Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.
Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L
2008-06-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.
Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures
Peng, Chung-Kang; Goldberger, Ary L.
2016-01-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and nonequilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools— multiscale entropy and multiscale time irreversibility—are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs. PMID:18172763
Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong
2017-04-01
This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
Auer, Manfred; Peng, Hanchuan; Singh, Ambuj
2007-01-01
The 2006 International Workshop on Multiscale Biological Imaging, Data Mining and Informatics was held at Santa Barbara, on Sept 7–8, 2006. Based on the presentations at the workshop, we selected and compiled this collection of research articles related to novel algorithms and enabling techniques for bio- and biomedical image analysis, mining, visualization, and biology applications. PMID:17634090
Multiscale analysis and computation for flows in heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.
Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Saether, E.; Yamakov, V.
2008-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi
2016-05-24
Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.« less
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
NASA Astrophysics Data System (ADS)
Hsiao, Y. R.; Tsai, C.
2017-12-01
As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.
A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.
Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro
2016-01-01
Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Hussain, Aquila; Katiyar, Vivek
2010-01-01
A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre- and postprocessing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and Abaqus/Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. The Graphical User Interfaces (FEAMAC-Pre and FEAMAC-Post), developed through collaboration between SIMULIA Erie and the NASA Glenn Research Center, enable users to employ a new FEAMAC module within Abaqus/CAE that provides access to the composite microscale. FEA IAC-Pre is used to define and store constituent material properties, set-up and store composite repeating unit cells, and assign composite materials as sections with all data being stored within the CAE database. Likewise FEAMAC-Post enables multiscale field quantity visualization (contour plots, X-Y plots), with point and click access to the microscale i.e., fiber and matrix fields).
Low-carbon building assessment and multi-scale input-output analysis
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.
2011-01-01
Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu
2007-01-01
As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (p<0.01) different between young and healthy elderly group. Results also suggest that the Beta between scales 1 to 2 are effective for recognizing falls risk gait patterns. Results have implication for quantifying gait dynamics in normal, ageing and pathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.
Simulating and mapping spatial complexity using multi-scale techniques
De Cola, L.
1994-01-01
A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author
Xia, Kelin
2017-12-20
In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.
A Micromechanics-Based Method for Multiscale Fatigue Prediction
NASA Astrophysics Data System (ADS)
Moore, John Allan
An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.
NASA Astrophysics Data System (ADS)
Chen, Guoxiong; Cheng, Qiuming
2016-02-01
Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.
NASA Astrophysics Data System (ADS)
Lin, Aijing; Shang, Pengjian
2016-04-01
Considering the diverse application of multifractal techniques in natural scientific disciplines, this work underscores the versatility of multiscale multifractal detrended fluctuation analysis (MMA) method to investigate artificial and real-world data sets. The modified MMA method based on cumulative distribution function is proposed with the objective of quantifying the scaling exponent and multifractality of nonstationary time series. It is demonstrated that our approach can provide a more stable and faithful description of multifractal properties in comprehensive range rather than fixing the window length and slide length. Our analyzes based on CDF-MMA method reveal significant differences in the multifractal characteristics in the temporal dynamics between US and Chinese stock markets, suggesting that these two stock markets might be regulated by very different mechanism. The CDF-MMA method is important for evidencing the stable and fine structure of multiscale and multifractal scaling behaviors and can be useful to deepen and broaden our understanding of scaling exponents and multifractal characteristics.
Modeling Framework for Fracture in Multiscale Cement-Based Material Structures
Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas
2017-01-01
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948
Multiscale geometric modeling of macromolecules I: Cartesian representation
NASA Astrophysics Data System (ADS)
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.
The role of continuity in residual-based variational multiscale modeling of turbulence
NASA Astrophysics Data System (ADS)
Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.
2008-02-01
This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.
Global sensitivity analysis of multiscale properties of porous materials
NASA Astrophysics Data System (ADS)
Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.
2018-02-01
Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.
PDF-based heterogeneous multiscale filtration model.
Gong, Jian; Rutland, Christopher J
2015-04-21
Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.
Lagrangian analysis of multiscale particulate flows with the particle finite element method
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy
2014-05-01
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
Multiscale entropy-based methods for heart rate variability complexity analysis
NASA Astrophysics Data System (ADS)
Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio
2015-03-01
Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
An approach to multiscale modelling with graph grammars
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-01-01
Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929
Development of multiscale complexity and multifractality of fetal heart rate variability.
Gierałtowski, Jan; Hoyer, Dirk; Tetschke, Florian; Nowack, Samuel; Schneider, Uwe; Zebrowski, Jan
2013-11-01
During fetal development a complex system grows and coordination over multiple time scales is formed towards an integrated behavior of the organism. Since essential cardiovascular and associated coordination is mediated by the autonomic nervous system (ANS) and the ANS activity is reflected in recordable heart rate patterns, multiscale heart rate analysis is a tool predestined for the diagnosis of prenatal maturation. The analyses over multiple time scales requires sufficiently long data sets while the recordings of fetal heart rate as well as the behavioral states studied are themselves short. Care must be taken that the analysis methods used are appropriate for short data lengths. We investigated multiscale entropy and multifractal scaling exponents from 30 minute recordings of 27 normal fetuses, aged between 23 and 38 weeks of gestational age (WGA) during the quiet state. In multiscale entropy, we found complexity lower than that of non-correlated white noise over all 20 coarse graining time scales investigated. Significant maturation age related complexity increase was strongest expressed at scale 2, both using sample entropy and generalized mutual information as complexity estimates. Multiscale multifractal analysis (MMA) in which the Hurst surface h(q,s) is calculated, where q is the multifractal parameter and s is the scale, was applied to the fetal heart rate data. MMA is a method derived from detrended fluctuation analysis (DFA). We modified the base algorithm of MMA to be applicable for short time series analysis using overlapping data windows and a reduction of the scale range. We looked for such q and s for which the Hurst exponent h(q,s) is most correlated with gestational age. We used this value of the Hurst exponent to predict the gestational age based only on fetal heart rate variability properties. Comparison with the true age of the fetus gave satisfying results (error 2.17±3.29 weeks; p<0.001; R(2)=0.52). In addition, we found that the normally used DFA scale range is non-optimal for fetal age evaluation. We conclude that 30 min recordings are appropriate and sufficient for assessing fetal age by multiscale entropy and multiscale multifractal analysis. The predominant prognostic role of scale 2 heart beats for MSE and scale 39 heart beats (at q=-0.7) for MMA cannot be explored neither by single scale complexity measures nor by standard detrended fluctuation analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring
Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro
2016-01-01
Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803
NASA Astrophysics Data System (ADS)
Jolivet, S.; Mezghani, S.; El Mansori, M.
2016-09-01
The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
Adaptive multiscale processing for contrast enhancement
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.
1993-07-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
Vita Wright; Sallie J. Hejl; Richard L. Hutto
1997-01-01
Our multi-scale analysis of Flammulated Owl (Otus flammeolus) habitat use in the northern Rocky Mountains indicates some landscapes may be unsuitable for this species. As a result, there may be less habitat available for Flammulated Owls than thought based on the results of microhabitat studies. Thus, we suggest Flammulated Owl habitat conservation...
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
A Liver-centric Multiscale Modeling Framework for Xenobiotics ...
We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis
NASA Astrophysics Data System (ADS)
Žvokelj, Matej; Zupan, Samo; Prebil, Ivan
2016-05-01
A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.
Local variance for multi-scale analysis in geomorphometry.
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-07-15
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
NASA Astrophysics Data System (ADS)
Aouabdi, Salim; Taibi, Mahmoud; Bouras, Slimane; Boutasseta, Nadir
2017-06-01
This paper describes an approach for identifying localized gear tooth defects, such as pitting, using phase currents measured from an induction machine driving the gearbox. A new tool of anomaly detection based on multi-scale entropy (MSE) algorithm SampEn which allows correlations in signals to be identified over multiple time scales. The motor current signature analysis (MCSA) in conjunction with principal component analysis (PCA) and the comparison of observed values with those predicted from a model built using nominally healthy data. The Simulation results show that the proposed method is able to detect gear tooth pitting in current signals.
Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model
Zhu, Qing; Zou, Yingchao; Lai, Kin Keung
2014-01-01
As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614
Day-ahead crude oil price forecasting using a novel morphological component analysis based model.
Zhu, Qing; He, Kaijian; Zou, Yingchao; Lai, Kin Keung
2014-01-01
As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations.
Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models
NASA Astrophysics Data System (ADS)
Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini
2014-12-01
The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.
Computational design and multiscale modeling of a nanoactuator using DNA actuation.
Hamdi, Mustapha
2009-12-02
Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.
Multi-scale statistical analysis of coronal solar activity
Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.
2016-07-08
Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.
NASA Astrophysics Data System (ADS)
Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya
2017-10-01
Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.
Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony
2017-11-01
This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...
2018-03-15
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Coherent multiscale image processing using dual-tree quaternion wavelets.
Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G
2008-07-01
The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming
2017-07-01
Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.
Wadehn, Federico; Schaller, Stephan; Eissing, Thomas; Krauss, Markus; Kupfer, Lars
2016-08-01
A multiscale model for blood glucose regulation in diabetes type I patients is constructed by integrating detailed metabolic network models for fat, liver and muscle cells into a whole body physiologically-based pharmacokinetic/pharmacodynamic (pBPK/PD) model. The blood glucose regulation PBPK/PD model simulates the distribution and metabolization of glucose, insulin and glucagon on an organ and whole body level. The genome-scale metabolic networks in contrast describe intracellular reactions. The developed multiscale model is fitted to insulin, glucagon and glucose measurements of a 48h clinical trial featuring 6 subjects and is subsequently used to simulate (in silico) the influence of geneknockouts and drug-induced enzyme inhibitions on whole body blood glucose levels. Simulations of diabetes associated gene knockouts and impaired cellular glucose metabolism, resulted in elevated whole body blood-glucose levels, but also in a metabolic shift within the cell's reaction network. Such multiscale models have the potential to be employed in the exploration of novel drug-targets or to be integrated into control algorithms for artificial pancreas systems.
NASA Astrophysics Data System (ADS)
Dai, Jun; Zhou, Haigang; Zhao, Shaoquan
2017-01-01
This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.
Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando
2018-05-01
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
NASA Astrophysics Data System (ADS)
Huo, Chengyu; Huang, Xiaolin; Zhuang, Jianjun; Hou, Fengzhen; Ni, Huangjing; Ning, Xinbao
2013-09-01
The Poincaré plot is one of the most important approaches in human cardiac rhythm analysis. However, further investigations are still needed to concentrate on techniques that can characterize the dispersion of the points displayed by a Poincaré plot. Based on a modified Poincaré plot, we provide a novel measurement named distribution entropy (DE) and propose a quadrantal multi-scale distribution entropy analysis (QMDE) for the quantitative descriptions of the scatter distribution patterns in various regions and temporal scales. We apply this method to the heartbeat interval series derived from healthy subjects and congestive heart failure (CHF) sufferers, respectively, and find that the discriminations between them are most significant in the first quadrant, which implies significant impacts on vagal regulation brought about by CHF. We also investigate the day-night differences of young healthy people, and it is shown that the results present a clearly circadian rhythm, especially in the first quadrant. In addition, the multi-scale analysis indicates that the results of healthy subjects and CHF sufferers fluctuate in different trends with variation of the scale factor. The same phenomenon also appears in circadian rhythm investigations of young healthy subjects, which implies that the cardiac dynamic system is affected differently in various temporal scales by physiological or pathological factors.
