancer Research Program 10BT-03 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer”.« less

  18. Multimodal image registration based on binary gradient angle descriptor.

    PubMed

    Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian

    2017-12-01

    Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for application in time-sensitive clinical environments, such as for preoperative MRI and intraoperative US image registration for image-guided intervention.

  19. Hardware implementation of hierarchical volume subdivision-based elastic registration.

    PubMed

    Dandekar, Omkar; Walimbe, Vivek; Shekhar, Raj

    2006-01-01

    Real-time, elastic and fully automated 3D image registration is critical to the efficiency and effectiveness of many image-guided diagnostic and treatment procedures relying on multimodality image fusion or serial image comparison. True, real-time performance will make many 3D image registration-based techniques clinically viable. Hierarchical volume subdivision-based image registration techniques are inherently faster than most elastic registration techniques, e.g. free-form deformation (FFD)-based techniques, and are more amenable for achieving real-time performance through hardware acceleration. Our group has previously reported an FPGA-based architecture for accelerating FFD-based image registration. In this article we show how our existing architecture can be adapted to support hierarchical volume subdivision-based image registration. A proof-of-concept implementation of the architecture achieved speedups of 100 for elastic registration against an optimized software implementation on a 3.2 GHz Pentium III Xeon workstation. Due to inherent parallel nature of the hierarchical volume subdivision-based image registration techniques further speedup can be achieved by using several computing modules in parallel.

  20. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    PubMed

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  1. A practical salient region feature based 3D multi-modality registration method for medical images

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Wolz, Gabriele; Sun, Yiyong; Hornegger, Joachim; Sauer, Frank; Kuwert, Torsten; Xu, Chenyang

    2006-03-01

    We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection, tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by a medical expert with an approach that measures the distance between a set of selected corresponding points consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential medical applications and possibilities for integration into a non-rigid registration framework.

  2. Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.

    2015-11-01

    The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.

  3. Robust multi-site MR data processing: iterative optimization of bias correction, tissue classification, and registration.

    PubMed

    Young Kim, Eun; Johnson, Hans J

    2013-01-01

    A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.

  4. Intrasubject multimodal groupwise registration with the conditional template entropy.

    PubMed

    Polfliet, Mathias; Klein, Stefan; Huizinga, Wyke; Paulides, Margarethus M; Niessen, Wiro J; Vandemeulebroucke, Jef

    2018-05-01

    Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel similarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the conditional entropy between each image in the group and a representative template image constructed iteratively using principal component analysis. The proposed metric is validated in extensive experiments on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved registration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation consistency compared to pairwise mutual information. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Fast and robust multimodal image registration using a local derivative pattern.

    PubMed

    Jiang, Dongsheng; Shi, Yonghong; Chen, Xinrong; Wang, Manning; Song, Zhijian

    2017-02-01

    Deformable multimodal image registration, which can benefit radiotherapy and image guided surgery by providing complementary information, remains a challenging task in the medical image analysis field due to the difficulty of defining a proper similarity measure. This article presents a novel, robust and fast binary descriptor, the discriminative local derivative pattern (dLDP), which is able to encode images of different modalities into similar image representations. dLDP calculates a binary string for each voxel according to the pattern of intensity derivatives in its neighborhood. The descriptor similarity is evaluated using the Hamming distance, which can be efficiently computed, instead of conventional L1 or L2 norms. For the first time, we validated the effectiveness and feasibility of the local derivative pattern for multimodal deformable image registration with several multi-modal registration applications. dLDP was compared with three state-of-the-art methods in artificial image and clinical settings. In the experiments of deformable registration between different magnetic resonance imaging (MRI) modalities from BrainWeb, between computed tomography and MRI images from patient data, and between MRI and ultrasound images from BITE database, we show our method outperforms localized mutual information and entropy images in terms of both accuracy and time efficiency. We have further validated dLDP for the deformable registration of preoperative MRI and three-dimensional intraoperative ultrasound images. Our results indicate that dLDP reduces the average mean target registration error from 4.12 mm to 2.30 mm. This accuracy is statistically equivalent to the accuracy of the state-of-the-art methods in the study; however, in terms of computational complexity, our method significantly outperforms other methods and is even comparable to the sum of the absolute difference. The results reveal that dLDP can achieve superior performance regarding both accuracy and time efficiency in general multimodal image registration. In addition, dLDP also indicates the potential for clinical ultrasound guided intervention. © 2016 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewerdsen, J.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  7. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L; Siewerdsen, Jeffrey H

    2016-11-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.

  8. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L.

    2016-01-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. PMID:27295656

  9. Distance-Dependent Multimodal Image Registration for Agriculture Tasks

    PubMed Central

    Berenstein, Ron; Hočevar, Marko; Godeša, Tone; Edan, Yael; Ben-Shahar, Ohad

    2015-01-01

    Image registration is the process of aligning two or more images of the same scene taken at different times; from different viewpoints; and/or by different sensors. This research focuses on developing a practical method for automatic image registration for agricultural systems that use multimodal sensory systems and operate in natural environments. While not limited to any particular modalities; here we focus on systems with visual and thermal sensory inputs. Our approach is based on pre-calibrating a distance-dependent transformation matrix (DDTM) between the sensors; and representing it in a compact way by regressing the distance-dependent coefficients as distance-dependent functions. The DDTM is measured by calculating a projective transformation matrix for varying distances between the sensors and possible targets. To do so we designed a unique experimental setup including unique Artificial Control Points (ACPs) and their detection algorithms for the two sensors. We demonstrate the utility of our approach using different experiments and evaluation criteria. PMID:26308000

  10. MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.

    PubMed

    Heinrich, Mattias P; Jenkinson, Mark; Bhushan, Manav; Matin, Tahreema; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A

    2012-10-01

    Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis.

    PubMed

    Padgett, Kyle R; Stoyanova, Radka; Pirozzi, Sara; Johnson, Perry; Piper, Jon; Dogan, Nesrin; Pollack, Alan

    2018-03-01

    Validating deformable multimodality image registrations is challenging due to intrinsic differences in signal characteristics and their spatial intensity distributions. Evaluating multimodality registrations using these spatial intensity distributions is also complicated by the fact that these metrics are often employed in the registration optimization process. This work evaluates rigid and deformable image registrations of the prostate in between diagnostic-MRI and radiation treatment planning-CT by utilizing a planning-MRI after fiducial marker placement as a surrogate. The surrogate allows for the direct quantitative analysis that can be difficult in the multimodality domain. For thirteen prostate patients, T2 images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day as the planning-CT (planning-MRI). The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available algorithm which synthesizes a deformable image registration (DIR) algorithm from local rigid registrations. The planning-MRI provided an independent surrogate for the planning-CT for assessing registration accuracy using image similarity metrics, including Pearson correlation and normalized mutual information (NMI). A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb, and combined areas. The planning-MRI provided an excellent surrogate for the planning-CT with residual error in fiducial alignment between the two datasets being submillimeter, 0.78 mm. DIR was superior to the rigid registration in 11 of 13 cases demonstrating a 27.37% improvement in NMI (P < 0.009) within a regional area surrounding the prostate and associated critical organs. Pearson correlations showed similar results, demonstrating a 13.02% improvement (P < 0.013). By utilizing the planning-MRI as a surrogate for the planning-CT, an independent evaluation of registration accuracy is possible. This population provides an ideal testing ground for MRI to CT DIR by obviating the need for multimodality comparisons which are inherently more challenging. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    PubMed

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport.

    PubMed

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L; Kikinis, Ron; Tannenbaum, Allen

    2008-09-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A . Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets.

  14. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport

    PubMed Central

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M.; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L.; Kikinis, Ron; Tannenbaum, Allen

    2017-01-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets. PMID:28626844

  15. Surface-based prostate registration with biomechanical regularization

    NASA Astrophysics Data System (ADS)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  16. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  17. SU-E-J-218: Novel Validation Paradigm of MRI to CT Deformation of Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; University of Miami School of Medicine - Radiology, Miami, FL; Pirozzi, S

    2015-06-15

    Purpose: Deformable registration algorithms are inherently difficult to characterize in the multi-modality setting due to a significant differences in the characteristics of the different modalities (CT and MRI) as well as tissue deformations. We present a unique paradigm where this is overcome by utilizing a planning-MRI acquired within an hour of the planning-CT serving as a surrogate for quantifying MRI to CT deformation by eliminating the issues of multi-modality comparisons. Methods: For nine subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day asmore » the planning-CT (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets. The diagnostic-MRI was rigidly and deformably aligned to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. Additionally, the quality of rigid alignment was ranked by an imaging physicist. The distances between corresponding anatomical landmarks on rigid and deformed registrations (diagnostic-MR to planning-CT) were evaluated. Results: It was discovered that in cases where the rigid registration was of acceptable quality the deformable registration didn’t improve the alignment, this was true of all metrics employed. If the analysis is separated into cases where the rigid alignment was ranked as unacceptable the deformable registration significantly improved the alignment, 4.62mm residual error in landmarks as compared to 5.72mm residual error in rigid alignments with a p-value of 0.0008. Conclusion: This paradigm provides an ideal testing ground for MR to CT deformable registration algorithms by allowing for inter-modality comparisons of multi-modality registrations. Consistent positioning, bowel and bladder preparation may Result in higher quality rigid registrations than typically achieved which limits the impact of deformable registrations. In this study cases where significant differences exist, deformable registrations provide significant value.« less

  18. Global image registration using a symmetric block-matching approach

    PubMed Central

    Modat, Marc; Cash, David M.; Daga, Pankaj; Winston, Gavin P.; Duncan, John S.; Ourselin, Sébastien

    2014-01-01

    Abstract. Most medical image registration algorithms suffer from a directionality bias that has been shown to largely impact subsequent analyses. Several approaches have been proposed in the literature to address this bias in the context of nonlinear registration, but little work has been done for global registration. We propose a symmetric approach based on a block-matching technique and least-trimmed square regression. The proposed method is suitable for multimodal registration and is robust to outliers in the input images. The symmetric framework is compared with the original asymmetric block-matching technique and is shown to outperform it in terms of accuracy and robustness. The methodology presented in this article has been made available to the community as part of the NiftyReg open-source package. PMID:26158035

  19. Multimodal registration of three-dimensional maxillodental cone beam CT and photogrammetry data over time.

    PubMed

    Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P

    2013-01-01

    In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.

  20. Concept for Classifying Facade Elements Based on Material, Geometry and Thermal Radiation Using Multimodal Uav Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ilehag, R.; Schenk, A.; Hinz, S.

    2017-08-01

    This paper presents a concept for classification of facade elements, based on the material and the geometry of the elements in addition to the thermal radiation of the facade with the usage of a multimodal Unmanned Aerial Vehicle (UAV) system. Once the concept is finalized and functional, the workflow can be used for energy demand estimations for buildings by exploiting existing methods for estimation of heat transfer coefficient and the transmitted heat loss. The multimodal system consists of a thermal, a hyperspectral and an optical sensor, which can be operational with a UAV. While dealing with sensors that operate in different spectra and have different technical specifications, such as the radiometric and the geometric resolution, the challenges that are faced are presented. Addressed are the different approaches of data fusion, such as image registration, generation of 3D models by performing image matching and the means for classification based on either the geometry of the object or the pixel values. As a first step towards realizing the concept, the result from a geometric calibration with a designed multimodal calibration pattern is presented.

  1. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas

    PubMed Central

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682

  2. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    PubMed

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.

  3. Serial Scanning and Registration of High Resolution Quantitative Computed Tomography Volume Scans for the Determination of Local Bone Density Changes

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Napel, Sandy; Yan, Chye H.

    1996-01-01

    Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'

  4. Introduction to clinical and laboratory (small-animal) image registration and fusion.

    PubMed

    Zanzonico, Pat B; Nehmeh, Sadek A

    2006-01-01

    Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.

  5. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, T.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  6. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhar, R.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  7. Rapid multi-modality preregistration based on SIFT descriptor.

    PubMed

    Chen, Jian; Tian, Jie

    2006-01-01

    This paper describes the scale invariant feature transform (SIFT) method for rapid preregistration of medical image. This technique originates from Lowe's method wherein preregistration is achieved by matching the corresponding keypoints between two images. The computational complexity has been reduced when we applied SIFT preregistration method before refined registration due to its O(n) exponential calculations. The features of SIFT are highly distinctive and invariant to image scaling and rotation, and partially invariant to change in illumination and contrast, it is robust and repeatable for cursorily matching two images. We also altered the descriptor so our method can deal with multimodality preregistration.

  8. Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images

    PubMed Central

    Yang, Juan; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic‐based demons algorithm was more accurate than the GMI‐based demons algorithm in registering PET/CT esophageal images. PACS numbers: 87.57.nj, 87.57. Q‐, 87.57.uk PMID:26218993

  9. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    PubMed

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons algorithm was more accurate than the GMI-based demons algorithm in registering PET/CT esophageal images.

  10. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl; Verhaart, René F.; Angeloni, Francesco

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealisticmore » deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.« less

  11. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    NASA Astrophysics Data System (ADS)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  12. Nanoengineered multimodal contrast agent for medical image guidance

    NASA Astrophysics Data System (ADS)

    Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.

    2005-04-01

    Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes post-injection) and 461.7 +/- 78.1 ΔSI (60% decrease from the peak signal value achieved 5 minutes post-injection) in the kidney (cortex) of a New Zealand white rabbit. This multimodal contrast agent, with prolonged in vivo residence time and imaging efficacy, has the potential to bring about improvements in the fields of medical imaging and radiation therapy, particularly for image registration and guidance.

  13. A Multistage Approach for Image Registration.

    PubMed

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  14. Prostate multimodality image registration based on B-splines and quadrature local energy.

    PubMed

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  15. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  16. Biological fiducial point based registration for multiple brain tissues reconstructed from different imaging modalities

    NASA Astrophysics Data System (ADS)

    Wu, Huiqun; Zhou, Gangping; Geng, Xingyun; Zhang, Xiaofeng; Jiang, Kui; Tang, Lemin; Zhou, Guomin; Dong, Jiancheng

    2013-10-01

    With the development of computer aided navigation system, more and more tissues shall be reconstructed to provide more useful information for surgical pathway planning. In this study, we aimed to propose a registration framework for different reconstructed tissues from multi-modalities based on some fiducial points on lateral ventricles. A male patient with brain lesion was admitted and his brain scans were performed by different modalities. Then, the different brain tissues were segmented in different modality with relevant suitable algorithms. Marching cubes were calculated for three dimensional reconstructions, and then the rendered tissues were imported to a common coordinate system for registration. Four pairs of fiducial markers were selected to calculate the rotation and translation matrix using least-square measure method. The registration results were satisfied in a glioblastoma surgery planning as it provides the spatial relationship between tumors and surrounding fibers as well as vessels. Hence, our framework is of potential value for clinicians to plan surgery.

  17. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  18. Multimodal registration via spatial-context mutual information.

    PubMed

    Yi, Zhao; Soatto, Stefano

    2011-01-01

    We propose a method to efficiently compute mutual information between high-dimensional distributions of image patches. This in turn is used to perform accurate registration of images captured under different modalities, while exploiting their local structure otherwise missed in traditional mutual information definition. We achieve this by organizing the space of image patches into orbits under the action of Euclidean transformations of the image plane, and estimating the modes of a distribution in such an orbit space using affinity propagation. This way, large collections of patches that are equivalent up to translations and rotations are mapped to the same representative, or "dictionary element". We then show analytically that computing mutual information for a joint distribution in this space reduces to computing mutual information between the (scalar) label maps, and between the transformations mapping each patch into its closest dictionary element. We show that our approach improves registration performance compared with the state of the art in multimodal registration, using both synthetic and real images with quantitative ground truth.

  19. SU-E-J-97: Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning.

    PubMed

    Sethi, A; Rusu, I; Surucu, M; Halama, J

    2012-06-01

    Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.

  20. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  1. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  2. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients.

    PubMed

    Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong

    2013-01-07

    Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.

  3. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients

    PubMed Central

    Jin, Shuo; Li, Dengwang; Yin, Yong

    2013-01-01

    Accurate registration of  18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from  18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381

  4. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  5. Parallel image registration with a thin client interface

    NASA Astrophysics Data System (ADS)

    Saiprasad, Ganesh; Lo, Yi-Jung; Plishker, William; Lei, Peng; Ahmad, Tabassum; Shekhar, Raj

    2010-03-01

    Despite its high significance, the clinical utilization of image registration remains limited because of its lengthy execution time and a lack of easy access. The focus of this work was twofold. First, we accelerated our course-to-fine, volume subdivision-based image registration algorithm by a novel parallel implementation that maintains the accuracy of our uniprocessor implementation. Second, we developed a thin-client computing model with a user-friendly interface to perform rigid and nonrigid image registration. Our novel parallel computing model uses the message passing interface model on a 32-core cluster. The results show that, compared with the uniprocessor implementation, the parallel implementation of our image registration algorithm is approximately 5 times faster for rigid image registration and approximately 9 times faster for nonrigid registration for the images used. To test the viability of such systems for clinical use, we developed a thin client in the form of a plug-in in OsiriX, a well-known open source PACS workstation and DICOM viewer, and used it for two applications. The first application registered the baseline and follow-up MR brain images, whose subtraction was used to track progression of multiple sclerosis. The second application registered pretreatment PET and intratreatment CT of radiofrequency ablation patients to demonstrate a new capability of multimodality imaging guidance. The registration acceleration coupled with the remote implementation using a thin client should ultimately increase accuracy, speed, and access of image registration-based interpretations in a number of diagnostic and interventional applications.

  6. A multimodal 3D framework for fire characteristics estimation

    NASA Astrophysics Data System (ADS)

    Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.

    2018-02-01

    In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.

  7. GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation.

    PubMed

    Bakas, Spyridon; Zeng, Ke; Sotiras, Aristeidis; Rathore, Saima; Akbari, Hamed; Gaonkar, Bilwaj; Rozycki, Martin; Pati, Sarthak; Davatzikos, Christos

    2016-01-01

    We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.

  8. Mammogram registration: a phantom-based evaluation of compressed breast thickness variation effects.

    PubMed

    Richard, Frédéric J P; Bakić, Predrag R; Maidment, Andrew D A

    2006-02-01

    The temporal comparison of mammograms is complex; a wide variety of factors can cause changes in image appearance. Mammogram registration is proposed as a method to reduce the effects of these changes and potentially to emphasize genuine alterations in breast tissue. Evaluation of such registration techniques is difficult since ground truth regarding breast deformations is not available in clinical mammograms. In this paper, we propose a systematic approach to evaluate sensitivity of registration methods to various types of changes in mammograms using synthetic breast images with known deformations. As a first step, images of the same simulated breasts with various amounts of simulated physical compression have been used to evaluate a previously described nonrigid mammogram registration technique. Registration performance is measured by calculating the average displacement error over a set of evaluation points identified in mammogram pairs. Applying appropriate thickness compensation and using a preferred order of the registered images, we obtained an average displacement error of 1.6 mm for mammograms with compression differences of 1-3 cm. The proposed methodology is applicable to analysis of other sources of mammogram differences and can be extended to the registration of multimodality breast data.

  9. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  10. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  11. Agile Multi-Scale Decompositions for Automatic Image Registration

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-01-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  12. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-06-15

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less

  13. SU-E-I-23: Design and Clinical Application of External Marking Body in Multi- Mode Medical Images Registration and Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z; Gong, G

    2014-06-01

    Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and themore » EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.« less

  14. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239

  15. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  16. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H

    2016-02-27

    Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  17. Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery

    PubMed Central

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base of tongue robotic surgery. PMID:23807549

  18. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base-of-tongue robotic surgery.

  19. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

    PubMed

    Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

    2016-04-01

    To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with <50% contact), "Very Good" (vessels with >50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

  20. Deformable image registration for multimodal lung-cancer staging

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  1. A simultaneous multimodal imaging system for tissue functional parameters

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Zhang, Zhiwu; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.

  2. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less

  3. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  4. Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation

    NASA Astrophysics Data System (ADS)

    Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant

    2013-03-01

    Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.

  5. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach.

    PubMed

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Brock, Kristy K; Daly, Michael J; Chan, Harley; Irish, Jonathan C; Siewerdsen, Jeffrey H

    2011-04-01

    A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.

  6. Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases

    PubMed Central

    Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong

    2018-01-01

    We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438

  7. Multimodal imaging of ischemic wounds

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Liu, Peng; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2012-12-01

    The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, no method is available for noninvasive, simultaneous, and quantitative imaging of these tissue parameters. We integrated hyperspectral, laser speckle, and thermographic imaging modalities into a single setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Advanced algorithms were developed for accurate reconstruction of wound oxygenation and appropriate co-registration between different imaging modalities. The multimodal wound imaging system was validated by an ongoing clinical trials approved by OSU IRB. In the clinical trial, a wound of 3mm in diameter was introduced on a healthy subject's lower extremity and the healing process was serially monitored by the multimodal imaging setup. Our experiments demonstrated the clinical usability of multimodal wound imaging.

  8. Multi-Modality Phantom Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less

  9. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  10. Robust Multimodal Dictionary Learning

    PubMed Central

    Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674

  11. Registration of a Dynamic Multimodal Target Image Test Set for the Evaluation of Image Fusion Techniques

    DTIC Science & Technology

    2013-10-17

    imagery. 2. Report describing the registration algorithms and parameters . 3.2 Deliverables from Phase 2 (current phase, ongoing) 1. Selected and...representation. To be submitted to Information Fusion [Impact factor 2.262 ] . 2. De Jong, M., Toet, A., Hogervorst, M.A., Hooge , I., Pinkus, A. R. (in...Impact factor 3.376] . 3. Koenderink, J.J., van Doorn, A., De Jong, M., Toet, A., Hogervorst, M.A., Hooge , I., Pinkus, A. R. (in preparation

  12. A prototype hand-held tri-modal instrument for in vivo ultrasound, photoacoustic, and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kang, Jeeun; Chang, Jin Ho; Wilson, Brian C.; Veilleux, Israel; Bai, Yanhui; DaCosta, Ralph; Kim, Kang; Ha, Seunghan; Lee, Jong Gun; Kim, Jeong Seok; Lee, Sang-Goo; Kim, Sun Mi; Lee, Hak Jong; Ahn, Young Bok; Han, Seunghee; Yoo, Yangmo; Song, Tai-Kyong

    2015-03-01

    Multi-modality imaging is beneficial for both preclinical and clinical applications as it enables complementary information from each modality to be obtained in a single procedure. In this paper, we report the design, fabrication, and testing of a novel tri-modal in vivo imaging system to exploit molecular/functional information from fluorescence (FL) and photoacoustic (PA) imaging as well as anatomical information from ultrasound (US) imaging. The same ultrasound transducer was used for both US and PA imaging, bringing the pulsed laser light into a compact probe by fiberoptic bundles. The FL subsystem is independent of the acoustic components but the front end that delivers and collects the light is physically integrated into the same probe. The tri-modal imaging system was implemented to provide each modality image in real time as well as co-registration of the images. The performance of the system was evaluated through phantom and in vivo animal experiments. The results demonstrate that combining the modalities does not significantly compromise the performance of each of the separate US, PA, and FL imaging techniques, while enabling multi-modality registration. The potential applications of this novel approach to multi-modality imaging range from preclinical research to clinical diagnosis, especially in detection/localization and surgical guidance of accessible solid tumors.

  13. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    PubMed

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  14. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  15. A rib-specific multimodal registration algorithm for fused unfolded rib visualization using PET/CT

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kopaczka, Marcin; Wimmer, Andreas; Platsch, Günther; Declerck, Jérôme

    2014-03-01

    Respiratory motion affects the alignment of PET and CT volumes from PET/CT examinations in a non-rigid manner. This becomes particularly apparent if reviewing fine anatomical structures such as ribs when assessing bone metastases, which frequently occur in many advanced cancers. To make this routine diagnostic task more efficient, a fused unfolded rib visualization for 18F-NaF PET/CT is presented. It allows to review the whole rib cage in a single image. This advanced visualization is enabled by a novel rib-specific registration algorithm that rigidly optimizes the local alignment of each individual rib in both modalities based on a matched filter response function. More specifically, rib centerlines are automatically extracted from CT and subsequently individually aligned to the corresponding bone-specific PET rib uptake pattern. The proposed method has been validated on 20 PET/CT scans acquired at different clinical sites. It has been demonstrated that the presented rib- specific registration method significantly improves the rib alignment without having to run complex deformable registration algorithms. At the same time, it guarantees that rib lesions are not further deformed, which may otherwise affect quantitative measurements such as SUVs. Considering clinically relevant distance thresholds, the centerline portion with good alignment compared to the ground truth improved from 60:6% to 86:7% after registration while approximately 98% can be still considered as acceptably aligned.

  16. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    PubMed Central

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Brock, Kristy K.; Daly, Michael J.; Chan, Harley; Irish, Jonathan C.; Siewerdsen, Jeffrey H.

    2011-01-01

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (“intensity”). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and∕or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5±2.8) mm compared to (3.5±3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance. PMID:21626913

  17. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specificmore » intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.« less

  18. Engineering and algorithm design for an image processing Api: a technical report on ITK--the Insight Toolkit.

    PubMed

    Yoo, Terry S; Ackerman, Michael J; Lorensen, William E; Schroeder, Will; Chalana, Vikram; Aylward, Stephen; Metaxas, Dimitris; Whitaker, Ross

    2002-01-01

    We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit concentrates on 3D medical data segmentation and registration algorithms, multimodal and multiresolution capabilities, and portable platform independent support for Windows, Linux/Unix systems. This toolkit was built using current practices in software engineering. Specifically, we embraced the concept of generic programming during the development of these tools, working extensively with C++ templates and the freedom and flexibility they allow. Software development tools for distributed consortium-based code development have been created and are also publicly available. We discuss our assumptions, design decisions, and some lessons learned.

  19. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

  20. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  1. Clinical skills education for graduate-entry nursing students: enhancing learning using a multimodal approach.

    PubMed

    Bloomfield, Jacqueline G; Cornish, Jocelyn C; Parry, Angela M; Pegram, Anne; Moore, Jaqualyn S

    2013-03-01

    This paper discusses the development of a new clinical skills course at a school of nursing and midwifery in London. The course, part of a two year pre-registration programme for graduates in other disciplines, adopted an innovative multimodal approach. This comprised a range of teaching, learning and assessment strategies designed to maximise comprehensiveness, complementarity and flexibility. The background to the development is discussed and each component is described in detail. A brief summary of relevant feedback generated from anonymous student evaluations is included. This provides important insights into the perceived strengths and weakness of the module from a learner perspective. The paper concludes by identifying proposed future developments and recommending wider applications of the multimodal approach within nursing and healthcare education on an international level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery

    PubMed Central

    Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir

    2017-01-01

    Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659

  3. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    PubMed

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  4. Geometric modeling of hepatic arteries in 3D ultrasound with unsupervised MRA fusion during liver interventions.

    PubMed

    Gérard, Maxime; Michaud, François; Bigot, Alexandre; Tang, An; Soulez, Gilles; Kadoury, Samuel

    2017-06-01

    Modulating the chemotherapy injection rate with regard to blood flow velocities in the tumor-feeding arteries during intra-arterial therapies may help improve liver tumor targeting while decreasing systemic exposure. These velocities can be obtained noninvasively using Doppler ultrasound (US). However, small vessels situated in the liver are difficult to identify and follow in US. We propose a multimodal fusion approach that non-rigidly registers a 3D geometric mesh model of the hepatic arteries obtained from preoperative MR angiography (MRA) acquisitions with intra-operative 3D US imaging. The proposed fusion tool integrates 3 imaging modalities: an arterial MRA, a portal phase MRA and an intra-operative 3D US. Preoperatively, the arterial phase MRA is used to generate a 3D model of the hepatic arteries, which is then non-rigidly co-registered with the portal phase MRA. Once the intra-operative 3D US is acquired, we register it with the portal MRA using a vessel-based rigid initialization followed by a non-rigid registration using an image-based metric based on linear correlation of linear combination. Using the combined non-rigid transformation matrices, the 3D mesh model is fused with the 3D US. 3D US and multi-phase MRA images acquired from 10 porcine models were used to test the performance of the proposed fusion tool. Unimodal registration of the MRA phases yielded a target registration error (TRE) of [Formula: see text] mm. Initial rigid alignment of the portal MRA and 3D US yielded a mean TRE of [Formula: see text] mm, which was significantly reduced to [Formula: see text] mm ([Formula: see text]) after affine image-based registration. The following deformable registration step allowed for further decrease of the mean TRE to [Formula: see text] mm. The proposed tool could facilitate visualization and localization of these vessels when using 3D US intra-operatively for either intravascular or percutaneous interventions to avoid vessel perforation.

  5. Estimating nonrigid motion from inconsistent intensity with robust shape features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less

  6. Estimating nonrigid motion from inconsistent intensity with robust shape features.

    PubMed

    Liu, Wenyang; Ruan, Dan

    2013-12-01

    To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  7. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.

    PubMed

    Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.

  8. Multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography at 400 kHz

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Multimodal imaging systems that combine scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) have demonstrated the utility of concurrent en face and volumetric imaging for aiming, eye tracking, bulk motion compensation, mosaicking, and contrast enhancement. However, this additional functionality trades off with increased system complexity and cost because both SLO and OCT generally require dedicated light sources, galvanometer scanners, relay and imaging optics, detectors, and control and digitization electronics. We previously demonstrated multimodal ophthalmic imaging using swept-source spectrally encoded SLO and OCT (SS-SESLO-OCT). Here, we present system enhancements and a new optical design that increase our SS-SESLO-OCT data throughput by >7x and field-of-view (FOV) by >4x. A 200 kHz 1060 nm Axsun swept-source was optically buffered to 400 kHz sweep-rate, and SESLO and OCT were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.2 GS/s per channel using a custom k-clock. We show in vivo human imaging of the anterior segment out to the limbus and retinal fundus over a >40° FOV. In addition, nine overlapping volumetric SS-SESLO-OCT volumes were acquired under video-rate SESLO preview and guidance. In post-processing, all nine SESLO images and en face projections of the corresponding OCT volumes were mosaicked to show widefield multimodal fundus imaging with a >80° FOV. Concurrent multimodal SS-SESLO-OCT may have applications in clinical diagnostic imaging by enabling aiming, image registration, and multi-field mosaicking and benefit intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted image-based surrogate biomarkers of disease.

  9. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    PubMed

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mobile markerless augmented reality and its application in forensic medicine.

    PubMed

    Kilgus, Thomas; Heim, Eric; Haase, Sven; Prüfer, Sabine; Müller, Michael; Seitel, Alexander; Fangerau, Markus; Wiebe, Tamara; Iszatt, Justin; Schlemmer, Heinz-Peter; Hornegger, Joachim; Yen, Kathrin; Maier-Hein, Lena

    2015-05-01

    During autopsy, forensic pathologists today mostly rely on visible indication, tactile perception and experience to determine the cause of death. Although computed tomography (CT) data is often available for the bodies under examination, these data are rarely used due to the lack of radiological workstations in the pathological suite. The data may prevent the forensic pathologist from damaging evidence by allowing him to associate, for example, external wounds to internal injuries. To facilitate this, we propose a new multimodal approach for intuitive visualization of forensic data and evaluate its feasibility. A range camera is mounted on a tablet computer and positioned in a way such that the camera simultaneously captures depth and color information of the body. A server estimates the camera pose based on surface registration of CT and depth data to allow for augmented reality visualization of the internal anatomy directly on the tablet. Additionally, projection of color information onto the CT surface is implemented. We validated the system in a postmortem pilot study using fiducials attached to the skin for quantification of a mean target registration error of [Formula: see text] mm. The system is mobile, markerless, intuitive and real-time capable with sufficient accuracy. It can support the forensic pathologist during autopsy with augmented reality and textured surfaces. Furthermore, the system enables multimodal documentation for presentation in court. Despite its preliminary prototype status, it has high potential due to its low price and simplicity.

  11. Synchronized navigation of current and prior studies using image registration improves radiologist's efficiency.

    PubMed

    Forsberg, Daniel; Gupta, Amit; Mills, Christopher; MacAdam, Brett; Rosipko, Beverly; Bangert, Barbara A; Coffey, Michael D; Kosmas, Christos; Sunshine, Jeffrey L

    2017-03-01

    The purpose of this study was to investigate how the use of multi-modal rigid image registration integrated within a standard picture archiving and communication system affects the efficiency of a radiologist while performing routine interpretations of cases including prior examinations. Six radiologists were recruited to read a set of cases (either 16 neuroradiology or 14 musculoskeletal cases) during two crossover reading sessions. Each radiologist read each case twice, one time with synchronized navigation, which enables spatial synchronization across examinations from different study dates, and one time without. Efficiency was evaluated based upon time to read a case and amount of scrolling while browsing a case using Wilcoxon signed rank test. Significant improvements in efficiency were found considering either all radiologists simultaneously, the two sections separately and the majority of individual radiologists for time to read and for amount of scrolling. The relative improvement for each individual radiologist ranged from 4 to 32% for time to read and from 14 to 38% for amount of scrolling. Image registration providing synchronized navigation across examinations from different study dates provides a tool that enables radiologists to work more efficiently while reading cases with one or more prior examinations.

  12. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  13. Diabetes Empowerment Council: Integrative Pilot Intervention for Transitioning Young Adults With Type 1 Diabetes.

    PubMed

    Weigensberg, Marc J; Vigen, Cheryl; Sequeira, Paola; Spruijt-Metz, Donna; Juarez, Magaly; Florindez, Daniella; Provisor, Joseph; Peters, Anne; Pyatak, Elizabeth A

    2018-01-01

    The transition of young adults with type 1 diabetes (T1D) from pediatric to adult care is challenging and frequently accompanied by worsening of diabetes-related health. To date, there are no reports which prospectively assess the effects of theory-based psycho-behavioral interventions during the transition period neither on glycemic control nor on psychosocial factors that contribute to poor glycemic control. Therefore, the overall aim of this study was to develop and pilot test an integrative group intervention based on the underlying principles of self-determination theory (SDT), in young adults with T1D. Fifty-one young adults with T1D participated in an education and case management-based transition program, of which 9 took part in the Diabetes Empowerment Council (DEC), a 12-week holistic, multimodality facilitated group intervention consisting of "council" process based on indigenous community practices, stress-reduction guided imagery, narrative medicine modalities, simple ritual, and other integrative modalities. Feasibility, acceptability, potential mechanism of effects, and bio-behavioral outcomes were determined using mixed qualitative and quantitative methods. The intervention was highly acceptable to participants, though presented significant feasibility challenges. Participants in DEC showed significant reductions in perceived stress and depression, and increases in general well-being relative to other control participants. Reduction in perceived stress, independent of intervention group, was associated with reductions in hemoglobin A1C. A theoretical model explaining the effects of the intervention included the promotion of relatedness and autonomy support, 2 important aspects of SDT. The DEC is a promising group intervention for young adults with T1D going through transition to adult care. Future investigations will be necessary to resolve feasibility issues, optimize the multimodality intervention, determine full intervention effects, and fully test the role of the underlying theoretical model of action.ClinicalTrials.gov Registration Number NCT02807155; Registration date: June 15, 2016 (retrospectively registered).