NASA Astrophysics Data System (ADS)
Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan
2014-09-01
A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.
Generalization of mixed multiscale finite element methods with applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C S
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less
Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis.
Azami, Hamed; Fernández, Alberto; Escudero, Javier
2017-11-01
Multiscale entropy (MSE) has been a prevalent algorithm to quantify the complexity of biomedical time series. Recent developments in the field have tried to alleviate the problem of undefined MSE values for short signals. Moreover, there has been a recent interest in using other statistical moments than the mean, i.e., variance, in the coarse-graining step of the MSE. Building on these trends, here we introduce the so-called refined composite multiscale fuzzy entropy based on the standard deviation (RCMFE σ ) and mean (RCMFE μ ) to quantify the dynamical properties of spread and mean, respectively, over multiple time scales. We demonstrate the dependency of the RCMFE σ and RCMFE μ , in comparison with other multiscale approaches, on several straightforward signal processing concepts using a set of synthetic signals. The results evidenced that the RCMFE σ and RCMFE μ values are more stable and reliable than the classical multiscale entropy ones. We also inspect the ability of using the standard deviation as well as the mean in the coarse-graining process using magnetoencephalograms in Alzheimer's disease and publicly available electroencephalograms recorded from focal and non-focal areas in epilepsy. Our results indicated that when the RCMFE μ cannot distinguish different types of dynamics of a particular time series at some scale factors, the RCMFE σ may do so, and vice versa. The results showed that RCMFE σ -based features lead to higher classification accuracies in comparison with the RCMFE μ -based ones. We also made freely available all the Matlab codes used in this study at http://dx.doi.org/10.7488/ds/1477 .
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
The pyramid system for multiscale raster analysis
De Cola, L.; Montagne, N.
1993-01-01
Geographical research requires the management and analysis of spatial data at multiple scales. As part of the U.S. Geological Survey's global change research program a software system has been developed that reads raster data (such as an image or digital elevation model) and produces a pyramid of aggregated lattices as well as various measurements of spatial complexity. For a given raster dataset the system uses the pyramid to report: (1) mean, (2) variance, (3) a spatial autocorrelation parameter based on multiscale analysis of variance, and (4) a monofractal scaling parameter based on the analysis of isoline lengths. The system is applied to 1-km digital elevation model (DEM) data for a 256-km2 region of central California, as well as to 64 partitions of the region. PYRAMID, which offers robust descriptions of data complexity, also is used to describe the behavior of topographic aspect with scale. ?? 1993.
Towards practical multiscale approach for analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Moyeda, Arturo; Fish, Jacob
2017-12-01
We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Multiscale hidden Markov models for photon-limited imaging
NASA Astrophysics Data System (ADS)
Nowak, Robert D.
1999-06-01
Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Use of Multiscale Entropy to Facilitate Artifact Detection in Electroencephalographic Signals
Mariani, Sara; Borges, Ana F. T.; Henriques, Teresa; Goldberger, Ary L.; Costa, Madalena D.
2016-01-01
Electroencephalographic (EEG) signals present a myriad of challenges to analysis, beginning with the detection of artifacts. Prior approaches to noise detection have utilized multiple techniques, including visual methods, independent component analysis and wavelets. However, no single method is broadly accepted, inviting alternative ways to address this problem. Here, we introduce a novel approach based on a statistical physics method, multiscale entropy (MSE) analysis, which quantifies the complexity of a signal. We postulate that noise corrupted EEG signals have lower information content, and, therefore, reduced complexity compared with their noise free counterparts. We test the new method on an open-access database of EEG signals with and without added artifacts due to electrode motion. PMID:26738116
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418
Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida
2016-09-01
Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.
Community Multiscale Air Quality Model
The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.
Multiscale structure of time series revealed by the monotony spectrum.
Vamoş, Călin
2017-03-01
Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
Reaction-Infiltration Instabilities in Fractured and Porous Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd, Anthony
In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.
Multiscale recurrence quantification analysis of order recurrence plots
NASA Astrophysics Data System (ADS)
Xu, Mengjia; Shang, Pengjian; Lin, Aijing
2017-03-01
In this paper, we propose a new method of multiscale recurrence quantification analysis (MSRQA) to analyze the structure of order recurrence plots. The MSRQA is based on order patterns over a range of time scales. Compared with conventional recurrence quantification analysis (RQA), the MSRQA can show richer and more recognizable information on the local characteristics of diverse systems which successfully describes their recurrence properties. Both synthetic series and stock market indexes exhibit their properties of recurrence at large time scales that quite differ from those at a single time scale. Some systems present more accurate recurrence patterns under large time scales. It demonstrates that the new approach is effective for distinguishing three similar stock market systems and showing some inherent differences.
NASA Astrophysics Data System (ADS)
Du, Wenbo
A common attribute of electric-powered aerospace vehicles and systems such as unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their performance is usually limited by the energy density of their batteries. Although lithium-ion batteries offer distinct advantages such as high voltage and low weight over other battery technologies, they are a relatively new development, and thus significant gaps in the understanding of the physical phenomena that govern battery performance remain. As a result of this limited understanding, batteries must often undergo a cumbersome design process involving many manual iterations based on rules of thumb and ad-hoc design principles. A systematic study of the relationship between operational, geometric, morphological, and material-dependent properties and performance metrics such as energy and power density is non-trivial due to the multiphysics, multiphase, and multiscale nature of the battery system. To address these challenges, two numerical frameworks are established in this dissertation: a process for analyzing and optimizing several key design variables using surrogate modeling tools and gradient-based optimizers, and a multi-scale model that incorporates more detailed microstructural information into the computationally efficient but limited macro-homogeneous model. In the surrogate modeling process, multi-dimensional maps for the cell energy density with respect to design variables such as the particle size, ion diffusivity, and electron conductivity of the porous cathode material are created. A combined surrogate- and gradient-based approach is employed to identify optimal values for cathode thickness and porosity under various operating conditions, and quantify the uncertainty in the surrogate model. The performance of multiple cathode materials is also compared by defining dimensionless transport parameters. The multi-scale model makes use of detailed 3-D FEM simulations conducted at the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the effective transport coefficients and interfacial reaction current density within the porous microstructure. Microscopic simulation results are shown to match well with experimental measurements, while differing significantly from homogenization approximations used in the macroscopic model. Global sensitivity analysis and surrogate modeling tools are applied to couple the two length scales and complete the multi-scale model.
Statistical Field Estimation for Complex Coastal Regions and Archipelagos (PREPRINT)
2011-04-09
and study the computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal...computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal regions and... multiscale free-surface code builds on the primitive-equation model of the Harvard Ocean Predic- tion System (HOPS, Haley et al. (2009)). Additionally
Hexagonal wavelet processing of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Demonstration of Wavelet Techniques in the Spectral Analysis of Bypass Transition Data
NASA Technical Reports Server (NTRS)
Lewalle, Jacques; Ashpis, David E.; Sohn, Ki-Hyeon
1997-01-01
A number of wavelet-based techniques for the analysis of experimental data are developed and illustrated. A multiscale analysis based on the Mexican hat wavelet is demonstrated as a tool for acquiring physical and quantitative information not obtainable by standard signal analysis methods. Experimental data for the analysis came from simultaneous hot-wire velocity traces in a bypass transition of the boundary layer on a heated flat plate. A pair of traces (two components of velocity) at one location was excerpted. A number of ensemble and conditional statistics related to dominant time scales for energy and momentum transport were calculated. The analysis revealed a lack of energy-dominant time scales inside turbulent spots but identified transport-dominant scales inside spots that account for the largest part of the Reynolds stress. Momentum transport was much more intermittent than were energetic fluctuations. This work is the first step in a continuing study of the spatial evolution of these scale-related statistics, the goal being to apply the multiscale analysis results to improve the modeling of transitional and turbulent industrial flows.
Multiscale analysis of neural spike trains.
Ramezan, Reza; Marriott, Paul; Chenouri, Shojaeddin
2014-01-30
This paper studies the multiscale analysis of neural spike trains, through both graphical and Poisson process approaches. We introduce the interspike interval plot, which simultaneously visualizes characteristics of neural spiking activity at different time scales. Using an inhomogeneous Poisson process framework, we discuss multiscale estimates of the intensity functions of spike trains. We also introduce the windowing effect for two multiscale methods. Using quasi-likelihood, we develop bootstrap confidence intervals for the multiscale intensity function. We provide a cross-validation scheme, to choose the tuning parameters, and study its unbiasedness. Studying the relationship between the spike rate and the stimulus signal, we observe that adjusting for the first spike latency is important in cross-validation. We show, through examples, that the correlation between spike trains and spike count variability can be multiscale phenomena. Furthermore, we address the modeling of the periodicity of the spike trains caused by a stimulus signal or by brain rhythms. Within the multiscale framework, we introduce intensity functions for spike trains with multiplicative and additive periodic components. Analyzing a dataset from the retinogeniculate synapse, we compare the fit of these models with the Bayesian adaptive regression splines method and discuss the limitations of the methodology. Computational efficiency, which is usually a challenge in the analysis of spike trains, is one of the highlights of these new models. In an example, we show that the reconstruction quality of a complex intensity function demonstrates the ability of the multiscale methodology to crack the neural code. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng
2018-01-01
Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Differential geometry based solvation model. III. Quantum formulation
Chen, Zhan; Wei, Guo-Wei
2011-01-01
Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067
Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Michalik, Kazimierz
2016-10-01
Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
Multiscale Macromolecular Simulation: Role of Evolving Ensembles
Singharoy, A.; Joshi, H.; Ortoleva, P.J.
2013-01-01
Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601
Multiscale 3-D shape representation and segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2007-04-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.
Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron
2013-01-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745
Yu, Xiuling; Lu, Shenggao
2016-12-01
Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education
ERIC Educational Resources Information Center
Schwalbe, Michelle Kristin
2010-01-01
This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…
Multiscale Path Metrics for the Analysis of Discrete Geometric Structures
2017-11-30
Report: Multiscale Path Metrics for the Analysis of Discrete Geometric Structures The views, opinions and/or findings contained in this report are those...Analysis of Discrete Geometric Structures Report Term: 0-Other Email: tomasi@cs.duke.edu Distribution Statement: 1-Approved for public release
Introduction and application of the multiscale coefficient of variation analysis.
Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh
2017-10-01
Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.
Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation
Biggs, Matthew B.; Papin, Jason A.
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.
Biggs, Matthew B; Papin, Jason A
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.
Performance of distributed multiscale simulations
Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.