  14. Diabetes Empowerment Council: Integrative Pilot Intervention for Transitioning Young Adults With Type 1 Diabetes

    PubMed Central

    Weigensberg, Marc J; Vigen, Cheryl; Sequeira, Paola; Spruijt-Metz, Donna; Juarez, Magaly; Florindez, Daniella; Peters, Anne; Pyatak, Elizabeth A

    2018-01-01

    Background The transition of young adults with type 1 diabetes (T1D) from pediatric to adult care is challenging and frequently accompanied by worsening of diabetes-related health. To date, there are no reports which prospectively assess the effects of theory-based psycho-behavioral interventions during the transition period neither on glycemic control nor on psychosocial factors that contribute to poor glycemic control. Therefore, the overall aim of this study was to develop and pilot test an integrative group intervention based on the underlying principles of self-determination theory (SDT), in young adults with T1D. Methods Fifty-one young adults with T1D participated in an education and case management-based transition program, of which 9 took part in the Diabetes Empowerment Council (DEC), a 12-week holistic, multimodality facilitated group intervention consisting of “council” process based on indigenous community practices, stress-reduction guided imagery, narrative medicine modalities, simple ritual, and other integrative modalities. Feasibility, acceptability, potential mechanism of effects, and bio-behavioral outcomes were determined using mixed qualitative and quantitative methods. Results The intervention was highly acceptable to participants, though presented significant feasibility challenges. Participants in DEC showed significant reductions in perceived stress and depression, and increases in general well-being relative to other control participants. Reduction in perceived stress, independent of intervention group, was associated with reductions in hemoglobin A1C. A theoretical model explaining the effects of the intervention included the promotion of relatedness and autonomy support, 2 important aspects of SDT. Conclusions The DEC is a promising group intervention for young adults with T1D going through transition to adult care. Future investigations will be necessary to resolve feasibility issues, optimize the multimodality intervention, determine full intervention effects, and fully test the role of the underlying theoretical model of action. ClinicalTrials.gov Registration Number NCT02807155; Registration date: June 15, 2016 (retrospectively registered) PMID:29552422

  15. Fast 3D registration of multimodality tibial images with significant structural mismatch

    NASA Astrophysics Data System (ADS)

    Rajapakse, C. S.; Wald, M. J.; Magland, J.; Zhang, X. H.; Liu, X. S.; Guo, X. E.; Wehrli, F. W.

    2009-02-01

    Recently, micro-magnetic resonance imaging (μMRI) in conjunction with micro-finite element analysis has shown great potential in estimating mechanical properties - stiffness and elastic moduli - of bone in patients at risk of osteoporosis. Due to limited spatial resolution and signal-to-noise ratio achievable in vivo, the validity of estimated properties is often established by comparison to those derived from high-resolution micro-CT (μCT) images of cadaveric specimens. For accurate comparison of mechanical parameters derived from μMR and μCT images, analyzed 3D volumes have to be closely matched. The alignment of the micro structure (and the cortex) is often hampered by the fundamental differences of μMR and μCT images and variations in marrow content and cortical bone thickness. Here we present an intensity cross-correlation based registration algorithm coupled with segmentation for registering 3D tibial specimen images acquired by μMRI and μCT in the context of finite-element modeling to assess the bone's mechanical constants. The algorithm first generates three translational and three rotational parameters required to align segmented μMR and CT images from sub regions with high micro-structural similarities. These transformation parameters are then used to register the grayscale μMR and μCT images, which include both the cortex and trabecular bone. The intensity crosscorrelation maximization based registration algorithm described here is suitable for 3D rigid-body image registration applications where through-plane rotations are known to be relatively small. The close alignment of the resulting images is demonstrated quantitatively based on a voxel-overlap measure and qualitatively using visual inspection of the micro structure.

  16. Mobile robots traversability awareness based on terrain visual sensory data fusion

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2007-04-01

    In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain spatial and textural cues.

  17. Joint T1 and brain fiber log-demons registration using currents to model geometry.

    PubMed

    Siless, Viviana; Glaunès, Joan; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Le Bihan, Denis; Thirion, Bertrand; Fillard, Pierre

    2012-01-01

    We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1 + Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts.

  18. A DICOM-based 2nd generation Molecular Imaging Data Grid implementing the IHE XDS-i integration profile.

    PubMed

    Lee, Jasper; Zhang, Jianguo; Park, Ryan; Dagliyan, Grant; Liu, Brent; Huang, H K

    2012-07-01

    A Molecular Imaging Data Grid (MIDG) was developed to address current informatics challenges in archival, sharing, search, and distribution of preclinical imaging studies between animal imaging facilities and investigator sites. This manuscript presents a 2nd generation MIDG replacing the Globus Toolkit with a new system architecture that implements the IHE XDS-i integration profile. Implementation and evaluation were conducted using a 3-site interdisciplinary test-bed at the University of Southern California. The 2nd generation MIDG design architecture replaces the initial design's Globus Toolkit with dedicated web services and XML-based messaging for dedicated management and delivery of multi-modality DICOM imaging datasets. The Cross-enterprise Document Sharing for Imaging (XDS-i) integration profile from the field of enterprise radiology informatics was adopted into the MIDG design because streamlined image registration, management, and distribution dataflow are likewise needed in preclinical imaging informatics systems as in enterprise PACS application. Implementation of the MIDG is demonstrated at the University of Southern California Molecular Imaging Center (MIC) and two other sites with specified hardware, software, and network bandwidth. Evaluation of the MIDG involves data upload, download, and fault-tolerance testing scenarios using multi-modality animal imaging datasets collected at the USC Molecular Imaging Center. The upload, download, and fault-tolerance tests of the MIDG were performed multiple times using 12 collected animal study datasets. Upload and download times demonstrated reproducibility and improved real-world performance. Fault-tolerance tests showed that automated failover between Grid Node Servers has minimal impact on normal download times. Building upon the 1st generation concepts and experiences, the 2nd generation MIDG system improves accessibility of disparate animal-model molecular imaging datasets to users outside a molecular imaging facility's LAN using a new architecture, dataflow, and dedicated DICOM-based management web services. Productivity and efficiency of preclinical research for translational sciences investigators has been further streamlined for multi-center study data registration, management, and distribution.

  19. Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model.

    PubMed

    Marx, Mirko; Ehrhardt, Jan; Werner, René; Schlemmer, Heinz-Peter; Handels, Heinz

    2014-05-01

    Four-dimensional CT imaging is widely used to account for motion-related effects during radiotherapy planning of lung cancer patients. However, 4D CT often contains motion artifacts, cannot be used to measure motion variability, and leads to higher dose exposure. In this article, we propose using 4D MRI to acquire motion information for the radiotherapy planning process. From the 4D MRI images, we derive a time-continuous model of the average patient-specific respiratory motion, which is then applied to simulate 4D CT data based on a static 3D CT. The idea of the motion model is to represent the average lung motion over a respiratory cycle by cyclic B-spline curves. The model generation consists of motion field estimation in the 4D MRI data by nonlinear registration, assigning respiratory phases to the motion fields, and applying a B-spline approximation on a voxel-by-voxel basis to describe the average voxel motion over a breathing cycle. To simulate a patient-specific 4D CT based on a static CT of the patient, a multi-modal registration strategy is introduced to transfer the motion model from MRI to the static CT coordinates. Differences between model-based estimated and measured motion vectors are on average 1.39 mm for amplitude-based binning of the 4D MRI data of three patients. In addition, the MRI-to-CT registration strategy is shown to be suitable for the model transformation. The application of our 4D MRI-based motion model for simulating 4D CT images provides advantages over standard 4D CT (less motion artifacts, radiation-free). This makes it interesting for radiotherapy planning.

  20. Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration.

    PubMed

    Yang, Minglei; Ding, Hui; Zhu, Lei; Wang, Guangzhi

    2016-12-01

    Ultrasound fusion imaging is an emerging tool and benefits a variety of clinical applications, such as image-guided diagnosis and treatment of hepatocellular carcinoma and unresectable liver metastases. However, respiratory liver motion-induced misalignment of multimodal images (i.e., fusion error) compromises the effectiveness and practicability of this method. The purpose of this paper is to develop a subject-specific liver motion model and automatic registration-based method to correct the fusion error. An online-built subject-specific motion model and automatic image registration method for 2D ultrasound-3D magnetic resonance (MR) images were combined to compensate for the respiratory liver motion. The key steps included: 1) Build a subject-specific liver motion model for current subject online and perform the initial registration of pre-acquired 3D MR and intra-operative ultrasound images; 2) During fusion imaging, compensate for liver motion first using the motion model, and then using an automatic registration method to further correct the respiratory fusion error. Evaluation experiments were conducted on liver phantom and five subjects. In the phantom study, the fusion error (superior-inferior axis) was reduced from 13.90±2.38mm to 4.26±0.78mm by using the motion model only. The fusion error further decreased to 0.63±0.53mm by using the registration method. The registration method also decreased the rotation error from 7.06±0.21° to 1.18±0.66°. In the clinical study, the fusion error was reduced from 12.90±9.58mm to 6.12±2.90mm by using the motion model alone. Moreover, the fusion error decreased to 1.96±0.33mm by using the registration method. The proposed method can effectively correct the respiration-induced fusion error to improve the fusion image quality. This method can also reduce the error correction dependency on the initial registration of ultrasound and MR images. Overall, the proposed method can improve the clinical practicability of ultrasound fusion imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Multi-modal image registration: matching MRI with histology

    NASA Astrophysics Data System (ADS)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  2. Simultaneous multimodal ophthalmic imaging using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    PubMed Central

    Malone, Joseph D.; El-Haddad, Mohamed T.; Bozic, Ivan; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2016-01-01

    Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second. PMID:28101411

  3. Navigation with Electromagnetic Tracking for Interventional Radiology Procedures

    PubMed Central

    Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin

    2008-01-01

    PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449

  4. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration

    PubMed Central

    Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396

  5. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  6. Viewpoints on Medical Image Processing: From Science to Application.

    PubMed

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  7. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  8. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  9. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  10. Validation of a deformable image registration technique for cone beam CT-based dose verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformedmore » CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field lengths decreased from 10.1 to 2.5 mm when CBCT was calibrated prior to registration. The results showed no dependence on the level of bladder filling. In comparison with the dose calculated on the primary deformed CT, differences in mean dose averaged over all organs were 0.2% and 3.9% for dose calculated on the secondary deformed CT with and without CBCT calibration, respectively, and 0.5% for dose calculated directly on the calibrated CBCT, for the full-bladder scenario. Gamma analysis for the distance to agreement of 2 mm and 2% of prescribed dose indicated a pass rate of 100% for both cases involving calibrated CBCT and on average 86% without CBCT calibration. Conclusions: Using deformable registration on the planning CT images to evaluate the IMRT dose based on daily CBCTs was found feasible. The proposed method will provide an accurate dose distribution using planning CT and pretreatment CBCT data, avoiding the additional uncertainties introduced by CBCT inhomogeneity and artifacts. This is a necessary initial step toward future image-guided adaptive radiotherapy of the prostate.« less

  11. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Yang, J; Beadle, B

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less

  12. Visual tracking for multi-modality computer-assisted image guidance

    NASA Astrophysics Data System (ADS)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  13. Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad Saleh; Lee, Kyungmoo; Niemeijer, Meindert; Abràmoff, Michael D.; Kwon, Young H.; Garvin, Mona K.

    2013-03-01

    Glaucoma is one of the major causes of blindness worldwide. One important structural parameter for the diagnosis and management of glaucoma is the cup-to-disc ratio (CDR), which tends to become larger as glaucoma progresses. While approaches exist for segmenting the optic disc and cup within fundus photographs, and more recently, within spectral-domain optical coherence tomography (SD-OCT) volumes, no approaches have been reported for the simultaneous segmentation of these structures within both modalities combined. In this work, a multimodal pixel-classification approach for the segmentation of the optic disc and cup within fundus photographs and SD-OCT volumes is presented. In particular, after segmentation of other important structures (such as the retinal layers and retinal blood vessels) and fundus-to-SD-OCT image registration, features are extracted from both modalities and a k-nearest-neighbor classification approach is used to classify each pixel as cup, rim, or background. The approach is evaluated on 70 multimodal image pairs from 35 subjects in a leave-10%-out fashion (by subject). A significant improvement in classification accuracy is obtained using the multimodal approach over that obtained from the corresponding unimodal approach (97.8% versus 95.2%; p < 0:05; paired t-test).

  14. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    PubMed

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  15. Multimodality Non-Rigid Image Registration for Planning, Targeting and Monitoring during CT-guided Percutaneous Liver Tumor Cryoablation

    PubMed Central

    Elhawary, Haytham; Oguro, Sota; Tuncali, Kemal; Morrison, Paul R.; Tatli, Servet; Shyn, Paul B.; Silverman, Stuart G.; Hata, Nobuhiko

    2010-01-01

    Rationale and Objectives To develop non-rigid image registration between pre-procedure contrast enhanced MR images and intra-procedure unenhanced CT images, to enhance tumor visualization and localization during CT-guided liver tumor cryoablation procedures. Materials and Methods After IRB approval, a non-rigid registration (NRR) technique was evaluated with different pre-processing steps and algorithm parameters and compared to a standard rigid registration (RR) approach. The Dice Similarity Coefficient (DSC), Target Registration Error (TRE), 95% Hausdorff distance (HD) and total registration time (minutes) were compared using a two-sided Student’s t-test. The entire registration method was then applied during five CT-guided liver cryoablation cases with the intra-procedural CT data transmitted directly from the CT scanner, with both accuracy and registration time evaluated. Results Selected optimal parameters for registration were section thickness of 5mm, cropping the field of view to 66% of its original size, manual segmentation of the liver, B-spline control grid of 5×5×5 and spatial sampling of 50,000 pixels. Mean 95% HD of 3.3mm (2.5x improvement compared to RR, p<0.05); mean DSC metric of 0.97 (13% increase); and mean TRE of 4.1mm (2.7x reduction) were measured. During the cryoablation procedure registration between the pre-procedure MR and the planning intra-procedure CT took a mean time of 10.6 minutes, the MR to targeting CT image took 4 minutes and MR to monitoring CT took 4.3 minutes. Mean registration accuracy was under 3.4mm. Conclusion Non-rigid registration allowed improved visualization of the tumor during interventional planning, targeting and evaluation of tumor coverage by the ice ball. Future work is focused on reducing segmentation time to make the method more clinically acceptable. PMID:20817574

  16. Comparison of multi-modal early oral nutrition for the tolerance of oral nutrition with conventional care after major abdominal surgery: a prospective, randomized, single-blind trial.

    PubMed

    Sun, Da-Li; Li, Wei-Ming; Li, Shu-Min; Cen, Yun-Yun; Xu, Qing-Wen; Li, Yi-Jun; Sun, Yan-Bo; Qi, Yu-Xing; Lin, Yue-Ying; Yang, Ting; Lu, Qi-Ping; Xu, Peng-Yuan

    2017-02-10

    Early oral nutrition (EON) has been shown to improve recovery of gastrointestinal function, length of stay and mortality after abdominal surgery; however, early oral nutrition often fails during the first week after surgery. Here, a multi-modal early oral nutrition program is introduced to promote recovery of gastrointestinal function and tolerance of oral nutrition. Consecutive patients scheduled for abdominal surgery were randomized to the multimodal EON group or a group receiving conventional care. The primary endpoint was the time of first defecation. The secondary endpoints were outcomes and the cost-effectiveness ratio in treating infectious complications. The rate of infectious-free patients was regarded as the index of effectiveness. One hundred seven patients were randomly assigned to groups. Baseline characteristics were similar for both groups. In intention-to-treat analysis, the success rate of oral nutrition during the first week after surgery in the multimodal EON group was 44 (83.0%) versus 31 (57.4%) in the conventional care group (P = 0.004). Time to first defecation, time to flatus, recovery time of bowel sounds, and prolonged postoperative ileus were all less in the multimodal EON group (P < 0.05). The median postoperative length of stay in the multimodal EON group was 8 days (6, 12) versus 10 days (7, 18) in the conventional care group (P < 0.001). The total cost of treatment and nutritional support were also less in the multi-modal early oral nutrition group (P < 0.001). The effectiveness was 84.9 and 79.9% in the multimodal EON and conventional care group, respectively (P = 0.475). However, the cost-effectiveness ratio was USD 537.6 (506.1, 589.3) and USD 637.8 (593.9, 710.3), respectively (P < 0.001). The multi-modal early oral nutrition program was an effective way to improve tolerance of oral nutrition during the first week after surgery, decrease the length of stay and improve cost-effectiveness after abdominal surgery. Registration number: ChiCTR-TRC-14004395 . Registered 15 March 2014.

  17. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced in vivo by glutathione, releasing large payloads of signal-enhancing T1 probes into the surrounding environment. Optimization of the agent occurred over three sequential generations, with each generation addressing a new challenge. The result was a T2 nanoparticle containing high levels of conjugated T1 complex demonstrating enhanced MR relaxation properties. The probes created here have the potential to play a key role in the advancement of nanoparticle-based agents in biomedical MRI applications.

  18. Joint groupwise registration and ADC estimation in the liver using a B-value weighted metric.

    PubMed

    Sanz-Estébanez, Santiago; Rabanillo-Viloria, Iñaki; Royuela-Del-Val, Javier; Aja-Fernández, Santiago; Alberola-López, Carlos

    2018-02-01

    The purpose of this work is to develop a groupwise elastic multimodal registration algorithm for robust ADC estimation in the liver on multiple breath hold diffusion weighted images. We introduce a joint formulation to simultaneously solve both the registration and the estimation problems. In order to avoid non-reliable transformations and undesirable noise amplification, we have included appropriate smoothness constraints for both problems. Our metric incorporates the ADC estimation residuals, which are inversely weighted according to the signal content in each diffusion weighted image. Results show that the joint formulation provides a statistically significant improvement in the accuracy of the ADC estimates. Reproducibility has also been measured on real data in terms of the distribution of ADC differences obtained from different b-values subsets. The proposed algorithm is able to effectively deal with both the presence of motion and the geometric distortions, increasing accuracy and reproducibility in diffusion parameters estimation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. SU-C-207B-06: Comparison of Registration Methods for Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riyahi, S; Choi, W; Bhooshan, N

    2016-06-15

    Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  20. The value of simulation-based learning in pre-licensure nurse education: A state-of-the-art review and meta-analysis.

    PubMed

    Cant, Robyn P; Cooper, Simon J

    2017-11-01

    Simulation modalities are numerous in nursing education, with a need to reveal their range and impact. We reviewed current evidence for effectiveness of medium to high fidelity simulation as an education mode in pre-licensure/pre-registration nurse education. A state-of-the-art review and meta-analyses was conducted based on a systematic search of publications in English between 2010 and 2015. Of 72 included studies, 43 were quantitative primary studies (mainly quasi-experimental designs), 13 were qualitative studies and 16 were reviews of literature. Forty of 43 primary studies reported benefits to student learning, and student satisfaction was high. Simulation programs provided multi-modal ways of learning. A meta-analysis (8 studies, n = 652 participants) identified that simulation programs significantly improved clinical knowledge from baseline. The weighted mean increase was 5.0 points (CI: 3.25-6.82) on a knowledge measure. Other objectively rated measures (eg, trained observers with checklists) were few. Reported subjective measures such as confidence and satisfaction when used alone have a strong potential for results bias. Studies presented valid empirical evidence, but larger studies are required. Simulation programs in pre-licensure nursing curricula demonstrate innovation and excellence. The programs should be shared across the discipline to facilitate development of multimodal learning for both pre-licensure and postgraduate nurses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  2. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  3. Personalized, relevance-based Multimodal Robotic Imaging and augmented reality for Computer Assisted Interventions.

    PubMed

    Navab, Nassir; Fellow, Miccai; Hennersperger, Christoph; Frisch, Benjamin; Fürst, Bernhard

    2016-10-01

    In the last decade, many researchers in medical image computing and computer assisted interventions across the world focused on the development of the Virtual Physiological Human (VPH), aiming at changing the practice of medicine from classification and treatment of diseases to that of modeling and treating patients. These projects resulted in major advancements in segmentation, registration, morphological, physiological and biomechanical modeling based on state of art medical imaging as well as other sensory data. However, a major issue which has not yet come into the focus is personalizing intra-operative imaging, allowing for optimal treatment. In this paper, we discuss the personalization of imaging and visualization process with particular focus on satisfying the challenging requirements of computer assisted interventions. We discuss such requirements and review a series of scientific contributions made by our research team to tackle some of these major challenges. Copyright © 2016. Published by Elsevier B.V.

  4. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  5. Decision-Level Fusion of Spatially Scattered Multi-Modal Data for Nondestructive Inspection of Surface Defects

    PubMed Central

    Heideklang, René; Shokouhi, Parisa

    2016-01-01

    This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200

  6. Towards real time 2D to 3D registration for ultrasound-guided endoscopic and laparoscopic procedures.

    PubMed

    San José Estépar, Raúl; Westin, Carl-Fredrik; Vosburgh, Kirby G

    2009-11-01

    A method to register endoscopic and laparoscopic ultrasound (US) images in real time with pre-operative computed tomography (CT) data sets has been developed with the goal of improving diagnosis, biopsy guidance, and surgical interventions in the abdomen. The technique, which has the potential to operate in real time, is based on a new phase correlation technique: LEPART, which specifies the location of a plane in the CT data which best corresponds to the US image. Validation of the method was carried out using an US phantom with cyst regions and with retrospective analysis of data sets from animal model experiments. The phantom validation study shows that local translation displacements can be recovered for each US frame with a root mean squared error of 1.56 +/- 0.78 mm in less than 5 sec, using non-optimized algorithm implementations. A new method for multimodality (preoperative CT and intraoperative US endoscopic images) registration to guide endoscopic interventions was developed and found to be efficient using clinically realistic datasets. The algorithm is inherently capable of being implemented in a parallel computing system so that full real time operation appears likely.

  7. Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival

    NASA Astrophysics Data System (ADS)

    Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.

    1997-05-01

    Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.

  8. Multimodality localization of epileptic foci

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Pascau, Javier; Pozo, M. A.; Santos, Andres; Reig, Santiago; Gispert, Juan D.; Garcia-Barreno, Pedro

    2001-05-01

    This paper presents a multimodality approach for the localization of epileptic foci using PET, MRI and EEG combined without the need of external markers. Mutual Information algorithm is used for MRI-PET registration. Dipole coordinates (provided by BESA software) are projected onto the MRI using a specifically developed algorithm. The four anatomical references used for electrode positioning (nasion, inion and two preauricular points) are located on the MRI using a triplanar viewer combined with a surface-rendering tool. Geometric transformation using deformation of the ideal sphere used for dipole calculations is then applied to match the patient's brain size and shape. Eight treatment-refractory epileptic patients have been studied. The combination of the anatomical information from the MRI, hipoperfusion areas in PET and dipole position and orientation helped the physician in the diagnosis of epileptic focus location. Neurosurgery was not indicated for patients where PET and dipole results were inconsistent; in two cases it was clinically indicated despite the mismatch, showing a negative follow up. The multimodality approach presented does not require external markers for dipole projection onto the MRI, this being the main difference with previous methods. The proposed method may play an important role in the indication of surgery for treatment- refractory epileptic patients.

  9. The Intersection of Multimodality and Critical Perspective: Multimodality as Subversion

    ERIC Educational Resources Information Center

    Huang, Shin-ying

    2015-01-01

    This study explores the relevance of multimodality to critical media literacy. It is based on the understanding that communication is intrinsically multimodal and multimodal communication is inherently social and ideological. By analysing two English-language learners' multimodal ensembles, the study reports on how multimodality contributes to a…

  10. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross-sectional mouse data. PMID:23152834

  11. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132.

    PubMed

    Brock, Kristy K; Mutic, Sasa; McNutt, Todd R; Li, Hua; Kessler, Marc L

    2017-07-01

    Image registration and fusion algorithms exist in almost every software system that creates or uses images in radiotherapy. Most treatment planning systems support some form of image registration and fusion to allow the use of multimodality and time-series image data and even anatomical atlases to assist in target volume and normal tissue delineation. Treatment delivery systems perform registration and fusion between the planning images and the in-room images acquired during the treatment to assist patient positioning. Advanced applications are beginning to support daily dose assessment and enable adaptive radiotherapy using image registration and fusion to propagate contours and accumulate dose between image data taken over the course of therapy to provide up-to-date estimates of anatomical changes and delivered dose. This information aids in the detection of anatomical and functional changes that might elicit changes in the treatment plan or prescription. As the output of the image registration process is always used as the input of another process for planning or delivery, it is important to understand and communicate the uncertainty associated with the software in general and the result of a specific registration. Unfortunately, there is no standard mathematical formalism to perform this for real-world situations where noise, distortion, and complex anatomical variations can occur. Validation of the software systems performance is also complicated by the lack of documentation available from commercial systems leading to use of these systems in undesirable 'black-box' fashion. In view of this situation and the central role that image registration and fusion play in treatment planning and delivery, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 132 to review current approaches and solutions for image registration (both rigid and deformable) in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. © 2017 American Association of Physicists in Medicine.

  12. Accuracy improvement of multimodal measurement of speed of sound based on image processing

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu

    2017-07-01

    Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.

  13. Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery.

    PubMed

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2015-01-01

    Classical surgery is being overtaken by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm computed tomography (CT) and C-arm fluoroscopy are routinely used in clinical practice for intraoperative guidance. However, due to constraints regarding acquisition time and device configuration, intraoperative modalities have limited soft tissue image quality and reliable assessment of the cardiac anatomy typically requires contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a probabilistic sparse matching approach to fuse high-quality preoperative CT images and nongated, noncontrast intraoperative C-arm CT images by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the preoperative CT and mapped to the intraoperative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments on 95 clinical datasets demonstrate that our model-based fusion approach has an average execution time of 1.56 s, while the accuracy of 5.48 mm between the anchor anatomy in both images lies within expert user confidence intervals. In direct comparison with image-to-image registration based on an open-source state-of-the-art medical imaging library and a recently proposed quasi-global, knowledge-driven multi-modal fusion approach for thoracic-abdominal images, our model-based method exhibits superior performance in terms of registration accuracy and robustness with respect to both target anatomy and anchor anatomy alignment errors.

  14. An evaluation of the effectiveness of a multi-modal intervention in frail and pre-frail older people with type 2 diabetes - the MID-Frail study: study protocol for a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Diabetes, a highly prevalent, chronic disease, is associated with increasing frailty and functional decline in older people, with concomitant personal, social, and public health implications. We describe the rationale and methods of the multi-modal intervention in diabetes in frailty (MID-Frail) study. Methods/Design The MID-Frail study is an open, randomised, multicentre study, with random allocation by clusters (each trial site) to a usual care group or an intervention group. A total of 1,718 subjects will be randomised with each site enrolling on average 14 or 15 subjects. The primary objective of the study is to evaluate, in comparison with usual clinical practice, the effectiveness of a multi-modal intervention (specific clinical targets, education, diet, and resistance training exercise) in frail and pre-frail subjects aged ≥70 years with type 2 diabetes in terms of the difference in function 2 years post-randomisation. Difference in function will be measured by changes in a summary ordinal score on the short physical performance battery (SPPB) of at least one point. Secondary outcomes include daily activities, economic evaluation, and quality of life. Discussion The MID-Frail study will provide evidence on the clinical, functional, social, and economic impact of a multi-modal approach in frail and pre-frail older people with type 2 diabetes. Trial registration ClinicalTrials.gov: NCT01654341. PMID:24456998

  15. Motion tracking in MR-guided liver therapy by using navigator echoes and projection profile matching.

    PubMed

    Tokuda, Junichi; Morikawa, Shigehiro; Dohi, Takeyoshi; Hata, Nobuhiko

    2004-01-01

    Image registration in magnetic resonance (MR) image-guided liver therapy enhances surgical guidance by fusing preoperative multimodality images with intraoperative images, or by fusing intramodality images to correlate serial intraoperative images to monitor the effect of therapy. The objective of this paper is to describe the application of navigator echo and projection profile matching to fast two-dimensional image registration for MR-guided liver therapy. We obtain navigator echoes along the read-out and phase-encoding directions by using modified gradient echo imaging. This registration is made possible by masking out the liver profile from the image and performing profile matching with cross-correlation or mutual information as similarity measures. The set of experiments include a phantom study with a 2.0-T experimental MR scanner, and a volunteer and a clinical study with a 0.5-T open-configuration MR scanner, and these evaluate the accuracy and effectiveness of this method for liver therapy. Both the phantom and volunteer study indicate that this method can perform registration in 34 ms with root-mean-square error of 1.6 mm when the given misalignment of a liver is 30 mm. The clinical studies demonstrate that the method can track liver motion of up to approximately 40 mm. Matching profiles with cross-correlation information perform better than with mutual information in terms of robustness and speed. The proposed image registration method has potential clinical impact on and advantages for MR-guided liver therapy.

  16. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  17. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  18. Geodesic active fields--a geometric framework for image registration.

    PubMed

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.

  19. Integration of 3D multimodal imaging data of a head and neck cancer and advanced feature recognition.

    PubMed

    Lotz, Judith M; Hoffmann, Franziska; Lotz, Johannes; Heldmann, Stefan; Trede, Dennis; Oetjen, Janina; Becker, Michael; Ernst, Günther; Maas, Peter; Alexandrov, Theodore; Guntinas-Lichius, Orlando; Thiele, Herbert; von Eggeling, Ferdinand

    2017-07-01

    In the last years, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) became an imaging technique which has the potential to characterize complex tumor tissue. The combination with other modalities and with standard histology techniques was achieved by the use of image registration methods and enhances analysis possibilities. We analyzed an oral squamous cell carcinoma with up to 162 consecutive sections with MALDI MSI, hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) against CD31. Spatial segmentation maps of the MALDI MSI data were generated by similarity-based clustering of spectra. Next, the maps were overlaid with the H&E microscopy images and the results were interpreted by an experienced pathologist. Image registration was used to fuse both modalities and to build a three-dimensional (3D) model. To visualize structures below resolution of MALDI MSI, IHC was carried out for CD31 and results were embedded additionally. The integration of 3D MALDI MSI data with H&E and IHC images allows a correlation between histological and molecular information leading to a better understanding of the functional heterogeneity of tumors. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Diagnostic possibilities with multidimensional images in head and neck area using efficient registration and visualization methods

    NASA Astrophysics Data System (ADS)

    Zeilhofer, Hans-Florian U.; Krol, Zdzislaw; Sader, Robert; Hoffmann, Karl-Heinz; Gerhardt, Paul; Schweiger, Markus; Horch, Hans-Henning

    1997-05-01

    For several diseases in the head and neck area different imaging modalities are applied to the same patient.Each of these image data sets has its specific advantages and disadvantages. The combination of different methods allows to make the best use of the advantageous properties of each method while minimizing the impact of its negative aspects. Soft tissue alterations can be judged better in an MRI image while it may be unrecognizable in the relating CT. Bone tissue, on the other hand, is optimally imaged in CT. Inflammatory nuclei of the bone can be detected best by their increased signal in SPECT. Only the combination of all modalities let the physical come to an exact statement on pathological processes that involve multiple tissue structures. Several surfaces and voxel based matching functions we have tested allowed a precise merging by means of numerical optimization methods like e.g. simulated annealing without the complicated assertion of fiducial markers or the localization landmarks in 2D cross sectional slice images. The quality of the registration depends on the choice of the optimization procedure according to the complexity of the matching function landscape. Precise correlation of the multimodal head and neck area images together with its 2D and 3D presentation techniques provides a valuable tool for physicians.

  1. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  2. Quality assurance of registration of CT and MRI data sets for treatment planning of radiotherapy for head and neck cancers

    PubMed Central

    Moore, Craig S.; Liney, Gary P.; Beavis, Andrew W.

    2004-01-01

    We are implementing the use of magnetic resonance (MR) images for head and neck radiotherapy planning, which involves their registration with computed tomography (CT). The quality assurance (QA) of the registration process was an initial step of this program. A phantom was built, and appropriate materials were identified to produce clinically relevant MR T1 and T2 contrast for its constituent “anatomy.” We performed a characterization of the distortion detectable within our phantom. Finally, we assessed the accuracy of image registration by contouring structures in the registered/fused data sets using the treatment planning system. Each structure was contoured using each modality, in turn, blind of the other. The position, area, and perimeter of each structure were assessed as a measure of accuracy of the entire image registration process. Distortion effects in the MR image were shown to be minimized by choosing a suitable (≥±30 kHz) receiver bandwidth. Remaining distortion was deemed clinically acceptable within ±15 cm of the magnetic field isocenter. A coefficient of agreement (A) analysis gave values to be within 9% of unity, where A=RaRp and Ra/p is the ratio of the area/perimeter of a particular structure on CT to that on MR. The center of each structure of interest agreed to within 1.8 mm. A QA process has been developed to assess the accuracy of using multimodality image registration in the planning of radiotherapy for the head and neck; we believe its introduction is feasible and safe. PACS numbers: 87.53.Xd, 87.57.Gg, 87.59.Fm; 87.61.‐c, 87.66.Xa PMID:15753931

  3. Architecture of a high-performance surgical guidance system based on C-arm cone-beam CT: software platform for technical integration and clinical translation

    NASA Astrophysics Data System (ADS)

    Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.

    2011-03-01

    Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in the development of a CBCT guidance system (reported here for the first time) that leverages the technical developments in Carm CBCT and associated technologies for realizing a high-performance system for translation to clinical studies.

  4. SU-F-J-97: A Joint Registration and Segmentation Approach for Large Bladder Deformations in Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derksen, A; Koenig, L; Heldmann, S

    Purpose: To improve results of deformable image registration (DIR) in adaptive radiotherapy for large bladder deformations in CT/CBCT pelvis imaging. Methods: A variational multi-modal DIR algorithm is incorporated in a joint iterative scheme, alternating between segmentation based bladder matching and registration. Using an initial DIR to propagate the bladder contour to the CBCT, in a segmentation step the contour is improved by discrete image gradient sampling along all surface normals and adapting the delineation to match the location of each maximum (with a search range of +−5/2mm at the superior/inferior bladder side and step size of 0.5mm). An additional graph-cutmore » based constraint limits the maximum difference between neighboring points. This improved contour is utilized in a subsequent DIR with a surface matching constraint. By calculating an euclidean distance map of the improved contour surface, the new constraint enforces the DIR to map each point of the original contour onto the improved contour. The resulting deformation is then used as a starting guess to compute a deformation update, which can again be used for the next segmentation step. The result is a dense deformation, able to capture much larger bladder deformations. The new method is evaluated on ten CT/CBCT male pelvis datasets, calculating Dice similarity coefficients (DSC) between the final propagated bladder contour and a manually delineated gold standard on the CBCT image. Results: Over all ten cases, an average DSC of 0.93±0.03 is achieved on the bladder. Compared with the initial DIR (0.88±0.05), the DSC is equal (2 cases) or improved (8 cases). Additionally, DSC accuracy of femoral bones (0.94±0.02) was not affected. Conclusion: The new approach shows that using the presented alternating segmentation/registration approach, the results of bladder DIR in the pelvis region can be greatly improved, especially for cases with large variations in bladder volume. Fraunhofer MEVIS received funding from a research grant by Varian Medical Systems.« less

  5. Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.

    PubMed

    Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan

    2006-08-01

    An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.

  6. Multimodal image registration of the scoliotic torso for surgical planning

    PubMed Central

    2013-01-01

    Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso. PMID:23289431

  7. Improved multimodality data fusion of late gadolinium enhancement MRI to left ventricular voltage maps in ventricular tachycardia ablation.

    PubMed

    Roujol, Sebastien; Basha, Tamer A; Tan, Alex; Khanna, Varun; Chan, Raymond H; Moghari, Mehdi H; Rayatzadeh, Hussein; Shaw, Jaime L; Josephson, Mark E; Nezafat, Reza

    2013-05-01

    Electroanatomical voltage mapping (EAVM) is commonly performed prior to catheter ablation of scar-related ventricular tachycardia (VT) to locate the arrhythmic substrate and to guide the ablation procedure. EAVM is used to locate the position of the ablation catheter and to provide a 3-D reconstruction of left-ventricular anatomy and scar. However, EAVM measurements only represent the endocardial scar with no transmural or epicardial information. Furthermore, EAVM is a time-consuming procedure, with a high operator dependence and has low sampling density, i.e., spatial resolution. Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) allows noninvasive assessment of scar morphology that can depict 3-D scar architecture. Despite the potential use of LGE as a roadmap for VT ablation for identification of arrhythmogenic substrate, its utility has been very limited. To allow for identification of VT substrate, a correlation is needed between the substrates identified by EAVM as the gold standard and LGE-MRI scar characteristics. To do so, a system must be developed to fuse the datasets from these modalities. In this study, a registration pipeline for the fusion of LGE-MRI and EAVM data is presented. A novel surface registration algorithm is proposed, integrating the matching of global scar areas as an additional constraint in the registration process. A preparatory landmark registration is initially performed to expedite the convergence of the algorithm. Numerical simulations were performed to evaluate the accuracy of the registration in the presence of errors in identifying landmarks in EAVM or LGE-MRI datasets as well as additional errors due to respiratory or cardiac motion. Subsequently, the accuracy of the proposed fusion system was evaluated in a cohort of ten patients undergoing VT ablation where both EAVM and LGE-MRI data were available. Compared to landmark registration and surface registration, the presented method achieved significant improvement in registration error. The proposed data fusion system allows the fusion of EAVM and LGE-MRI data in VT ablation with registration errors less than 3.5  mm.

  8. Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network

    DTIC Science & Technology

    2015-08-14

    theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The...independently evolving research directions based on physics-based models of mechanical, electromechanical and electronic devices, operational constraints

  9. Performance Evaluation of MIND Demons Deformable Registration of MR and CT Images in Spinal Interventions

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation [1.3 ± 0.8 mm (median ± interquartile)] outperformed the asymmetric form [3.6 ± 4.4 mm]. The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3 – 2.9 mm for MR slice thickness ranging 0.9 – 9.9 mm, compared to TRE = 3.2 – 4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (< 2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery. PMID:27811396

  10. A 4D biomechanical lung phantom for joint segmentation/registration evaluation

    NASA Astrophysics Data System (ADS)

    Markel, Daniel; Levesque, Ives; Larkin, Joe; Léger, Pierre; El Naqa, Issam

    2016-10-01

    At present, there exists few openly available methods for evaluation of simultaneous segmentation and registration algorithms. These methods allow for a combination of both techniques to track the tumor in complex settings such as adaptive radiotherapy. We have produced a quality assurance platform for evaluating this specific subset of algorithms using a preserved porcine lung in such that it is multi-modality compatible: positron emission tomography (PET), computer tomography (CT) and magnetic resonance imaging (MRI). A computer controlled respirator was constructed to pneumatically manipulate the lungs in order to replicate human breathing traces. A registration ground truth was provided using an in-house bifurcation tracking pipeline. Segmentation ground truth was provided by synthetic multi-compartment lesions to simulate biologically active tumor, background tissue and a necrotic core. The bifurcation tracking pipeline results were compared to digital deformations and used to evaluate three registration algorithms, Diffeomorphic demons, fast-symmetric forces demons and MiMVista’s deformable registration tool. Three segmentation algorithms the Chan Vese level sets method, a Hybrid technique and the multi-valued level sets algorithm. The respirator was able to replicate three seperate breathing traces with a mean accuracy of 2-2.2%. Bifurcation tracking error was found to be sub-voxel when using human CT data for displacements up to 6.5 cm and approximately 1.5 voxel widths for displacements up to 3.5 cm for the porcine lungs. For the fast-symmetric, diffeomorphic and MiMvista registration algorithms, mean geometric errors were found to be 0.430+/- 0.001 , 0.416+/- 0.001 and 0.605+/- 0.002 voxels widths respectively using the vector field differences and 0.4+/- 0.2 , 0.4+/- 0.2 and 0.6+/- 0.2 voxel widths using the bifurcation tracking pipeline. The proposed phantom was found sufficient for accurate evaluation of registration and segmentation algorithms. The use of automatically generated anatomical landmarks proposed can eliminate the time and potential innacuracy of manual landmark selection using expert observers.

  11. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Goerres, J; Jacobson, M; Ketcha, M; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Prince, J L; Siewerdsen, J H

    2016-12-07

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (<2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.

  12. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-12-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (<2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.

  13. Multiatlas segmentation of thoracic and abdominal anatomy with level set-based local search.

    PubMed

    Schreibmann, Eduard; Marcus, David M; Fox, Tim

    2014-07-08

    Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes are needed to autosegment thoracic and abdominal datasets by combining multi-atlas deformable registration with a level set-based local search. Segmentation is hierarchical, with a first stage detecting bulk organ location, and a second step adapting the segmentation to fine details present in the patient scan. The first stage is based on warping multiple presegmented templates to the new patient anatomy using a multimodality deformable registration algorithm able to cope with changes in scanning conditions and artifacts. These segmentations are compacted in a probabilistic map of organ shape using the STAPLE algorithm. Final segmentation is obtained by adjusting the probability map for each organ type, using customized combinations of delineation filters exploiting prior knowledge of organ characteristics. Validation is performed by comparing automated and manual segmentation using the Dice coefficient, measured at an average of 0.971 for the aorta, 0.869 for the trachea, 0.958 for the lungs, 0.788 for the heart, 0.912 for the liver, 0.884 for the kidneys, 0.888 for the vertebrae, 0.863 for the spleen, and 0.740 for the spinal cord. Accurate atlas segmentation for abdominal and thoracic regions can be achieved with the usage of a multi-atlas and perstructure refinement strategy. To improve clinical workflow and efficiency, the algorithm was embedded in a software service, applying the algorithm automatically on acquired scans without any user interaction.

  14. Safety in Acute Pain Medicine-Pharmacologic Considerations and the Impact of Systems-Based Gaps.

    PubMed

    Weingarten, Toby N; Taenzer, Andreas H; Elkassabany, Nabil M; Le Wendling, Linda; Nin, Olga; Kent, Michael L

    2018-05-02

    In the setting of an expanding prevalence of acute pain medicine services and the aggressive use of multimodal analgesia, an overview of systems-based safety gaps and safety concerns in the setting of aggressive multimodal analgesia is provided below. Expert commentary. Recent evidence focused on systems-based gaps in acute pain medicine is discussed. A focused literature review was conducted to assess safety concerns related to commonly used multimodal pharmacologic agents (opioids, nonsteroidal anti-inflammatory drugs, gabapentanoids, ketamine, acetaminophen) in the setting of inpatient acute pain management. Optimization of systems-based gaps will increase the probability of accurate pain assessment, improve the application of uniform evidence-based multimodal analgesia, and ensure a continuum of pain care. While acute pain medicine strategies should be aggressively applied, multimodal regimens must be strategically utilized to minimize risk to patients and in a comorbidity-specific fashion.

  15. MRI - 3D Ultrasound - X-ray Image Fusion with Electromagnetic Tracking for Transendocardial Therapeutic Injections: In-vitro Validation and In-vivo Feasibility

    PubMed Central

    Hatt, Charles R.; Jain, Ameet K.; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N.

    2014-01-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart. PMID:23561056

  16. Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model

    PubMed Central

    Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

    2014-01-01

    Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

  17. Multimodal Discourse Analysis of the Movie "Argo"

    ERIC Educational Resources Information Center

    Bo, Xu

    2018-01-01

    Based on multimodal discourse theory, this paper makes a multimodal discourse analysis of some shots in the movie "Argo" from the perspective of context of culture, context of situation and meaning of image. Results show that this movie constructs multimodal discourse through particular context, language and image, and successfully…

  18. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    NASA Astrophysics Data System (ADS)

    Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  19. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    PubMed Central

    2012-01-01

    Background Osteoporosis affects over 220 million people worldwide, and currently there is no ‘cure’ for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods/design The Osteo-cise: Strong Bones for Life study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged ≥60 years will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month ‘research to practise’ translational phase. Participants will be randomly assigned to either the Osteo-cise intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture. Trial registration Australian New Zealand Clinical Trials Registry reference ACTRN12609000100291 PMID:22640372

  20. Intraoperative Neurophysiological Monitoring in Spine Surgery: A Significant Tool for Neuronal Protection and Functional Restoration.

    PubMed

    Scibilia, Antonino; Raffa, Giovanni; Rizzo, Vincenzo; Quartarone, Angelo; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco

    2017-01-01

    Although there is recent evidence for the role of intraoperative neurophysiological monitoring (IONM) in spine surgery, there are no uniform opinions on the optimal combination of the different tools. At our institution, multimodal IONM (mIONM) approach in spine surgery involves the evaluation of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) with electrical transcranial stimulation, including the use of a multipulse technique with multiple myomeric registration of responses from limbs, and a single-pulse technique with D-wave registration through epi- and intradural recording, and free running and evoked electromyography (frEMG and eEMG) with bilateral recording from segmental target muscles. We analyzed the impact of the mIONM on the preservation of neuronal structures and on functional restoration in a prospective series of patients who underwent spine surgery. We observed an improvement of neurological status in 50 % of the patients. The D-wave registration was the most useful intraoperative tool, especially when MEP and SEP responses were absent or poorly recordable. Our preliminary data confirm that mIONM plays a fundamental role in the identification and functional preservation of the spinal cord and nerve roots. It is highly sensitive and specific for detecting and avoiding neurological injury during spine surgery and represents a helpful tool for achieving optimal postoperative functional outcome.

  1. Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors

    PubMed Central

    Palm, Christoph; Axer, Markus; Gräßel, David; Dammers, Jürgen; Lindemeyer, Johannes; Zilles, Karl; Pietrzyk, Uwe; Amunts, Katrin

    2009-01-01

    Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography. PMID:20461231

  2. Multimodal US-gamma imaging using collaborative robotics for cancer staging biopsies.

    PubMed

    Esposito, Marco; Busam, Benjamin; Hennersperger, Christoph; Rackerseder, Julia; Navab, Nassir; Frisch, Benjamin

    2016-09-01

    The staging of female breast cancer requires detailed information about the level of cancer spread through the lymphatic system. Common practice to obtain this information for patients with early-stage cancer is sentinel lymph node (SLN) biopsy, where LNs are radioactively identified for surgical removal and subsequent histological analysis. Punch needle biopsy is a less invasive approach but suffers from the lack of combined anatomical and nuclear information. We present and evaluate a system that introduces live collaborative robotic 2D gamma imaging in addition to live 2D ultrasound to identify SLNs in the surrounding anatomy. The system consists of a robotic arm equipped with both a gamma camera and a stereoscopic tracking system that monitors the position of an ultrasound probe operated by the physician. The arm cooperatively places the gamma camera parallel to the ultrasound imaging plane to provide live multimodal visualization and guidance. We validate the system by evaluating the target registration errors between fused nuclear and US image data in a phantom consisting of two spheres, one of which is filled with radioactivity. Medical experts perform punch biopsies on agar-gelatine phantoms with complex configurations of hot and cold lesions to provide a qualitative and quantitative evaluation of the system. The average point registration error for the overlay is [Formula: see text] mm. The time of the entire procedure was reduced by 36 %, with 80v of the biopsies being successful. The users' feedback was very positive, and the system was deemed to be very intuitive, with handling similar to classic US-guided needle biopsy. We present and evaluate the first medical collaborative robotic imaging system. Feedback from potential users for SLN punch needle biopsy is encouraging. Ongoing work investigates the clinical feasibility with more complex and realistic phantoms.

  3. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  4. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    NASA Astrophysics Data System (ADS)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  5. Image-guided feedback for ophthalmic microsurgery using multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Jianwei D.; Malone, Joseph D.; El-Haddad, Mohamed T.; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Surgical interventions for ocular diseases involve manipulations of semi-transparent structures in the eye, but limited visualization of these tissue layers remains a critical barrier to developing novel surgical techniques and improving clinical outcomes. We addressed limitations in image-guided ophthalmic microsurgery by using microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (iSS-SESLO-OCT). We previously demonstrated in vivo human ophthalmic imaging using SS-SESLO-OCT, which enabled simultaneous acquisition of en face SESLO images with every OCT cross-section. Here, we integrated our new 400 kHz iSS-SESLO-OCT, which used a buffered Axsun 1060 nm swept-source, with a surgical microscope and TrueVision stereoscopic viewing system to provide image-based feedback. In vivo human imaging performance was demonstrated on a healthy volunteer, and simulated surgical maneuvers were performed in ex vivo porcine eyes. Denselysampled static volumes and volumes subsampled at 10 volumes-per-second were used to visualize tissue deformations and surgical dynamics during corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. En face SESLO images enabled orientation and co-registration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. TrueVision heads-up display allowed for side-by-side viewing of the surgical field with SESLO and OCT previews for real-time feedback, and we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Integration of these complementary imaging modalities may benefit surgical outcomes by enabling real-time intraoperative visualization of surgical plans, instrument positions, tissue deformations, and image-based surrogate biomarkers correlated with completion of surgical goals.

  6. Early intervention for adolescents with Patellofemoral Pain Syndrome - a pragmatic cluster randomised controlled trial

    PubMed Central

    2012-01-01

    Background Self-reported knee pain is highly prevalent among adolescents. As much as 50% of the non-specific knee pain may be attributed to Patellofemoral Pain Syndrome (PFPS). In the short term, exercise therapy appears to have a better effect than patient education consisting of written information and general advice on exercise or compared with placebo treatment. But the long-term effect of exercise therapy compared with patient education is conflicting. The purpose of this study is to examine the short- and long-term effectiveness of patient education compared with patient education and multimodal physiotherapy applied at a very early stage of the condition among adolescents. Methods/Design This study is a single blind pragmatic cluster randomised controlled trial. Four upper secondary schools have been invited to participate in the study (approximately 2500 students, aged 15-19 years). Students are asked to answer an online questionnaire regarding musculoskeletal pain. The students who report knee pain are contacted by telephone and offered a clinical examination by a rheumatologist. Subjects who fit the inclusion criteria and are diagnosed with PFPS are invited to participate in the study. A minimum of 102 students with PFPS are then cluster-randomised into two intervention groups based on which school they attend. Both intervention groups receive written information and education. In addition to patient education, one group receives multimodal physiotherapy consisting primarily of neuromuscular training of the muscles around the foot, knee and hip and home exercises. The students with PFPS fill out self-reported questionnaires at baseline, 3, 6, 12 and 24 months after inclusion in the study. The primary outcome measure is perception of recovery measured on a 7-point Likert scale ranging from "completely recovered" to "worse than ever" at 12 months. Discussion This study is designed to investigate the effectiveness of patient education compared with patient education combined with multimodal physiotherapy. If patient education and multimodal physiotherapy applied at an early stage of Patellofemoral Pain Syndrome proves effective, it may serve as a basis for optimising the clinical pathway for those suffering from the condition, where specific emphasis can be placed on early diagnosis and early treatment. Trial Registration clinicaltrials.gov reference: NCT01438762 PMID:22280484

  7. Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging.

    PubMed

    Vogel, Wouter V; van Dalen, Jorn A; Wiering, Bas; Huisman, Henkjan; Corstens, Frans H M; Ruers, Theo J M; Oyen, Wim J G

    2007-06-01

    Multimodality PET/CT of the liver can be performed with an integrated (hybrid) PET/CT scanner or with software fusion of dedicated PET and CT. Accurate anatomic correlation and good image quality of both modalities are important prerequisites, regardless of the applied method. Registration accuracy is influenced by breathing motion differences on PET and CT, which may also have impact on (attenuation correction-related) artifacts, especially in the upper abdomen. The impact of these issues was evaluated for both hybrid PET/CT and software fusion, focused on imaging of the liver. Thirty patients underwent hybrid PET/CT, 20 with CT during expiration breath-hold (EB) and 10 with CT during free breathing (FB). Ten additional patients underwent software fusion of dedicated PET and dedicated expiration breath-hold CT (SF). The image registration accuracy was evaluated at the location of liver borders on CT and uncorrected PET images and at the location of liver lesions. Attenuation-correction artifacts were evaluated by comparison of liver borders on uncorrected and attenuation-corrected PET images. CT images were evaluated for the presence of breathing artifacts. In EB, 40% of patients had an absolute registration error of the diaphragm in the craniocaudal direction of >1 cm (range, -16 to 44 mm), and 45% of lesions were mispositioned >1 cm. In 50% of cases, attenuation-correction artifacts caused a deformation of the liver dome on PET of >1 cm. Poor compliance to breath-hold instructions caused CT artifacts in 55% of cases. In FB, 30% had registration errors of >1 cm (range, -4 to 16 mm) and PET artifacts were less extensive, but all CT images had breathing artifacts. As SF allows independent alignment of PET and CT, no registration errors or artifacts of >1 cm of the diaphragm occurred. Hybrid PET/CT of the liver may have significant registration errors and artifacts related to breathing motion. The extent of these issues depends on the selected breathing protocol and the speed of the CT scanner. No protocol or scanner can guarantee perfect image fusion. On the basis of these findings, recommendations were formulated with regard to scanner requirements, breathing protocols, and reporting.

  8. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    PubMed Central

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600

  9. Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.

    PubMed

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  10. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    NASA Astrophysics Data System (ADS)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  11. Registration of free-hand OCT daughter endoscopy to 3D organ reconstruction

    PubMed Central

    Lurie, Kristen L.; Angst, Roland; Seibel, Eric J.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Despite the trend to pair white light endoscopy with secondary image modalities for in vivo characterization of suspicious lesions, challenges remain to co-register such data. We present an algorithm to co-register two different optical imaging modalities as a mother-daughter endoscopy pair. Using white light cystoscopy (mother) and optical coherence tomography (OCT) (daughter) as an example, we developed the first forward-viewing OCT endoscope that fits in the working channel of flexible cystoscopes and demonstrated our algorithm’s performance with optical phantom and clinical imaging data. The ability to register multimodal data opens opportunities for advanced analysis in cancer imaging applications. PMID:28018720

  12. MO-AB-BRA-09: Temporally Realistic Manipulation a 4D Biomechanical Lung Phantom for Evaluation of Simultaneous Registration and Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, D; Levesque, I R.; Larkin, J

    Purpose: To produce multi-modality compatible, realistic datasets for the joint evaluation of segmentation and registration with a reliable ground truth using a 4D biomechanical lung phantom. The further development of a computer controlled air flow system for recreation of real patient breathing patterns is incorporated for additional evaluation of motion prediction algorithms. Methods: A pair of preserved porcine lungs was pneumatically manipulated using an in-house computer controlled respirator. The respirator consisted of a set of bellows actuated by a 186 W computer controlled industrial motor. Patient breathing traces were recorded using a respiratory bellows belt during CT simulation and inputmore » into a control program incorporating a proportional-integral-derivative (PID) feedback controller in LabVIEW. Mock tumors were created using dual compartment vacuum sealed sea sponges. 65% iohexol,a gadolinium-based contrast agent and 18F-FDG were used to produce contrast and thus determine a segmentation ground truth. The intensity distributions of the compartments were then digitally matched for the final dataset. A bifurcation tracking pipeline provided a registration ground truth using the bronchi of the lung. The lungs were scanned using a GE Discovery-ST PET/CT scanner and a Phillips Panorama 0.23T MRI using a T1 weighted 3D fast field echo (FFE) protocol. Results: The standard deviation of the error between the patient breathing trace and the encoder feedback from the respirator was found to be ±4.2%. Bifurcation tracking error using CT (0.97×0.97×3.27 mm{sup 3} resolution) was found to be sub-voxel up to 7.8 cm displacement for human lungs and less than 1.32 voxel widths in any axis up to 2.3 cm for the porcine lungs. Conclusion: An MRI/PET/CT compatible anatomically and temporally realistic swine lung phantom was developed for the evaluation of simultaneous registration and segmentation algorithms. With the addition of custom software and mock tumors, the entire package offers ground truths for benchmarking performance with high fidelity.« less

  13. Treatment of Children With Attention-Deficit/Hyperactivity Disorder (ADHD) and Irritability: Results From the Multimodal Treatment Study of Children With ADHD (MTA)

    PubMed Central

    Fernández de la Cruz, Lorena; Simonoff, Emily; McGough, James J.; Halperin, Jeffrey M.; Arnold, L. Eugene; Stringaris, Argyris

    2015-01-01

    Objective Clinically impairing irritability affects 25% to 45% of children with attention-deficit/hyperactivity disorder (ADHD); yet, we know little about what interventions are effective in treating children with ADHD and co-occurring irritability. We used data from the Multimodal Treatment Study of Children With ADHD (MTA) to address 3 aims: to establish whether irritability in children with ADHD can be distinguished from other symptoms of oppositional defiant disorder (ODD); to examine whether ADHD treatment is effective in treating irritability; and to examine how irritability influences ADHD treatment outcomes. Method Secondary analyses of data from the MTA included multivariate analyses, and intent-to-treat random-effects regression models were used. Results Irritability was separable from other ODD symptoms. For treating irritability, systematic stimulant treatment was superior to behavioral management but not to routine community care; a combination of stimulants and behavioral treatment was superior to community care and to behavioral treatment alone, but not to medication alone. Irritability did not moderate the impact of treatment on parent- and teacher-reported ADHD symptoms in any of the 4 treatment groups. Conclusion Treatments targeting ADHD symptoms are helpful for improving irritability in children with ADHD. Moreover, irritability does not appear to influence the response to treatment of ADHD. Clinical trial registration information Multimodal Treatment Study of Children With Attention Deficit and Hyperactivity Disorder (MTA); http://www.clinicaltrials.gov; NCT00000388. PMID:25524791

  14. Multi-volumetric registration and mosaicking using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bozic, Ivan; El-Haddad, Mohamed T.; Malone, Joseph D.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Ophthalmic diagnostic imaging using optical coherence tomography (OCT) is limited by bulk eye motions and a fundamental trade-off between field-of-view (FOV) and sampling density. Here, we introduced a novel multi-volumetric registration and mosaicking method using our previously described multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and OCT (SS-SESLO-OCT) system. Our SS-SESLO-OCT acquires an entire en face fundus SESLO image simultaneously with every OCT cross-section at 200 frames-per-second. In vivo human retinal imaging was performed in a healthy volunteer, and three volumetric datasets were acquired with the volunteer moving freely and refixating between each acquisition. In post-processing, SESLO frames were used to estimate en face rotational and translational motions by registering every frame in all three volumetric datasets to the first frame in the first volume. OCT cross-sections were contrast-normalized and registered axially and rotationally across all volumes. Rotational and translational motions calculated from SESLO frames were applied to corresponding OCT B-scans to compensate for interand intra-B-scan bulk motions, and the three registered volumes were combined into a single interpolated multi-volumetric mosaic. Using complementary information from SESLO and OCT over serially acquired volumes, we demonstrated multivolumetric registration and mosaicking to recover regions of missing data resulting from blinks, saccades, and ocular drifts. We believe our registration method can be directly applied for multi-volumetric motion compensation, averaging, widefield mosaicking, and vascular mapping with potential applications in ophthalmic clinical diagnostics, handheld imaging, and intraoperative guidance.

  15. Paper-Based Textbooks with Audio Support for Print-Disabled Students.

    PubMed

    Fujiyoshi, Akio; Ohsawa, Akiko; Takaira, Takuya; Tani, Yoshiaki; Fujiyoshi, Mamoru; Ota, Yuko

    2015-01-01

    Utilizing invisible 2-dimensional codes and digital audio players with a 2-dimensional code scanner, we developed paper-based textbooks with audio support for students with print disabilities, called "multimodal textbooks." Multimodal textbooks can be read with the combination of the two modes: "reading printed text" and "listening to the speech of the text from a digital audio player with a 2-dimensional code scanner." Since multimodal textbooks look the same as regular textbooks and the price of a digital audio player is reasonable (about 30 euro), we think multimodal textbooks are suitable for students with print disabilities in ordinary classrooms.

  16. An integrated GIS-based data model for multimodal urban public transportation analysis and management

    NASA Astrophysics Data System (ADS)

    Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin

    2008-10-01

    Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.

  17. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  18. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma.

    PubMed

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-02-28

    To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P<0.001) and objective tumor response (P=0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P=0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P<0.001). Multivariate analysis identified tumor stage (P<0.001) and tumor type (P=0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P<0.001), surgical treatment (P=0.009), and multi-modal treatment (P=0.002) were identified as independent post-treatment prognostic factors. TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC.

  19. Outcome of transarterial chemoembolization-based multi-modal treatment in patients with unresectable hepatocellular carcinoma

    PubMed Central

    Song, Do Seon; Nam, Soon Woo; Bae, Si Hyun; Kim, Jin Dong; Jang, Jeong Won; Song, Myeong Jun; Lee, Sung Won; Kim, Hee Yeon; Lee, Young Joon; Chun, Ho Jong; You, Young Kyoung; Choi, Jong Young; Yoon, Seung Kew

    2015-01-01

    AIM: To investigate the efficacy and safety of transarterial chemoembolization (TACE)-based multimodal treatment in patients with large hepatocellular carcinoma (HCC). METHODS: A total of 146 consecutive patients were included in the analysis, and their medical records and radiological data were reviewed retrospectively. RESULTS: In total, 119 patients received TACE-based multi-modal treatments, and the remaining 27 received conservative management. Overall survival (P < 0.001) and objective tumor response (P = 0.003) were significantly better in the treatment group than in the conservative group. After subgroup analysis, survival benefits were observed not only in the multi-modal treatment group compared with the TACE-only group (P = 0.002) but also in the surgical treatment group compared with the loco-regional treatment-only group (P < 0.001). Multivariate analysis identified tumor stage (P < 0.001) and tumor type (P = 0.009) as two independent pre-treatment factors for survival. After adjusting for significant pre-treatment prognostic factors, objective response (P < 0.001), surgical treatment (P = 0.009), and multi-modal treatment (P = 0.002) were identified as independent post-treatment prognostic factors. CONCLUSION: TACE-based multi-modal treatments were safe and more beneficial than conservative management. Salvage surgery after successful downstaging resulted in long-term survival in patients with large, unresectable HCC. PMID:25741147

  20. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited volume...

  1. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited volume...

  2. ITOHealth: a multimodal middleware-oriented integrated architecture for discovering medical entities.

    PubMed

    Alor-Hernández, Giner; Sánchez-Cervantes, José Luis; Juárez-Martínez, Ulises; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Aguilar-Laserre, Alberto

    2012-03-01

    Emergency healthcare is one of the emerging application domains for information services, which requires highly multimodal information services. The time of consuming pre-hospital emergency process is critical. Therefore, the minimization of required time for providing primary care and consultation to patients is one of the crucial factors when trying to improve the healthcare delivery in emergency situations. In this sense, dynamic location of medical entities is a complex process that needs time and it can be critical when a person requires medical attention. This work presents a multimodal location-based system for locating and assigning medical entities called ITOHealth. ITOHealth provides a multimodal middleware-oriented integrated architecture using a service-oriented architecture in order to provide information of medical entities in mobile devices and web browsers with enriched interfaces providing multimodality support. ITOHealth's multimodality is based on the use of Microsoft Agent Characters, the integration of natural language voice to the characters, and multi-language and multi-characters support providing an advantage for users with visual impairments.

  3. Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation

    NASA Astrophysics Data System (ADS)

    Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul

    2015-03-01

    Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.

  4. A multimodal image sensor system for identifying water stress in grapevines

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  5. Automated Detection of Clinically Significant Prostate Cancer in mp-MRI Images Based on an End-to-End Deep Neural Network.

    PubMed

    Wang, Zhiwei; Liu, Chaoyue; Cheng, Danpeng; Wang, Liang; Yang, Xin; Cheng, Kwang-Ting

    2018-05-01

    Automated methods for detecting clinically significant (CS) prostate cancer (PCa) in multi-parameter magnetic resonance images (mp-MRI) are of high demand. Existing methods typically employ several separate steps, each of which is optimized individually without considering the error tolerance of other steps. As a result, they could either involve unnecessary computational cost or suffer from errors accumulated over steps. In this paper, we present an automated CS PCa detection system, where all steps are optimized jointly in an end-to-end trainable deep neural network. The proposed neural network consists of concatenated subnets: 1) a novel tissue deformation network (TDN) for automated prostate detection and multimodal registration and 2) a dual-path convolutional neural network (CNN) for CS PCa detection. Three types of loss functions, i.e., classification loss, inconsistency loss, and overlap loss, are employed for optimizing all parameters of the proposed TDN and CNN. In the training phase, the two nets mutually affect each other and effectively guide registration and extraction of representative CS PCa-relevant features to achieve results with sufficient accuracy. The entire network is trained in a weakly supervised manner by providing only image-level annotations (i.e., presence/absence of PCa) without exact priors of lesions' locations. Compared with most existing systems which require supervised labels, e.g., manual delineation of PCa lesions, it is much more convenient for clinical usage. Comprehensive evaluation based on fivefold cross validation using 360 patient data demonstrates that our system achieves a high accuracy for CS PCa detection, i.e., a sensitivity of 0.6374 and 0.8978 at 0.1 and 1 false positives per normal/benign patient.

  6. Multi-modal anatomical optical coherence tomography and CT for in vivo dynamic upper airway imaging

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Santosh; Bu, Ruofei; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-02-01

    We describe a novel, multi-modal imaging protocol for validating quantitative dynamic airway imaging performed using anatomical Optical Coherence Tomography (aOCT). The aOCT system consists of a catheter-based aOCT probe that is deployed via a bronchoscope, while a programmable ventilator is used to control airway pressure. This setup is employed on the bed of a Siemens Biograph CT system capable of performing respiratory-gated acquisitions. In this arrangement the position of the aOCT catheter may be visualized with CT to aid in co-registration. Utilizing this setup we investigate multiple respiratory pressure parameters with aOCT, and respiratory-gated CT, on both ex vivo porcine trachea and live, anesthetized pigs. This acquisition protocol has enabled real-time measurement of airway deformation with simultaneous measurement of pressure under physiologically relevant static and dynamic conditions- inspiratory peak or peak positive airway pressures of 10-40 cm H2O, and 20-30 breaths per minute for dynamic studies. We subsequently compare the airway cross sectional areas (CSA) obtained from aOCT and CT, including the change in CSA at different stages of the breathing cycle for dynamic studies, and the CSA at different peak positive airway pressures for static studies. This approach has allowed us to improve our acquisition methodology and to validate aOCT measurements of the dynamic airway for the first time. We believe that this protocol will prove invaluable for aOCT system development and greatly facilitate translation of OCT systems for airway imaging into the clinical setting.

  7. Range image registration based on hash map and moth-flame optimization

    NASA Astrophysics Data System (ADS)

    Zou, Li; Ge, Baozhen; Chen, Lei

    2018-03-01

    Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.

  8. Initial Findings from a Novel School-Based Program, EMPATHY, Which May Help Reduce Depression and Suicidality in Youth

    PubMed Central

    Silverstone, Peter H.; Bercov, Marni; Suen, Victoria Y. M.; Allen, Andrea; Cribben, Ivor; Goodrick, Jodi; Henry, Stu; Pryce, Catherine; Langstraat, Pieter; Rittenbach, Katherine; Chakraborty, Samprita; Engels, Rutger C.; McCabe, Christopher

    2015-01-01

    We describe initial pilot findings from a novel school-based approach to reduce youth depression and suicidality, the Empowering a Multimodal Pathway Towards Healthy Youth (EMPATHY) program. Here we present the findings from the pilot cohort of 3,244 youth aged 11–18 (Grades 6-12). They were screened for depression, suicidality, anxiety, use of drugs, alcohol, or tobacco (DAT), quality-of-life, and self-esteem. Additionally, all students in Grades 7 and 8 (mean ages 12.3 and 13.3 respectively) also received an 8-session cognitive-behavioural therapy (CBT) based program designed to increase resiliency to depression. Following screening there were rapid interventions for the 125 students (3.9%) who were identified as being actively suicidal, as well as for another 378 students (11.7%) who were felt to be at higher-risk of self-harm based on a combination of scores from all the scales. The intervention consisted of an interview with the student and their family followed by offering a guided internet-based CBT program. Results from the 2,790 students who completed scales at both baseline and 12-week follow-up showed significant decreases in depression and suicidality. Importantly, there was a marked decrease in the number of students who were actively suicidal (from n=125 at baseline to n=30 at 12-weeks). Of the 503 students offered the CBT program 163 (32%) took part, and this group had significantly lower depression scores compared to those who didn’t take part. There were no improvements in self-esteem, quality-of-life, or the number of students using DAT. Only 60 students (2% of total screened) required external referral during the 24-weeks following study initiation. These results suggest that a multimodal school-based program may provide an effective and pragmatic approach to help reduce youth depression and suicidality. Further research is required to determine longer-term efficacy, reproducibility, and key program elements. Trial Registration ClinicalTrials.gov NCT02169960 PMID:25974146

  9. Individual Multimodal Therapy for Weight Loss: A Case Example.

    ERIC Educational Resources Information Center

    Kilmartin, Christopher; Robbins, Steven

    1987-01-01

    Presents a case study highlighting a treatment model based on a multimodal conceptualization. Suggests that individual multimodal therapy provides a comprehensive approach to the treatment of overeating, helping to target social and emotional issues related to eating disorders as well as the eating behaviors themselves. (Author/ABB)

  10. Comparison of carina-based versus bony anatomy-based registration for setup verification in esophageal cancer radiotherapy.