2014-01-01
Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258
Person-independent facial expression analysis by fusing multiscale cell features
NASA Astrophysics Data System (ADS)
Zhou, Lubing; Wang, Han
2013-03-01
Automatic facial expression recognition is an interesting and challenging task. To achieve satisfactory accuracy, deriving a robust facial representation is especially important. A novel appearance-based feature, the multiscale cell local intensity increasing patterns (MC-LIIP), to represent facial images and conduct person-independent facial expression analysis is presented. The LIIP uses a decimal number to encode the texture or intensity distribution around each pixel via pixel-to-pixel intensity comparison. To boost noise resistance, MC-LIIP carries out comparison computation on the average values of scalable cells instead of individual pixels. The facial descriptor fuses region-based histograms of MC-LIIP features from various scales, so as to encode not only textural microstructures but also the macrostructures of facial images. Finally, a support vector machine classifier is applied for expression recognition. Experimental results on the CK+ and Karolinska directed emotional faces databases show the superiority of the proposed method.
Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Kolesar, Ryan; Boswell, Cody; Kanai, Taro; Montel, Kenneth
2014-12-01
There are now some sophisticated and powerful methods for computer modeling of parachutes. These methods are capable of addressing some of the most formidable computational challenges encountered in parachute modeling, including fluid-structure interaction (FSI) between the parachute and air flow, design complexities such as those seen in spacecraft parachutes, and operational complexities such as use in clusters and disreefing. One should be able to extract from a reliable full-scale parachute modeling any data or analysis needed. In some cases, however, the parachute engineers may want to perform quickly an extended or repetitive analysis with methods based on simplified models. Some of the data needed by a simplified model can very effectively be extracted from a full-scale computer modeling that serves as a pilot. A good example of such data is the circumferential curvature of a parachute gore, where a gore is the slice of the parachute canopy between two radial reinforcement cables running from the parachute vent to the skirt. We present the multiscale methods we devised for gore curvature calculation from FSI modeling of spacecraft parachutes. The methods include those based on the multiscale sequentially-coupled FSI technique and using NURBS meshes. We show how the methods work for the fully-open and two reefed stages of the Orion spacecraft main and drogue parachutes.
NASA Astrophysics Data System (ADS)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2007-04-10
We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.
Fractal analysis of multiscale spatial autocorrelation among point data
De Cola, L.
1991-01-01
The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author
Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen
2015-12-01
The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.
Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method
NASA Technical Reports Server (NTRS)
Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.
2014-01-01
A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.
NASA Astrophysics Data System (ADS)
Zeng, Yayun; Wang, Jun; Xu, Kaixuan
2017-04-01
A new financial agent-based time series model is developed and investigated by multiscale-continuum percolation system, which can be viewed as an extended version of continuum percolation system. In this financial model, for different parameters of proportion and density, two Poisson point processes (where the radii of points represent the ability of receiving or transmitting information among investors) are applied to model a random stock price process, in an attempt to investigate the fluctuation dynamics of the financial market. To validate its effectiveness and rationality, we compare the statistical behaviors and the multifractal behaviors of the simulated data derived from the proposed model with those of the real stock markets. Further, the multiscale sample entropy analysis is employed to study the complexity of the returns, and the cross-sample entropy analysis is applied to measure the degree of asynchrony of return autocorrelation time series. The empirical results indicate that the proposed financial model can simulate and reproduce some significant characteristics of the real stock markets to a certain extent.
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations
Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael
2016-01-01
Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364
Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.
Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael
2016-01-01
Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.
Podshivalov, L; Fischer, A; Bar-Yoseph, P Z
2011-04-01
This paper describes a new alternative for individualized mechanical analysis of bone trabecular structure. This new method closes the gap between the classic homogenization approach that is applied to macro-scale models and the modern micro-finite element method that is applied directly to micro-scale high-resolution models. The method is based on multiresolution geometrical modeling that generates intermediate structural levels. A new method for estimating multiscale material properties has also been developed to facilitate reliable and efficient mechanical analysis. What makes this method unique is that it enables direct and interactive analysis of the model at every intermediate level. Such flexibility is of principal importance in the analysis of trabecular porous structure. The method enables physicians to zoom-in dynamically and focus on the volume of interest (VOI), thus paving the way for a large class of investigations into the mechanical behavior of bone structure. This is one of the very few methods in the field of computational bio-mechanics that applies mechanical analysis adaptively on large-scale high resolution models. The proposed computational multiscale FE method can serve as an infrastructure for a future comprehensive computerized system for diagnosis of bone structures. The aim of such a system is to assist physicians in diagnosis, prognosis, drug treatment simulation and monitoring. Such a system can provide a better understanding of the disease, and hence benefit patients by providing better and more individualized treatment and high quality healthcare. In this paper, we demonstrate the feasibility of our method on a high-resolution model of vertebra L3. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Costa, M.; Priplata, A. A.; Lipsitz, L. A.; Wu, Z.; Huang, N. E.; Goldberger, A. L.; Peng, C.-K.
2007-03-01
Pathologic states are associated with a loss of dynamical complexity. Therefore, therapeutic interventions that increase physiologic complexity may enhance health status. Using multiscale entropy analysis, we show that the postural sway dynamics of healthy young and healthy elderly subjects are more complex than that of elderly subjects with a history of falls. Application of subsensory noise to the feet has been demonstrated to improve postural stability in the elderly. We next show that this therapy significantly increases the multiscale complexity of sway fluctuations in healthy elderly subjects. Quantification of changes in dynamical complexity of biologic variability may be the basis of a new approach to assessing risk and to predicting the efficacy of clinical interventions, including noise-based therapies.
Network analysis reveals multiscale controls on streamwater chemistry
Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...
Multiscale analysis of structure development in expanded starch snacks
NASA Astrophysics Data System (ADS)
van der Sman, R. G. M.; Broeze, J.
2014-11-01
In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-03-01
Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
ERIC Educational Resources Information Center
Wood, Brian D.
2009-01-01
Although the multiscale structure of many important processes in engineering is becoming more widely acknowledged, making this connection in the classroom is a difficult task. This is due in part because the concept of multiscale structure itself is challenging and it requires the students to develop new conceptual pictures of physical systems,…
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2006-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis-Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
Takahashi, Tetsuya; Cho, Raymond Y.; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Murata, Tetsuhito; Takahashi, Koichi; Wada, Yuji
2010-01-01
Multiscale entropy (MSE) analysis is a novel entropy-based approach for measuring dynamical complexity in physiological systems over a range of temporal scales. To evaluate this analytic approach as an aid to elucidating the pathophysiologic mechanisms in schizophrenia, we examined MSE in EEG activity in drug-naïve schizophrenia subjects pre- and post-treatment with antipsychotics in comparison with traditional EEG analysis. We recorded eyes-closed resting state EEG from frontal, temporal, parietal and occipital regions in drug-naïve 22 schizophrenia and 24 age-matched healthy control subjects. Fifteen patients were re-evaluated within 2–8 weeks after the initiation of antipsychotic treatment. For each participant, MSE was calculated on one continuous 60 second epoch for each experimental session. Schizophrenia subjects showed significantly higher complexity at higher time scales (lower frequencies), than that of healthy controls in fronto-centro-temporal, but not in parieto-occipital regions. Post-treatment, this higher complexity decreased to healthy control subject levels selectively in fronto-central regions, while the increased complexity in temporal sites remained higher. Comparative power analysis identified spectral slowing in frontal regions in pre-treatment schizophrenia subjects, consistent with previous findings, whereas no antipsychotic treatment effect was observed. In summary, multiscale entropy measures identified abnormal dynamical EEG signal complexity in anterior brain areas in schizophrenia that normalized selectively in fronto-central areas with antipsychotic treatment. These findings show that entropy-based analytic methods may serve as a novel approach for characterizing and understanding abnormal cortical dynamics in schizophrenia, and elucidating the therapeutic mechanisms of antipsychotics. PMID:20149880
Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2015-01-01
Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744
Wavelet-based analysis of gastric microcirculation in rats with ulcer bleedings
NASA Astrophysics Data System (ADS)
Pavlov, A. N.; Rodionov, M. A.; Pavlova, O. N.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznetsova, Ya. V.; Semyachkin-Glushkovskij, I. A.
2012-03-01
Studying of nitric oxide (NO) dependent mechanisms of regulation of microcirculation in a stomach can provide important diagnostic markers of the development of stress-induced ulcer bleedings. In this work we use a multiscale analysis based on the discrete wavelet-transform to characterize a latent stage of illness formation in rats. A higher sensitivity of stomach vessels to the NO-level in ill rats is discussed.
Right-Scaling Stewardship: A Multi-Scale Perspective on Cooperative Print Management
ERIC Educational Resources Information Center
Malpas, Constance; Lavoie, Brian
2014-01-01
The goal of this report is to provide an empirically-based assessment, based on WorldCat bibliographic and holdings data, of the size, scope, and salient features of these collections, with special attention to identifying and characterizing segments consisting of relatively scarce and relatively widely-held materials. The analysis also employs a…
Structure-based multiscale approach for identification of interaction partners of PDZ domains.
Tiwari, Garima; Mohanty, Debasisa
2014-04-28
PDZ domains are peptide recognition modules which mediate specific protein-protein interactions and are known to have a complex specificity landscape. We have developed a novel structure-based multiscale approach which identifies crucial specificity determining residues (SDRs) of PDZ domains from explicit solvent molecular dynamics (MD) simulations on PDZ-peptide complexes and uses these SDRs in combination with knowledge-based scoring functions for proteomewide identification of their interaction partners. Multiple explicit solvent simulations ranging from 5 to 50 ns duration have been carried out on 28 PDZ-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these simulations show a correlation coefficient of 0.755 with the experimental binding affinities. On the basis of the SDRs of PDZ domains identified by MD simulations, we have developed a simple scoring scheme for evaluating binding energies for PDZ-peptide complexes using residue based statistical pair potentials. This multiscale approach has been benchmarked on a mouse PDZ proteome array data set by calculating the binding energies for 217 different substrate peptides in binding pockets of 64 different mouse PDZ domains. Receiver operating characteristic (ROC) curve analysis indicates that, the area under curve (AUC) values for binder vs nonbinder classification by our structure based method is 0.780. Our structure based method does not require experimental PDZ-peptide binding data for training.
Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert
2016-08-01
Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.
Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites
NASA Astrophysics Data System (ADS)
Fasanella, Nicholas A.
Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment; and the stiffness matrix was calculated. A rule of mixture approach was implemented in the ODF model to vary the SWNT volume fraction. Both the ODF and FE models are compared and contrasted. ODF analysis is significantly faster for nanocomposites and is a novel contribution in this thesis. Multiscale modeling allows for the effects of nanofillers in epoxy systems to be characterized without having to run costly experiments.
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin
2018-02-01
This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
A weak Galerkin generalized multiscale finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis
2015-01-01
A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893
Nonlinear Image Denoising Methodologies
2002-05-01
53 5.3 A Multiscale Approach to Scale-Space Analysis . . . . . . . . . . . . . . . . 53 5.4...etc. In this thesis, Our approach to denoising is first based on a controlled nonlinear stochastic random walk to achieve a scale space analysis ( as in... stochastic treatment or interpretation of the diffusion. In addition, unless a specific stopping time is known to be adequate, the resulting evolution
Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed
Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...