    PubMed

    Machiels, Mélanie; Jin, Peng; van Gurp, Christianne H; van Hooft, Jeanin E; Alderliesten, Tanja; Hulshof, Maarten C C M

    2018-03-21

    To investigate the feasibility and geometric accuracy of carina-based registration for CBCT-guided setup verification in esophageal cancer IGRT, compared with current practice bony anatomy-based registration. Included were 24 esophageal cancer patients with 65 implanted fiducial markers, visible on planning CTs and follow-up CBCTs. All available CBCT scans (n = 236) were rigidly registered to the planning CT with respect to the bony anatomy and the carina. Target coverage was visually inspected and marker position variation was quantified relative to both registration approaches; the variation of systematic (Σ) and random errors (σ) was estimated. Automatic carina-based registration was feasible in 94.9% of the CBCT scans, with an adequate target coverage in 91.1% compared to 100% after bony anatomy-based registration. Overall, Σ (σ) in the LR/CC/AP direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm using the bony anatomy registration compared to 3.3(3.0)/3.6(2.6)/3.9(3.1) mm for the carina. Mid-thoracic placed markers showed a non-significant but smaller Σ in CC and AP direction when using the carina-based registration. Compared with a bony anatomy-based registration, carina-based registration for esophageal cancer IGRT results in inadequate target coverage in 8.9% of cases. Furthermore, large Σ and σ, requiring larger anisotropic margins, were seen after carina-based registration. Only for tumors entirely confined to the mid-thoracic region the carina-based registration might be slightly favorable.

  11. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Wang, J; Zhang, H

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss ormore » gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that computerized PET/CT image analysis holds great potential to improve the accuracy in evaluation of tumor response. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  12. TU-F-17A-03: A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, D; El Naqa, I; Levesque, I

    2014-06-15

    Purpose: Coupling the processes of segmentation and registration (regmentation) is a recent development that allows improved efficiency and accuracy for both steps and may improve the clinical feasibility of online adaptive radiotherapy. Presented is a multimodality animal tissue model designed specifically to provide a ground truth to simultaneously evaluate segmentation and registration errors during respiratory motion. Methods: Tumor surrogates were constructed from vacuum sealed hydrated natural sea sponges with catheters used for the injection of PET radiotracer. These contained two compartments allowing for two concentrations of radiotracer mimicking both tumor and background signals. The lungs were inflated to different volumesmore » using an air pump and flow valve and scanned using PET/CT and MRI. Anatomical landmarks were used to evaluate the registration accuracy using an automated bifurcation tracking pipeline for reproducibility. The bifurcation tracking accuracy was assessed using virtual deformations of 2.6 cm, 5.2 cm and 7.8 cm of a CT scan of a corresponding human thorax. Bifurcations were detected in the deformed dataset and compared to known deformation coordinates for 76 points. Results: The bifurcation tracking accuracy was found to have a mean error of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior axes using a 1×1×5 mm3 resolution after the CT volume was deformed 7.8 cm. The tumor surrogates provided a segmentation ground truth after being registered to the phantom image. Conclusion: A swine lung model in conjunction with vacuum sealed sponges and a bifurcation tracking algorithm is presented that is MRI, PET and CT compatible and anatomically and kinetically realistic. Corresponding software for tracking anatomical landmarks within the phantom shows sub-voxel accuracy. Vacuum sealed sponges provide realistic tumor surrogate with a known boundary. A ground truth with minimal uncertainty is thus realized that can be used for comparing the performance of registration and segmentation algorithms.« less

  13. A Framework and Toolkit for the Construction of Multimodal Learning Interfaces

    DTIC Science & Technology

    1998-04-29

    human communication modalities in the context of a broad class of applications, specifically those that support state manipulation via parameterized actions. The multimodal semantic model is also the basis for a flexible, domain independent, incrementally trainable multimodal interpretation algorithm based on a connectionist network. The second major contribution is an application framework consisting of reusable components and a modular, distributed system architecture. Multimodal application developers can assemble the components in the framework into a new application,

  14. Content-based TV sports video retrieval using multimodal analysis

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru

    2003-09-01

    In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.

  15. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    NASA Astrophysics Data System (ADS)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  16. Fiducial marker application method for position alignment of in situ multimodal X-ray experiments and reconstructions

    DOE PAGES

    Shade, Paul A.; Menasche, David B.; Bernier, Joel V.; ...

    2016-03-01

    An evolving suite of X-ray characterization methods are presently available to the materials community, providing a great opportunity to gain new insight into material behavior and provide critical validation data for materials models. Two critical and related issues are sample repositioning during anin situexperiment and registration of multiple data sets after the experiment. To address these issues, a method is described which utilizes a focused ion-beam scanning electron microscope equipped with a micromanipulator to apply gold fiducial markers to samples for X-ray measurements. The method is demonstrated with a synchrotron X-ray experiment involvingin situloading of a titanium alloy tensile specimen.

  17. Teachers' Integration of Multimodality into Classroom Practices for English Language Learners

    ERIC Educational Resources Information Center

    Choi, Jayoung; Yi, Youngjoo

    2016-01-01

    Despite the proven benefits of multimodal teaching and learning (i.e., through visual, sound, movement, print-based text, and technology) for students, little is known about how teachers of English language learners (ELLs) integrate multimodality into their existing curriculums. In this study, the authors examined how two teachers who had limited…

  18. Fracturing Writing Spaces: Multimodal Storytelling Ignites Process Writing

    ERIC Educational Resources Information Center

    Lenters, Kimberly; Winters, Kari-Lynn

    2013-01-01

    In this paper, we explore the affordances of literature-based, arts-infused and digital media processes for students, as multimodal practices take centre stage in an English Language Arts unit on fractured fairy tales. The study takes up the challenge of addressing multimodal literacy instruction and research in ways that utilize a range of…

  19. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  20. Challenges in treatment of posttraumatic stress disorder in refugees: towards integration of evidence-based treatments with contextual and culture-sensitive perspectives

    PubMed Central

    Drožđek, Boris

    2015-01-01

    Background Research shows that trauma-focused therapy and multimodal interventions are the two most often used strategies in treatment of refugees suffering from posttraumatic stress disorder (PTSD). While preliminary evidence suggests that trauma-focused approaches may have some efficacy, this could not be established for multimodal interventions. However, it may be that multimodal interventions have been studied in more treatment-resistant refugees with very high levels of psychopathology, disability, and chronicity. In the past decades, various models for understanding of the complex relationship between mental health problems and well-being have emerged. They aim at framing mental health problems in individualized, contextual, epigenetic, and culturally sensitive ways, and may be useful in tailoring content and timing of multimodal interventions. Objective To draw clinicians’ attention to the possibility of using the Integrative Contextual Model for understanding and assessment of posttrauma mental health sequelae while tailoring multimodal interventions; to present a possible way of combining multimodal with evidence-based trauma-focused approaches; and to improve the understanding and treatment of PTSD and other mental health problems in refugee survivors of prolonged and repeated trauma. Method Based on literature, clinical experience, and presentation of a fictional case, the use of the Integrative Contextual Model in tailoring the treatment of severe PTSD in a refugee patient is presented and discussed. Results The Integrative Contextual Model for understanding and assessing factors, which may play a role in causing and maintaining of PTSD and comorbidity in refugees, may help tailoring of multimodal interventions. These interventions can be combined with evidence-based trauma-focused treatments. Conclusion The field of refugee mental health intervention and clinical practice with traumatized refugees may be enriched with the use of contextual and developmental models for assessment and conceptualization of posttrauma sequelae. Multimodal and trauma-focused interventions may be applied sequentially in a course of the treatment trajectory. PMID:25573504

  1. Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect.

    PubMed

    Zhang, Peng; Wang, Tianshu; Ma, Wanzhuo; Dong, Keyan; Jiang, Huilin

    2015-05-20

    A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.

  2. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  3. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    PubMed

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  4. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  5. "Where I'm From": Utilizing Place-Based Pedagogy and Multimodal Literacy in a Graduate Children's Literature Class

    ERIC Educational Resources Information Center

    Bemmett, Stephanie M.

    2016-01-01

    In this study, I examined integrating place-based education pedagogy and multimodal literacies into a graduate level children's literature class. The findings suggest including place-based education pedagogy allows middle level graduate students to connect to geographically-based children's literature. The findings also propose that incorporating…

  6. Analyzing a multimodal biometric system using real and virtual users

    NASA Astrophysics Data System (ADS)

    Scheidat, Tobias; Vielhauer, Claus

    2007-02-01

    Three main topics of recent research on multimodal biometric systems are addressed in this article: The lack of sufficiently large multimodal test data sets, the influence of cultural aspects and data protection issues of multimodal biometric data. In this contribution, different possibilities are presented to extend multimodal databases by generating so-called virtual users, which are created by combining single biometric modality data of different users. Comparative tests on databases containing real and virtual users based on a multimodal system using handwriting and speech are presented, to study to which degree the use of virtual multimodal databases allows conclusions with respect to recognition accuracy in comparison to real multimodal data. All tests have been carried out on databases created from donations from three different nationality groups. This allows to review the experimental results both in general and in context of cultural origin. The results show that in most cases the usage of virtual persons leads to lower accuracy than the usage of real users in terms of the measurement applied: the Equal Error Rate. Finally, this article will address the general question how the concept of virtual users may influence the data protection requirements for multimodal evaluation databases in the future.

  7. Radiolabeled Nanoparticles for Multimodality Tumor Imaging

    PubMed Central

    Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai

    2014-01-01

    Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237

  8. Liposome bupivacaine for improvement in economic outcomes and opioid burden in GI surgery: IMPROVE Study pooled analysis.

    PubMed

    Cohen, Stephen M; Vogel, Jon D; Marcet, Jorge E; Candiotti, Keith A

    2014-01-01

    Postsurgical pain management remains a significant challenge. Liposome bupivacaine, as part of a multimodal analgesic regimen, has been shown to significantly reduce postsurgical opioid consumption, hospital length of stay (LOS), and hospitalization costs in gastrointestinal (GI) surgery, compared with intravenous (IV) opioid-based patient-controlled analgesia (PCA). Pooled results from open-label studies comparing a liposome bupivacaine-based multimodal analgesic regimen with IV opioid PCA were analyzed. Patients (n=191) who underwent planned surgery and received study drug (IV opioid PCA, n=105; multimodal analgesia, n=86) were included. Liposome bupivacaine-based multimodal analgesia compared with IV opioid PCA significantly reduced mean (standard deviation [SD]) postsurgical opioid consumption (38 [55] mg versus [vs] 96 [85] mg; P<0.0001), postsurgical LOS (median 2.9 vs 4.3 days; P<0.0001), and mean hospitalization costs (US$8,271 vs US$10,726; P=0.0109). The multimodal analgesia group reported significantly fewer patients with opioid-related adverse events (AEs) than the IV opioid PCA group (P=0.0027); there were no significant between-group differences in patient satisfaction scores at 30 days. A liposome bupivacaine-based multimodal analgesic regimen was associated with significantly less opioid consumption, opioid-related AEs, and better health economic outcomes compared with an IV opioid PCA-based regimen in patients undergoing GI surgery. This pooled analysis is based on data from Phase IV clinical trials registered on the US National Institutes of Health www.ClinicalTrials.gov database under study identifiers NCT01460485, NCT01507220, NCT01507233, NCT01509638, NCT01509807, NCT01509820, NCT01461122, NCT01461135, NCT01534988, and NCT01507246.

  9. Modeling 4D Pathological Changes by Leveraging Normative Models

    PubMed Central

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Saha, Avishek; Liu, Wei; Goh, S.Y. Matthew; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido

    2016-01-01

    With the increasing use of efficient multimodal 3D imaging, clinicians are able to access longitudinal imaging to stage pathological diseases, to monitor the efficacy of therapeutic interventions, or to assess and quantify rehabilitation efforts. Analysis of such four-dimensional (4D) image data presenting pathologies, including disappearing and newly appearing lesions, represents a significant challenge due to the presence of complex spatio-temporal changes. Image analysis methods for such 4D image data have to include not only a concept for joint segmentation of 3D datasets to account for inherent correlations of subject-specific repeated scans but also a mechanism to account for large deformations and the destruction and formation of lesions (e.g., edema, bleeding) due to underlying physiological processes associated with damage, intervention, and recovery. In this paper, we propose a novel framework that provides a joint segmentation-registration framework to tackle the inherent problem of image registration in the presence of objects not present in all images of the time series. Our methodology models 4D changes in pathological anatomy across time and and also provides an explicit mapping of a healthy normative template to a subject’s image data with pathologies. Since atlas-moderated segmentation methods cannot explain appearance and locality pathological structures that are not represented in the template atlas, the new framework provides different options for initialization via a supervised learning approach, iterative semisupervised active learning, and also transfer learning, which results in a fully automatic 4D segmentation method. We demonstrate the effectiveness of our novel approach with synthetic experiments and a 4D multimodal MRI dataset of severe traumatic brain injury (TBI), including validation via comparison to expert segmentations. However, the proposed methodology is generic in regard to different clinical applications requiring quantitative analysis of 4D imaging representing spatio-temporal changes of pathologies. PMID:27818606

  10. Practical multimodal care for cancer cachexia.

    PubMed

    Maddocks, Matthew; Hopkinson, Jane; Conibear, John; Reeves, Annie; Shaw, Clare; Fearon, Ken C H

    2016-12-01

    Cancer cachexia is common and reduces function, treatment tolerability and quality of life. Given its multifaceted pathophysiology a multimodal approach to cachexia management is advocated for, but can be difficult to realise in practice. We use a case-based approach to highlight practical approaches to the multimodal management of cachexia for patients across the cancer trajectory. Four cases with lung cancer spanning surgical resection, radical chemoradiotherapy, palliative chemotherapy and no anticancer treatment are presented. We propose multimodal care approaches that incorporate nutritional support, exercise, and anti-inflammatory agents, on a background of personalized oncology care and family-centred education. Collectively, the cases reveal that multimodal care is part of everyone's remit, often focuses on supported self-management, and demands buy-in from the patient and their family. Once operationalized, multimodal care approaches can be tested pragmatically, including alongside emerging pharmacological cachexia treatments. We demonstrate that multimodal care for cancer cachexia can be achieved using simple treatments and without a dedicated team of specialists. The sharing of advice between health professionals can help build collective confidence and expertise, moving towards a position in which every team member feels they can contribute towards multimodal care.

  11. Multimode-singlemode-multimode optical fiber sensor coated with novolac resin for detecting liquid phase alcohol

    NASA Astrophysics Data System (ADS)

    Marfu'ah, Amalia, Niza Rosyda; Hatta, Agus Muhamad; Pratama, Detak Yan

    2018-04-01

    Alcohol sensor based on multimode-singlemode-multimode (MSM) optical fiber with novolac resin as the external medium is proposed and demonstrated experimentally. Novolac resin swells when it is exposed by the alcohol. This effect causes a change in the polymer density leading to the refractive index's variation. The transmission light of the sensor depends on the refractive index of external medium. Based on the results, alcohol sensor based on MSM optical fiber structure using novolac resin has a higher sensitivity compared to the sensor without using novolac resin in the mixture of alcohol and distilled water. Alcohol sensor based on MSM optical fiber structure using novolac resin in the mixture of alcohol and distilled water with a singlemode fiber length of 5 mm has a sensitivity of 0.028972 dBm per % V/V, and in the mixture of alcohol and sugar solution of 10% w/w has a sensitivity of 0.005005 dBm per % V/V.

  12. Multimodal Secondary Prevention Behavioral Interventions for TIA and Stroke: A Systematic Review and Meta-Analysis

    PubMed Central

    Lawrence, Maggie; Pringle, Jan; Kerr, Susan; Booth, Joanne; Govan, Lindsay; Roberts, Nicola J.

    2015-01-01

    Background Guidelines recommend implementation of multimodal interventions to help prevent recurrent TIA/stroke. We undertook a systematic review to assess the effectiveness of behavioral secondary prevention interventions. Strategy Searches were conducted in 14 databases, including MEDLINE (1980-January 2014). We included randomized controlled trials (RCTs) testing multimodal interventions against usual care/modified usual care. All review processes were conducted in accordance with Cochrane guidelines. Results Twenty-three papers reporting 20 RCTs (6,373 participants) of a range of multimodal behavioral interventions were included. Methodological quality was generally low. Meta-analyses were possible for physiological, lifestyle, psychosocial and mortality/recurrence outcomes. Note: all reported confidence intervals are 95%. Systolic blood pressure was reduced by 4.21 mmHg (mean) (−6.24 to −2.18, P = 0.01 I2 = 58%, 1,407 participants); diastolic blood pressure by 2.03 mmHg (mean) (−3.19 to −0.87, P = 0.004, I2 = 52%, 1,407 participants). No significant changes were found for HDL, LDL, total cholesterol, fasting blood glucose, high sensitivity-CR, BMI, weight or waist:hip ratio, although there was a significant reduction in waist circumference (−6.69 cm, −11.44 to −1.93, P = 0.006, I2 = 0%, 96 participants). There was no significant difference in smoking continuance, or improved fruit and vegetable consumption. There was a significant difference in compliance with antithrombotic medication (OR 1.45, 1.21 to 1.75, P<0.0001, I2 = 0%, 2,792 participants) and with statins (OR 2.53, 2.15 to 2.97, P< 0.00001, I2 = 0%, 2,636 participants); however, there was no significant difference in compliance with antihypertensives. There was a significant reduction in anxiety (−1.20, −1.77 to −0.63, P<0.0001, I2 = 85%, 143 participants). Although there was no significant difference in odds of death or recurrent TIA/stroke, there was a significant reduction in the odds of cardiac events (OR 0.38, 0.16 to 0.88, P = 0.02, I2 = 0%, 4,053 participants). Conclusions There are benefits to be derived from multimodal secondary prevention interventions. However, the findings are complex and should be interpreted with caution. Further, high quality trials providing comprehensive detail of interventions and outcomes, are required. Review Registration PROSPERO CRD42012002538. PMID:25793643

  13. Nanoparticles in Higher-Order Multimodal Imaging

    NASA Astrophysics Data System (ADS)

    Rieffel, James Ki

    Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.

  14. Digital Multimodal Texts and Their Role in Project Work: Opportunities and Dilemmas

    ERIC Educational Resources Information Center

    Wikan, Gerd; Molster, Terje; Faugli, Bjorn; Hope, Rafael

    2010-01-01

    This paper explores how and to what extent digital multimodal text production can play a role in project work. The focus is upon describing and understanding how teachers and learners view multimodal text production as part of a learning process. Group-based project work has been used extensively in Norwegian schools since the 1970s. One criticism…

  15. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  16. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  17. Randomized controlled trial of web-based multimodal therapy for children with acquired brain injury to improve gross motor capacity and performance.

    PubMed

    Baque, Emmah; Barber, Lee; Sakzewski, Leanne; Boyd, Roslyn N

    2017-06-01

    To compare efficacy of a web-based multimodal training programme, 'Move it to improve it' (Mitii TM ), to usual care on gross motor capacity and performance for children with an acquired brain injury. Randomized waitlist controlled trial. Home environment. A total of 60 independently ambulant children (30 in each group), minimum 12 months post-acquired brain injury were recruited and randomly allocated to receive either 20 weeks of Mitii TM training (30 minutes/day, six days/week, total 60 hours) immediately, or waitlisted (usual care control group) for 20 weeks. A total of 58 children completed baseline assessments (32 males; age 11 years 11 months ± 2 years 6 months; Gross Motor Function Classification System equivalent I = 29, II = 29). The Mitii TM program comprised of gross motor, upper limb and visual perception/cognitive activities. The primary outcome was 30-second, repetition maximum functional strength tests for the lower limb (sit-to-stand, step-ups, half-kneel to stand). Secondary outcomes were the 6-minute walk test, High-level Mobility Assessment Tool, Timed Up and Go Test and habitual physical activity as captured by four-day accelerometry. Groups were equivalent at baseline on demographic and clinical measures. The Mitii TM group demonstrated significantly greater improvements on combined score of functional strength tests (mean difference 10.19 repetitions; 95% confidence interval, 3.26-17.11; p = 0.006) compared with the control group. There were no other between-group differences on secondary outcomes. Although the Mitii TM programme demonstrated statistically significant improvements in the functional strength tests of the lower limb, results did not exceed the minimum detectable change and cannot be considered clinically relevant for children with an acquired brain injury. Australian New Zealand Clinical Trials Registration Number, ANZCTR12613000403730.

  18. Child/Adolescent Anxiety Multimodal Study (CAMS): rationale, design, and methods

    PubMed Central

    2010-01-01

    Objective To present the design, methods, and rationale of the Child/Adolescent Anxiety Multimodal Study (CAMS), a recently completed federally-funded, multi-site, randomized placebo-controlled trial that examined the relative efficacy of cognitive-behavior therapy (CBT), sertraline (SRT), and their combination (COMB) against pill placebo (PBO) for the treatment of separation anxiety disorder (SAD), generalized anxiety disorder (GAD) and social phobia (SoP) in children and adolescents. Methods Following a brief review of the acute outcomes of the CAMS trial, as well as the psychosocial and pharmacologic treatment literature for pediatric anxiety disorders, the design and methods of the CAMS trial are described. Results CAMS was a six-year, six-site, randomized controlled trial. Four hundred eighty-eight (N = 488) children and adolescents (ages 7-17 years) with DSM-IV-TR diagnoses of SAD, GAD, or SoP were randomly assigned to one of four treatment conditions: CBT, SRT, COMB, or PBO. Assessments of anxiety symptoms, safety, and functional outcomes, as well as putative mediators and moderators of treatment response were completed in a multi-measure, multi-informant fashion. Manual-based therapies, trained clinicians and independent evaluators were used to ensure treatment and assessment fidelity. A multi-layered administrative structure with representation from all sites facilitated cross-site coordination of the entire trial, study protocols and quality assurance. Conclusions CAMS offers a model for clinical trials methods applicable to psychosocial and psychopharmacological comparative treatment trials by using state-of-the-art methods and rigorous cross-site quality controls. CAMS also provided a large-scale examination of the relative and combined efficacy and safety of the best evidenced-based psychosocial (CBT) and pharmacologic (SSRI) treatments to date for the most commonly occurring pediatric anxiety disorders. Primary and secondary results of CAMS will hold important implications for informing practice-relevant decisions regarding the initial treatment of youth with anxiety disorders. Trial registration ClinicalTrials.gov NCT00052078. PMID:20051130

  19. Generating Multimodal References

    ERIC Educational Resources Information Center

    van der Sluis, Ielka; Krahmer, Emiel

    2007-01-01

    This article presents a new computational model for the generation of multimodal referring expressions (REs), based on observations in human communication. The algorithm is an extension of the graph-based algorithm proposed by Krahmer, van Erk, and Verleg (2003) and makes use of a so-called Flashlight Model for pointing. The Flashlight Model…

  20. Hearing and Seeing Tone through Color: An Efficacy Study of Web-Based, Multimodal Chinese Tone Perception Training

    ERIC Educational Resources Information Center

    Godfroid, Aline; Lin, Chin-Hsi; Ryu, Catherine

    2017-01-01

    Multimodal approaches have been shown to be effective for many learning tasks. In this study, we compared the effectiveness of five multimodal methods for second language (L2) Mandarin tone perception training: three single-cue methods (number, pitch contour, color) and two dual-cue methods (color and number, color and pitch contour). A total of…

  1. Design issues of a multimode interference-based 3-dB splitter.

    PubMed

    Themistos, Christos; Rahman, B M Azizur

    2002-11-20

    We have investigated important issues such as the power loss, the loss imbalance the fabrication tolerances, and the wavelength dependence for the design of a multimode interference-based 3-dB splitter on deeply etched InP waveguides under general, restricted, and symmetric interference mechanisms. For this investigation, we used the finite-element-based beam propagation approach. Results are presented.

  2. The pivotal role of multimodality reporter sensors in drug discovery: from cell based assays to real time molecular imaging.

    PubMed

    Ray, Pritha

    2011-04-01

    Development and marketing of new drugs require stringent validation that are expensive and time consuming. Non-invasive multimodality molecular imaging using reporter genes holds great potential to expedite these processes at reduced cost. New generations of smarter molecular imaging strategies such as Split reporter, Bioluminescence resonance energy transfer, Multimodality fusion reporter technologies will further assist to streamline and shorten the drug discovery and developmental process. This review illustrates the importance and potential of molecular imaging using multimodality reporter genes in drug development at preclinical phases.

  3. Tunable multimode-interference bandpass fiber filter.

    PubMed

    Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P

    2010-02-01

    We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.

  4. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-08-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling.

  5. A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation

    PubMed Central

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.

    2010-01-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  6. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    NASA Astrophysics Data System (ADS)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  7. Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Meng, Qiang

    2014-05-01

    This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.

  8. Could a Multimodal Dictionary Serve as a Learning Tool? An Examination of the Impact of Technologically Enhanced Visual Glosses on L2 Text Comprehension

    ERIC Educational Resources Information Center

    Sato, Takeshi

    2016-01-01

    This study examines the efficacy of a multimodal online bilingual dictionary based on cognitive linguistics in order to explore the advantages and limitations of explicit multimodal L2 vocabulary learning. Previous studies have examined the efficacy of the verbal and visual representation of words while reading L2 texts, concluding that it…

  9. Computer-Based Multimodal Composing Activities, Self-Revision, and L2 Acquisition through Writing

    ERIC Educational Resources Information Center

    Dzekoe, Richmond

    2017-01-01

    This study investigated how 22 advanced-low proficiency ESL students used computer-based multimodal composing activities (CBMCAs) to facilitate self-revision and learn English through academic writing in the USA. The CBMCAs involved a combination of writing, listening, visual analysis, and speaking activities. The research was framed within an…

  10. Student's Uncertainty Modeling through a Multimodal Sensor-Based Approach

    ERIC Educational Resources Information Center

    Jraidi, Imene; Frasson, Claude

    2013-01-01

    Detecting the student internal state during learning is a key construct in educational environment and particularly in Intelligent Tutoring Systems (ITS). Students' uncertainty is of primary interest as it is deeply rooted in the process of knowledge construction. In this paper we propose a new sensor-based multimodal approach to model…

  11. Deep features for efficient multi-biometric recognition with face and ear images

    NASA Astrophysics Data System (ADS)

    Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng

    2017-07-01

    Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.

  12. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels.

    PubMed

    Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong

    2018-04-01

    Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Estimation of the uncertainty of elastic image registration with the demons algorithm.

    PubMed

    Hub, M; Karger, C P

    2013-05-07

    The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration. The reproducibility is determined as the standard deviation of the displacement vector components obtained from multiple registrations. These registrations differ in predefined initial deformations. The proposed approach was tested with artificially deformed lung images, where the ground truth on the deformation is known. In voxels where the result of the registration was less reproducible, the registration turned out to have larger average registration errors as compared to locations of the same image, where the registration was more reproducible. The proposed method can show a clinician in which area of the image the elastic registration with the demons algorithm cannot be expected to be accurate.

  14. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge

    PubMed Central

    Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant

    2014-01-01

    Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598

  15. A meta-classifier for detecting prostate cancer by quantitative integration of in vivo magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant

    2008-03-01

    Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which corresponding histological ground truth for spatial extent of CaP is known, show a marginally higher sensitivity, specificity, and positive predictive value compared to corresponding CAD results with the individual modalities.

  16. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    NASA Astrophysics Data System (ADS)

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-07-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.

  17. Ridge-branch-based blood vessel detection algorithm for multimodal retinal images

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hutchings, N.; Knighton, R. W.; Gregori, G.; Lujan, B. J.; Flanagan, J. G.

    2009-02-01

    Automatic detection of retinal blood vessels is important to medical diagnoses and imaging. With the development of imaging technologies, various modals of retinal images are available. Few of currently published algorithms are applied to multimodal retinal images. Besides, the performance of algorithms with pathologies is expected to be improved. The purpose of this paper is to propose an automatic Ridge-Branch-Based (RBB) detection algorithm of blood vessel centerlines and blood vessels for multimodal retinal images (color fundus photographs, fluorescein angiograms, fundus autofluorescence images, SLO fundus images and OCT fundus images, for example). Ridges, which can be considered as centerlines of vessel-like patterns, are first extracted. The method uses the connective branching information of image ridges: if ridge pixels are connected, they are more likely to be in the same class, vessel ridge pixels or non-vessel ridge pixels. Thanks to the good distinguishing ability of the designed "Segment-Based Ridge Features", the classifier and its parameters can be easily adapted to multimodal retinal images without ground truth training. We present thorough experimental results on SLO images, color fundus photograph database and other multimodal retinal images, as well as comparison between other published algorithms. Results showed that the RBB algorithm achieved a good performance.

  18. Registration of T2-weighted and diffusion-weighted MR images of the prostate: comparison between manual and landmark-based methods

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Soylu, Fatma N.; Tomek, Mark; Sensakovic, William; Oto, Aytekin

    2012-02-01

    Quantitative analysis of multi-parametric magnetic resonance (MR) images of the prostate, including T2-weighted (T2w) and diffusion-weighted (DW) images, requires accurate image registration. We compared two registration methods between T2w and DW images. We collected pre-operative MR images of 124 prostate cancer patients (68 patients scanned with a GE scanner and 56 with Philips scanners). A landmark-based rigid registration was done based on six prostate landmarks in both T2w and DW images identified by a radiologist. Independently, a researcher manually registered the same images. A radiologist visually evaluated the registration results by using a 5-point ordinal scale of 1 (worst) to 5 (best). The Wilcoxon signed-rank test was used to determine whether the radiologist's ratings of the results of the two registration methods were significantly different. Results demonstrated that both methods were accurate: the average ratings were 4.2, 3.3, and 3.8 for GE, Philips, and all images, respectively, for the landmark-based method; and 4.6, 3.7, and 4.2, respectively, for the manual method. The manual registration results were more accurate than the landmark-based registration results (p < 0.0001 for GE, Philips, and all images). Therefore, the manual method produces more accurate registration between T2w and DW images than the landmark-based method.

  19. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  20. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation

    PubMed Central

    Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381

  1. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation.

    PubMed

    Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.

  2. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less

  3. Object recognition through a multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun

    2017-04-01

    We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

  4. Study on multimodal transport route under low carbon background

    NASA Astrophysics Data System (ADS)

    Liu, Lele; Liu, Jie

    2018-06-01

    Low-carbon environmental protection is the focus of attention around the world, scientists are constantly researching on production of carbon emissions and living carbon emissions. However, there is little literature about multimodal transportation based on carbon emission at home and abroad. Firstly, this paper introduces the theory of multimodal transportation, the multimodal transport models that didn't consider carbon emissions and consider carbon emissions are analyzed. On this basis, a multi-objective programming 0-1 programming model with minimum total transportation cost and minimum total carbon emission is proposed. The idea of weight is applied to Ideal point method for solving problem, multi-objective programming is transformed into a single objective function. The optimal solution of carbon emission to transportation cost under different weights is determined by a single objective function with variable weights. Based on the model and algorithm, an example is given and the results are analyzed.

  5. Effectiveness of school-based smoking prevention curricula: systematic review and meta-analysis

    PubMed Central

    Thomas, Roger E; McLellan, Julie; Perera, Rafael

    2015-01-01

    Objective To assess effectiveness of school-based smoking prevention curricula keeping children never-smokers. Design Systematic review, meta-analysis. Data: MEDLINE (1966+), EMBASE (1974+), Cinahl, PsycINFO (1967+), ERIC (1982+), Cochrane CENTRAL, Health Star, Dissertation Abstracts, conference proceedings. Data synthesis: pooled analyses, fixed-effects models, adjusted ORs. Risk of bias assessed with Cochrane Risk of Bias tool. Setting 50 randomised controlled trials (RCTs) of school-based smoking curricula. Participants Never-smokers age 5–18 (n=143 495); follow-up ≥6 months; all countries; no date/language limitations. Interventions Information, social influences, social competence, combined social influences/competence and multimodal curricula. Outcome measure Remaining a never-smoker at follow-up. Results Pooling all curricula, trials with follow-up ≤1 year showed no statistically significant differences compared with controls (OR 0.91 (0.82 to 1.01)), though trials of combined social competence/social influences curricula had a significant effect on smoking prevention (7 trials, OR 0.59 (95% CI 0.41 to 0.85)). Pooling all trials with longest follow-up showed an overall significant effect in favour of the interventions (OR 0.88 (0.82 to 0.95)), as did the social competence (OR 0.65 (0.43 to 0.96)) and combined social competence/social influences curricula (OR 0.60 (0.43 to 0.83)). No effect for information, social influences or multimodal curricula. Principal findings were not sensitive to inclusion of booster sessions in curricula or to whether they were peer-led or adult-led. Differentiation into tobacco-only or multifocal curricula had a similar effect on the primary findings. Few trials assessed outcomes by gender: there were significant effects for females at both follow-up periods, but not for males. Conclusions RCTs of baseline never-smokers at longest follow-up found an overall significant effect with average 12% reduction in starting smoking compared with controls, but no effect for all trials pooled at ≤1 year. However, combined social competence/social influences curricula showed a significant effect at both follow-up periods. Systematic review registration Cochrane Tobacco Review Group CD001293. PMID:25757946

  6. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  7. Consistency-based rectification of nonrigid registrations

    PubMed Central

    Gass, Tobias; Székely, Gábor; Goksel, Orcun

    2015-01-01

    Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083

  8. A Randomized Trial of a Multimodal Community-Based Prisoner Reentry Program Emphasizing Substance Abuse Treatment

    ERIC Educational Resources Information Center

    Grommon, Eric; Davidson, William S., II; Bynum, Timothy S.

    2013-01-01

    Prisoner reentry programs continue to be developed and implemented to ease the process of transition into the community and to curtail fiscal pressures. This study describes and provides relapse and recidivism outcome findings related to a randomized trial evaluating a multimodal, community-based reentry program that prioritized substance abuse…

  9. Creative Multimodal Learning Environments and Blended Interaction for Problem-Based Activity in HCI Education

    ERIC Educational Resources Information Center

    Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis; Arh, Tanja; Klobucar, Tomaž; Pipan, Matija

    2015-01-01

    This exploratory case study aims to examine how students benefit from a multimodal learning environment while they engage in collaborative problem-based activity in a Human Computer Interaction (HCI) university course. For 12 weeks, 30 students, in groups of 5-7 each, participated in weekly face-to-face meetings and online interactions.…

  10. New methods of multimode fiber interferometer signal processing

    NASA Astrophysics Data System (ADS)

    Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.

    1995-06-01

    New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.

  11. Preoperative Modified FOLFIRINOX Treatment Followed by Capecitabine-Based Chemoradiation for Borderline Resectable Pancreatic Cancer

    PubMed Central

    Katz, Matthew H. G.; Shi, Qian; Ahmad, Syed A.; Herman, Joseph M.; Marsh, Robert de W.; Collisson, Eric; Schwartz, Lawrence; Frankel, Wendy; Martin, Robert; Conway, William; Truty, Mark; Kindler, Hedy; Lowy, Andrew M.; Bekaii-Saab, Tanios; Philip, Philip; Talamonti, Mark; Cardin, Dana; LoConte, Noelle; Shen, Perry; Hoffman, John P.; Venook, Alan P.

    2016-01-01

    IMPORTANCE Although consensus statements support the preoperative treatment of borderline resectable pancreatic cancer, no prospective, quality-controlled, multicenter studies of this strategy have been conducted. Existing studies are retrospective and confounded by heterogeneity in patients studied, therapeutic algorithms used, and outcomes reported. OBJECTIVE To determine the feasibility of conducting studies of multimodality therapy for borderline resectable pancreatic cancer in the cooperative group setting. DESIGN, SETTING, AND PARTICIPANTS A prospective, multicenter, single-arm trial of a multimodality treatment regimen administered within a study framework using centralized quality control with the cooperation of 14 member institutions of the National Clinical Trials Network. Twenty-nine patients with biopsy-confirmed pancreatic cancer preregistered, and 23 patients with tumors who met centrally reviewed radiographic criteria registered. Twenty-two patients initiated therapy (median age, 64 years [range, 50–76 years]; 55% female). Patients registered between May 29, 2013, and February 7,2014. INTERVENTIONS Patients received modified FOLFIRINOX treatment (85 mg/m2 of oxaliplatin, 180 mg/m2 of irinotecan hydrochloride, 400 mg/m2 of leucovorin calcium, and then 2400 mg/m2 of 5-fluorouracil for 4 cycles) followed by 5.5 weeks of external-beam radiation (50.4 Gy delivered in 28 daily fractions) with capecitabine (825 mg/m2 orally twice daily) prior to pancreatectomy. MAIN OUTCOMES AND MEASURES Feasibility, defined by the accrual rate, the safety of the preoperative regimen, and the pancreatectomy rate. RESULTS The accrual rate of 2.6 patients per month was superior to the anticipated rate. Although 14 of the 22 patients (64% [95% CI, 41%–83%]) had grade 3 or higher adverse events, 15 of the 22 patients (68% [95% CI, 49%–88%]) underwent pancreatectomy. Of these 15 patients, 12 (80%) required vascular resection, 14 (93%) had microscopically negative margins, 5 (33%) had specimens that had less than 5% residual cancer cells, and 2 (13%) had specimens that had pathologic complete responses. The median overall survival of all patients was 21.7 months (95% CI, 15.7 to not reached) from registration. CONCLUSIONS AND RELEVANCE The successful completion of this collaborative study demonstrates the feasibility of conducting quality-controlled trials for this disease stage in the multi-institutional setting. The data generated by this study and the logistical elements that facilitated the trial's completion are currently being used to develop cooperative group trials with the goal of improving outcomes for this subset of patients. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01821612 PMID:27275632

  12. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    PubMed

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a secure differentiation between different tumor tissue areas in comparison to image fusion with MRI in our small study group. Therefore ultrasound tissue elasticity imaging might be used for fast detection of tumor response in the future whereas conventional grey scale imaging alone could not provide the additional information. By using standard, contrast-enhanced MRI images for reliable and reproducible slice positioning, the strongly user-dependent limitation of ultrasound tissue elasticity imaging may be overcome, especially for a comparison between baseline and follow-up measurements.

  13. 47 CFR 64.611 - Internet-based TRS registration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Internet-based TRS Numbering Directory any toll free number that has not been transferred to a subscription... 47 Telecommunication 3 2014-10-01 2014-10-01 false Internet-based TRS registration. 64.611 Section... Customer Premises Equipment for Persons With Disabilities § 64.611 Internet-based TRS registration. (a...

  14. A Framework for a WAP-Based Course Registration System

    ERIC Educational Resources Information Center

    AL-Bastaki, Yousif; Al-Ajeeli, Abid

    2005-01-01

    This paper describes a WAP-based course registration system designed and implemented to facilitating the process of students' registration at Bahrain University. The framework will support many opportunities for applying WAP based technology to many services such as wireless commerce, cashless payment... and location-based services. The paper…

  15. A refractive index sensor based on taper Michelson interferometer in multimode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

    2016-11-01

    A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

  16. Evidence base for multimodal therapy in cachexia.

    PubMed

    Solheim, Tora S; Laird, Barry J A

    2012-12-01

    The lack of success of unimodal treatment studies in cachexia and the growing awareness that multiple components are responsible for the development of cachexia have led to the view that cachexia intervention should include multimodal treatment. The aim of this article is to examine the evidence for multimodal treatment in the management of cancer cachexia. There are some studies involving multimodal treatment that indicate significant effects on cachexia outcomes. There are, however, no randomized controlled trials to date that incorporate fully a structured exercise program, nutrition, good symptom treatment as well as drug treatment, to counteract the effects of altered metabolism. The effectiveness of any drug intervention for cancer cachexia probably will only be maximized if incorporated into multimodal treatment. Further, cachexia treatment trials should also aim to include patients at an early phase in their cachexia trajectory and use validated outcome measures.

  17. Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre

    NASA Astrophysics Data System (ADS)

    Filipe Kuhne, Jean; Rocha, Ana Maria; de Oliveira, Valmir; José Kalinowski, Hypolito; Canute Kamikawachi, Ricardo

    2018-02-01

    In this work is reported the experimental and numerical results of the refractive index response of etched fibre Bragg gratings written in a graded index multimode fibre. The responses of the modes coupled by the grating inscribed in a multimode fibre are compared with the mode coupled by a grating inscribed in single mode fibre. The results of this study show that the refractive index sensitivity and the dynamical range of etched fibre Bragg gratings written in multimode fibres are higher than the ones verified in single-mode fibres. The determination of oil-biodiesel blend concentrations are also compared as an example of practical applications. It is shown that a greater core diameter of the multimode fibre enables the Bragg gratings to exhibit enhanced sensitivity without requiring further fibre diameter reduction.

  18. 3D-2D registration in endovascular image-guided surgery: evaluation of state-of-the-art methods on cerebral angiograms.

    PubMed

    Mitrović, Uroš; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2018-02-01

    Image guidance for minimally invasive surgery is based on spatial co-registration and fusion of 3D pre-interventional images and treatment plans with the 2D live intra-interventional images. The spatial co-registration or 3D-2D registration is the key enabling technology; however, the performance of state-of-the-art automated methods is rather unclear as they have not been assessed under the same test conditions. Herein we perform a quantitative and comparative evaluation of ten state-of-the-art methods for 3D-2D registration on a public dataset of clinical angiograms. Image database consisted of 3D and 2D angiograms of 25 patients undergoing treatment for cerebral aneurysms or arteriovenous malformations. On each of the datasets, highly accurate "gold-standard" registrations of 3D and 2D images were established based on patient-attached fiducial markers. The database was used to rigorously evaluate ten state-of-the-art 3D-2D registration methods, namely two intensity-, two gradient-, three feature-based and three hybrid methods, both for registration of 3D pre-interventional image to monoplane or biplane 2D images. Intensity-based methods were most accurate in all tests (0.3 mm). One of the hybrid methods was most robust with 98.75% of successful registrations (SR) and capture range of 18 mm for registrations of 3D to biplane 2D angiograms. In general, registration accuracy was similar whether registration of 3D image was performed onto mono- or biplanar 2D images; however, the SR was substantially lower in case of 3D to monoplane 2D registration. Two feature-based and two hybrid methods had clinically feasible execution times in the order of a second. Performance of methods seems to fall below expectations in terms of robustness in case of registration of 3D to monoplane 2D images, while translation into clinical image guidance systems seems readily feasible for methods that perform registration of the 3D pre-interventional image onto biplanar intra-interventional 2D images.

  19. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    NASA Astrophysics Data System (ADS)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  20. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.

    DOT National Transportation Integrated Search

    2015-08-01

    The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...

  1. Clinical characteristics and oncological outcomes of testicular cancer patients registered in 2005 and 2008: the first large-scale study from the Cancer Registration Committee of the Japanese Urological Association.

    PubMed

    Miki, Tsuneharu; Kamoi, Kazumi; Fujimoto, Hiroyuki; Kanayama, Hiro-omi; Ohyama, Chikara; Suzuki, Kazuhiro; Nishiyama, Hiroyuki; Eto, Masatoshi; Naito, Seiji; Fukumori, Tomoharu; Kubota, Yoshinobu; Takahashi, Satoru; Mikami, Kazuya; Homma, Yukio

    2014-08-01

    To describe the clinical and pathological characteristics and oncological outcomes of testicular cancer diagnosed in Japan, we report the results of the testicular cancer registration carried out by the Japanese Urological Association. Testicular cancer survey was conducted by the Japanese Urological Association in 2011 to register newly diagnosed testicular cancers in 2005 and 2008. The survey included details such as age, presenting symptoms, physical examination findings, tumor markers, histopathology, clinical stage, initial treatment and clinical outcomes. We analyzed 1121 cases of testicular primary germ cell tumor among 1157 registered patients. The median age was 37.0 years. Seminomas and non-seminomatous germ cell tumors accounted for 61.9% and 38.1%, respectively. Measurements of tumor markers were documented in 98.6% of the patients; however, there was an unsatisfactory uniform measurement of human chorionic gonadotropin, which made it difficult to evaluate the International Germ Cell Consensus Classification in all patients. The 1- and 3-year overall survival rates from the entire cohort were 98.3% and 96.8%, respectively. According to the International Germ Cell Consensus Classification, 3-year overall survival rates in the good, intermediate, and poor prognosis group were 99.1%, 100% and 79.9%, respectively. The present report is the first large-scale study of the characteristics and survival of testicular cancer patients in Japan based on multi-institutional registry data, and showed a good prognosis even in an advanced stage. The improved survival attributed substantially to accurate diagnosis and effective multimodal treatment. © 2014 The Japanese Urological Association.

  2. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  3. Portfolio: a prototype workstation for development and evaluation of tools for analysis and management of digital portal images.

    PubMed

    Boxwala, A A; Chaney, E L; Fritsch, D S; Friedman, C P; Rosenman, J G

    1998-09-01

    The purpose of this investigation was to design and implement a prototype physician workstation, called PortFolio, as a platform for developing and evaluating, by means of controlled observer studies, user interfaces and interactive tools for analyzing and managing digital portal images. The first observer study was designed to measure physician acceptance of workstation technology, as an alternative to a view box, for inspection and analysis of portal images for detection of treatment setup errors. The observer study was conducted in a controlled experimental setting to evaluate physician acceptance of the prototype workstation technology exemplified by PortFolio. PortFolio incorporates a windows user interface, a compact kit of carefully selected image analysis tools, and an object-oriented data base infrastructure. The kit evaluated in the observer study included tools for contrast enhancement, registration, and multimodal image visualization. Acceptance was measured in the context of performing portal image analysis in a structured protocol designed to simulate clinical practice. The acceptability and usage patterns were measured from semistructured questionnaires and logs of user interactions. Radiation oncologists, the subjects for this study, perceived the tools in PortFolio to be acceptable clinical aids. Concerns were expressed regarding user efficiency, particularly with respect to the image registration tools. The results of our observer study indicate that workstation technology is acceptable to radiation oncologists as an alternative to a view box for clinical detection of setup errors from digital portal images. Improvements in implementation, including more tools and a greater degree of automation in the image analysis tasks, are needed to make PortFolio more clinically practical.

  4. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  5. Intraoperative Image-based Multiview 2D/3D Registration for Image-Guided Orthopaedic Surgery: Incorporation of Fiducial-Based C-Arm Tracking and GPU-Acceleration

    PubMed Central

    Armand, Mehran; Armiger, Robert S.; Kutzer, Michael D.; Basafa, Ehsan; Kazanzides, Peter; Taylor, Russell H.

    2012-01-01

    Intraoperative patient registration may significantly affect the outcome of image-guided surgery (IGS). Image-based registration approaches have several advantages over the currently dominant point-based direct contact methods and are used in some industry solutions in image-guided radiation therapy with fixed X-ray gantries. However, technical challenges including geometric calibration and computational cost have precluded their use with mobile C-arms for IGS. We propose a 2D/3D registration framework for intraoperative patient registration using a conventional mobile X-ray imager combining fiducial-based C-arm tracking and graphics processing unit (GPU)-acceleration. The two-stage framework 1) acquires X-ray images and estimates relative pose between the images using a custom-made in-image fiducial, and 2) estimates the patient pose using intensity-based 2D/3D registration. Experimental validations using a publicly available gold standard dataset, a plastic bone phantom and cadaveric specimens have been conducted. The mean target registration error (mTRE) was 0.34 ± 0.04 mm (success rate: 100%, registration time: 14.2 s) for the phantom with two images 90° apart, and 0.99 ± 0.41 mm (81%, 16.3 s) for the cadaveric specimen with images 58.5° apart. The experimental results showed the feasibility of the proposed registration framework as a practical alternative for IGS routines. PMID:22113773

  6. Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2017-02-01

    Medical image registration establishes a correspondence between images of biological structures and it is at the core of many applications. Commonly used deformable image registration methods are dependent on a good preregistration initialization. The initialization can be performed by localizing homologous landmarks and calculating a point-based transformation between the images. The selection of landmarks is however important. In this work, we present a learning-based method to automatically find a set of robust landmarks in 3D MR image volumes of the head to initialize non-rigid transformations. To validate our method, these selected landmarks are localized in unknown image volumes and they are used to compute a smoothing thin-plate splines transformation that registers the atlas to the volumes. The transformed atlas image is then used as the preregistration initialization of an intensity-based non-rigid registration algorithm. We show that the registration accuracy of this algorithm is statistically significantly improved when using the presented registration initialization over a standard intensity-based affine registration.

  7. Analysis of the harmonic and intermodulation distortion in a multimode fiber optic link.

    PubMed

    Gasulla, I; Capmany, J

    2007-07-23

    We present an analytical evaluation of the harmonic and the intermodulation distortion effects produced in the transmission of an analog signal composed of various RF tones through a multimode fiber link. It is based on the electric field propagation model previously published by the authors. Results show the possibility of implementing subcarrier multiplexing techniques (SCM) with Composite Second Order (CSO) values below -50 dBc over short and middle reach multimode fiber links.

  8. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS.

    PubMed

    Hardmeier, Martin; Leocani, Letizia; Fuhr, Peter

    2017-09-01

    Evoked potentials (EP) characterize signal conduction in selected tracts of the central nervous system in a quantifiable way. Since alteration of signal conduction is the main mechanism of symptoms and signs in multiple sclerosis (MS), multimodal EP may serve as a representative measure of the functional impairment in MS. Moreover, EP have been shown to be predictive for disease course, and thus might help to select patient groups at high risk of progression for clinical trials. EP can detect deterioration, as well as improvement of impulse propagation, independently from the mechanism causing the change. Therefore, they are candidates for biomarkers with application in clinical phase-II trials. Applicability of EP in multicenter trials has been limited by different standards of registration and assessment.

  9. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  10. Registration of Panoramic/Fish-Eye Image Sequence and LiDAR Points Using Skyline Features

    PubMed Central

    Zhu, Ningning; Jia, Yonghong; Ji, Shunping

    2018-01-01

    We propose utilizing a rigorous registration model and a skyline-based method for automatic registration of LiDAR points and a sequence of panoramic/fish-eye images in a mobile mapping system (MMS). This method can automatically optimize original registration parameters and avoid the use of manual interventions in control point-based registration methods. First, the rigorous registration model between the LiDAR points and the panoramic/fish-eye image was built. Second, skyline pixels from panoramic/fish-eye images and skyline points from the MMS’s LiDAR points were extracted, relying on the difference in the pixel values and the registration model, respectively. Third, a brute force optimization method was used to search for optimal matching parameters between skyline pixels and skyline points. In the experiments, the original registration method and the control point registration method were used to compare the accuracy of our method with a sequence of panoramic/fish-eye images. The result showed: (1) the panoramic/fish-eye image registration model is effective and can achieve high-precision registration of the image and the MMS’s LiDAR points; (2) the skyline-based registration method can automatically optimize the initial attitude parameters, realizing a high-precision registration of a panoramic/fish-eye image and the MMS’s LiDAR points; and (3) the attitude correction values of the sequences of panoramic/fish-eye images are different, and the values must be solved one by one. PMID:29883431

  11. The Effects of Teacher-Introduced Multimodal Representations and Discourse on Students' Task Engagement and Scientific Language during Cooperative, Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Baffour, Bernard

    2017-01-01

    The study sought to determine the effects of teacher-introduced multimodal representations and discourse on students' task engagement and scientific language during cooperative, inquiry-based science. The study involved eight Year 6 teachers in two conditions (four very effective teachers and four effective teachers) who taught two units of…

  12. Investigating the Effects of Multimodal Feedback through Tracking State in Pen-Based Interfaces

    ERIC Educational Resources Information Center

    Sun, Minghui; Ren, Xiangshi

    2011-01-01

    A tracking state increases the bandwidth of pen-based interfaces. However, this state is difficult to detect with default visual feedback. This paper reports on two experiments that are designed to evaluate multimodal feedback for pointing tasks (both 1D and 2D) in tracking state. In 1D pointing experiments, results show that there is a…

  13. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  14. A Multimodal Approach in Dealing with Chronic Epstein-Barr Viral Syndrome.

    ERIC Educational Resources Information Center

    Weikel, William J.

    1989-01-01

    Discusses Epstein-Barr Viral Syndrome, a puzzling and controversial disease with a variety of symptoms that frequently include depression and emotional debilitation. Offers diagnostic signs and suggests a possible treatment strategy based on the multimodal approach. (Author/ABL)

  15. Multimodal system planning technique : an analytical approach to peak period operation

    DOT National Transportation Integrated Search

    1995-11-01

    The multimodal system planning technique described in this report is an improvement of the methodology used in the Dallas System Planning Study. The technique includes a spreadsheet-based process to identify the costs of congestion, construction, and...

  16. Multimodal optoacoustic and multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sela, Gali; Razansky, Daniel; Shoham, Shy

    2013-03-01

    Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.

  17. Behavioral and Functional Assays for Investigating Mechanisms of Noxious Cold Detection and Multimodal Sensory Processing in Drosophila Larvae

    PubMed Central

    Patel, Atit A.; Cox, Daniel N.

    2017-01-01

    To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907

  18. Intelligent Adaptive Systems: Literature Research of Design Guidance for Intelligent Adaptive Automation and Interfaces

    DTIC Science & Technology

    2007-09-01

    behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic

  19. Development and evaluation of an articulated registration algorithm for human skeleton registration

    NASA Astrophysics Data System (ADS)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons were deformed. Articulated registration is superior to rigid and deformable registrations by capturing global flexibility while preserving local rigidity inherent in skeleton registration. Therefore, articulated registration can be employed to accurately register the whole-body human skeletons, and it enables the treatment response assessment of various bone diseases.

  20. Automatic Mrf-Based Registration of High Resolution Satellite Video Data

    NASA Astrophysics Data System (ADS)

    Platias, C.; Vakalopoulou, M.; Karantzalos, K.

    2016-06-01

    In this paper we propose a deformable registration framework for high resolution satellite video data able to automatically and accurately co-register satellite video frames and/or register them to a reference map/image. The proposed approach performs non-rigid registration, formulates a Markov Random Fields (MRF) model, while efficient linear programming is employed for reaching the lowest potential of the cost function. The developed approach has been applied and validated on satellite video sequences from Skybox Imaging and compared with a rigid, descriptor-based registration method. Regarding the computational performance, both the MRF-based and the descriptor-based methods were quite efficient, with the first one converging in some minutes and the second in some seconds. Regarding the registration accuracy the proposed MRF-based method significantly outperformed the descriptor-based one in all the performing experiments.

  1. Exploring the requirements for multimodal interaction for mobile devices in an end-to-end journey context.

    PubMed

    Krehl, Claudia; Sharples, Sarah

    2012-01-01

    The paper investigates the requirements for multimodal interaction on mobile devices in an end-to-end journey context. Traditional interfaces are deemed cumbersome and inefficient for exchanging information with the user. Multimodal interaction provides a different user-centred approach allowing for more natural and intuitive interaction between humans and computers. It is especially suitable for mobile interaction as it can overcome additional constraints including small screens, awkward keypads, and continuously changing settings - an inherent property of mobility. This paper is based on end-to-end journeys where users encounter several contexts during their journeys. Interviews and focus groups explore the requirements for multimodal interaction design for mobile devices by examining journey stages and identifying the users' information needs and sources. Findings suggest that multimodal communication is crucial when users multitask. Choosing suitable modalities depend on user context, characteristics and tasks.

  2. Photoacoustic-Based Multimodal Nanoprobes: from Constructing to Biological Applications.

    PubMed

    Gao, Duyang; Yuan, Zhen

    2017-01-01

    Multimodal nanoprobes have attracted intensive attentions since they can integrate various imaging modalities to obtain complementary merits of single modality. Meanwhile, recent interest in laser-induced photoacoustic imaging is rapidly growing due to its unique advantages in visualizing tissue structure and function with high spatial resolution and satisfactory imaging depth. In this review, we summarize multimodal nanoprobes involving photoacoustic imaging. In particular, we focus on the method to construct multimodal nanoprobes. We have divided the synthetic methods into two types. First, we call it "one for all" concept, which involves intrinsic properties of the element in a single particle. Second, "all in one" concept, which means integrating different functional blocks in one particle. Then, we simply introduce the applications of the multifunctional nanoprobes for in vivo imaging and imaging-guided tumor therapy. At last, we discuss the advantages and disadvantages of the present methods to construct the multimodal nanoprobes and share our viewpoints in this area.

  3. [Principles of fast track surgery. Multimodal perioperative therapy programme].

    PubMed

    Kehlet, H

    2009-08-01

    Recent evidence has documented that a combination of single-modality evidence-based care principles into a multimodal effort to enhance postoperative recovery (the fast track methodology) has led to enhanced recovery with reduced medical morbidity, need for hospitalisation and convalescence. Nevertheless, general implementation of fast track surgery has been relatively slow despite concomitant economic benefits. Further improvement in postoperative outcome may be obtained by developments within each care principle with a specific focus on minimally invasive surgery, effective multimodal, non-opioid analgesia and pharmacological stress reduction.

  4. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  5. High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers

    NASA Astrophysics Data System (ADS)

    Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.

    2007-07-01

    The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.

  6. Real-time CT-video registration for continuous endoscopic guidance

    NASA Astrophysics Data System (ADS)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  7. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    PubMed

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.

  8. Three-dimensional nonrigid landmark-based magnetic resonance to transrectal ultrasound registration for image-guided prostate biopsy.

    PubMed

    Sun, Yue; Qiu, Wu; Yuan, Jing; Romagnoli, Cesare; Fenster, Aaron

    2015-04-01

    Registration of three-dimensional (3-D) magnetic resonance (MR) to 3-D transrectal ultrasound (TRUS) prostate images is an important step in the planning and guidance of 3-D TRUS guided prostate biopsy. In order to accurately and efficiently perform the registration, a nonrigid landmark-based registration method is required to account for the different deformations of the prostate when using these two modalities. We describe a nonrigid landmark-based method for registration of 3-D TRUS to MR prostate images. The landmark-based registration method first makes use of an initial rigid registration of 3-D MR to 3-D TRUS images using six manually placed approximately corresponding landmarks in each image. Following manual initialization, the two prostate surfaces are segmented from 3-D MR and TRUS images and then nonrigidly registered using the following steps: (1) rotationally reslicing corresponding segmented prostate surfaces from both 3-D MR and TRUS images around a specified axis, (2) an approach to find point correspondences on the surfaces of the segmented surfaces, and (3) deformation of the surface of the prostate in the MR image to match the surface of the prostate in the 3-D TRUS image and the interior using a thin-plate spline algorithm. The registration accuracy was evaluated using 17 patient prostate MR and 3-D TRUS images by measuring the target registration error (TRE). Experimental results showed that the proposed method yielded an overall mean TRE of [Formula: see text] for the rigid registration and [Formula: see text] for the nonrigid registration, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm. A landmark-based nonrigid 3-D MR-TRUS registration approach is proposed, which takes into account the correspondences on the prostate surface, inside the prostate, as well as the centroid of the prostate. Experimental results indicate that the proposed method yields clinically sufficient accuracy.

  9. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  10. 7T MRI subthalamic nucleus atlas for use with 3T MRI.

    PubMed

    Milchenko, Mikhail; Norris, Scott A; Poston, Kathleen; Campbell, Meghan C; Ushe, Mwiza; Perlmutter, Joel S; Snyder, Abraham Z

    2018-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in most patients with Parkinson disease (PD), yet may produce untoward effects. Investigation of DBS effects requires accurate localization of the STN, which can be difficult to identify on magnetic resonance images collected with clinically available 3T scanners. The goal of this study is to develop a high-quality STN atlas that can be applied to standard 3T images. We created a high-definition STN atlas derived from seven older participants imaged at 7T. This atlas was nonlinearly registered to a standard template representing 56 patients with PD imaged at 3T. This process required development of methodology for nonlinear multimodal image registration. We demonstrate mm-scale STN localization accuracy by comparison of our 3T atlas with a publicly available 7T atlas. We also demonstrate less agreement with an earlier histological atlas. STN localization error in the 56 patients imaged at 3T was less than 1 mm on average. Our methodology enables accurate STN localization in individuals imaged at 3T. The STN atlas and underlying 3T average template in MNI space are freely available to the research community. The image registration methodology developed in the course of this work may be generally applicable to other datasets.

  11. New Protocol for Skin Landmark Registration in Image-Guided Neurosurgery: Technical Note.

    PubMed

    Gerard, Ian J; Hall, Jeffery A; Mok, Kelvin; Collins, D Louis

    2015-09-01

    Newer versions of the commercial Medtronic StealthStation allow the use of only 8 landmark pairs for patient-to-image registration as opposed to 9 landmarks in older systems. The choice of which landmark pair to drop in these newer systems can have an effect on the quality of the patient-to-image registration. To investigate 4 landmark registration protocols based on 8 landmark pairs and compare the resulting registration accuracy with a 9-landmark protocol. Four different protocols were tested on both phantoms and patients. Two of the protocols involved using 4 ear landmarks and 4 facial landmarks and the other 2 involved using 3 ear landmarks and 5 facial landmarks. Both the fiducial registration error and target registration error were evaluated for each of the different protocols to determine any difference between them and the 9-landmark protocol. No difference in fiducial registration error was found between any of the 8-landmark protocols and the 9-landmark protocol. A significant decrease (P < .05) in target registration error was found when using a protocol based on 4 ear landmarks and 4 facial landmarks compared with the other protocols based on 3 ear landmarks. When using 8 landmarks to perform the patient-to-image registration, the protocol using 4 ear landmarks and 4 facial landmarks greatly outperformed the other 8-landmark protocols and 9-landmark protocol, resulting in the lowest target registration error.

  12. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  13. MRI signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy.

    PubMed

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M C; Hata, Nobuhiko

    2009-11-01

    To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was -0.19 +/- 0.07 and FRE presented a value of 2.3 +/- 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy.

  14. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  15. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    PubMed

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  16. Delivery of ultrashort spatially focused pulses through a multimode fiber

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-08-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  17. Delivery of an ultrashort spatially focused pulse to the other end of a multimode fiber using digital phase conjugation

    NASA Astrophysics Data System (ADS)

    Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-03-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  18. Pelvic Nodal Dosing With Registration to the Prostate: Implications for High-Risk Prostate Cancer Patients Receiving Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishan, Amar U., E-mail: aukishan@mednet.ucla.edu; Lamb, James M.; Jani, Shyam S.

    2015-03-15

    Purpose: To determine whether image guidance with rigid registration (RR) to intraprostatic markers (IPMs) yields acceptable coverage of the pelvic lymph nodes in the context of a stereotactic body radiation therapy (SBRT) regimen. Methods and Materials: Four to seven kilovoltage cone-beam CTs (CBCTs) from 12 patients with high-risk prostate cancer were analyzed, allowing approximation of an SBRT regimen. The nodal clinical target volume (CTV{sub N}) and bladder were contoured on all kilovoltage CBCTs. The V{sub 100} CTV{sub N}, expressed as a ratio to the same parameter on the initial plan, and the magnitude of translational shift between RR to themore » IPMs versus RR to the pelvic bones, were computed. The ability of a multimodality bladder filling protocol to minimize bladder height variation was assessed in a separate cohort of 4 patients. Results: Sixty-five CBCTs were assessed. The average V{sub 100} CTV{sub N} was 92.6%, but for a subset of 3 patients the average was 80.0%, compared with 97.8% for the others (P<.0001). The average overall and superior–inferior axis magnitudes of the bony-to-fiducial translations were significantly larger in the subgroup with suboptimal nodal coverage (8.1 vs 3.9 mm and 5.8 vs 2.4 mm, respectively; P<.0001). Relative bladder height changes were also significantly larger in the subgroup with suboptimal nodal coverage (42.9% vs 18.5%; P<.05). Use of a multimodality bladder-filling protocol minimized bladder height variation (P<.001). Conclusion: A majority of patients had acceptable nodal coverage after RR to IPMs, even when approximating SBRT. However, a subset of patients had suboptimal nodal coverage. These patients had large bony-to-fiducial translations and large variations in bladder height. Nodal coverage should be excellent if the superior–inferior axis bony-to-fiducial translation and the relative bladder height change (both easily measured on CBCT) are kept to a minimum. Implementation of a strict bladder filling protocol may achieve this goal.« less

  19. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    PubMed

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  20. A Multimodal Search Engine for Medical Imaging Studies.

    PubMed

    Pinho, Eduardo; Godinho, Tiago; Valente, Frederico; Costa, Carlos

    2017-02-01

    The use of digital medical imaging systems in healthcare institutions has increased significantly, and the large amounts of data in these systems have led to the conception of powerful support tools: recent studies on content-based image retrieval (CBIR) and multimodal information retrieval in the field hold great potential in decision support, as well as for addressing multiple challenges in healthcare systems, such as computer-aided diagnosis (CAD). However, the subject is still under heavy research, and very few solutions have become part of Picture Archiving and Communication Systems (PACS) in hospitals and clinics. This paper proposes an extensible platform for multimodal medical image retrieval, integrated in an open-source PACS software with profile-based CBIR capabilities. In this article, we detail a technical approach to the problem by describing its main architecture and each sub-component, as well as the available web interfaces and the multimodal query techniques applied. Finally, we assess our implementation of the engine with computational performance benchmarks.

  1. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  2. Estimating fatality rates in occupational light vehicle users using vehicle registration and crash data.

    PubMed

    Stuckey, Rwth; LaMontagne, Anthony D; Glass, Deborah C; Sim, Malcolm R

    2010-04-01

    To estimate occupational light vehicle (OLV) fatality numbers using vehicle registration and crash data and compare these with previous estimates based on workers' compensation data. New South Wales (NSW) Roads and Traffic Authority (RTA) vehicle registration and crash data were obtained for 2004. NSW is the only Australian jurisdiction with mandatory work-use registration, which was used as a proxy for work-relatedness. OLV fatality rates based on registration data as the denominator were calculated and comparisons made with published 2003/04 fatalities based on workers' compensation data. Thirty-four NSW RTA OLV-user fatalities were identified, a rate of 4.5 deaths per 100,000 organisationally registered OLV, whereas the Australian Safety and Compensation Council (ASCC), reported 28 OLV deaths Australia-wide. More OLV user fatalities were identified from vehicle registration-based data than those based on workers' compensation estimates and the data are likely to provide an improved estimate of fatalities specific to OLV use. OLV-use is an important cause of traumatic fatalities that would be better identified through the use of vehicle-registration data, which provides a stronger evidence base from which to develop policy responses. © 2010 The Authors. Journal Compilation © 2010 Public Health Association of Australia.

  3. Non-invasive, Multimodal Functional Imaging of the Intestine with Frozen Micellar Naphthalocyanines

    PubMed Central

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-01-01

    Overview There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and give rise to good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ~20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1000). Unlike conventional chromophores, nanonaps exhibited non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution with 0.5 cm depth, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole body imaging. PMID:24997526

  4. Hybrid-fusion SPECT/CT systems in parathyroid adenoma: Technological improvements and added clinical diagnostic value.

    PubMed

    Wong, K K; Chondrogiannis, S; Bowles, H; Fuster, D; Sánchez, N; Rampin, L; Rubello, D

    Nuclear medicine traditionally employs planar and single photon emission computed tomography (SPECT) imaging techniques to depict the biodistribution of radiotracers for the diagnostic investigation of a range of disorders of endocrine gland function. The usefulness of combining functional information with anatomy derived from computed tomography (CT), magnetic resonance imaging (MRI), and high resolution ultrasound (US), has long been appreciated, either using visual side-by-side correlation, or software-based co-registration. The emergence of hybrid SPECT/CT camera technology now allows the simultaneous acquisition of combined multi-modality imaging, with seamless fusion of 3D volume datasets. Thus, it is not surprising that there is growing literature describing the many advantages that contemporary SPECT/CT technology brings to radionuclide investigation of endocrine disorders, showing potential advantages for the pre-operative locating of the parathyroid adenoma using a minimally invasive surgical approach, especially in the presence of ectopic glands and in multiglandular disease. In conclusion, hybrid SPECT/CT imaging has become an essential tool to ensure the most accurate diagnostic in the management of patients with hyperparathyroidism. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  5. Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.

    PubMed

    Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun

    2018-06-01

    Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.

  6. Improved multimodal biomarkers for Alzheimer's disease and mild cognitive impairment diagnosis: data from ADNI

    NASA Astrophysics Data System (ADS)

    Martinez-Torteya, Antonio; Treviño-Alvarado, Víctor; Tamez-Peña, José

    2013-02-01

    The accurate diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) confers many clinical research and patient care benefits. Studies have shown that multimodal biomarkers provide better diagnosis accuracy of AD and MCI than unimodal biomarkers, but their construction has been based on traditional statistical approaches. The objective of this work was the creation of accurate AD and MCI diagnostic multimodal biomarkers using advanced bioinformatics tools. The biomarkers were created by exploring multimodal combinations of features using machine learning techniques. Data was obtained from the ADNI database. The baseline information (e.g. MRI analyses, PET analyses and laboratory essays) from AD, MCI and healthy control (HC) subjects with available diagnosis up to June 2012 was mined for case/controls candidates. The data mining yielded 47 HC, 83 MCI and 43 AD subjects for biomarker creation. Each subject was characterized by at least 980 ADNI features. A genetic algorithm feature selection strategy was used to obtain compact and accurate cross-validated nearest centroid biomarkers. The biomarkers achieved training classification accuracies of 0.983, 0.871 and 0.917 for HC vs. AD, HC vs. MCI and MCI vs. AD respectively. The constructed biomarkers were relatively compact: from 5 to 11 features. Those multimodal biomarkers included several widely accepted univariate biomarkers and novel image and biochemical features. Multimodal biomarkers constructed from previously and non-previously AD associated features showed improved diagnostic performance when compared to those based solely on previously AD associated features.