Multiscale structural gradients enhance the biomechanical functionality of the spider fang
Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael
2014-01-01
The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935
NASA Astrophysics Data System (ADS)
Yin, Yi; Shang, Pengjian
2013-12-01
We use multiscale detrended fluctuation analysis (MSDFA) and multiscale detrended cross-correlation analysis (MSDCCA) to investigate auto-correlation (AC) and cross-correlation (CC) in the US and Chinese stock markets during 1997-2012. The results show that US and Chinese stock indices differ in terms of their multiscale AC structures. Stock indices in the same region also differ with regard to their multiscale AC structures. We analyze AC and CC behaviors among indices for the same region to determine similarity among six stock indices and divide them into four groups accordingly. We choose S&P500, NQCI, HSI, and the Shanghai Composite Index as representative samples for simplicity. MSDFA and MSDCCA results and average MSDFA spectra for local scaling exponents (LSEs) for individual series are presented. We find that the MSDCCA spectrum for LSE CC between two time series generally tends to be greater than the average MSDFA LSE spectrum for individual series. We obtain detailed multiscale structures and relations for CC between the four representatives. MSDFA and MSDCCA with secant rolling windows of different sizes are then applied to reanalyze the AC and CC. Vertical and horizontal comparisons of different window sizes are made. The MSDFA and MSDCCA results for the original window size are confirmed and some new interesting characteristics and conclusions regarding multiscale correlation structures are obtained.
Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck
2011-01-01
Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Regulski, Krzysztof
2016-08-01
We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.
Chen, Hai; Liang, Xiaoying; Li, Rui
2013-01-01
Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.
Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
Chaddad, Ahmad; Sabri, Siham; Niazi, Tamim; Abdulkarim, Bassam
2018-06-19
We propose a multiscale texture features based on Laplacian-of Gaussian (LoG) filter to predict progression free (PFS) and overall survival (OS) in patients newly diagnosed with glioblastoma (GBM). Experiments use the extracted features derived from 40 patients of GBM with T1-weighted imaging (T1-WI) and Fluid-attenuated inversion recovery (FLAIR) images that were segmented manually into areas of active tumor, necrosis, and edema. Multiscale texture features were extracted locally from each of these areas of interest using a LoG filter and the relation between features to OS and PFS was investigated using univariate (i.e., Spearman's rank correlation coefficient, log-rank test and Kaplan-Meier estimator) and multivariate analyses (i.e., Random Forest classifier). Three and seven features were statistically correlated with PFS and OS, respectively, with absolute correlation values between 0.32 and 0.36 and p < 0.05. Three features derived from active tumor regions only were associated with OS (p < 0.05) with hazard ratios (HR) of 2.9, 3, and 3.24, respectively. Combined features showed an AUC value of 85.37 and 85.54% for predicting the PFS and OS of GBM patients, respectively, using the random forest (RF) classifier. We presented a multiscale texture features to characterize the GBM regions and predict he PFS and OS. The efficiency achievable suggests that this technique can be developed into a GBM MR analysis system suitable for clinical use after a thorough validation involving more patients. Graphical abstract Scheme of the proposed model for characterizing the heterogeneity of GBM regions and predicting the overall survival and progression free survival of GBM patients. (1) Acquisition of pretreatment MRI images; (2) Affine registration of T1-WI image with its corresponding FLAIR images, and GBM subtype (phenotypes) labelling; (3) Extraction of nine texture features from the three texture scales fine, medium, and coarse derived from each of GBM regions; (4) Comparing heterogeneity between GBM regions by ANOVA test; Survival analysis using Univariate (Spearman rank correlation between features and survival (i.e., PFS and OS) based on each of the GBM regions, Kaplan-Meier estimator and log-rank test to predict the PFS and OS of patient groups that grouped based on median of feature), and multivariate (random forest model) for predicting the PFS and OS of patients groups that grouped based on median of PFS and OS.
Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis
Baydil, Banu; Daley, William P.; Larsen, Melinda; Yener, Bülent
2012-01-01
Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues. PMID:22403724
NASA Astrophysics Data System (ADS)
Zimoń, M. J.; Prosser, R.; Emerson, D. R.; Borg, M. K.; Bray, D. J.; Grinberg, L.; Reese, J. M.
2016-11-01
Filtering of particle-based simulation data can lead to reduced computational costs and enable more efficient information transfer in multi-scale modelling. This paper compares the effectiveness of various signal processing methods to reduce numerical noise and capture the structures of nano-flow systems. In addition, a novel combination of these algorithms is introduced, showing the potential of hybrid strategies to improve further the de-noising performance for time-dependent measurements. The methods were tested on velocity and density fields, obtained from simulations performed with molecular dynamics and dissipative particle dynamics. Comparisons between the algorithms are given in terms of performance, quality of the results and sensitivity to the choice of input parameters. The results provide useful insights on strategies for the analysis of particle-based data and the reduction of computational costs in obtaining ensemble solutions.
Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials
NASA Astrophysics Data System (ADS)
Jothi, Sathiskumar
Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.
Using multiscale texture and density features for near-term breast cancer risk analysis
Sun, Wenqing; Tseng, Tzu-Liang (Bill); Qian, Wei; Zhang, Jianying; Saltzstein, Edward C.; Zheng, Bin; Lure, Fleming; Yu, Hui; Zhou, Shi
2015-01-01
Purpose: To help improve efficacy of screening mammography by eventually establishing a new optimal personalized screening paradigm, the authors investigated the potential of using the quantitative multiscale texture and density feature analysis of digital mammograms to predict near-term breast cancer risk. Methods: The authors’ dataset includes digital mammograms acquired from 340 women. Among them, 141 were positive and 199 were negative/benign cases. The negative digital mammograms acquired from the “prior” screening examinations were used in the study. Based on the intensity value distributions, five subregions at different scales were extracted from each mammogram. Five groups of features, including density and texture features, were developed and calculated on every one of the subregions. Sequential forward floating selection was used to search for the effective combinations. Using the selected features, a support vector machine (SVM) was optimized using a tenfold validation method to predict the risk of each woman having image-detectable cancer in the next sequential mammography screening. The area under the receiver operating characteristic curve (AUC) was used as the performance assessment index. Results: From a total number of 765 features computed from multiscale subregions, an optimal feature set of 12 features was selected. Applying this feature set, a SVM classifier yielded performance of AUC = 0.729 ± 0.021. The positive predictive value was 0.657 (92 of 140) and the negative predictive value was 0.755 (151 of 200). Conclusions: The study results demonstrated a moderately high positive association between risk prediction scores generated by the quantitative multiscale mammographic image feature analysis and the actual risk of a woman having an image-detectable breast cancer in the next subsequent examinations. PMID:26127038
Multiscale multifractal time irreversibility analysis of stock markets
NASA Astrophysics Data System (ADS)
Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin
2016-11-01
Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
2014-04-01
Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Holst, Submitted for publication ...TR-14-33 A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics...Problems Approved for public release, distribution is unlimited. April 2014 HDTRA1-09-1-0036 Donald Estep and Michael
Energy Based Multiscale Modeling with Non-Periodic Boundary Conditions
2013-05-13
below in Figure 8. At each incremental step in the analysis , the user material defined subroutine (UMAT) was utilized to perform the communication...initiation and modeling using XFEM. Appropriate localization schemes will be developed to allow for deformations conducive for crack opening...REFERENCES 1. Talreja R., 2006, “Damage analysis for structural integrity and durability of composite materials ,” Fatigue & Fracture of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ely, Geoffrey P.
2013-10-31
This project uses dynamic rupture simulations to investigate high-frequency seismic energy generation. The relevant phenomena (frictional breakdown, shear heating, effective normal-stress fluctuations, material damage, etc.) controlling rupture are strongly interacting and span many orders of magnitude in spatial scale, requiring highresolution simulations that couple disparate physical processes (e.g., elastodynamics, thermal weakening, pore-fluid transport, and heat conduction). Compounding the computational challenge, we know that natural faults are not planar, but instead have roughness that can be approximated by power laws potentially leading to large, multiscale fluctuations in normal stress. The capacity to perform 3D rupture simulations that couple these processes willmore » provide guidance for constructing appropriate source models for high-frequency ground motion simulations. The improved rupture models from our multi-scale dynamic rupture simulations will be used to conduct physicsbased (3D waveform modeling-based) probabilistic seismic hazard analysis (PSHA) for California. These calculation will provide numerous important seismic hazard results, including a state-wide extended earthquake rupture forecast with rupture variations for all significant events, a synthetic seismogram catalog for thousands of scenario events and more than 5000 physics-based seismic hazard curves for California.« less
A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo
A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less
MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.
Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K
2015-04-01
Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.
Scale-specific effects: A report on multiscale analysis of acupunctured EEG in entropy and power
NASA Astrophysics Data System (ADS)
Song, Zhenxi; Deng, Bin; Wei, Xile; Cai, Lihui; Yu, Haitao; Wang, Jiang; Wang, Ruofan; Chen, Yingyuan
2018-02-01
Investigating acupuncture effects contributes to improving clinical application and understanding neuronal dynamics under external stimulation. In this report, we recorded electroencephalography (EEG) signals evoked by acupuncture at ST36 acupoint with three stimulus frequencies of 50, 100 and 200 times per minutes, and selected non-acupuncture EEGs as the control group. Multiscale analyses were introduced to investigate the possible acupuncture effects on complexity and power in multiscale level. Using multiscale weighted-permutation entropy, we found the significant effects on increased complexity degree in EEG signals induced by acupuncture. The comparison of three stimulation manipulations showed that 100 times/min generated most obvious effects, and affected most cortical regions. By estimating average power spectral density, we found decreased power induced by acupuncture. The joint distribution of entropy and power indicated an inverse correlation, and this relationship was weakened by acupuncture effects, especially under the manipulation of 100 times/min frequency. Above findings are more evident and stable in large scales than small scales, which suggests that multiscale analysis allows evaluating significant effects in specific scale and enables to probe the inherent characteristics underlying physiological signals.
Revisiting of Multiscale Static Analysis of Notched Laminates Using the Generalized Method of Cells
NASA Technical Reports Server (NTRS)
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.
2016-01-01
Composite material systems generally exhibit a range of behavior on different length scales (from constituent level to macro); therefore, a multiscale framework is beneficial for the design and engineering of these material systems. The complex nature of the observed composite failure during experiments suggests the need for a three-dimensional (3D) multiscale model to attain a reliable prediction. However, the size of a multiscale three-dimensional finite element model can become prohibitively large and computationally costly. Two-dimensional (2D) models are preferred due to computational efficiency, especially if many different configurations have to be analyzed for an in-depth damage tolerance and durability design study. In this study, various 2D and 3D multiscale analyses will be employed to conduct a detailed investigation into the tensile failure of a given multidirectional, notched carbon fiber reinforced polymer laminate. Threedimensional finite element analysis is typically considered more accurate than a 2D finite element model, as compared with experiments. Nevertheless, in the absence of adequate mesh refinement, large differences may be observed between a 2D and 3D analysis, especially for a shear-dominated layup. This observed difference has not been widely addressed in previous literature and is the main focus of this paper.