  7. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood.

    PubMed

    Blesa, Manuel; Serag, Ahmed; Wilkinson, Alastair G; Anblagan, Devasuda; Telford, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Macnaught, Gillian; Semple, Scott I; Bastin, Mark E; Boardman, James P

    2016-01-01

    Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39(+5) weeks, range 37(+2)-41(+6)). An adult brain atlas (SRI24/TZO) was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33) constructed using the Symmetric Group Normalization (SyGN) method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modeling brain growth during development.

  8. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  9. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less

  10. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating

    PubMed Central

    Zheng, Yulong; Bremer, Kort

    2018-01-01

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing. PMID:29734734

  11. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    PubMed

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  12. Multi-Modal Hallucinations and Cognitive Function in Parkinson's Disease

    PubMed Central

    Katzen, Heather; Myerson, Connie; Papapetropoulos, Spiridon; Nahab, Fatta; Gallo, Bruno; Levin, Bonnie

    2010-01-01

    Background/Aims Hallucinations have been linked to a constellation of cognitive deficits in Parkinson's disease (PD), but it is not known whether multi-modal hallucinations are associated with greater neuropsychological dysfunction. Methods 152 idiopathic PD patients were categorized based on the presence or absence of hallucinations and then were further subdivided into visual-only (VHonly; n = 35) or multi-modal (VHplus; n = 12) hallucination groups. All participants underwent detailed neuropsychological assessment. Results Participants with hallucinations performed more poorly on select neuropsychological measures and exhibited more mood symptoms. There were no differences between VHonly and VHplus groups. Conclusions PD patients with multi-modal hallucinations are not at greater risk for neuropsychological impairment than those with single-modal hallucinations. PMID:20689283

  13. Intensity-Based Registration for Lung Motion Estimation

    NASA Astrophysics Data System (ADS)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  14. Love that Book: Multimodal Response to Literature

    ERIC Educational Resources Information Center

    Dalton, Bridget; Grisham, Dana L.

    2013-01-01

    Composing with different modes--image, sound, video and the written word--to respond to and analyze literary and informational text helps students develop as readers and digital communicators. This article showcases five multimodal strategies for engaging children in rich literature-based learning using digital tools and Internet resources.

  15. Semiotic Work: Applied Linguistics and a Social Semiotic Account of Multimodality

    ERIC Educational Resources Information Center

    Kress, Gunther

    2015-01-01

    This article imagines a tussle between Multimodality, focused on "modes," and Applied Linguistics (AL), based on "language." A Social Semiotic approach to MM treats "speech" and "writing" as modes with distinct affordances, and, as all modes, treats them as "partial" means of communication. The…

  16. Using Multimodal Social-Skills Groups with Kindergarten Children.

    ERIC Educational Resources Information Center

    Stickel, Sue A.

    1990-01-01

    Describes a group social skills counseling strategy for kindergarten children based on Lazarus's seven modalities: behavior, affect, sensation, imagery, cognition, interpersonal relationships, and drugs/biology. Concludes multimodal approach seems suited to needs of young child whose emerging awareness is vitally engaged in each of the seven…

  17. Changes in Disability, Physical/Mental Health States and Quality of Life during an 8-Week Multimodal Physiotherapy Programme in Patients with Chronic Non-Specific Neck Pain: A Prospective Cohort Study

    PubMed Central

    Cuesta-Vargas, Antonio Ignacio; González-Sánchez, Manuel

    2015-01-01

    Aim The aim of this study was to analyse the effect of an 8-week multimodal physiotherapy programme (MPP), integrating physical land-based therapeutic exercise (TE), adapted swimming and health education, as a treatment for patients with chronic non-specific neck pain (CNSNP), on disability, general health/mental states and quality of life. Methods 175 CNSNP patients from a community-based centre were recruited to participate in this prospective study. Intervention: 60-minute session (30 minutes of land-based exercise dedicated to improving mobility, motor control, resistance and strengthening of the neck muscles, and 30 minutes of adapted swimming with aerobic exercise keeping a neutral neck position using a snorkel). Health education was provided using a decalogue on CNSNP and constant repetition of brief advice by the physiotherapist during the supervision of the exercises in each session. Study outcomes: primary: disability (Neck Disability Index); secondary: physical and mental health states and quality of life of patients (SF-12 and EuroQoL-5D respectively). Differences between baseline data and that at the 8-week follow-up were calculated for all outcome variables. Results Disability showed a significant improvement of 24.6% from a mean (SD) of 28.2 (13.08) at baseline to 16.88 (11.62) at the end of the 8-week intervention. All secondary outcome variables were observed to show significant, clinically relevant improvements with increase ranges between 13.0% and 16.3% from a mean of 0.70 (0.2) at baseline to 0.83 (0.2), for EuroQoL-5D, and from a mean of 40.6 (12.7) at baseline to 56.9 (9.5), for mental health state, at the end of the 8-week intervention. Conclusion After 8 weeks of a MPP that integrated land-based physical TE, health education and adapted swimming, clinically-relevant and statistically-significant improvements were observed for disability, physical and mental health states and quality of life in patients who suffer CNSNP. The clinical efficacy requires verification using a randomised controlled study design. Trial Registration ClinicalTrials.gov NCT02046876 PMID:25710539

  18. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  19. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  20. MRI Signal Intensity Based B-Spline Nonrigid Registration for Pre- and Intraoperative Imaging During Prostate Brachytherapy

    PubMed Central

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M.C.; Hata, Nobuhiko

    2009-01-01

    Purpose To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. Materials and Methods A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts’ visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. Results All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was −0.19 ± 0.07 and FRE presented a value of 2.3 ± 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. Conclusion The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy. PMID:19856437

  1. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  2. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    PubMed Central

    Wang, Yangping; Wang, Song

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653

  3. Investigation of 3D histograms of oriented gradients for image-based registration of CT with interventional CBCT

    NASA Astrophysics Data System (ADS)

    Trimborn, Barbara; Wolf, Ivo; Abu-Sammour, Denis; Henzler, Thomas; Schad, Lothar R.; Zöllner, Frank G.

    2017-03-01

    Image registration of preprocedural contrast-enhanced CTs to intraprocedual cone-beam computed tomography (CBCT) can provide additional information for interventional liver oncology procedures such as transcatheter arterial chemoembolisation (TACE). In this paper, a novel similarity metric for gradient-based image registration is proposed. The metric relies on the patch-based computation of histograms of oriented gradients (HOG) building the basis for a feature descriptor. The metric was implemented in a framework for rigid 3D-3D-registration of pre-interventional CT with intra-interventional CBCT data obtained during the workflow of a TACE. To evaluate the performance of the new metric, the capture range was estimated based on the calculation of the mean target registration error and compared to the results obtained with a normalized cross correlation metric. The results show that 3D HOG feature descriptors are suitable as image-similarity metric and that the novel metric can compete with established methods in terms of registration accuracy

  4. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, Y. L.; Lee, J. H.; Shin, W.

    2016-05-01

    We proposed a multimode interference (MMI) fiber based saturable absorber using bismuth telluride at  ∼2 μm region. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The MMI functioned as both wavelength fixed filter and saturable absorber. The 3 dB bandwidth and insertion loss of MMI were 42 nm and 3.4 dB at wavelength of 1958 nm, respectively. We have also reported a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm using a multimode interference. A temporal bandwidth of  ∼46 ps was experimentally obtained at a repetition rate of 8.58 MHz.

  5. The effect of multimodal and enriched feedback on SMR-BCI performance.

    PubMed

    Sollfrank, T; Ramsay, A; Perdikis, S; Williamson, J; Murray-Smith, R; Leeb, R; Millán, J D R; Kübler, A

    2016-01-01

    This study investigated the effect of multimodal (visual and auditory) continuous feedback with information about the uncertainty of the input signal on motor imagery based BCI performance. A liquid floating through a visualization of a funnel (funnel feedback) provided enriched visual or enriched multimodal feedback. In a between subject design 30 healthy SMR-BCI naive participants were provided with either conventional bar feedback (CB), or visual funnel feedback (UF), or multimodal (visual and auditory) funnel feedback (MF). Subjects were required to imagine left and right hand movement and were trained to control the SMR based BCI for five sessions on separate days. Feedback accuracy varied largely between participants. The MF feedback lead to a significantly better performance in session 1 as compared to the CB feedback and could significantly enhance motivation and minimize frustration in BCI use across the five training sessions. The present study demonstrates that the BCI funnel feedback allows participants to modulate sensorimotor EEG rhythms. Participants were able to control the BCI with the funnel feedback with better performance during the initial session and less frustration compared to the CB feedback. The multimodal funnel feedback provides an alternative to the conventional cursorbar feedback for training subjects to modulate their sensorimotor rhythms. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    NASA Astrophysics Data System (ADS)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  7. Comparison of manual and automatic MR-CT registration for radiotherapy of prostate cancer.

    PubMed

    Korsager, Anne Sofie; Carl, Jesper; Riis Østergaard, Lasse

    2016-05-08

    In image-guided radiotherapy (IGRT) of prostate cancer, delineation of the clini-cal target volume (CTV) often relies on magnetic resonance (MR) because of its good soft-tissue visualization. Registration of MR and computed tomography (CT) is required in order to add this accurate delineation to the dose planning CT. An automatic approach for local MR-CT registration of the prostate has previously been developed using a voxel property-based registration as an alternative to a manual landmark-based registration. The aim of this study is to compare the two registration approaches and to investigate the clinical potential for replacing the manual registration with the automatic registration. Registrations and analysis were performed for 30 prostate cancer patients treated with IGRT using a Ni-Ti prostate stent as a fiducial marker. The comparison included computing translational and rotational differences between the approaches, visual inspection, and computing the overlap of the CTV. The computed mean translational difference was 1.65, 1.60, and 1.80mm and the computed mean rotational difference was 1.51°, 3.93°, and 2.09° in the superior/inferior, anterior/posterior, and medial/lateral direction, respectively. The sensitivity of overlap was 87%. The results demonstrate that the automatic registration approach performs registrations comparable to the manual registration.

  8. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    NASA Astrophysics Data System (ADS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  9. Multimodal autofluorescence detection of cancer: from single cells to living organism

    NASA Astrophysics Data System (ADS)

    Horilova, J.; Cunderlikova, B.; Cagalinec, M.; Chorvat, D.; Marcek Chorvatova, A.

    2018-02-01

    Multimodal optical imaging of suspected tissues is showing to be a promising method for distinguishing suspected cancerous tissues from healthy ones. In particular, the combination of steady-state spectroscopic methods with timeresolved fluorescence provides more precise insight into native metabolism when focused on tissue autofluorescence. Cancer is linked to specific metabolic remodelation detectable spectroscopically. In this work, we evaluate possibilities and limitations of multimodal optical cancer detection in single cells, collagen-based 3D cell cultures and in living organisms (whole mice), as a representation of gradually increasing complexity of model systems.

  10. Optimization of an integrated wavelength monitor device

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2011-05-01

    In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.

  11. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  12. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    PubMed Central

    Rettmann, Maryam E.; Holmes, David R.; Kwartowitz, David M.; Gunawan, Mia; Johnson, Susan B.; Camp, Jon J.; Cameron, Bruce M.; Dalegrave, Charles; Kolasa, Mark W.; Packer, Douglas L.; Robb, Richard A.

    2014-01-01

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamic in vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy. PMID:24506630

  13. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Datamore » from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy.« less

  14. Challenges in Transcribing Multimodal Data: A Case Study

    ERIC Educational Resources Information Center

    Helm, Francesca; Dooly, Melinda

    2017-01-01

    Computer-mediated communication (CMC) once meant principally text-based communication mediated by computers, but rapid technological advances in recent years have heralded an era of multimodal communication with a growing emphasis on audio and video synchronous interaction. As CMC, in all its variants (text chats, video chats, forums, blogs, SMS,…

  15. Multi-Modal Performance Measures in Oregon: Developing a Transportation Cost Index Based Upon Multi-Modal Network and Land Use Information

    DOT National Transportation Integrated Search

    2016-02-01

    Transportation Cost Index is a performance measure for transportation and land use systems originally proposed and piloted by Reiff and Gregor (2005). It fills important niches of existing similar measures in term of policy areas covered and type of ...

  16. A Multimodal Intervention for Grandparents Raising Grandchildren: Results of an Exploratory Study.

    ERIC Educational Resources Information Center

    Kelley, Susan J.; Yorker, Beatrice Crofts; Whitley, Deborah M.; Sipe, Theresa A.

    2001-01-01

    Evaluated a multimodal, home-based intervention designed to reduce psychological stress, improve physical and mental health, and strengthen the social support and resources of grandparents raising grandchildren. Found that the intervention, which included home visits by nurses, social workers and legal assistants, resulted in improved mental…

  17. Severe Speech Sound Disorders: An Integrated Multimodal Intervention

    ERIC Educational Resources Information Center

    King, Amie M.; Hengst, Julie A.; DeThorne, Laura S.

    2013-01-01

    Purpose: This study introduces an integrated multimodal intervention (IMI) and examines its effectiveness for the treatment of persistent and severe speech sound disorders (SSD) in young children. The IMI is an activity-based intervention that focuses simultaneously on increasing the "quantity" of a child's meaningful productions of target words…

  18. Motivating Students' Research Skills and Interests through a Multimodal, Multigenre Research Project

    ERIC Educational Resources Information Center

    Bailey, Nancy M.; Carroll, Kristen M.

    2010-01-01

    The authors investigate how innovative research assignments based on students' personal interests can help them want to develop their research skills. They find that multimodal communication and representation, including film, written scripts, comic strips, music, and photography, encourage students to carefully select information from the…

  19. Risk-Based Neuro-Grid Architecture for Multimodal Biometrics

    NASA Astrophysics Data System (ADS)

    Venkataraman, Sitalakshmi; Kulkarni, Siddhivinayak

    Recent research indicates that multimodal biometrics is the way forward for a highly reliable adoption of biometric identification systems in various applications, such as banks, businesses, government and even home environments. However, such systems would require large distributed datasets with multiple computational realms spanning organisational boundaries and individual privacies.

  20. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  1. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  2. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  3. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  4. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  5. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  6. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  7. 3D surface-based registration of ultrasound and histology in prostate cancer imaging.

    PubMed

    Schalk, Stefan G; Postema, Arnoud; Saidov, Tamerlan A; Demi, Libertario; Smeenge, Martijn; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    Several transrectal ultrasound (TRUS)-based techniques aiming at accurate localization of prostate cancer are emerging to improve diagnostics or to assist with focal therapy. However, precise validation prior to introduction into clinical practice is required. Histopathology after radical prostatectomy provides an excellent ground truth, but needs accurate registration with imaging. In this work, a 3D, surface-based, elastic registration method was developed to fuse TRUS images with histopathologic results. To maximize the applicability in clinical practice, no auxiliary sensors or dedicated hardware were used for the registration. The mean registration errors, measured in vitro and in vivo, were 1.5±0.2 and 2.1±0.5mm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    PubMed

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks.

    PubMed

    Reis, Matthias; Kromer, Justus A; Klipp, Edda

    2018-01-20

    Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.

  10. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  11. A Remote Registration Based on MIDAS

    NASA Astrophysics Data System (ADS)

    JIN, Xin

    2017-04-01

    We often need for software registration to protect the interests of the software developers. This article narrated one kind of software long-distance registration technology. The registration method is: place the registration information in a database table, after the procedure starts in check table registration information, if it has registered then the procedure may the normal operation; Otherwise, the customer must input the sequence number and registers through the network on the long-distance server. If it registers successfully, then records the registration information in the database table. This remote registration method can protect the rights of software developers.

  12. Overlay improvement by exposure map based mask registration optimization

    NASA Astrophysics Data System (ADS)

    Shi, Irene; Guo, Eric; Chen, Ming; Lu, Max; Li, Gordon; Li, Rivan; Tian, Eric

    2015-03-01

    Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it's observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6] In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density could also achieve under 5nm performance. We assume mask registration excluding random error is mostly induced by charge accumulation during mask writing, which may be calculated from surrounding exposed pattern density. Multi-loading test mask registration result shows that with x direction writing sequence, mask registration behavior in x direction is mainly related to sequence direction, but mask registration in y direction would be highly impacted by pattern density distribution map. It proves part of mask registration error is due to charge issue from nearby environment. If exposure sequence is chip by chip for normal multi chip layout case, mask registration of both x and y direction would be impacted analogously, which has also been proved by real data. Therefore, we try to set up a simple model to predict the mask registration error based on mask exposure map, and correct it with the given POSCOR (position correction) file for advanced mask writing if needed.

  13. Move it to improve it (Mitii): study protocol of a randomised controlled trial of a novel web-based multimodal training program for children and adolescents with cerebral palsy

    PubMed Central

    Boyd, Roslyn N; Mitchell, Louise E; James, Sarah T; Ziviani, Jenny; Sakzewski, Leanne; Smith, Anthony; Rose, Stephen; Cunnington, Ross; Whittingham, Koa; Ware, Robert S; Comans, Tracey A; Scuffham, Paul A

    2013-01-01

    Introduction Persons with cerebral palsy require a lifetime of costly and resource intensive interventions which are often limited by equity of access. With increasing burden being placed on health systems, new methods to deliver intensive rehabilitation therapies are needed. Move it to improve it (Mitii) is an internet-based multimodal programme comprising upper-limb and cognitive training with physical activity. It can be accessed in the client's home at their convenience. The proposed study aims to test the efficacy of Mitii in improving upper-limb function and motor planning. Additionally, this study hopes to further our understanding of the central neurovascular mechanisms underlying the proposed changes and determine the cost effectiveness of Mitii. Methods and analysis Children with congenital hemiplegia will be recruited to participate in this waitlist control, matched pairs, single-blind randomised trial. Children be matched at baseline and randomly allocated to receive 20 weeks of 30 min of daily Mitii training immediately, or waitlisted for 20 weeks before receiving the same Mitii training (potential total dose=70 h). Outcomes will be assessed at 20 weeks after the start of Mitii, and retention effects tested at 40 weeks. The primary outcomes will be the Assessment of Motor and Process Skills (AMPS), the Assisting Hand Assessment (AHA) and unimanual upper-limb capacity using the Jebsen-Taylor Test of Hand Function (JTTHF). Advanced brain imaging will assess use-dependant neuroplasticity. Measures of body structure and functions, activity, participation and quality of life will be used to assess Mitii efficacy across all domains of the International Classification of Functioning, Disability and Health framework. Ethics and dissemination This project has received Ethics Approval from the Medical Ethics Committee of The University of Queensland (2011000608) and the Royal Children's Hospital Brisbane (HREC/11/QRCH/35). Findings will be disseminated widely through conference presentations, seminars and peer-reviewed scientific journals. Trial registration ACTRN12611001174976 PMID:23578686

  14. Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons

    NASA Astrophysics Data System (ADS)

    Kim, Mi Song

    2015-10-01

    Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal learning environment. Our design-based research co-designs and develops engaging, immersive, and interactive informal learning activities called "Embodied Modeling-Mediated Activities" (EMMA) to support not only Singaporean learners' deep learning of astronomy but also the capacity of teachers. As part of the research on EMMA, this case study describes two prospective teachers' co-design processes involving multimodal models for teaching and learning the concept of the seasons in a technology-rich informal learning setting. Our study uncovers four prominent themes emerging from our data concerning the contextualized nature of learning and teaching involving multimodal models in informal learning contexts: (1) promoting communication and emerging questions, (2) offering affordances through limitations, (3) explaining one concept involving multiple concepts, and (4) integrating teaching and learning experiences. This study has an implication for the development of a pedagogical framework for teaching and learning in technology-enhanced learning environments—that is empowering teachers to become active sense-makers using multimodal models.

  15. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    NASA Astrophysics Data System (ADS)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  16. Tunable all-fiber dissipative-soliton laser with a multimode interference filter.

    PubMed

    Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan

    2012-09-15

    We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.

  17. Advancements in LiDAR-based registration of FIA field plots

    Treesearch

    Demetrios Gatziolis

    2012-01-01

    Meaningful integration of National Forest Inventory field plot information with spectral imagery acquired from satellite or airborne platforms requires precise plot registration. Global positioning system-based plot registration procedures, such as the one employed by the Forest Inventory and Analysis (FIA) Program, yield plot coordinates that, although adequate for...

  18. Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom.

    PubMed

    Neumann, Wiebke; Lietzmann, Florian; Schad, Lothar R; Zöllner, Frank G

    2017-06-01

    This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for 1 H and 23 Na MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. 1 H MR measurements of the liver were repeated after seven months to determine long term stability. The modules possess HU, T 1 and T 2 values comparable to human tissues (lung module: -756±148HU, artificial ribs: 218±56HU (low CaCO 3 concentration) and 339±121 (high CaCO 3 concentration), liver module: T 1 =790±28ms, T 2 =65±1ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900HU, T 1 relaxation time from 550ms to 2000ms, T 2 relaxation time from 40ms to 200ms. The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, 23 Na MR quantification experiments and an increasing level of complexity for motion studies. Copyright © 2016. Published by Elsevier GmbH.

  19. Adolescent Substance Use in the Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder (ADHD) (MTA) as a Function of Childhood ADHD, Random Assignment to Childhood Treatments, and Subsequent Medication

    PubMed Central

    Molina, Brooke S.G.; Hinshaw, Stephen P.; Arnold, L. Eugene; Swanson, James M.; Pelham, William E.; Hechtman, Lily; Hoza, Betsy; Epstein, Jeffery N.; Wigal, Timothy; Abikoff, Howard B.; Greenhill, Laurence L.; Jensen, Peter S.; Wells, Karen C.; Vitiello, Benedetto; Gibbons, Robert D.; Howard, Andrea; Houck, Patricia R.; Hur, Kwan; Lu, Bo; Marcus, Sue

    2013-01-01

    Objectives To determine long-term effects on substance use and substance use disorder (SUD), up to 8 years after childhood enrollment, of the randomly assigned 14-month treatments in the multisite Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder (MTA; n=436); to test whether (a) medication at follow-up, (b) cumulative psychostimulant treatment over time, or (c) both relate to substance use/SUD; to compare substance use/SUD in the ADHD sample to the non-ADHD childhood classmate comparison group (n=261). Method Mixed-effects regression models with planned contrasts were used for all tests except the important cumulative stimulant treatment question, for which propensity score matching analysis was used. Results The originally randomized treatment groups did not differ significantly on substance use/SUD by the 8 year follow-up or earlier (M age = 17 years). Neither medication at follow-up (mostly stimulants) nor cumulative stimulant treatment was associated with adolescent substance use/SUD. Substance use at all time points, including use of two or more substances and SUD, were each greater in the ADHD than non-ADHD samples, regardless of sex. Conclusions Medication for ADHD did not protect from, nor contribute to, visible risk of substance use or SUD by adolescence, whether analyzed as randomized treatment assignment in childhood, as medication at follow-up, or as cumulative stimulant treatment over an 8 year follow-up from childhood. These results suggest the need to identify alternative or adjunctive adolescent-focused approaches to substance abuse prevention and treatment for boys and girls with ADHD, especially given their increased risk for use and abuse of multiple substances that is not improved with stimulant medication. Clinical trial registration information—Multimodal Treatment Study of Children with Attention Deficit and Hyperactivity Disorder (MTA); http://clinical trials.gov/; NCT00000388. PMID:23452682

  20. Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue

    NASA Astrophysics Data System (ADS)

    McClatchy, David M., III; Rizzo, Elizabeth J.; Meganck, Jeff; Kempner, Josh; Vicory, Jared; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.

    2017-12-01

    A multimodal micro-computed tomography (CT) and multi-spectral structured light imaging (SLI) system is introduced and systematically analyzed to test its feasibility to aid in margin delineation during breast conserving surgery (BCS). Phantom analysis of the micro-CT yielded a signal-to-noise ratio of 34, a contrast of 1.64, and a minimum detectable resolution of 240 μm for a 1.2 min scan. The SLI system, spanning wavelengths 490 nm to 800 nm and spatial frequencies up to 1.37 mm-1 , was evaluated with aqueous tissue simulating phantoms having variations in particle size distribution, scatter density, and blood volume fraction. The reduced scattering coefficient, μs\\prime and phase function parameter, γ, were accurately recovered over all wavelengths independent of blood volume fractions from 0% to 4%, assuming a flat sample geometry perpendicular to the imaging plane. The resolution of the optical system was tested with a step phantom, from which the modulation transfer function was calculated yielding a maximum resolution of 3.78 cycles per mm. The three dimensional spatial co-registration between the CT and optical imaging space was tested and shown to be accurate within 0.7 mm. A freshly resected breast specimen, with lobular carcinoma, fibrocystic disease, and adipose, was imaged with the system. The micro-CT provided visualization of the tumor mass and its spiculations, and SLI yielded superficial quantification of light scattering parameters for the malignant and benign tissue types. These results appear to be the first demonstration of SLI combined with standard medical tomography for imaging excised tumor specimens. While further investigations are needed to determine and test the spectral, spatial, and CT features required to classify tissue, this study demonstrates the ability of multimodal CT/SLI to quantify, visualize, and spatially navigate breast tumor specimens, which could potentially aid in the assessment of tumor margin status during BCS.

  1. Adolescent substance use in the multimodal treatment study of attention-deficit/hyperactivity disorder (ADHD) (MTA) as a function of childhood ADHD, random assignment to childhood treatments, and subsequent medication.

    PubMed

    Molina, Brooke S G; Hinshaw, Stephen P; Eugene Arnold, L; Swanson, James M; Pelham, William E; Hechtman, Lily; Hoza, Betsy; Epstein, Jeffery N; Wigal, Timothy; Abikoff, Howard B; Greenhill, Laurence L; Jensen, Peter S; Wells, Karen C; Vitiello, Benedetto; Gibbons, Robert D; Howard, Andrea; Houck, Patricia R; Hur, Kwan; Lu, Bo; Marcus, Sue

    2013-03-01

    To determine long-term effects on substance use and substance use disorder (SUD), up to 8 years after childhood enrollment, of the randomly assigned 14-month treatments in the multisite Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder (MTA; n = 436); to test whether medication at follow-up, cumulative psychostimulant treatment over time, or both relate to substance use/SUD; and to compare substance use/SUD in the ADHD sample to the non-ADHD childhood classmate comparison group (n = 261). Mixed-effects regression models with planned contrasts were used for all tests except the important cumulative stimulant treatment question, for which propensity score matching analysis was used. The originally randomized treatment groups did not differ significantly on substance use/SUD by the 8-year follow-up or earlier (mean age = 17 years). Neither medication at follow-up (mostly stimulants) nor cumulative stimulant treatment was associated with adolescent substance use/SUD. Substance use at all time points, including use of two or more substances and SUD, were each greater in the ADHD than in the non-ADHD samples, regardless of sex. Medication for ADHD did not protect from, or contribute to, visible risk of substance use or SUD by adolescence, whether analyzed as randomized treatment assignment in childhood, as medication at follow-up, or as cumulative stimulant treatment over an 8-year follow-up from childhood. These results suggest the need to identify alternative or adjunctive adolescent-focused approaches to substance abuse prevention and treatment for boys and girls with ADHD, especially given their increased risk for use and abuse of multiple substances that is not improved with stimulant medication. Clinical trial registration information-Multimodal Treatment Study of Children With Attention Deficit and Hyperactivity Disorder (MTA); http://clinical trials.gov/; NCT00000388. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. All rights reserved.

  2. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed formore » use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast to allow for quantitative measurements of the degree of stenosis in each phantom. Such multimodality phantoms may prove useful in evaluating current and emerging US, MRI, CT, and DSA technology.« less

  3. Standardized unfold mapping: a technique to permit left atrial regional data display and analysis.

    PubMed

    Williams, Steven E; Tobon-Gomez, Catalina; Zuluaga, Maria A; Chubb, Henry; Butakoff, Constantine; Karim, Rashed; Ahmed, Elena; Camara, Oscar; Rhode, Kawal S

    2017-10-01

    Left atrial arrhythmia substrate assessment can involve multiple imaging and electrical modalities, but visual analysis of data on 3D surfaces is time-consuming and suffers from limited reproducibility. Unfold maps (e.g., the left ventricular bull's eye plot) allow 2D visualization, facilitate multimodal data representation, and provide a common reference space for inter-subject comparison. The aim of this work is to develop a method for automatic representation of multimodal information on a left atrial standardized unfold map (LA-SUM). The LA-SUM technique was developed and validated using 18 electroanatomic mapping (EAM) LA geometries before being applied to ten cardiac magnetic resonance/EAM paired geometries. The LA-SUM was defined as an unfold template of an average LA mesh, and registration of clinical data to this mesh facilitated creation of new LA-SUMs by surface parameterization. The LA-SUM represents 24 LA regions on a flattened surface. Intra-observer variability of LA-SUMs for both EAM and CMR datasets was minimal; root-mean square difference of 0.008 ± 0.010 and 0.007 ± 0.005 ms (local activation time maps), 0.068 ± 0.063 gs (force-time integral maps), and 0.031 ± 0.026 (CMR LGE signal intensity maps). Following validation, LA-SUMs were used for automatic quantification of post-ablation scar formation using CMR imaging, demonstrating a weak but significant relationship between ablation force-time integral and scar coverage (R 2  = 0.18, P < 0.0001). The proposed LA-SUM displays an integrated unfold map for multimodal information. The method is applicable to any LA surface, including those derived from imaging and EAM systems. The LA-SUM would facilitate standardization of future research studies involving segmental analysis of the LA.

  4. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches.

    PubMed

    Kudarha, Ritu R; Sawant, Krutika K

    2017-12-01

    Albumin is a versatile protein used as a carrier system for cancer therapeutics. As a carrier it can provide tumor specificity, reduce drug related toxicity, maintain therapeutic concentration of the active moiety like drug, gene, peptide, protein etc. for long period of time and also reduce drug related toxicities. Apart from cancer therapy, it is also utilized in the imaging and multimodal therapy of cancer. This review highlights the important properties, structure and types of albumin based nanocarriers with regards to their use for cancer targeting. It also provides brief discussion on methods of preparation of these nanocarriers and their surface modification. Applications of albumin nanocarriers for cancer therapy, gene delivery, imaging, phototherapy and multimodal therapy have also been discussed. This review also provides brief discussion about albumin based marketed nano formulations and those under clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hand biometric recognition based on fused hand geometry and vascular patterns.

    PubMed

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  6. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    PubMed Central

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  7. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    NASA Astrophysics Data System (ADS)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  8. Multiscale Climate Emulator of Multimodal Wave Spectra: MUSCLE-spectra

    NASA Astrophysics Data System (ADS)

    Rueda, A.; Hegermiller, C.; Alvarez Antolinez, J. A.; Camus, P.; Vitousek, S.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Tomas, A.; Mendez, F. J.

    2016-12-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this problem complex yet tractable using computationally-expensive numerical models. So far, the skill of statistical-downscaling models based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical-downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the Southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  9. Registration and fusion quantification of augmented reality based nasal endoscopic surgery.

    PubMed

    Chu, Yakui; Yang, Jian; Ma, Shaodong; Ai, Danni; Li, Wenjie; Song, Hong; Li, Liang; Chen, Duanduan; Chen, Lei; Wang, Yongtian

    2017-12-01

    This paper quantifies the registration and fusion display errors of augmented reality-based nasal endoscopic surgery (ARNES). We comparatively investigated the spatial calibration process for front-end endoscopy and redefined the accuracy level of a calibrated endoscope by using a calibration tool with improved structural reliability. We also studied how registration accuracy was combined with the number and distribution of the deployed fiducial points (FPs) for positioning and the measured registration time. A physically integrated ARNES prototype was customarily configured for performance evaluation in skull base tumor resection surgery with an innovative approach of dynamic endoscopic vision expansion. As advised by surgical experts in otolaryngology, we proposed a hierarchical rendering scheme to properly adapt the fused images with the required visual sensation. By constraining the rendered sight in a known depth and radius, the visual focus of the surgeon can be induced only on the anticipated critical anatomies and vessel structures to avoid misguidance. Furthermore, error analysis was conducted to examine the feasibility of hybrid optical tracking based on point cloud, which was proposed in our previous work as an in-surgery registration solution. Measured results indicated that the error of target registration for ARNES can be reduced to 0.77 ± 0.07 mm. For initial registration, our results suggest that a trade-off for a new minimal time of registration can be reached when the distribution of five FPs is considered. For in-surgery registration, our findings reveal that the intrinsic registration error is a major cause of performance loss. Rigid model and cadaver experiments confirmed that the scenic integration and display fluency of ARNES are smooth, as demonstrated by three clinical trials that surpassed practicality. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  11. Evaluating a community-based dental registration program for preschool children living in areas of high social deprivation.

    PubMed

    Yuan, S; Kerr, G; Salmon, K; Speedy, P; Freeman, R

    2007-03-01

    This was to evaluate the effectiveness of a community-based program to promote dental registration and access to dental services for preschool children residing in areas of high social deprivation using monthly registration data provided by the Central Services Agency (CSA). A quasi-experimental non-equivalent two group comparison. Areas of high social deprivation in the greater Belfast area. The dental registration program was conducted by community-based nurses (health visitors). The health visitors provided oral health education and distributed registration vouchers to mothers of new babies during home visits. The mothers exchanged the vouchers for motivational materials from the participating dental practices. Preschool child registration data were obtained from the CSA to evaluate the effectiveness of the program. The registration rates were significantly greater 5 months after the program for 0-2-year old children residing in the intervention wards compared with control wards. During the program the rate of change in registration for the 0-2-year-old group residing in the intervention wards was significantly greater compared with those residing in the control wards (t [DF:21]=4.26: p<0.001). There was a significant increase in registration rate 5 months after the program compared with 6 months before the study started for the 0-2 year old group residing in the intervention wards compared with those residing in the control wards (t [df: 21]=3.33: P=0.003). There were no equivalent effects for the 3-5-year old group. The adoption of a community-based approach assisted in promoting dental registration and access to dental services for preschool children residing in areas of high social deprivation.