Alternative transitions between existing representations in multi-scale maps
NASA Astrophysics Data System (ADS)
Dumont, Marion; Touya, Guillaume; Duchêne, Cécile
2018-05-01
Map users may have issues to achieve multi-scale navigation tasks, as cartographic objects may have various representations across scales. We assume that adding intermediate representations could be one way to reduce the differences between existing representations, and to ease the transitions across scales. We consider an existing multiscale map on the scale range from 1 : 25k to 1 : 100k scales. Based on hypotheses about intermediate representations design, we build custom multi-scale maps with alternative transitions. We will conduct in a next future a user evaluation to compare the efficiency of these alternative maps for multi-scale navigation. This paper discusses the hypotheses and production process of these alternative maps.
A dynamic multi-scale Markov model based methodology for remaining life prediction
NASA Astrophysics Data System (ADS)
Yan, Jihong; Guo, Chaozhong; Wang, Xing
2011-05-01
The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.
Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
2013-01-01
Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560
NASA Astrophysics Data System (ADS)
To, Albert C.; Liu, Wing Kam; Olson, Gregory B.; Belytschko, Ted; Chen, Wei; Shephard, Mark S.; Chung, Yip-Wah; Ghanem, Roger; Voorhees, Peter W.; Seidman, David N.; Wolverton, Chris; Chen, J. S.; Moran, Brian; Freeman, Arthur J.; Tian, Rong; Luo, Xiaojuan; Lautenschlager, Eric; Challoner, A. Dorian
2008-09-01
Microsystems have become an integral part of our lives and can be found in homeland security, medical science, aerospace applications and beyond. Many critical microsystem applications are in harsh environments, in which long-term reliability needs to be guaranteed and repair is not feasible. For example, gyroscope microsystems on satellites need to function for over 20 years under severe radiation, thermal cycling, and shock loading. Hence a predictive-science-based, verified and validated computational models and algorithms to predict the performance and materials integrity of microsystems in these situations is needed. Confidence in these predictions is improved by quantifying uncertainties and approximation errors. With no full system testing and limited sub-system testings, petascale computing is certainly necessary to span both time and space scales and to reduce the uncertainty in the prediction of long-term reliability. This paper presents the necessary steps to develop predictive-science-based multiscale modeling and simulation system. The development of this system will be focused on the prediction of the long-term performance of a gyroscope microsystem. The environmental effects to be considered include radiation, thermo-mechanical cycling and shock. Since there will be many material performance issues, attention is restricted to creep resulting from thermal aging and radiation-enhanced mass diffusion, material instability due to radiation and thermo-mechanical cycling and damage and fracture due to shock. To meet these challenges, we aim to develop an integrated multiscale software analysis system that spans the length scales from the atomistic scale to the scale of the device. The proposed software system will include molecular mechanics, phase field evolution, micromechanics and continuum mechanics software, and the state-of-the-art model identification strategies where atomistic properties are calibrated by quantum calculations. We aim to predict the long-term (in excess of 20 years) integrity of the resonator, electrode base, multilayer metallic bonding pads, and vacuum seals in a prescribed mission. Although multiscale simulations are efficient in the sense that they focus the most computationally intensive models and methods on only the portions of the space time domain needed, the execution of the multiscale simulations associated with evaluating materials and device integrity for aerospace microsystems will require the application of petascale computing. A component-based software strategy will be used in the development of our massively parallel multiscale simulation system. This approach will allow us to take full advantage of existing single scale modeling components. An extensive, pervasive thrust in the software system development is verification, validation, and uncertainty quantification (UQ). Each component and the integrated software system need to be carefully verified. An UQ methodology that determines the quality of predictive information available from experimental measurements and packages the information in a form suitable for UQ at various scales needs to be developed. Experiments to validate the model at the nanoscale, microscale, and macroscale are proposed. The development of a petascale predictive-science-based multiscale modeling and simulation system will advance the field of predictive multiscale science so that it can be used to reliably analyze problems of unprecedented complexity, where limited testing resources can be adequately replaced by petascale computational power, advanced verification, validation, and UQ methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan
2015-01-01
One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that modelmore » parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and may become a viable alternative to conventional single-scale models in the near future.« less
Scheibe, Timothy D; Murphy, Ellyn M; Chen, Xingyuan; Rice, Amy K; Carroll, Kenneth C; Palmer, Bruce J; Tartakovsky, Alexandre M; Battiato, Ilenia; Wood, Brian D
2015-01-01
One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single-scale models in the near future. © 2014, National Ground Water Association.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves
NASA Astrophysics Data System (ADS)
Yuan, Y. O.; Simons, F. J.; Bozdag, E.
2014-12-01
We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.
Modified cross sample entropy and surrogate data analysis method for financial time series
NASA Astrophysics Data System (ADS)
Yin, Yi; Shang, Pengjian
2015-09-01
For researching multiscale behaviors from the angle of entropy, we propose a modified cross sample entropy (MCSE) and combine surrogate data analysis with it in order to compute entropy differences between original dynamics and surrogate series (MCSDiff). MCSDiff is applied to simulated signals to show accuracy and then employed to US and Chinese stock markets. We illustrate the presence of multiscale behavior in the MCSDiff results and reveal that there are synchrony containing in the original financial time series and they have some intrinsic relations, which are destroyed by surrogate data analysis. Furthermore, the multifractal behaviors of cross-correlations between these financial time series are investigated by multifractal detrended cross-correlation analysis (MF-DCCA) method, since multifractal analysis is a multiscale analysis. We explore the multifractal properties of cross-correlation between these US and Chinese markets and show the distinctiveness of NQCI and HSI among the markets in their own region. It can be concluded that the weaker cross-correlation between US markets gives the evidence for the better inner mechanism in the US stock markets than that of Chinese stock markets. To study the multiscale features and properties of financial time series can provide valuable information for understanding the inner mechanism of financial markets.
Kang, Jinbum; Lee, Jae Young; Yoo, Yangmo
2016-06-01
Effective speckle reduction in ultrasound B-mode imaging is important for enhancing the image quality and improving the accuracy in image analysis and interpretation. In this paper, a new feature-enhanced speckle reduction (FESR) method based on multiscale analysis and feature enhancement filtering is proposed for ultrasound B-mode imaging. In FESR, clinical features (e.g., boundaries and borders of lesions) are selectively emphasized by edge, coherence, and contrast enhancement filtering from fine to coarse scales while simultaneously suppressing speckle development via robust diffusion filtering. In the simulation study, the proposed FESR method showed statistically significant improvements in edge preservation, mean structure similarity, speckle signal-to-noise ratio, and contrast-to-noise ratio (CNR) compared with other speckle reduction methods, e.g., oriented speckle reducing anisotropic diffusion (OSRAD), nonlinear multiscale wavelet diffusion (NMWD), the Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), and the Bayesian nonlocal means filter (OBNLM). Similarly, the FESR method outperformed the OSRAD, NMWD, LPNDSF, and OBNLM methods in terms of CNR, i.e., 10.70 ± 0.06 versus 9.00 ± 0.06, 9.78 ± 0.06, 8.67 ± 0.04, and 9.22 ± 0.06 in the phantom study, respectively. Reconstructed B-mode images that were developed using the five speckle reduction methods were reviewed by three radiologists for evaluation based on each radiologist's diagnostic preferences. All three radiologists showed a significant preference for the abdominal liver images obtained using the FESR methods in terms of conspicuity, margin sharpness, artificiality, and contrast, p<0.0001. For the kidney and thyroid images, the FESR method showed similar improvement over other methods. However, the FESR method did not show statistically significant improvement compared with the OBNLM method in margin sharpness for the kidney and thyroid images. These results demonstrate that the proposed FESR method can improve the image quality of ultrasound B-mode imaging by enhancing the visualization of lesion features while effectively suppressing speckle noise.
Jiang, Bernard C.
2014-01-01
Falls are unpredictable accidents, and the resulting injuries can be serious in the elderly, particularly those with chronic diseases. Regular exercise is recommended to prevent and treat hypertension and other chronic diseases by reducing clinical blood pressure. The “complexity index” (CI), based on multiscale entropy (MSE) algorithm, has been applied in recent studies to show a person's adaptability to intrinsic and external perturbations and widely used measure of postural sway or stability. The multivariate multiscale entropy (MMSE) was advanced algorithm used to calculate the complexity index (CI) values of the center of pressure (COP) data. In this study, we applied the MSE & MMSE to analyze gait function of 24 elderly, chronically ill patients (44% female; 56% male; mean age, 67.56 ± 10.70 years) with either cardiovascular disease, diabetes mellitus, or osteoporosis. After a 12-week training program, postural stability measurements showed significant improvements. Our results showed beneficial effects of resistance training, which can be used to improve postural stability in the elderly and indicated that MMSE algorithms to calculate CI of the COP data were superior to the multiscale entropy (MSE) algorithm to identify the sense of balance in the elderly. PMID:25295070
A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method
NASA Astrophysics Data System (ADS)
Fu, Shubin; Gao, Kai
2017-11-01
Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.
Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling
USDA-ARS?s Scientific Manuscript database
We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...
A multiscale method for a robust detection of the default mode network
NASA Astrophysics Data System (ADS)
Baquero, Katherine; Gómez, Francisco; Cifuentes, Christian; Guldenmund, Pieter; Demertzi, Athena; Vanhaudenhuyse, Audrey; Gosseries, Olivia; Tshibanda, Jean-Flory; Noirhomme, Quentin; Laureys, Steven; Soddu, Andrea; Romero, Eduardo
2013-11-01
The Default Mode Network (DMN) is a resting state network widely used for the analysis and diagnosis of mental disorders. It is normally detected in fMRI data, but for its detection in data corrupted by motion artefacts or low neuronal activity, the use of a robust analysis method is mandatory. In fMRI it has been shown that the signal-to-noise ratio (SNR) and the detection sensitivity of neuronal regions is increased with di erent smoothing kernels sizes. Here we propose to use a multiscale decomposition based of a linear scale-space representation for the detection of the DMN. Three main points are proposed in this methodology: rst, the use of fMRI data at di erent smoothing scale-spaces, second, detection of independent neuronal components of the DMN at each scale by using standard preprocessing methods and ICA decomposition at scale-level, and nally, a weighted contribution of each scale by the Goodness of Fit measurement. This method was applied to a group of control subjects and was compared with a standard preprocesing baseline. The detection of the DMN was improved at single subject level and at group level. Based on these results, we suggest to use this methodology to enhance the detection of the DMN in data perturbed with artefacts or applied to subjects with low neuronal activity. Furthermore, the multiscale method could be extended for the detection of other resting state neuronal networks.
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
Color Image Enhancement Using Multiscale Retinex Based on Particle Swarm Optimization Method
NASA Astrophysics Data System (ADS)
Matin, F.; Jeong, Y.; Kim, K.; Park, K.
2018-01-01
This paper introduces, a novel method for the image enhancement using multiscale retinex and practical swarm optimization. Multiscale retinex is widely used image enhancement technique which intemperately pertains on parameters such as Gaussian scales, gain and offset, etc. To achieve the privileged effect, the parameters need to be tuned manually according to the image. In order to handle this matter, a developed retinex algorithm based on PSO has been used. The PSO method adjusted the parameters for multiscale retinex with chromaticity preservation (MSRCP) attains better outcome to compare with other existing methods. The experimental result indicates that the proposed algorithm is an efficient one and not only provides true color loyalty in low light conditions but also avoid color distortion at the same time.
Chen, Xiaoling; Xie, Ping; Zhang, Yuanyuan; Chen, Yuling; Yang, Fangmei; Zhang, Litai; Li, Xiaoli
2018-01-01
Recently, functional corticomuscular coupling (FCMC) between the cortex and the contralateral muscle has been used to evaluate motor function after stroke. As we know, the motor-control system is a closed-loop system that is regulated by complex self-regulating and interactive mechanisms which operate in multiple spatial and temporal scales. Multiscale analysis can represent the inherent complexity. However, previous studies in FCMC for stroke patients mainly focused on the coupling strength in single-time scale, without considering the changes of the inherently directional and multiscale properties in sensorimotor systems. In this paper, a multiscale-causal model, named multiscale transfer entropy, was used to quantify the functional connection between electroencephalogram over the scalp and electromyogram from the flexor digitorum superficialis (FDS) recorded simultaneously during steady-state grip task in eight stroke patients and eight healthy controls. Our results showed that healthy controls exhibited higher coupling when the scale reached up to about 12, and the FCMC in descending direction was stronger at certain scales (1, 7, 12, and 14) than that in ascending direction. Further analysis showed these multi-time scale characteristics mainly focused on the beta1 band at scale 11 and beta2 band at scale 9, 11, 13, and 15. Compared to controls, the multiscale properties of the FCMC for stroke were changed, the strengths in both directions were reduced, and the gaps between the descending and ascending directions were disappeared over all scales. Further analysis in specific bands showed that the reduced FCMC mainly focused on the alpha2 at higher scale, beta1 and beta2 across almost the entire scales. This study about multi-scale confirms that the FCMC between the brain and muscles is capable of complex and directional characteristics, and these characteristics in functional connection for stroke are destroyed by the structural lesion in the brain that might disrupt coordination, feedback, and information transmission in efferent control and afferent feedback. The study demonstrates for the first time the multiscale and directional characteristics of the FCMC for stroke patients, and provides a preliminary observation for application in clinical assessment following stroke. PMID:29765351
Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia
NASA Astrophysics Data System (ADS)
Li, Duan; Li, Xiaoli; Liang, Zhenhu; Voss, Logan J.; Sleigh, Jamie W.
2010-08-01
Electroencephalogram (EEG) monitoring of the effect of anesthetic drugs on the central nervous system has long been used in anesthesia research. Several methods based on nonlinear dynamics, such as permutation entropy (PE), have been proposed to analyze EEG series during anesthesia. However, these measures are still single-scale based and may not completely describe the dynamical characteristics of complex EEG series. In this paper, a novel measure combining multiscale PE information, called CMSPE (composite multi-scale permutation entropy), was proposed for quantifying the anesthetic drug effect on EEG recordings during sevoflurane anesthesia. Three sets of simulated EEG series during awake, light and deep anesthesia were used to select the parameters for the multiscale PE analysis: embedding dimension m, lag τ and scales to be integrated into the CMSPE index. Then, the CMSPE index and raw single-scale PE index were applied to EEG recordings from 18 patients who received sevoflurane anesthesia. Pharmacokinetic/pharmacodynamic (PKPD) modeling was used to relate the measured EEG indices and the anesthetic drug concentration. Prediction probability (Pk) statistics and correlation analysis with the response entropy (RE) index, derived from the spectral entropy (M-entropy module; GE Healthcare, Helsinki, Finland), were investigated to evaluate the effectiveness of the new proposed measure. It was found that raw single-scale PE was blind to subtle transitions between light and deep anesthesia, while the CMSPE index tracked these changes accurately. Around the time of loss of consciousness, CMSPE responded significantly more rapidly than the raw PE, with the absolute slopes of linearly fitted response versus time plots of 0.12 (0.09-0.15) and 0.10 (0.06-0.13), respectively. The prediction probability Pk of 0.86 (0.85-0.88) and 0.85 (0.80-0.86) for CMSPE and raw PE indicated that the CMSPE index correlated well with the underlying anesthetic effect. The correlation coefficient for the comparison between the CMSPE index and RE index of 0.84 (0.80-0.88) was significantly higher than the raw PE index of 0.75 (0.66-0.84). The results show that the CMSPE outperforms the raw single-scale PE in reflecting the sevoflurane drug effect on the central nervous system.
Multiscale Multifunctional Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Minnetyan, L.
2012-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.
Multi-scale modeling of irradiation effects in spallation neutron source materials
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ito, T.; Iwase, H.; Kaneko, Y.; Kawai, M.; Kishida, I.; Kunieda, S.; Sato, K.; Shimakawa, S.; Shimizu, F.; Hashimoto, S.; Hashimoto, N.; Fukahori, T.; Watanabe, Y.; Xu, Q.; Ishino, S.
2011-07-01
Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.
Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis
NASA Technical Reports Server (NTRS)
Olevsky, Eugene; German, Randall M.
2012-01-01
A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.
Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P
2016-04-13
An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Hu, Bingbing; Li, Bing
2016-02-01
It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estep, Donald; El-Azab, Anter; Pernice, Michael
2017-03-23
In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less
Beddows, Andrew V; Kitwiroon, Nutthida; Williams, Martin L; Beevers, Sean D
2017-06-06
Gaussian process emulation techniques have been used with the Community Multiscale Air Quality model, simulating the effects of input uncertainties on ozone and NO 2 output, to allow robust global sensitivity analysis (SA). A screening process ranked the effect of perturbations in 223 inputs, isolating the 30 most influential from emissions, boundary conditions (BCs), and reaction rates. Community Multiscale Air Quality (CMAQ) simulations of a July 2006 ozone pollution episode in the UK were made with input values for these variables plus ozone dry deposition velocity chosen according to a 576 point Latin hypercube design. Emulators trained on the output of these runs were used in variance-based SA of the model output to input uncertainties. Performing these analyses for every hour of a 21 day period spanning the episode and several days on either side allowed the results to be presented as a time series of sensitivity coefficients, showing how the influence of different input uncertainties changed during the episode. This is one of the most complex models to which these methods have been applied, and here, they reveal detailed spatiotemporal patterns of model sensitivities, with NO and isoprene emissions, NO 2 photolysis, ozone BCs, and deposition velocity being among the most influential input uncertainties.
Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will
2016-01-01
With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.
NASA Astrophysics Data System (ADS)
Sultana, Tahmina; Takagi, Hiroaki; Morimatsu, Miki; Teramoto, Hiroshi; Li, Chun-Biu; Sako, Yasushi; Komatsuzaki, Tamiki
2013-12-01
We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule time series. The multiscale SSN is a type of hidden Markov model that takes into account both multiple states buried in the measurement and memory effects in the process of the observable whenever they exist. Most biological systems function in a nonstationary manner across multiple timescales. Combined with a recently established nonlinear time series analysis based on information theory, a simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete time series. We derived an explicit analytical expression of the autocorrelation function in terms of the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We found that our formula successfully reproduces their autocorrelation function for a wide range of timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the SSN at the longer timescales (0.1 s to ˜3 s) becomes rather complex in order to capture multiscale nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form of the EGFR-Grb2 system approximately resets all information of history or memory of the process.
Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez
2017-02-28
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10 -10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale.
Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez
2017-01-01
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10−10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale. PMID:28772605
Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells
NASA Technical Reports Server (NTRS)
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.
2016-01-01
The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.
A marker-based watershed method for X-ray image segmentation.
Zhang, Xiaodong; Jia, Fucang; Luo, Suhuai; Liu, Guiying; Hu, Qingmao
2014-03-01
Digital X-ray images are the most frequent modality for both screening and diagnosis in hospitals. To facilitate subsequent analysis such as quantification and computer aided diagnosis (CAD), it is desirable to exclude image background. A marker-based watershed segmentation method was proposed to segment background of X-ray images. The method consisted of six modules: image preprocessing, gradient computation, marker extraction, watershed segmentation from markers, region merging and background extraction. One hundred clinical direct radiograph X-ray images were used to validate the method. Manual thresholding and multiscale gradient based watershed method were implemented for comparison. The proposed method yielded a dice coefficient of 0.964±0.069, which was better than that of the manual thresholding (0.937±0.119) and that of multiscale gradient based watershed method (0.942±0.098). Special means were adopted to decrease the computational cost, including getting rid of few pixels with highest grayscale via percentile, calculation of gradient magnitude through simple operations, decreasing the number of markers by appropriate thresholding, and merging regions based on simple grayscale statistics. As a result, the processing time was at most 6s even for a 3072×3072 image on a Pentium 4 PC with 2.4GHz CPU (4 cores) and 2G RAM, which was more than one time faster than that of the multiscale gradient based watershed method. The proposed method could be a potential tool for diagnosis and quantification of X-ray images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Multi-scale calculation based on dual domain material point method combined with molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Tilak Raj
This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crackmore » tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared with direct MD simulation results to demonstrate the feasibility of the method. Also, the multi-scale method is applied for a two dimensional problem of jet formation around copper notch under a strong impact.« less
Multiscale permutation entropy analysis of electrocardiogram
NASA Astrophysics Data System (ADS)
Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao
2017-04-01
To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.
A concurrent multiscale micromorphic molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi
2015-04-21
In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less
Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.
Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
Wu, Shibin; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072
NASA Astrophysics Data System (ADS)
Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel
2016-04-01
Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.
Milenin, Andrzej; Kopernik, Magdalena
2011-01-01
The prosthesis - pulsatory ventricular assist device (VAD) - is made of polyurethane (PU) and biocompatible TiN deposited by pulsed laser deposition (PLD) method. The paper discusses the numerical modelling and computer-aided design of such an artificial organ. Two types of VADs: POLVAD and POLVAD_EXT are investigated. The main tasks and assumptions of the computer program developed are presented. The multiscale model of VAD based on finite element method (FEM) is introduced and the analysis of the stress-strain state in macroscale for the blood chamber in both versions of VAD is shown, as well as the verification of the results calculated by applying ABAQUS, a commercial FEM code. The FEM code developed is based on a new approach to the simulation of multilayer materials obtained by using PLD method. The model in microscale includes two components, i.e., model of initial stresses (residual stress) caused by the deposition process and simulation of active loadings observed in the blood chamber of POLVAD and POLVAD_EXT. The computed distributions of stresses and strains in macro- and microscales are helpful in defining precisely the regions of blood chamber, which can be defined as the failure-source areas.
Multiscale Shannon entropy and its application in the stock market
NASA Astrophysics Data System (ADS)
Gu, Rongbao
2017-10-01
In this paper, we perform a multiscale entropy analysis on the Dow Jones Industrial Average Index using the Shannon entropy. The stock index shows the characteristic of multi-scale entropy that caused by noise in the market. The entropy is demonstrated to have significant predictive ability for the stock index in both long-term and short-term, and empirical results verify that noise does exist in the market and can affect stock price. It has important implications on market participants such as noise traders.