  12. Learning multimodal dictionaries.

    PubMed

    Monaci, Gianluca; Jost, Philippe; Vandergheynst, Pierre; Mailhé, Boris; Lesage, Sylvain; Gribonval, Rémi

    2007-09-01

    Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This paradigm can be also extremely useful in many signal processing and computer vision problems involving mutually related signals. The simultaneous processing of multimodal data can, in fact, reveal information that is otherwise hidden when considering the signals independently. However, in natural multimodal signals, the statistical dependencies between modalities are in general not obvious. Learning fundamental multimodal patterns could offer deep insight into the structure of such signals. In this paper, we present a novel model of multimodal signals based on their sparse decomposition over a dictionary of multimodal structures. An algorithm for iteratively learning multimodal generating functions that can be shifted at all positions in the signal is proposed, as well. The learning is defined in such a way that it can be accomplished by iteratively solving a generalized eigenvector problem, which makes the algorithm fast, flexible, and free of user-defined parameters. The proposed algorithm is applied to audiovisual sequences and it is able to discover underlying structures in the data. The detection of such audio-video patterns in audiovisual clips allows to effectively localize the sound source on the video in presence of substantial acoustic and visual distractors, outperforming state-of-the-art audiovisual localization algorithms.

  13. Randomized, double-blinded, placebo-controlled trial comparing two multimodal opioid-minimizing pain management regimens following transsphenoidal surgery.

    PubMed

    Shepherd, Deborah M; Jahnke, Heidi; White, William L; Little, Andrew S

    2018-02-01

    OBJECTIVE Pain control is an important clinical consideration and quality-of-care metric. No studies have examined postoperative pain control following transsphenoidal surgery for pituitary lesions. The study goals were to 1) report postoperative pain scores following transsphenoidal surgery, 2) determine if multimodal opioid-minimizing pain regimens yielded satisfactory postoperative pain control, and 3) determine if intravenous (IV) ibuprofen improved postoperative pain scores and reduced opioid use compared with placebo. METHODS This study was a single-center, randomized, double-blinded, placebo-controlled intervention trial involving adult patients with planned transsphenoidal surgery for pituitary tumors randomized into 2 groups. Group 1 patients were treated with scheduled IV ibuprofen, scheduled oral acetaminophen, and rescue opioids. Group 2 patients were treated with IV placebo, scheduled oral acetaminophen, and rescue opioids. The primary end point was patient pain scores (visual analog scale [VAS], rated 0-10) for 48 hours after surgery. The secondary end point was opioid use as estimated by oral morphine equivalents (OMEs). RESULTS Of 136 patients screened, 62 were enrolled (28 in Group 1, 34 in Group 2). The study was terminated early because the primary and secondary end points were reached. Baseline characteristics between groups were well matched except for age (Group 1, 59.3 ± 14.4 years; Group 2, 49.8 ± 16.2 years; p = 0.02). Mean VAS pain scores were significantly different, with a 43% reduction in Group 1 (1.7 ± 2.2) compared with Group 2 (3.0 ± 2.8; p < 0.0001). Opioid use was significantly different, with a 58% reduction in Group 1 (26.3 ± 28.7 mg OME) compared with Group 2 (62.5 ± 63.8 mg OME; p < 0.0001). CONCLUSIONS Multimodal opioid-minimizing pain-management protocols resulted in acceptable pain control following transsphenoidal surgery. IV ibuprofen resulted in significantly improved pain scores and significantly decreased opioid use compared with placebo. Postoperative multimodal pain management, including a nonsteroidal antiinflammatory medication, should be considered after surgery to improve patient comfort and to limit opioid use. Clinical trial registration no.: NCT02351700 (clinicaltrials.gov) ■ CLASSIFICATION OF EVIDENCE Type of question: therapeutic; study design: randomized, controlled trial; evidence: Class III.

  14. Cortical surface registration using spherical thin-plate spline with sulcal lines and mean curvature as features.

    PubMed

    Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min

    2012-04-30

    Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Molecular Imaging for Breast Cancer Using Magnetic Resonance-Guided Positron Emission Mammography and Excitation-Resolved Near-Infrared Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu

    The aim of this work is to develop novel breast-specific molecular imaging techniques for management of breast cancer. In this dissertation, we describe two novel molecular imaging approaches for breast cancer management. In Part I, we introduce our multimodal molecular imaging approach for breast cancer therapy monitoring using magnetic resonance imaging and positron emission mammography (MR/PEM). We have focused on the therapy monitoring technique for aggressive cancer molecular subtypes, which is challenging due to time constraint. Breast cancer therapy planning relies on a fast and accurate monitoring of functional and anatomical change. We demonstrate a proof-of-concept of sequential dual-modal magnetic resonance and positron emission mammography (MR/PEM) for the cancer therapy monitoring. We have developed dedicated breast coils with breast compression mechanism equipped with MR-compatible PEM detector heads. We have designed a fiducial marker that allows straightforward image registration of data obtained from MRI and PEM. We propose an optimal multimodal imaging procedure for MR/PEM. In Part II, we have focused on the development of a novel intraoperative near-infrared fluorescence imaging system (NIRF) for image-guided breast cancer surgery. Conventional spectrally-resolved NIRF systems are unable to resolve various NIR fluorescence dyes for the following reasons. First, the fluorescence spectra of viable NIR fluorescence dyes are heavily overlapping. Second, conventional emission-resolved NIRF suffers from a trade-off between the fluence rate and the spectral resolution. Third, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We develop a wavelength-swept laser-based NIRF system that can resolve the excitation shift of various NIR fluorescence dyes without substantial loss of the fluence rate. A linear ratiometric model is employed to measure the relative shift of the excitation spectrum of a fluorescence dye.

  16. A Pilot Study of Peripheral Muscle Magnetic Stimulation as Add-on Treatment to Repetitive Transcranial Magnetic Stimulation in Chronic Tinnitus

    PubMed Central

    Vielsmeier, Veronika; Schecklmann, Martin; Schlee, Winfried; Kreuzer, Peter M.; Poeppl, Timm B.; Rupprecht, Rainer; Langguth, Berthold; Lehner, Astrid

    2018-01-01

    While brain stimulation techniques have been examined as treatment options for chronic tinnitus for many years, they have recently been extended to multimodal treatment approaches. As chronic tinnitus is often accompanied by comorbid muscular tension in the neck and back, we performed a one-arm pilot study to explore the feasibility of a new multimodal treatment approach. In detail, repetitive peripheral magnetic stimulation (rPMS) of the back was performed before and after each session of repetitive transcranial magnetic stimulation (rTMS) of the brain. Data of 41 patients were analyzed, all of which were treated with ten sessions of rTMS of the left prefrontal and left temporoparietal cortex followed by rPMS of the neck and back muscles. Tinnitus severity was measured using the tinnitus questionnaire (TQ). Neck pain was assessed using the neck pain and disability scale (NPAD). The new treatment approach was feasible and well accepted by the majority of patients. However, the overall patient group did not improve significantly in either of the questionnaires. If patients were divided in different subgroups depending on whether they were suffering from neck pain or somatosensory tinnitus, explorative post-hoc tests suggested differential effects: patients with both neck pain and somatosensory tinnitus had better outcomes than patients without those conditions or with neck pain only. This was true for both the TQ and the NPAD. This effect was of transient nature though: the TQ score went back to its baseline level after a follow-up period of 12 weeks. Based on our results we recommend that in studies that investigate tinnitus treatments targeting somatosensory afferents patients should be stratified according to somatic co-morbidities and somatosensory influence on the tinnitus percept. Clinical trial registration: www.clinicaltrials.gov, NCT02306447. PMID:29515350

  17. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    PubMed

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  18. Comparison of manual and automatic MR‐CT registration for radiotherapy of prostate cancer

    PubMed Central

    Carl, Jesper; Østergaard, Lasse Riis

    2016-01-01

    In image‐guided radiotherapy (IGRT) of prostate cancer, delineation of the clinical target volume (CTV) often relies on magnetic resonance (MR) because of its good soft‐tissue visualization. Registration of MR and computed tomography (CT) is required in order to add this accurate delineation to the dose planning CT. An automatic approach for local MR‐CT registration of the prostate has previously been developed using a voxel property‐based registration as an alternative to a manual landmark‐based registration. The aim of this study is to compare the two registration approaches and to investigate the clinical potential for replacing the manual registration with the automatic registration. Registrations and analysis were performed for 30 prostate cancer patients treated with IGRT using a Ni‐Ti prostate stent as a fiducial marker. The comparison included computing translational and rotational differences between the approaches, visual inspection, and computing the overlap of the CTV. The computed mean translational difference was 1.65, 1.60, and 1.80 mm and the computed mean rotational difference was 1.51°, 3.93°, and 2.09° in the superior/inferior, anterior/posterior, and medial/lateral direction, respectively. The sensitivity of overlap was 87%. The results demonstrate that the automatic registration approach performs registrations comparable to the manual registration. PACS number(s): 87.57.nj, 87.61.‐c, 87.57.Q‐, 87.56.J‐ PMID:27167285

  19. Multimodal Career Development: "BASIC IDEAS" for Wholistic Career Education.

    ERIC Educational Resources Information Center

    Southern, Stephen

    This paper presents a comprehensive model for career development over the lifespan. The approach, based on the multimodal behavioral therapy of Arnold Lazarus, takes into account 10 modalities and factors that should be considered when addressing the career education needs of whole persons. These modalities and factors, represented by the acronym…

  20. A Standardization Evaluation Potential Study of the Common Multi-Mode Radar Program.

    DTIC Science & Technology

    1979-11-01

    Radar, the RX (RF-16 etc.), Enhanced Tactical Fighter ( ETF ), and A-7. Candidate radar systems applicable to the Common Multi-Mode Radar Program...RSTC R Resupply Time to Overseas Located Bases (hours) RSTO R Depot Stock Safety Factor (standard deviations) DLY R Shipping Time to Depot from CONUS

  1. Effects of Webcams on Multimodal Interactive Learning

    ERIC Educational Resources Information Center

    Codreanu, Tatiana; Celik, Christelle Combe

    2013-01-01

    This paper describes the multimodal pedagogical communication of two groups of online teachers; trainee tutors (second year students of the Master of Arts in Teaching French as a Foreign Language at the University Lumiere-Lyon 2) and experienced teachers based in different locations (France, Spain and Finland). They all taught French as a Foreign…

  2. Multimodal Mapmaking: Working toward an Entangled Methodology of Place

    ERIC Educational Resources Information Center

    Powell, Kimberly

    2016-01-01

    This article addresses mapmaking as a multimodal method and lens for place-based ethnographic inquiry. I describe three contexts drawn from my research on and teaching of mapmaking. Drawing from my own sense-making of mapping as an embodied phenomenon, I discuss how the fields of sensory and materialist studies might expand the interpretive…

  3. High bandwidth all-optical 3×3 switch based on multimode interference structures

    NASA Astrophysics Data System (ADS)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  4. Data fusion algorithm for rapid multi-mode dust concentration measurement system based on MEMS

    NASA Astrophysics Data System (ADS)

    Liao, Maohao; Lou, Wenzhong; Wang, Jinkui; Zhang, Yan

    2018-03-01

    As single measurement method cannot fully meet the technical requirements of dust concentration measurement, the multi-mode detection method is put forward, as well as the new requirements for data processing. This paper presents a new dust concentration measurement system which contains MEMS ultrasonic sensor and MEMS capacitance sensor, and presents a new data fusion algorithm for this multi-mode dust concentration measurement system. After analyzing the relation between the data of the composite measurement method, the data fusion algorithm based on Kalman filtering is established, which effectively improve the measurement accuracy, and ultimately forms a rapid data fusion model of dust concentration measurement. Test results show that the data fusion algorithm is able to realize the rapid and exact concentration detection.

  5. Multimodal system for the planning and guidance of bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Cheirsilp, Ronnarit; Zang, Xiaonan; Byrnes, Patrick

    2015-03-01

    Many technical innovations in multimodal radiologic imaging and bronchoscopy have emerged recently in the effort against lung cancer. Modern X-ray computed-tomography (CT) scanners provide three-dimensional (3D) high-resolution chest images, positron emission tomography (PET) scanners give complementary molecular imaging data, and new integrated PET/CT scanners combine the strengths of both modalities. State-of-the-art bronchoscopes permit minimally invasive tissue sampling, with vivid endobronchial video enabling navigation deep into the airway-tree periphery, while complementary endobronchial ultrasound (EBUS) reveals local views of anatomical structures outside the airways. In addition, image-guided intervention (IGI) systems have proven their utility for CT-based planning and guidance of bronchoscopy. Unfortunately, no IGI system exists that integrates all sources effectively through the complete lung-cancer staging work flow. This paper presents a prototype of a computer-based multimodal IGI system that strives to fill this need. The system combines a wide range of automatic and semi-automatic image-processing tools for multimodal data fusion and procedure planning. It also provides a flexible graphical user interface for follow-on guidance of bronchoscopy/EBUS. Human-study results demonstrate the system's potential.

  6. [Population-based cancer registration in Germany. Essentials and perspectives].

    PubMed

    Katalinic, A

    2004-05-01

    Although cancer registration has a long tradition in Germany, wide areas remained blank spaces on the map concerning population-based cancer registration. The situation changed completely when a federal law on cancer registration (KRG, 1995-1999) took effect. Now all federal states have established population-based cancer registries on a legal basis. In spite of the uniform model of cancer registration anchored in the KRG, 16 different models have developed in Germany. Completeness of cancer registration was constantly improved over the last several years. In addition to the Saarland cancer registry, further registries can now provide a high grade of registration for all cancer sites. Essential tasks, such as public reporting and support of cancer research, can now be better fulfilled. Even taking the great developments in cancer registration in Germany into consideration, some deficits still continue to exist. These deficits are mostly caused by heterogeneity and missing compatibility of the cancer registry laws of the federal states. After the focus of cancer registration was on developing valid registries,now the focus has to be changed to the usability of cancer registry data. These data can be used e. g. for research on etiology and evaluation of programs on early cancer detection. Scientists in the field of cancer epidemiology, public health, and cancer care are invited to use data of cancer registries for research and evaluation projects intensively.

  7. Functional MRI registration with tissue-specific patch-based functional correlation tensors.

    PubMed

    Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang

    2018-06-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.

  8. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    PubMed

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  9. Multi-atlas segmentation of the cartilage in knee MR images with sequential volume- and bone-mask-based registrations

    NASA Astrophysics Data System (ADS)

    Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo

    2016-03-01

    In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.

  10. 76 FR 65783 - Registration of Security-Based Swap Dealers and Major Security-Based Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Act Rules and Forms A. Registration Application and Amendment 1. Proposed Rule 15Fb2-1 i. Form of Application ii. Senior Officer Certification iii. Electronic Filing iv. Standards for Granting or Denying Applications v. Request for Comment on Additional Registration Considerations 2. Amendments to Application...

  11. Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs

    PubMed Central

    Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos

    2014-01-01

    In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540

  12. A global CT to US registration of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Nagpal, Simrin; Hacihaliloglu, Ilker; Ungi, Tamas; Rasoulian, Abtin; Osborn, Jill; Lessoway, Victoria A.; Rohling, Robert N.; Borschneck, Daniel P.; Abolmaesumi, Purang; Mousavi, Parvin

    2014-03-01

    During percutaneous lumbar spine needle interventions, alignment of the preoperative computed tomography (CT) with intraoperative ultrasound (US) can augment anatomical visualization for the clinician. We propose an approach to rigidly align CT and US data of the lumbar spine. The approach involves an intensity-based volume registration step, followed by a surface segmentation and a point-based registration of the entire lumbar spine volume. A clinical feasibility study resulted in mean registration error of approximately 3 mm between CT and US data.

  13. Elastic registration of prostate MR images based on state estimation of dynamical systems

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Ghoul, Suha; Sirouspour, Shahin; Capson, David W.; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Magnetic resonance imaging (MRI) is being increasingly used for image-guided biopsy and focal therapy of prostate cancer. A combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images, with the identified target tumor(s), to the intra-treatment 1.5T MR images. The pre-treatment 3T images are acquired with patients in strictly supine position using an endorectal coil, while 1.5T images are obtained intra-operatively just before insertion of the ablation needle with patients in the lithotomy position. An intensity-based registration routine rigidly aligns two images in which the transformation parameters is initialized using three pairs of manually selected approximate corresponding points. The rigid registration is followed by a deformable registration algorithm employing a generic dynamic linear elastic deformation model discretized by the finite element method (FEM). The model is used in a classical state estimation framework to estimate the deformation of the prostate based on a similarity metric between pre- and intra-treatment images. Registration results using 10 sets of prostate MR images showed that the proposed method can significantly improve registration accuracy in terms of target registration error (TRE) for all prostate substructures. The root mean square (RMS) TRE of 46 manually identified fiducial points was found to be 2.40+/-1.20 mm, 2.51+/-1.20 mm, and 2.28+/-1.22mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively after deformable registration. These values are improved from 3.15+/-1.60 mm, 3.09+/-1.50 mm, and 3.20+/-1.73mm in the WG, CG and PZ, respectively resulted from rigid registration. Registration results are also evaluated based on the Dice similarity coefficient (DSC), mean absolute surface distances (MAD) and maximum absolute surface distances (MAXD) of the WG and CG in the prostate images.

  14. Unified Modeling Language (UML) for hospital-based cancer registration processes.

    PubMed

    Shiki, Naomi; Ohno, Yuko; Fujii, Ayumi; Murata, Taizo; Matsumura, Yasushi

    2008-01-01

    Hospital-based cancer registry involves complex processing steps that span across multiple departments. In addition, management techniques and registration procedures differ depending on each medical facility. Establishing processes for hospital-based cancer registry requires clarifying specific functions and labor needed. In recent years, the business modeling technique, in which management evaluation is done by clearly spelling out processes and functions, has been applied to business process analysis. However, there are few analytical reports describing the applications of these concepts to medical-related work. In this study, we initially sought to model hospital-based cancer registration processes using the Unified Modeling Language (UML), to clarify functions. The object of this study was the cancer registry of Osaka University Hospital. We organized the hospital-based cancer registration processes based on interview and observational surveys, and produced an As-Is model using activity, use-case, and class diagrams. After drafting every UML model, it was fed-back to practitioners to check its validity and improved. We were able to define the workflow for each department using activity diagrams. In addition, by using use-case diagrams we were able to classify each department within the hospital as a system, and thereby specify the core processes and staff that were responsible for each department. The class diagrams were effective in systematically organizing the information to be used for hospital-based cancer registries. Using UML modeling, hospital-based cancer registration processes were broadly classified into three separate processes, namely, registration tasks, quality control, and filing data. An additional 14 functions were also extracted. Many tasks take place within the hospital-based cancer registry office, but the process of providing information spans across multiple departments. Moreover, additional tasks were required in comparison to using a standardized system because the hospital-based cancer registration system was constructed with the pre-existing computer system in Osaka University Hospital. Difficulty of utilization of useful information for cancer registration processes was shown to increase the task workload. By using UML, we were able to clarify functions and extract the typical processes for a hospital-based cancer registry. Modeling can provide a basis of process analysis for establishment of efficient hospital-based cancer registration processes in each institute.

  15. Detection of elemental mercury by multimode diode laser correlation spectroscopy.

    PubMed

    Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua

    2012-02-27

    We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

  16. Image registration with uncertainty analysis

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  17. 76 FR 17646 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Docket Actions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... adverse effects on human health or the environment. Registration review dockets contain information that... pesticide's registration is based on current scientific and other knowledge, including its effects on human...

  18. Alternative radiation-free registration technique for image-guided pedicle screw placement in deformed cervico-thoracic segments.

    PubMed

    Kantelhardt, Sven R; Neulen, Axel; Keric, Naureen; Gutenberg, Angelika; Conrad, Jens; Giese, Alf

    2017-10-01

    Image-guided pedicle screw placement in the cervico-thoracic region is a commonly applied technique. In some patients with deformed cervico-thoracic segments, conventional or 3D fluoroscopy based registration of image-guidance might be difficult or impossible because of the anatomic/pathological conditions. Landmark based registration has been used as an alternative, mostly using separate registration of each vertebra. We here investigated a routine for landmark based registration of rigid spinal segments as single objects, using cranial image-guidance software. Landmark based registration of image-guidance was performed using cranial navigation software. After surgical exposure of the spinous processes, lamina and facet joints and fixation of a reference marker array, up to 26 predefined landmarks were acquired using a pointer. All pedicle screws were implanted using image guidance alone. Following image-guided screw placement all patients underwent postoperative CT scanning. Screw positions as well as intraoperative and clinical parameters were retrospectively analyzed. Thirteen patients received 73 pedicle screws at levels C6 to Th8. Registration of spinal segments, using the cranial image-guidance succeeded in all cases. Pedicle perforations were observed in 11.0%, severe perforations of >2 mm occurred in 5.4%. One patient developed a transient C8 syndrome and had to be revised for deviation of the C7 pedicle screw. No other pedicle screw-related complications were observed. In selected patients suffering from pathologies of the cervico-thoracic region, which impair intraoperative fluoroscopy or 3D C-arm imaging, landmark based registration of image-guidance using cranial software is a feasible, radiation-saving and a safe alternative.

  19. Potential accuracy of translation estimation between radar and optical images

    NASA Astrophysics Data System (ADS)

    Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.

    2015-10-01

    This paper investigates the potential accuracy achievable for optical to radar image registration by area-based approach. The analysis is carried out mainly based on the Cramér-Rao Lower Bound (CRLB) on translation estimation accuracy previously proposed by the authors and called CRLBfBm. This bound is now modified to take into account radar image speckle noise properties: spatial correlation and signal-dependency. The newly derived theoretical bound is fed with noise and texture parameters estimated for the co-registered pair of optical Landsat 8 and radar SIR-C images. It is found that difficulty of optical to radar image registration stems more from speckle noise influence than from dissimilarity of the considered kinds of images. At finer scales (and higher speckle noise level), probability of finding control fragments (CF) suitable for registration is low (1% or less) but overall number of such fragments is high thanks to image size. Conversely, at the coarse scale, where speckle noise level is reduced, probability of finding CFs suitable for registration can be as high as 40%, but overall number of such CFs is lower. Thus, the study confirms and supports area-based multiresolution approach for optical to radar registration where coarse scales are used for fast registration "lock" and finer scales for reaching higher registration accuracy. The CRLBfBm is found inaccurate for the main scale due to intensive speckle noise influence. For other scales, the validity of the CRLBfBm bound is confirmed by calculating statistical efficiency of area-based registration method based on normalized correlation coefficient (NCC) measure that takes high values of about 25%.

  20. Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lit, John; Gu, Xijia; Wei, Li

    2005-10-01

    We report a new kind of comb filters based on fiber Bragg gratings in graded-index multimode fibers. It produces two groups of spectra with a total of 36 reflection peaks that correspond to 18 principal modes and cross coupled modes. The mode indices and wavelength spacings have been investigated theoretically and experimentally. This kind of comb filters may be used to construct multi-wavelength light sources for sensing, optical communications, and instrumentations

  1. Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles.

    PubMed

    Xie, Wensheng; Gao, Qin; Wang, Dan; Wang, Wei; Yuan, Jie; Guo, Zhenhu; Yan, Hao; Wang, Xiumei; Sun, Xiaodan; Zhao, Lingyun

    2017-01-01

    With the wide recognition of oncostatic effect of melatonin, the current study proposes a potential breast cancer target multimodality treatment based on melatonin-loaded magnetic nanocomposite particles (Melatonin-MNPs). Melatonin-MNPs were fabricated by the single emulsion solvent extraction/evaporation method. Based on the facilitated transport of melatonin by the GLUT overexpressed on the cell membrane, such Melatonin-MNPs can be more favorably uptaken by MCF-7 cells compared with the melatonin-free nanocomposite particles, which indicates the cancer targeting ability of melatonin molecule. Inductive heating can be generated by exposure to the Melatonin-MNPs internalized within cancer cells under alternative magnetic field, so as to achieve the "inside-out" magnetic nano-thermotherapy. In addition to demonstrating the superior cytotoxic effect of such nano-thermotherapy over the conventional exogenous heating by metal bath, more importantly, the sustainable release of melatonin from the Melatonin-MNPs can be greatly promoted upon responsive to the magnetic heating. The multimodality treatment based on Melatonin-MNPs can lead to more significant decrease in cell viability than any single treatment, suggesting the potentiated effect of melatonin on the cytotoxic response to nano-thermotherapy. This study is the first to fabricate the precisely engineered melatonin-loaded multifunctional nanocomposite particles and demonstrate the potential in breast cancer target multimodality treatment.

  2. Microscopic neural image registration based on the structure of mitochondria

    NASA Astrophysics Data System (ADS)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  3. Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis.

    PubMed

    Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan

    2016-09-29

    A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance.

  4. The Impact Of Multimode Fiber Chromatic Dispersion On Data Communications

    NASA Astrophysics Data System (ADS)

    Hackert, Michael J.

    1990-01-01

    Capability for the lowest cost is the goal of contemporary communications managers. With all of the competitive pressures that modern businesses are experiencing these days, communications needs must be met with the most information carrying capacity for the lowest cost. Optical fiber communication systems meet these requirements while providing reliability, system integrity, and potential future upgradability. Consequently, optical fiber is finding numerous applications in addition to its traditional telephony plant. Fiber based systems are meeting these requirements in building networks and computer interconnects at a lower cost than copper based systems. A fiber type being chosen by industry to meet these needs in standard systems such as FDDI, is multimode fiber. Multimode fiber systems offer cost advantages over single-mode fiber through lower fiber connection costs. Also, system designers can gain savings by using low cost, high reliability, wide spectral width sources such as LEDs instead of lasers and by operating at higher bit rates than used for multimode systems in the past. However, in order to maximize the cost savings while ensuring the system will operate as intended, the chromatic dispersion of the fiber must be taken into account. This paper explains how to do that and shows how to calculate multimode chromatic dispersion for each of the standard fiber sizes (50 μm, 62.5 μm, 85 μm, and 100μm core diameter).

  5. A Systematic Narrative Review of Effects of Community-Based Intervention on Rates of Organ Donor Registration.

    PubMed

    Golding, Sarah Elizabeth; Cropley, Mark

    2017-09-01

    The demand for organ donation is increasing worldwide. One possible way of increasing the pool of potential posthumous donors is to encourage more members of the general public to join an organ donor registry. A systematic review was conducted to investigate the effectiveness of psychological interventions designed to increase the number of individuals in the community who register as organ donors. PsycINFO and PubMed databases were searched. No date limits were set. Randomized and nonrandomized controlled trials exploring the effects of community-based interventions on organ donor registration rates were included. Methodological quality was assessed using the "Quality Assessment Tool for Quantitative Studies." Twenty-four studies met the inclusion criteria; 19 studies found a positive intervention effect on registration. Only 8 studies were assessed as having reasonable methodological robustness. A narrative synthesis was conducted. Factors influencing registration rates include providing an immediate registration opportunity and using brief interventions to challenge misconceptions and concerns about organ donation. Community-based interventions can be effective at increasing organ donor registrations among the general public. Factors that may increase effectiveness include brief interventions to address concerns and providing an immediate registration opportunity. Particular consideration should be paid to the fidelity of intervention delivery. Protocol registration number: CRD42014012975.

  6. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  7. Joint sparse representation for robust multimodal biometrics recognition.

    PubMed

    Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama

    2014-01-01

    Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.

  8. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    PubMed

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  9. Research based on the SoPC platform of feature-based image registration

    NASA Astrophysics Data System (ADS)

    Shi, Yue-dong; Wang, Zhi-hui

    2015-12-01

    This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.

  10. Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology

    NASA Astrophysics Data System (ADS)

    Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry

    2012-02-01

    Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence of feasibility of MRI-guided surgical planning.

  11. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  12. Feature-based Alignment of Volumetric Multi-modal Images

    PubMed Central

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  13. Fabricating multifunctional microbubbles and nanobubbles for concurrent ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Qin, Ruogu; Xu, Jeff; Xu, Ronald; Kim, Chulhong; Wang, Lihong V.

    2010-02-01

    Background: Clinical ultrasound (US) uses ultrasonic scattering contrast to characterize subcutaneous anatomic structures. Photoacoustic (PA) imaging detects the functional properties of thick biological tissue with high optical contrast. In the case of image-guided cancer ablation therapy, simultaneous US and PA imaging can be useful for intraoperative assessment of tumor boundaries and ablation margins. In this regard, accurate co-registration between imaging modalities and high sensitivity to cancer cells are important. Methods: We synthesized poly-lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) encapsulating India ink or indocyanine green (ICG). Multiple tumor simulators were fabricated by entrapping ink MBs or NBs at various concentrations in gelatin phantoms for simultaneous US and PA imaging. MBs and NBs were also conjugated with CC49 antibody to target TAG-72, a human glycoprotein complex expressed in many epithelial-derived cancers. Results: Accurate co-registration and intensity correlation were observed in US and PA images of MB and NB tumor simulators. MBs and NBs conjugating with CC49 effectively bound with over-expressed TAG-72 in LS174T colon cancer cell cultures. ICG was also encapsulated in MBs and NBs for the potential to integrate US, PA, and fluorescence imaging. Conclusions: Multifunctional MBs and NBs can be potentially used as a general contrast agent for multimodal intraoperative imaging of tumor boundaries and therapeutic margins.

  14. Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings.

    PubMed

    Xu, Fang; Poon, Andrew W

    2008-06-09

    We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.

  15. Using an Android application to assess registration strategies in open hepatic procedures: a planning and simulation tool

    NASA Astrophysics Data System (ADS)

    Doss, Derek J.; Heiselman, Jon S.; Collins, Jarrod A.; Weis, Jared A.; Clements, Logan W.; Geevarghese, Sunil K.; Miga, Michael I.

    2017-03-01

    Sparse surface digitization with an optically tracked stylus for use in an organ surface-based image-to-physical registration is an established approach for image-guided open liver surgery procedures. However, variability in sparse data collections during open hepatic procedures can produce disparity in registration alignments. In part, this variability arises from inconsistencies with the patterns and fidelity of collected intraoperative data. The liver lacks distinct landmarks and experiences considerable soft tissue deformation. Furthermore, data coverage of the organ is often incomplete or unevenly distributed. While more robust feature-based registration methodologies have been developed for image-guided liver surgery, it is still unclear how variation in sparse intraoperative data affects registration. In this work, we have developed an application to allow surgeons to study the performance of surface digitization patterns on registration. Given the intrinsic nature of soft-tissue, we incorporate realistic organ deformation when assessing fidelity of a rigid registration methodology. We report the construction of our application and preliminary registration results using four participants. Our preliminary results indicate that registration quality improves as users acquire more experience selecting patterns of sparse intraoperative surface data.

  16. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm.

    PubMed

    Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei

    2018-05-01

    To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC and in predicting the degree of root compression. The VR image-based simulation correlated well with the real surgical view. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Focus Meetings for Pesticide Registration Review

    EPA Pesticide Factsheets

    Focus meetings with affected registrants and possibly other stakeholders are based around the information needs identified by the EPA chemical review team and management for consideration during our registration reevaluation of a pesticide.

  18. Teachers' Perceptions about Teaching Multimodal Composition: The Case Study of Korean English Teachers at Secondary Schools

    ERIC Educational Resources Information Center

    Ryu, Jung; Boggs, George

    2016-01-01

    Twenty-first-century literacy is not confined to communication based on reading and writing only traditional printed texts. New kinds of literacies extend to multimedia projects and multimodal texts, which include visual, audio, and technological elements to create meanings. The purpose of this study is to explore how Korean secondary English…

  19. Multimodal Interaction with Speech, Gestures and Haptic Feedback in a Media Center Application

    NASA Astrophysics Data System (ADS)

    Turunen, Markku; Hakulinen, Jaakko; Hella, Juho; Rajaniemi, Juha-Pekka; Melto, Aleksi; Mäkinen, Erno; Rantala, Jussi; Heimonen, Tomi; Laivo, Tuuli; Soronen, Hannu; Hansen, Mervi; Valkama, Pellervo; Miettinen, Toni; Raisamo, Roope

    We demonstrate interaction with a multimodal media center application. Mobile phone-based interface includes speech and gesture input and haptic feedback. The setup resembles our long-term public pilot study, where a living room environment containing the application was constructed inside a local media museum allowing visitors to freely test the system.

  20. A Multimodal Dialog System for Language Assessment: Current State and Future Directions. Research Report. ETS RR-17-21

    ERIC Educational Resources Information Center

    Suendermann-Oeft, David; Ramanarayanan, Vikram; Yu, Zhou; Qian, Yao; Evanini, Keelan; Lange, Patrick; Wang, Xinhao; Zechner, Klaus

    2017-01-01

    We present work in progress on a multimodal dialog system for English language assessment using a modular cloud-based architecture adhering to open industry standards. Among the modules being developed for the system, multiple modules heavily exploit machine learning techniques, including speech recognition, spoken language proficiency rating,…

  1. Multimodality and the Multiliteracies Pedagogy: "Design" and "Recruitment" in South African Children's Musical Games

    ERIC Educational Resources Information Center

    Harrop-Allin, Susan

    2017-01-01

    Drawing on a study of children's musical games in urban South Africa, this article employs two theoretical frames: that of multimodality and the multiliteracies pedagogy. These are applied to a contextual analysis of the forms of musicality that musical games embody and to ways of incorporating children's play into pedagogy. Based on ethnographic…

  2. Graduate Student Perceptions of Multi-Modal Tablet Use in Academic Environments

    ERIC Educational Resources Information Center

    Bryant, Ezzard C., Jr.

    2016-01-01

    The purpose of this study was to explore graduate student perceptions of use and the ease of use of multi-modal tablets to access electronic course materials, and the perceived differences based on students' gender, age, college of enrollment, and previous experience. This study used the Unified Theory of Acceptance and Use of Technology to…

  3. Constructing and Using Multimodal Narratives to Research in Science Education: Contributions Based on Practical Classroom

    ERIC Educational Resources Information Center

    Lopes, J. B.; Silva, A. A.; Cravino, J. P.; Santos, C. A.; Cunha, A.; Pinto, A.; Silva, A.; Viegas, C.; Saraiva, E.; Branco, M. J.

    2014-01-01

    This study deals with the problem of how to collect genuine and useful data about science classroom practices, and preserving the complex and holistic nature of teaching and learning. Additionally, we were looking for an instrument that would allow comparability and verifiability for teaching and research purposes. Given the multimodality of…

  4. An In-Depth Exploration of the Effects of the Webcam on Multimodal Interactive Learning

    ERIC Educational Resources Information Center

    Codreanu, Tatiana; Celik, Christelle Combe

    2012-01-01

    Current research describes multimodal pedagogical communication of two populations of online teachers; trainee tutors (second year students of the Master of Arts in Teaching French as a Foreign Language at the university Lumiere-Lyon 2, France) and experienced teachers based in different locations (France, Spain and Finland). They all taught…

  5. A Complete Multimode Equivalent-Circuit Theory for Electrical Design

    PubMed Central

    Williams, Dylan F.; Hayden, Leonard A.; Marks, Roger B.

    1997-01-01

    This work presents a complete equivalent-circuit theory for lossy multimode transmission lines. Its voltages and currents are based on general linear combinations of standard normalized modal voltages and currents. The theory includes new expressions for transmission line impedance matrices, symmetry and lossless conditions, source representations, and the thermal noise of passive multiports. PMID:27805153

  6. Cross Space: The Exploration of SNS-Based Writing Activities in a Multimodal Learning Environment

    ERIC Educational Resources Information Center

    Lee, Kwang-Soon; Kim, Bong-Gyu

    2016-01-01

    This study explores the positive learning effect of formulating English sentences via Social Network Service (SNS; "Kakao-Talk") on less proficient L2 university students' (LPSs') writing, when the application is utilized as a tool to link in and out-of class activities in a multimodal-learning environment. Its objective is also to…

  7. Developing an Approach for Comparing Students' Multimodal Text Creations: A Case Study

    ERIC Educational Resources Information Center

    Levy, Mike; Kimber, Kay

    2009-01-01

    Classroom teachers routinely make judgments on the quality of their students' work based on their recognition of how effectively the student has assembled key features of the genre or the medium. Yet how readily can teachers talk about the features of student-created multimodal texts in ways that can improve learning and performance? This article…

  8. Blurring Boundaries: Drama as a Critical Multimodal Literacy for Examining 17th-Century Witch Hunts

    ERIC Educational Resources Information Center

    Schroeter, Sara; Wager, Amanda C.

    2017-01-01

    This article illustrates how critical multimodal literacy practices engage secondary students to further explore differences and similarities between past and present instances of discrimination within a process drama, where students and teachers explore a topic through unscripted role-play. Data from a classroom-based ethnography are drawn on to…

  9. Using Multimodal Presentation Software and Peer Group Discussion in Learning English as a Second Language

    ERIC Educational Resources Information Center

    Wang, Mei-jung

    2011-01-01

    This paper reports an application of multimedia in a blended learning environment in which students engaged in multimodal presentations and peer group discussion. Students' presentation files were commented upon by their peers on the discussion board and scored by the researcher, based on questions developed by Levy and Kimber (2009) to apply…

  10. The dynamics of multimodal integration: The averaging diffusion model.

    PubMed

    Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James

    2017-12-01

    We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

  11. Computer-aided psychotherapy based on multimodal elicitation, estimation and regulation of emotion.

    PubMed

    Cosić, Krešimir; Popović, Siniša; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Kovač, Bernard; Jakovljević, Miro

    2013-09-01

    Contemporary psychiatry is looking at affective sciences to understand human behavior, cognition and the mind in health and disease. Since it has been recognized that emotions have a pivotal role for the human mind, an ever increasing number of laboratories and research centers are interested in affective sciences, affective neuroscience, affective psychology and affective psychopathology. Therefore, this paper presents multidisciplinary research results of Laboratory for Interactive Simulation System at Faculty of Electrical Engineering and Computing, University of Zagreb in the stress resilience. Patient's distortion in emotional processing of multimodal input stimuli is predominantly consequence of his/her cognitive deficit which is result of their individual mental health disorders. These emotional distortions in patient's multimodal physiological, facial, acoustic, and linguistic features related to presented stimulation can be used as indicator of patient's mental illness. Real-time processing and analysis of patient's multimodal response related to annotated input stimuli is based on appropriate machine learning methods from computer science. Comprehensive longitudinal multimodal analysis of patient's emotion, mood, feelings, attention, motivation, decision-making, and working memory in synchronization with multimodal stimuli provides extremely valuable big database for data mining, machine learning and machine reasoning. Presented multimedia stimuli sequence includes personalized images, movies and sounds, as well as semantically congruent narratives. Simultaneously, with stimuli presentation patient provides subjective emotional ratings of presented stimuli in terms of subjective units of discomfort/distress, discrete emotions, or valence and arousal. These subjective emotional ratings of input stimuli and corresponding physiological, speech, and facial output features provides enough information for evaluation of patient's cognitive appraisal deficit. Aggregated real-time visualization of this information provides valuable assistance in patient mental state diagnostics enabling therapist deeper and broader insights into dynamics and progress of the psychotherapy.

  12. Systemic multimodal approach to speech therapy treatment in autistic children.

    PubMed

    Tamas, Daniela; Marković, Slavica; Milankov, Vesela

    2013-01-01

    Conditions in which speech therapy treatment is applied in autistic children are often not in accordance with characteristics of opinions and learning of people with autism. A systemic multimodal approach means motivating autistic people to develop their language speech skill through the procedure which allows reliving of their personal experience according to the contents that are presented in the their natural social environment. This research was aimed at evaluating the efficiency of speech treatment based on the systemic multimodal approach to the work with autistic children. The study sample consisted of 34 children, aged from 8 to 16 years, diagnosed to have different autistic disorders, whose results showed a moderate and severe clinical picture of autism on the Childhood Autism Rating Scale. The applied instruments for the evaluation of ability were the Childhood Autism Rating Scale and Ganzberg II test. The study subjects were divided into two groups according to the type of treatment: children who were covered by the continuing treatment and systemic multimodal approach in the treatment, and children who were covered by classical speech treatment. It is shown that the systemic multimodal approach in teaching autistic children affects the stimulation of communication, socialization, self-service and work as well as that the progress achieved in these areas of functioning was retainable after long time, too. By applying the systemic multimodal approach when dealing with autistic children and by comparing their achievements on tests applied before, during and after the application of this mode, it has been concluded that certain improvement has been achieved in the functionality within the diagnosed category. The results point to a possible direction in the creation of new methods, plans and programs in dealing with autistic children based on empirical and interactive learning.

  13. Implementation of WHO multimodal strategy for improvement of hand hygiene: a quasi-experimental study in a Traditional Chinese Medicine hospital in Xi'an, China.

    PubMed

    Shen, Li; Wang, Xiaoqing; An, Junming; An, Jialu; Zhou, Ning; Sun, Lu; Chen, Hong; Feng, Lin; Han, Jing; Liu, Xiaorong

    2017-01-01

    Hand hygiene (HH) is an essential component for preventing and controlling of healthcare-associated infection (HAI), whereas compliance with HH among health care workers (HCWs) is frequently poor. This study aimed to assess compliance and correctness with HH before and after the implementation of a multimodal HH improvement strategy launched by the World Health Organization (WHO). A quasi-experimental study design including questionnaire survey generalizing possible factors affecting HH behaviors of HCWs and direct observation method was used to evaluate the effectiveness of WHO multimodal HH strategy in a hospital of Traditional Chinese Medicine. Multimodal HH improvement strategy was drawn up according to the results of questionnaire survey. Compliance and correctness with HH among HCWs were compared before and after intervention. Also HH practices for different indications based on WHO "My Five Moments for Hand Hygiene" were recorded. In total, 553 HCWs participated in the questionnaire survey and multimodal HH improvement strategy was developed based on individual, environment and management levels. A total of 5044 observations in 23 wards were recorded in this investigation. The rate of compliance and correctness with HH improved from 66.27% and 47.75% at baseline to 80.53% and 88.35% after intervention. Doctors seemed to have better compliance with HH after intervention (84.04%) than nurses and other HCWs (81.07% and 69.42%, respectively). When stratified by indication, compliance with HH improved for all indications after intervention ( P  < 0.05) except for "after body fluid exposure risk" and "after touching patient surroundings". Implementing the WHO multimodal HH strategy can significantly improve HH compliance and correctness among HCWs.

  14. Toward multimodal signal detection of adverse drug reactions.

    PubMed

    Harpaz, Rave; DuMouchel, William; Schuemie, Martijn; Bodenreider, Olivier; Friedman, Carol; Horvitz, Eric; Ripple, Anna; Sorbello, Alfred; White, Ryen W; Winnenburg, Rainer; Shah, Nigam H

    2017-12-01

    Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation. Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates. Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark. The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Bredel, M; Brezovich, I

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods frommore » a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.« less

  16. Splint sterilization--a potential registration hazard in computer-assisted surgery.

    PubMed

    Figl, Michael; Weber, Christoph; Assadian, Ojan; Toma, Cyril D; Traxler, Hannes; Seemann, Rudolf; Guevara-Rojas, Godoberto; Pöschl, Wolfgang P; Ewers, Rolf; Schicho, Kurt

    2012-04-01

    Registration of preoperative targeting information for the intraoperative situation is a crucial step in computer-assisted surgical interventions. Point-to-point registration using acrylic splints is among the most frequently used procedures. There are, however, no generally accepted recommendations for sterilization of the splint. An appropriate method for the thermolabile splint would be hydrogen peroxide-based plasma sterilization. This study evaluated the potential deformation of the splint undergoing such sterilization. Deformation was quantified using image-processing methods applied to computed tomographic (CT) volumes before and after sterilization. An acrylic navigation splint was used as the study object. Eight metallic markers placed in the splint were used for registration. Six steel spheres in the mouthpiece were used as targets. Two CT volumes of the splint were acquired before and after 5 sterilization cycles using a hydrogen peroxide sterilizer. Point-to-point registration was applied, and fiducial and target registration errors were computed. Surfaces were extracted from CT scans and Hausdorff distances were derived. Effectiveness of sterilization was determined using Geobacillus stearothermophilus. Fiducial-based registration of CT scans before and after sterilization resulted in a mean fiducial registration error of 0.74 mm; the target registration error in the mouthpiece was 0.15 mm. The Hausdorff distance, describing the maximal deformation of the splint, was 2.51 mm. Ninety percent of point-surface distances were shorter than 0.61 mm, and 95% were shorter than 0.73 mm. No bacterial growth was found after the sterilization process. Hydrogen peroxide-based low-temperature plasma sterilization does not deform the splint, which is the base for correct computer-navigated surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.

    2018-03-01

    We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.

  18. Design Options for Multimodal Web Applications

    NASA Astrophysics Data System (ADS)

    Stanciulescu, Adrian; Vanderdonckt, Jean

    The capabilities of multimodal applications running on the web are well de-lineated since they are mainly constrained by what their underlying standard mark up language offers, as opposed to hand-made multimodal applications. As the experience in developing such multimodal web applications is growing, the need arises to identify and define major design options of such application to pave the way to a structured development life cycle. This paper provides a design space of independent design options for multimodal web applications based on three types of modalities: graphical, vocal, tactile, and combined. On the one hand, these design options may provide designers with some explicit guidance on what to decide or not for their future user interface, while exploring various design alternatives. On the other hand, these design options have been implemented as graph transformations per-formed on a user interface model represented as a graph. Thanks to a transformation engine, it allows designers to play with the different values of each design option, to preview the results of the transformation, and to obtain the corresponding code on-demand

  19. Rhesus macaques recognize unique multi-modal face-voice relations of familiar individuals and not of unfamiliar ones

    PubMed Central

    Habbershon, Holly M.; Ahmed, Sarah Z.; Cohen, Yale E.

    2013-01-01

    Communication signals in non-human primates are inherently multi-modal. However, for laboratory-housed monkeys, there is relatively little evidence in support of the use of multi-modal communication signals in individual recognition. Here, we used a preferential-looking paradigm to test whether laboratory-housed rhesus could “spontaneously” (i.e., in the absence of operant training) use multi-modal communication stimuli to discriminate between known conspecifics. The multi-modal stimulus was a silent movie of two monkeys vocalizing and an audio file of the vocalization from one of the monkeys in the movie. We found that the gaze patterns of those monkeys that knew the individuals in the movie were reliably biased toward the individual that did not produce the vocalization. In contrast, there was not a systematic gaze pattern for those monkeys that did not know the individuals in the movie. These data are consistent with the hypothesis that laboratory-housed rhesus can recognize and distinguish between conspecifics based on auditory and visual communication signals. PMID:23774779

  20. Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data.

    PubMed

    Wang, Yanming; Zhou, Yawen; Wang, Huijuan; Cui, Jin; Nguchu, Benedictor Alexander; Zhang, Xufei; Qiu, Bensheng; Wang, Xiaoxiao; Zhu, Mingwang

    2018-05-21

    The aim of this study was to automatically detect focal cortical dysplasia (FCD) lesions in patients with extratemporal lobe epilepsy by relying on diffusion tensor imaging (DTI) and T2-weighted magnetic resonance imaging (MRI) data. We implemented an automated classifier using voxel-based multimodal features to identify gray and white matter abnormalities of FCD in patient cohorts. In addition to the commonly used T2-weighted image intensity feature, DTI-based features were also utilized. A Gaussian processes for machine learning (GPML) classifier was tested on 12 patients with FCD (8 with histologically confirmed FCD) scanned at 1.5 T and cross-validated using a leave-one-out strategy. Moreover, we compared the multimodal GPML paradigm's performance with that of single modal GPML and classical support vector machine (SVM). Our results demonstrated that the GPML performance on DTI-based features (mean AUC = 0.63) matches with the GPML performance on T2-weighted image intensity feature (mean AUC = 0.64). More promisingly, GPML yielded significantly improved performance (mean AUC = 0.76) when applying DTI-based features to multimodal paradigm. Based on the results, it can also be clearly stated that the proposed GPML strategy performed better and is robust to unbalanced dataset contrary to SVM that performed poorly (AUC = 0.69). Therefore, the GPML paradigm using multimodal MRI data containing DTI modality has promising result towards detection of the FCD lesions and provides an effective direction for future researches. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers.

    PubMed

    Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying

    2007-03-19

    A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.

  2. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    NASA Astrophysics Data System (ADS)

    Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong

    2013-06-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  3. Glyph-based analysis of multimodal directional distributions in vector field ensembles

    NASA Astrophysics Data System (ADS)

    Jarema, Mihaela; Demir, Ismail; Kehrer, Johannes; Westermann, Rüdiger

    2015-04-01

    Ensemble simulations are increasingly often performed in the geosciences in order to study the uncertainty and variability of model predictions. Describing ensemble data by mean and standard deviation can be misleading in case of multimodal distributions. We present first results of a glyph-based visualization of multimodal directional distributions in 2D and 3D vector ensemble data. Directional information on the circle/sphere is modeled using mixtures of probability density functions (pdfs), which enables us to characterize the distributions with relatively few parameters. The resulting mixture models are represented by 2D and 3D lobular glyphs showing direction, spread and strength of each principal mode of the distributions. A 3D extension of our approach is realized by means of an efficient GPU rendering technique. We demonstrate our method in the context of ensemble weather simulations.

  4. A robust probabilistic collaborative representation based classification for multimodal biometrics

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli

    2018-04-01

    Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.

  5. Exploring infrared neural stimulation with multimodal nonlinear imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, Wilson R.; Mahadevan-Jansen, Anita

    2017-02-01

    Infrared neural stimulation (INS) provides optical control of neural excitability using near to mid-infrared (mid-IR) light, which allows for spatially selective, artifact-free excitation without the introduction of exogenous agents or genetic modification. Although neural excitability is mediated by a transient temperature increase due to water absorption of IR energy, the molecular nature of IR excitability in neural tissue remains unknown. Current research suggests that transient changes in local tissue temperature give rise to a myriad of cellular responses that have been individually attributed to IR mediated excitability. To further elucidate the underlying biophysical mechanisms, we have begun work towards employing a novel multimodal nonlinear imaging platform to probe the molecular underpinnings of INS. Our imaging system performs coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS), two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG) and thermal imaging into a single platform that allows for unprecedented co-registration of thermal and biochemical information in real-time. Here, we present our work leveraging CARS and SRS in acute thalamocortical brain slice preparations. We observe the evolution of lipid and protein-specific Raman bands during INS and electrically evoked activity in real-time. Combined with two-photon fluorescence and second harmonic generation, we offer insight to cellular metabolism and membrane dynamics during INS. Thermal imaging allows for the coregistration of acquired biochemical information with temperature information. Our work previews the versatility and capabilities of coherent Raman imaging combined with multiphoton imaging to observe biophysical phenomena for neuroscience applications.

  6. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: A simulation study using patient data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjun; Li, Ruijiang; Na, Yong Hum

    2014-12-15

    Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less

  7. TU-AB-BRA-06: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An MRI Compatible Externally and Internally Deformable Lung Motion Phantom for Multi-Modality IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabouri, P; Sawant, A; Arai, T

    Purpose: MRI has become an attractive tool for tumor motion management. Current MR-compatible phantoms are only capable of reproducing translational motion. This study describes the construction and validation of a more realistic, MRI-compatible lung phantom that is deformable internally as well as externally. We demonstrate a radiotherapy application of this phantom by validating the geometric accuracy of the open-source deformable image registration software NiftyReg (UCL, UK). Methods: The outer shell of a commercially-available dynamic breathing torso phantom was filled with natural latex foam with eleven water tubes. A rigid foam cut-out served as the diaphragm. A high-precision programmable, in-house, MRI-compatiblemore » motion platform was used to drive the diaphragm. The phantom was imaged on a 3T scanner (Philips, Ingenia). Twenty seven tumor traces previously recorded from lung cancer patients were programmed into the phantom and 2D+t image sequences were acquired using a sparse-sampling sequence k-t BLAST (accn=3, resolution=0.66×0.66×5mm3; acquisition-time=110ms/slice). The geometric fidelity of the MRI-derived trajectories was validated against those obtained via fluoroscopy using the on board kV imager on a Truebeam linac. NiftyReg was used to perform frame by frame deformable image registration. The location of each marker predicted by using NiftyReg was compared with the values calculated by intensity-based segmentation on each frame. Results: In all cases, MR trajectories were within 1 mm of corresponding fluoroscopy trajectories. RMSE between centroid positions obtained from segmentation with those obtained by NiftyReg varies from 0.1 to 0.21 mm in the SI direction and 0.08 to 0.13 mm in the LR direction showing the high accuracy of deformable registration. Conclusion: We have successfully designed and demonstrated a phantom that can accurately reproduce deformable motion under a variety of imaging modalities including MRI, CT and x-ray fluodoscopy, making it an invaluable research tool for validating novel motion management strategies. This work was partially supported through research funding from National Institutes of Health (R01CA169102).« less

  8. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    PubMed

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Registration-based interpolation applied to cardiac MRI

    NASA Astrophysics Data System (ADS)

    Ólafsdóttir, Hildur; Pedersen, Henrik; Hansen, Michael S.; Lyksborg, Mark; Hansen, Mads Fogtmann; Darkner, Sune; Larsen, Rasmus

    2010-03-01

    Various approaches have been proposed for segmentation of cardiac MRI. An accurate segmentation of the myocardium and ventricles is essential to determine parameters of interest for the function of the heart, such as the ejection fraction. One problem with MRI is the poor resolution in one dimension. A 3D registration algorithm will typically use a trilinear interpolation of intensities to determine the intensity of a deformed template image. Due to the poor resolution across slices, such linear approximation is highly inaccurate since the assumption of smooth underlying intensities is violated. Registration-based interpolation is based on 2D registrations between adjacent slices and is independent of segmentations. Hence, rather than assuming smoothness in intensity, the assumption is that the anatomy is consistent across slices. The basis for the proposed approach is the set of 2D registrations between each pair of slices, both ways. The intensity of a new slice is then weighted by (i) the deformation functions and (ii) the intensities in the warped images. Unlike the approach by Penney et al. 2004, this approach takes into account deformation both ways, which gives more robustness where correspondence between slices is poor. We demonstrate the approach on a toy example and on a set of cardiac CINE MRI. Qualitative inspection reveals that the proposed approach provides a more convincing transition between slices than images obtained by linear interpolation. A quantitative validation reveals significantly lower reconstruction errors than both linear and registration-based interpolation based on one-way registrations.

  10. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs.

    PubMed

    Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C

    2017-07-01

    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The impact of a state-sponsored mass media campaign on use of telephone quitline and web-based cessation services.

    PubMed

    Duke, Jennifer C; Mann, Nathan; Davis, Kevin C; MacMonegle, Anna; Allen, Jane; Porter, Lauren

    2014-12-24

    Most US smokers do not use evidence-based interventions as part of their quit attempts. Quitlines and Web-based treatments may contribute to reductions in population-level tobacco use if successfully promoted. Currently, few states implement sustained media campaigns to promote services and increase adult smoking cessation. This study examines the effects of Florida's tobacco cessation media campaign and a nationally funded media campaign on telephone quitline and Web-based registrations for cessation services from November 2010 through September 2013. We conducted multivariable analyses of weekly media-market-level target rating points (TRPs) and weekly registrations for cessation services through the Florida Quitline (1-877-U-CAN-NOW) or its Web-based cessation service, Web Coach (www.quitnow.net/florida). During 35 months, 141,221 tobacco users registered for cessation services through the Florida Quitline, and 53,513 registered through Web Coach. An increase in 100 weekly TRPs was associated with an increase of 7 weekly Florida Quitline registrants (β = 6.8, P < .001) and 2 Web Coach registrants (β = 1.7, P = .003) in an average media market. An increase in TRPs affected registrants from multiple demographic subgroups similarly. When state and national media campaigns aired simultaneously, approximately one-fifth of Florida's Quitline registrants came from the nationally advertised portal (1-800-QUIT-NOW). Sustained, state-sponsored media can increase the number of registrants to telephone quitlines and Web-based cessation services. Federally funded media campaigns can further increase the reach of state-sponsored cessation services.

  12. The Impact of a State-Sponsored Mass Media Campaign on Use of Telephone Quitline and Web-Based Cessation Services

    PubMed Central

    Mann, Nathan; Davis, Kevin C.; MacMonegle, Anna; Allen, Jane; Porter, Lauren

    2014-01-01

    Introduction Most US smokers do not use evidence-based interventions as part of their quit attempts. Quitlines and Web-based treatments may contribute to reductions in population-level tobacco use if successfully promoted. Currently, few states implement sustained media campaigns to promote services and increase adult smoking cessation. This study examines the effects of Florida’s tobacco cessation media campaign and a nationally funded media campaign on telephone quitline and Web-based registrations for cessation services from November 2010 through September 2013. Methods We conducted multivariable analyses of weekly media-market–level target rating points (TRPs) and weekly registrations for cessation services through the Florida Quitline (1-877-U-CAN-NOW) or its Web-based cessation service, Web Coach (www.quitnow.net/florida). Results During 35 months, 141,221 tobacco users registered for cessation services through the Florida Quitline, and 53,513 registered through Web Coach. An increase in 100 weekly TRPs was associated with an increase of 7 weekly Florida Quitline registrants (β = 6.8, P < .001) and 2 Web Coach registrants (β = 1.7, P = .003) in an average media market. An increase in TRPs affected registrants from multiple demographic subgroups similarly. When state and national media campaigns aired simultaneously, approximately one-fifth of Florida’s Quitline registrants came from the nationally advertised portal (1-800-QUIT-NOW). Conclusion Sustained, state-sponsored media can increase the number of registrants to telephone quitlines and Web-based cessation services. Federally funded media campaigns can further increase the reach of state-sponsored cessation services. PMID:25539129

  13. Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.

    PubMed

    Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos

    2014-05-01

    In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 21 CFR 1311.40 - Renewal of CSOS digital certificates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... obtain a new CSOS digital certificate when the registrant's DEA registration expires or whenever the... certificate will expire on the date on which the DEA registration on which the certificate is based expires...

  15. A Targeted Infection Prevention Intervention in Nursing Home Residents With Indwelling Devices

    PubMed Central

    Mody, Lona; Krein, Sarah L.; Saint, Sanjay K.; Min, Lillian C.; Montoya, Ana; Lansing, Bonnie; McNamara, Sara E.; Symons, Kathleen; Fisch, Jay; Koo, Evonne; Rye, Ruth Anne; Galecki, Andrzej; Kabeto, Mohammed U.; Fitzgerald, James T.; Olmsted, Russell N.; Kauffman, Carol A.; Bradley, Suzanne F.

    2015-01-01

    IMPORTANCE Indwelling devices (eg, urinary catheters and feeding tubes) are often used in nursing homes (NHs). Inadequate care of residents with these devices contributes to high rates of multidrug-resistant organisms (MDROs) and device-related infections in NHs. OBJECTIVE To test whether a multimodal targeted infection program (TIP) reduces the prevalence of MDROs and incident device-related infections. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial at 12 community-based NHs from May 2010 to April 2013. Participants were high-risk NH residents with urinary catheters, feeding tubes, or both. INTERVENTIONS Multimodal, including preemptive barrier precautions, active surveillance for MDROs and infections, and NH staff education. MAIN OUTCOMES AND MEASURES The primary outcome was the prevalence density rate of MDROs, defined as the total number of MDROs isolated per visit averaged over the duration of a resident's participation. Secondary outcomes included new MDRO acquisitions and new clinically defined device-associated infections. Data were analyzed using a mixed-effects multilevel Poisson regression model (primary outcome) and a Cox proportional hazards model (secondary outcome), adjusting for facility-level clustering and resident-level variables. RESULTS In total, 418 NH residents with indwelling devices were enrolled, with 34 174 device-days and 6557 anatomic sites sampled. Intervention NHs had a decrease in the overall MDRO prevalence density (rate ratio, 0.77; 95% CI, 0.62–0.94). The rate of new methicillin-resistant Staphylococcus aureus acquisitions was lower in the intervention group than in the control group (rate ratio, 0.78; 95% CI, 0.64–0.96). Hazard ratios for the first and all (including recurrent) clinically defined catheter-associated urinary tract infections were 0.54 (95% CI, 0.30–0.97) and 0.69 (95% CI, 0.49–0.99), respectively, in the intervention group and the control group. There were no reductions in new vancomycin-resistant enterococci or resistant gram-negative bacilli acquisitions or in new feeding tube–associated pneumonias or skin and soft-tissue infections. CONCLUSIONS AND RELEVANCE Our multimodal TIP intervention reduced the overall MDRO prevalence density, new methicillin-resistant S aureus acquisitions, and clinically defined catheter-associated urinary tract infection rates in high-risk NH residents with indwelling devices. Further studies are needed to evaluate the cost-effectiveness of this approach as well as its effects on the reduction of MDRO transmission to other residents, on the environment, and on referring hospitals. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01062841 PMID:25775048

  16. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.

    PubMed

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-12-31

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  17. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    PubMed Central

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-01-01

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855

  18. Students' Multimodal Construction of the Work-Energy Concept

    NASA Astrophysics Data System (ADS)

    Tang, Kok-Sing; Chee Tan, Seng; Yeo, Jennifer

    2011-09-01

    This article examines the role of multimodalities in representing the concept of work-energy by studying the collaborative discourse of a group of ninth-grade physics students engaging in an inquiry-based instruction. Theorising a scientific concept as a network of meaning relationships across semiotic modalities situated in human activity, this article analyses the students' interactions through their use of natural language, mathematical symbolism, depiction, and gestures, and examines the intertextual meanings made through the integration of these modalities. Results indicate that the thematic integration of multimodalities is both difficult and necessary for students in order to construct a scientific understanding that is congruent with the physics curriculum. More significantly, the difficulties in multimodal integration stem from the subtle differences in the categorical, quantitative, and spatial meanings of the work-energy concept whose contrasts are often not made explicit to the students. The implications of these analyses and findings for science teaching and educational research are discussed.

  19. Modelling multimodal expression of emotion in a virtual agent.

    PubMed

    Pelachaud, Catherine

    2009-12-12

    Over the past few years we have been developing an expressive embodied conversational agent system. In particular, we have developed a model of multimodal behaviours that includes dynamism and complex facial expressions. The first feature refers to the qualitative execution of behaviours. Our model is based on perceptual studies and encompasses several parameters that modulate multimodal behaviours. The second feature, the model of complex expressions, follows a componential approach where a new expression is obtained by combining facial areas of other expressions. Lately we have been working on adding temporal dynamism to expressions. So far they have been designed statically, typically at their apex. Only full-blown expressions could be modelled. To overcome this limitation, we have defined a representation scheme that describes the temporal evolution of the expression of an emotion. It is no longer represented by a static definition but by a temporally ordered sequence of multimodal signals.

  20. Multimodal medical information retrieval with unsupervised rank fusion.

    PubMed

    Mourão, André; Martins, Flávio; Magalhães, João

    2015-01-01

    Modern medical information retrieval systems are paramount to manage the insurmountable quantities of clinical data. These systems empower health care experts in the diagnosis of patients and play an important role in the clinical decision process. However, the ever-growing heterogeneous information generated in medical environments poses several challenges for retrieval systems. We propose a medical information retrieval system with support for multimodal medical case-based retrieval. The system supports medical information discovery by providing multimodal search, through a novel data fusion algorithm, and term suggestions from a medical thesaurus. Our search system compared favorably to other systems in 2013 ImageCLEFMedical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Passive athermalization of multimode interference devices for wavelength-locking applications.

    PubMed

    Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R

    2017-03-06

    In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.

  2. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  3. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  4. OpenLMD, multimodal monitoring and control of LMD processing

    NASA Astrophysics Data System (ADS)

    Rodríguez-Araújo, Jorge; García-Díaz, Antón

    2017-02-01

    This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities.

  5. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  6. Holographic storage of biphoton entanglement.

    PubMed

    Dai, Han-Ning; Zhang, Han; Yang, Sheng-Jun; Zhao, Tian-Ming; Rui, Jun; Deng, You-Jin; Li, Li; Liu, Nai-Le; Chen, Shuai; Bao, Xiao-Hui; Jin, Xian-Min; Zhao, Bo; Pan, Jian-Wei

    2012-05-25

    Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 μs storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  7. 3D hierarchical spatial representation and memory of multimodal sensory data

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.

  8. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty, the registration error is limited to within 1.3 mm. For a solid organ such as the prostate, the registration errors are much larger. Given 30% in material uncertainty, the registration error can reach 4.5 mm. However, the registration error distribution for prostates shows that most of the subvolumes have a much smaller registration error. A deformable organ registration technique that uses FEM is a good candidate in IGART if the mean material parameters are available.« less

  9. Robust Global Image Registration Based on a Hybrid Algorithm Combining Fourier and Spatial Domain Techniques

    DTIC Science & Technology

    2012-09-01

    Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the

  10. The influence of CT based attenuation correction on PET/CT registration: an evaluation study

    NASA Astrophysics Data System (ADS)

    Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin

    2007-03-01

    We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.

  11. Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian

    2018-03-01

    In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.

  12. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    PubMed Central

    Fuentes-Fuentes, Miguel A.; May-Arrioja, Daniel A.; Guzman-Sepulveda, José R.; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J.

    2015-01-01

    A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664

  13. Measurement of curvature and temperature using multimode interference devices

    NASA Astrophysics Data System (ADS)

    Guzman-Sepulveda, J. R.; Aguilar-Soto, J. G.; Torres-Cisneros, M.; Ibarra-Manzano, O. G.; May-Arrioja, D. A.

    2011-09-01

    In this paper we propose the fabrication, implementation, and testing of a novel fiber optic sensor based on Multimode Interference (MMI) effects for independent measurement of curvature and temperature. The development of fiber based MMI devices is relatively new and since they exhibit a band-pass filter response they can be used in different applications. The operating mechanism of our sensor is based on the self-imaging phenomena that occur in multimode fibers (MMF), which is related to the interference of the propagating modes and their accumulated phase. We demonstrate that the peak wavelength shifts with temperature variations as a result of changes in the accumulated phase through thermo-optics effects, while the intensity of the peak wavelength is reduced as the curvature increases since we start to loss higher order modes. In this way both measurements are obtained independently with a single fiber device. Compared to other fiber-optic sensors, our sensor features an extremely simple structure and fabrication process, and hence cost effectiveness.

  14. Effect of registration on corpus callosum population differences found with DBM analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhaoying; Thornton-Wells, Tricia A.; Gore, John C.; Dawant, Benoit M.

    2011-03-01

    Deformation Based Morphometry (DBM) is a relatively new method used for characterizing anatomical differences among populations. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to one standard coordinate system. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithm on population differences that may be uncovered through DBM. In this study, we compared DBM results obtained with five well established non-rigid registration algorithms on the corpus callosum (CC) in thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Basis Algorithm (ABA); (2) Image Registration Toolkit (IRTK); (3) FSL Nonlinear Image Registration Tool (FSL); (4) Automatic Registration Tools (ART); and (5) the normalization algorithm available in SPM8. For each algorithm, the 3D deformation fields from all subjects to the atlas were obtained and used to calculate the Jacobian determinant (JAC) at each voxel in the mid-sagittal slice of the CC. The mean JAC maps for each group were compared quantitatively across different nonrigid registration algorithms. An ANOVA test performed on the means of the JAC over the Genu and the Splenium ROIs shows the JAC differences between nonrigid registration algorithms are statistically significant over the Genu for both groups and over the Splenium for the NC group. These results suggest that it is important to consider the effect of registration when using DBM to compute morphological differences in populations.

  15. Sensing textile seam-line for wearable multimodal physiological monitoring.

    PubMed

    McKnight, M; Agcayazi, T; Kausche, H; Ghosh, T; Bozkurt, A

    2016-08-01

    This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.

  16. Reassembling Curricular Concepts: A Multimodal Approach to the Study of Curriculum and Instruction

    ERIC Educational Resources Information Center

    Tang, Kok-Sing

    2011-01-01

    Based on the multidisciplinary field of multimodality, this paper offers a theoretical perspective on the construct of a curricular concept which is commonly used in a school curriculum and applies it to an analysis of a typical curricular text and classroom instruction that exposit the physics concept of work-energy. Theorizing a concept as a…

  17. Drawing Bodies and Spaces in Telecollaboration: A View of Research Potential in Synaesthesia and Multimodality, from the Outside

    ERIC Educational Resources Information Center

    Malinowski, David

    2014-01-01

    While much scholarship on the multisensory and transmodal phenomenon of synaesthesia seeks to uncover its psychophysiological and neurological bases, recent research in multimodal literacy and language acquisition addresses it largely in terms of agentive processes of meaning-making and design. This paper takes as its starting point the latter's…

  18. Teacher Orchestration of Multimodal Resources to Support the Construction of an Explanation in a Year 4 Astronomy Topic

    ERIC Educational Resources Information Center

    Hackling, Mark; Murcia, Karen; Ibrahim-Didi, Khadeeja

    2013-01-01

    Video-based classroom research is opening-up exciting new insights into how teachers generate productive opportunities for student engagement in quality learning. This research reveals the extent to which effective teachers draw on a range of multimodal representations of science phenomena and learners must use these as semiotic resources for…

  19. Effective 2D-3D medical image registration using Support Vector Machine.

    PubMed

    Qi, Wenyuan; Gu, Lixu; Zhao, Qiang

    2008-01-01

    Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently.

  20. Learning-based deformable image registration for infant MR images in the first year of life.

    PubMed

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration results, compared to the state-of-the-art registration methods. The proposed learning-based registration method addresses the challenging task of registering infant brain images and achieves higher registration accuracy compared with other counterpart registration methods. © 2016 American Association of Physicists in Medicine.

Top