Based on these data and preliminary studies, this proposal will be composed of a multiscale source-to-dose analysis approach for assessing the exposure interactions of environmental and biological systems. Once the entire modeling system is validated, it will run f...
Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik
2005-01-01
Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.
Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui
2015-11-01
Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Debojyoti; Bhowmik, Puja; Jana, R. K.
2018-07-01
In this paper we examine the stock market co-movement and volatility spillover dynamics in the Pacific developed markets for a period spanning over January 05, 2001 to January 09, 2018. We employ wavelet-based techniques to study the multiscale co-movement dynamics of stock returns. Additionally, we also study the subtleties of volatility spillover of returns among the sample countries. We find that: (a) diversification benefits in these markets are limited due to higher degrees of integration, (b) Pacific developed markets co-move strongly during the periods of financial crisis (i.e. the contagion hypothesis) and (c) higher degree of volatility spills during financial crisis. We believe our study holds significance in the perspective of international portfolio diversification.
NASA Astrophysics Data System (ADS)
Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin
2017-06-01
We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Qu, Xiaobo; He, Yifan
2018-01-01
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
Wang, Gang; Wang, Yalin
2017-02-15
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...
2017-06-06
There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less
Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.
2015-01-01
Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228
Multiscale Medical Image Fusion in Wavelet Domain
Khare, Ashish
2013-01-01
Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
2018-03-27
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan
Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.
Pak, Theodore R.; Kasarskis, Andrew
2015-01-01
Recent reviews have examined the extent to which routine next-generation sequencing (NGS) on clinical specimens will improve the capabilities of clinical microbiology laboratories in the short term, but do not explore integrating NGS with clinical data from electronic medical records (EMRs), immune profiling data, and other rich datasets to create multiscale predictive models. This review introduces a range of “omics” and patient data sources relevant to managing infections and proposes 3 potentially disruptive applications for these data in the clinical workflow. The combined threats of healthcare-associated infections and multidrug-resistant organisms may be addressed by multiscale analysis of NGS and EMR data that is ideally updated and refined over time within each healthcare organization. Such data and analysis should form the cornerstone of future learning health systems for infectious disease. PMID:26251049
Filters for Improvement of Multiscale Data from Atomistic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Reynolds, Daniel R.
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Filters for Improvement of Multiscale Data from Atomistic Simulations
Gardner, David J.; Reynolds, Daniel R.
2017-01-05
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue
2017-01-01
Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques. PMID:28383496
Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue
2017-04-06
Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques.
NASA Astrophysics Data System (ADS)
Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang
2013-12-01
In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics
NASA Technical Reports Server (NTRS)
Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.
2018-01-01
Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.
Evaluation of the Community Multiscale Air Quality model version 5.1
The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...
Multiscale Persistent Functions for Biomolecular Structure Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Kelin; Li, Zhiming; Mu, Lin
Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolutionmore » parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first time, to describe the “regularity” of protein structures. Basically, a protein structure is deemed as regular if it has a consistent and orderly configuration. Our PSI model is tested on a database of 110 proteins; we find that structures with larger portions of loops and intrinsically disorder regions are always associated with larger PSI, meaning an irregular configuration, while proteins with larger portions of secondary structures, i.e., alpha-helix or beta-sheet, have smaller PSI. Essentially, PSI can be used to describe the “regularity” information in any systems.« less
Design of Energetic Ionic Liquids (Preprint)
2008-05-07
mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been
The trend of the multi-scale temporal variability of precipitation in Colorado River Basin
NASA Astrophysics Data System (ADS)
Jiang, P.; Yu, Z.
2011-12-01
Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
NASA Astrophysics Data System (ADS)
Liu, Zhiyong; Zhang, Xin; Fang, Ruihong
2018-02-01
Understanding the potential connections between climate indices such as the El Niño-Southern Oscillation (ENSO) and Arctic Oscillation (AO) and drought variability will be beneficial for making reasonable predictions or assumptions about future regional droughts, and provide valuable information to improve water resources planning and design for specific regions of interest. This study is to examine the multi-scale relationships between winter drought variability over Shaanxi (North China) and both ENSO and AO during the period 1960-2009. To accomplish this, we first estimated winter dryness/wetness conditions over Shaanxi based on the self-calibrating Palmer drought severity index (PDSI). Then, we identified the spatiotemporal variability of winter dryness/wetness conditions in the study area by using the empirical orthogonal function (EOF). Two primary sub-regions of winter dryness/wetness conditions across Shaanxi were identified. We further examined the periodical oscillations of dryness/wetness conditions and the multi-scale relationships between dryness/wetness conditions and both ENSO and AO in winter using wavelet analysis. The results indicate that there are inverse multi-scale relations between winter dryness/wetness conditions and ENSO (according to the wavelet coherence) for most of the study area. Moreover, positive multi-scale relations between winter dryness/wetness conditions and AO are mainly observed. The results could be beneficial for making reasonable predictions or assumptions about future regional droughts and provide valuable information to improve water resources planning and design within this study area. In addition to the current study area, this study may also offer a useful reference for other regions worldwide with similar climate conditions.
Versatile Micromechanics Model for Multiscale Analysis of Composite Structures
NASA Astrophysics Data System (ADS)
Kwon, Y. W.; Park, M. S.
2013-08-01
A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.
Pak, Theodore R; Kasarskis, Andrew
2015-12-01
Recent reviews have examined the extent to which routine next-generation sequencing (NGS) on clinical specimens will improve the capabilities of clinical microbiology laboratories in the short term, but do not explore integrating NGS with clinical data from electronic medical records (EMRs), immune profiling data, and other rich datasets to create multiscale predictive models. This review introduces a range of "omics" and patient data sources relevant to managing infections and proposes 3 potentially disruptive applications for these data in the clinical workflow. The combined threats of healthcare-associated infections and multidrug-resistant organisms may be addressed by multiscale analysis of NGS and EMR data that is ideally updated and refined over time within each healthcare organization. Such data and analysis should form the cornerstone of future learning health systems for infectious disease. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Efficient processing of fluorescence images using directional multiscale representations.
Labate, D; Laezza, F; Negi, P; Ozcan, B; Papadakis, M
2014-01-01
Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.
Efficient processing of fluorescence images using directional multiscale representations
Labate, D.; Laezza, F.; Negi, P.; Ozcan, B.; Papadakis, M.
2017-01-01
Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data. PMID:28804225
NASA Astrophysics Data System (ADS)
Li, Jiqing; Duan, Zhipeng; Huang, Jing
2018-06-01
With the aggravation of the global climate change, the shortage of water resources in China is becoming more and more serious. Using reasonable methods to study changes in precipitation is very important for planning and management of water resources. Based on the time series of precipitation in Beijing from 1951 to 2015, the multi-scale features of precipitation are analyzed by the Extreme-point Symmetric Mode Decomposition (ESMD) method to forecast the precipitation shift. The results show that the precipitation series have periodic changes of 2.6, 4.3, 14 and 21.7 years, and the variance contribution rate of each modal component shows that the inter-annual variation dominates the precipitation in Beijing. It is predicted that precipitation in Beijing will continue to decrease in the near future.
Evaluating metrics of local topographic position for multiscale geomorphometric analysis
NASA Astrophysics Data System (ADS)
Newman, D. R.; Lindsay, J. B.; Cockburn, J. M. H.
2018-07-01
The field of geomorphometry has increasingly moved towards the use of multiscale analytical techniques, due to the availability of fine-resolution digital elevation models (DEMs) and the inherent scale-dependency of many DEM-derived attributes such as local topographic position (LTP). LTP is useful for landform and soils mapping and numerous other environmental applications. Multiple LTP metrics have been proposed and applied in the literature; however, elevation percentile (EP) is notable for its robustness to elevation error and applicability to non-Gaussian local elevation distributions, both of which are common characteristics of DEM data sets. Multiscale LTP analysis involves the estimation of spatial patterns using a range of neighborhood sizes, traditionally achieved by applying spatial filtering techniques with varying kernel sizes. While EP can be demonstrated to provide accurate estimates of LTP, the computationally intensive method of its calculation makes it unsuited to multiscale LTP analysis, particularly at large neighborhood sizes or with fine-resolution DEMs. This research assessed the suitability of three LTP metrics for multiscale terrain characterization by quantifying their computational efficiency and by comparing their ability to approximate EP spatial patterns under varying topographic conditions. The tested LTP metrics included: deviation from mean elevation (DEV), percent elevation range (PER), and the novel relative topographic position (RTP) index. The results demonstrated that DEV, calculated using the integral image technique, offers fast and scale-invariant computation. DEV spatial patterns were strongly correlated with EP (r2 range of 0.699 to 0.967) under all tested topographic conditions. RTP was also a strong predictor of EP (r2 range of 0.594 to 0.917). PER was the weakest predictor of EP (r2 range of 0.031 to 0.801) without offering a substantial improvement in computational efficiency over RTP. PER was therefore determined to be unsuitable for most multiscale applications. It was concluded that the scale-invariant property offered by the integral image used by the DEV method counters the minor losses in robustness compared to EP, making DEV the optimal LTP metric for multiscale applications.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall
2012-01-01
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Abdessetar, M.; Zhong, Y.
2017-09-01
Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity
2007-10-26
R. C. Rogan, E. Üstündag, M. R. Daymond and V. Knoblauch Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , Materials Science Forum, 404...Bhattacharya, Materials Science Seminar, University of Southern California, 2003. 42. R.C. Rogan, Texture and Strain Analysis of PZT by In-Situ...Annual Meeting of the American Ceramic Society, St. Louis, MO; May 2002. 44. R. Rogan, Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , 6th
Macklin, Paul; Cristini, Vittorio
2013-01-01
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163
Multiscale simulation of molecular processes in cellular environments.
Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone
2016-11-13
We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Dekavalla, Maria; Argialas, Demetre
2017-07-01
The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.
Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan
2018-08-01
Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and North Atlantic Oscillation (NAO), indeces. The results revealed that all climatic features except NAO influenced precipitation in Iran during the 1960-2010 period. Copyright © 2018 Elsevier Inc. All rights reserved.
Multi-scale signed envelope inversion
NASA Astrophysics Data System (ADS)
Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang
2018-06-01
Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.
USDA-ARS?s Scientific Manuscript database
Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...
The development of an episode selection and aggregation approach, designed to support distributional estimation of use with the Models-3 Community Multiscale Air Quality (CMAQ) model, is described. The approach utilized cluster analysis of the 700-hPa east-west and north-south...
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Editor); Wong, Terry T. (Editor)
2011-01-01
Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.
Multi-scale symbolic transfer entropy analysis of EEG
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
Pankavich, S; Ortoleva, P
2010-06-01
The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.
2012-12-01
Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.
Chaddad, Ahmad; Daniel, Paul; Niazi, Tamim
2018-01-01
Colorectal cancer (CRC) is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST), benign hyperplasia (BH), intraepithelial neoplasia (IN) or precursor cancerous lesion, and carcinoma (CA). Identification of the malignancy stage of CRC pathology tissues (PT) allows the most appropriate therapeutic intervention. This study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT) filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively. 12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy) were found to discriminate between CRC grades at a significance value of p < 0.01 after correction. Combining multiscale texture features lead to a better predictive capacity compared to prediction models based on individual scale features with an average (±SD) classification accuracy of 93.33 (±3.52)%, sensitivity of 88.33 (± 4.12)%, and specificity of 96.89 (± 3.88)%. Entropy was found to be the best classifier feature across all the PT grades with an average of the area under the curve (AUC) value of 91.17, 94.21, 97.70, 100% for ST, BH, IN, and CA, respectively. Our results suggest that multiscale texture features based on 3D-WT are sensitive enough to discriminate between CRC grades with the entropy feature, the best predictor of pathology grade.
Andasari, Vivi; Roper, Ryan T.; Swat, Maciej H.; Chaplain, Mark A. J.
2012-01-01
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and -catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach. PMID:22461894
Multiscale recurrence analysis of spatio-temporal data
NASA Astrophysics Data System (ADS)
Riedl, M.; Marwan, N.; Kurths, J.
2015-12-01
The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.
Multiscale recurrence analysis of spatio-temporal data.
Riedl, M; Marwan, N; Kurths, J
2015-12-01
The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
NASA Astrophysics Data System (ADS)
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-05-01
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
Integrating Multiscale Modeling with Drug Effects for Cancer Treatment.
Li, Xiangfang L; Oduola, Wasiu O; Qian, Lijun; Dougherty, Edward R
2015-01-01
In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-04
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
Fu, Hai-Yan; Guo, Jun-Wei; Yu, Yong-Jie; Li, He-Dong; Cui, Hua-Peng; Liu, Ping-Ping; Wang, Bing; Wang, Sheng; Lu, Peng
2016-06-24
Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method. Copyright © 2016 Elsevier B.V. All rights reserved.
Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation
NASA Astrophysics Data System (ADS)
Sakamoto, M.; Honda, Y.; Kondo, A.
2016-06-01
From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.
Multiscale Modeling of Deformation Twinning Based on Field Theory of Multiscale Plasticity (FTMP)
2013-09-01
of the deformation twinning: nucleation, growth (into, e.g., lenticular shapes), lattice rotation (satisfying the mirror symmetry), the attendant...Nucleation and subsequent growth into lenticular shapes is realistically captured. • Stress-strain responses accompanied by serration and overall softening
Multiscale Analysis of Delamination of Carbon Fiber-Epoxy Laminates with Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Riddick, Jaret C.; Frankland, SJV; Gates, TS
2006-01-01
A multi-scale analysis is presented to parametrically describe the Mode I delamination of a carbon fiber/epoxy laminate. In the midplane of the laminate, carbon nanotubes are included for the purposes of selectively enhancing the fracture toughness of the laminate. To analyze carbon fiber epoxy carbon nanotube laminate, the multi-scale methodology presented here links a series of parameterizations taken at various length scales ranging from the atomistic through the micromechanical to the structural level. At the atomistic scale molecular dynamics simulations are performed in conjunction with an equivalent continuum approach to develop constitutive properties for representative volume elements of the molecular structure of components of the laminate. The molecular-level constitutive results are then used in the Mori-Tanaka micromechanics to develop bulk properties for the epoxy-carbon nanotube matrix system. In order to demonstrate a possible application of this multi-scale methodology, a double cantilever beam specimen is modeled. An existing analysis is employed which uses discrete springs to model the fiber bridging affect during delamination propagation. In the absence of empirical data or a damage mechanics model describing the effect of CNTs on fracture toughness, several tractions laws are postulated, linking CNT volume fraction to fiber bridging in a DCB specimen. Results from this demonstration are presented in terms of DCB specimen load-displacement responses.
NASA Astrophysics Data System (ADS)
Lao, Zhiqiang; Zheng, Xin
2011-03-01
This paper proposes a multiscale method to quantify tissue spiculation and distortion in mammography CAD systems that aims at improving the sensitivity in detecting architectural distortion and spiculated mass. This approach addresses the difficulty of predetermining the neighborhood size for feature extraction in characterizing lesions demonstrating spiculated mass/architectural distortion that may appear in different sizes. The quantification is based on the recognition of tissue spiculation and distortion pattern using multiscale first-order phase portrait model in texture orientation field generated by Gabor filter bank. A feature map is generated based on the multiscale quantification for each mammogram and two features are then extracted from the feature map. These two features will be combined with other mass features to provide enhanced discriminate ability in detecting lesions demonstrating spiculated mass and architectural distortion. The efficiency and efficacy of the proposed method are demonstrated with results obtained by applying the method to over 500 cancer cases and over 1000 normal cases.
Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen
2014-04-01
In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.
Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai
2015-12-01
In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.
An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media
NASA Astrophysics Data System (ADS)
Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai
2018-02-01
In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.
Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2015-01-01
A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.
Multiscale model within-host and between-host for viral infectious diseases.
Almocera, Alexis Erich S; Nguyen, Van Kinh; Hernandez-Vargas, Esteban A
2018-05-08
Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.
A Multiscale Vision Model applied to analyze EIT images of the solar corona
NASA Astrophysics Data System (ADS)
Portier-Fozzani, F.; Vandame, B.; Bijaoui, A.; Maucherat, A. J.; EIT Team
2001-07-01
The large dynamic range provided by the SOHO/EIT CCD (1 : 5000) is needed to observe the large EUV zoom of coronal structures from coronal homes up to flares. Histograms show that often a wide dynamic range is present in each image. Extracting hidden structures in the background level requires specific techniques such as the use of the Multiscale Vision Model (MVM, Bijaoui et al., 1998). This method, based on wavelet transformations optimizes detection of various size objects, however complex they may be. Bijaoui et al. built the Multiscale Vision Model to extract small dynamical structures from noise, mainly for studying galaxies. In this paper, we describe requirements for the use of this method with SOHO/EIT images (calibration, size of the image, dynamics of the subimage, etc.). Two different areas were studied revealing hidden structures: (1) classical coronal mass ejection (CME) formation and (2) a complex group of active regions with its evolution. The aim of this paper is to define carefully the constraints for this new method of imaging the solar corona with SOHO/EIT. Physical analysis derived from multi-wavelength observations will later complete these first results.
Ellmauthaler, Andreas; Pagliari, Carla L; da Silva, Eduardo A B
2013-03-01
Multiscale transforms are among the most popular techniques in the field of pixel-level image fusion. However, the fusion performance of these methods often deteriorates for images derived from different sensor modalities. In this paper, we demonstrate that for such images, results can be improved using a novel undecimated wavelet transform (UWT)-based fusion scheme, which splits the image decomposition process into two successive filtering operations using spectral factorization of the analysis filters. The actual fusion takes place after convolution with the first filter pair. Its significantly smaller support size leads to the minimization of the unwanted spreading of coefficient values around overlapping image singularities. This usually complicates the feature selection process and may lead to the introduction of reconstruction errors in the fused image. Moreover, we will show that the nonsubsampled nature of the UWT allows the design of nonorthogonal filter banks, which are more robust to artifacts introduced during fusion, additionally improving the obtained results. The combination of these techniques leads to a fusion framework, which provides clear advantages over traditional multiscale fusion approaches, independent of the underlying fusion rule, and reduces unwanted side effects such as ringing artifacts in the fused reconstruction.
Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abumeri, Galib; Abdi, Frank
2012-02-16
The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less
2015-12-28
Masoud Anahid, Mahendra K. Samal , and Somnath Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of...induced crack nucleation in polycrystals. Model. Simul. Mater. Sci. Eng., 17, 064009. 19. Anahid, M., Samal , M. K. & Ghosh, S. (2011). Dwell fatigue...Jour. Plas., 24:428–454, 2008. 4. M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite
Multi-scale modelling of elastic moduli of trabecular bone
Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz
2012-01-01
We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160
Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.
2005-01-01
This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.
Multiscale Simulations of ALD in Cross Flow Reactors
Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.
2014-08-13
In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less
Money circulation networks reveal emerging geographical communities
NASA Astrophysics Data System (ADS)
Brockmann, D.; Theis, F.; David, V.
2008-03-01
Geographical communities and their boundaries are key determinants of various spatially extended dynamical phenomena. Examples are migration dynamics of species, the spread of infectious diseases, bioinvasive processes, and the spatial evolution of language. We address the question to what extend multiscale human transportation networks encode geographical community structures, how they differ from geopolitical classifications, whether they are spatially coherent, and analyse their structure as a function of length scale. Our analysis is based on a proxy network for human transportation obtained from the geographic circulation of more than 10 million dollar bills in the United States recorded at the bill tracking website www.wheresgeorge.com. The data extends that of a previous study (Brockmann et al., Nature 2006) on the discovery of scaling laws of human travel by an order of magnitude and permits an approach to multiscale human transportation from a network perspective.
Multiscale multifractal DCCA and complexity behaviors of return intervals for Potts price model
NASA Astrophysics Data System (ADS)
Wang, Jie; Wang, Jun; Stanley, H. Eugene
2018-02-01
To investigate the characteristics of extreme events in financial markets and the corresponding return intervals among these events, we use a Potts dynamic system to construct a random financial time series model of the attitudes of market traders. We use multiscale multifractal detrended cross-correlation analysis (MM-DCCA) and Lempel-Ziv complexity (LZC) perform numerical research of the return intervals for two significant China's stock market indices and for the proposed model. The new MM-DCCA method is based on the Hurst surface and provides more interpretable cross-correlations of the dynamic mechanism between different return interval series. We scale the LZC method with different exponents to illustrate the complexity of return intervals in different scales. Empirical studies indicate that the proposed return intervals from the Potts system and the real stock market indices hold similar statistical properties.
Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Gramling, Cheryl; Carpenter, Russell; Volle, Michael; Lee, Taesul; Long, Anne
2007-01-01
The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions.
Papaioannou, Vasilios E; Chouvarda, Ioanna G; Maglaveras, Nikos K; Pneumatikos, Ioannis A
2012-12-12
Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients. Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation. We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness.
2012-01-01
Background Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. Methods Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients. Results Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation. Conclusions We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness. PMID:22424316
An infrared small target detection method based on multiscale local homogeneity measure
NASA Astrophysics Data System (ADS)
Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen
2018-05-01
Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
NASA Astrophysics Data System (ADS)
Xiao, Jie
Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.
Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.
Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P
2010-01-01
In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.
NASA Astrophysics Data System (ADS)
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
NASA Astrophysics Data System (ADS)
Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie
2017-08-01
This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.
Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport
NASA Astrophysics Data System (ADS)
Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.
2016-12-01
Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng
2017-02-01
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
Multi-scale functional mapping of tidal marsh vegetation for restoration monitoring
NASA Astrophysics Data System (ADS)
Tuxen Bettman, Karin
2007-12-01
Nearly half of the world's natural wetlands have been destroyed or degraded, and in recent years, there have been significant endeavors to restore wetland habitat throughout the world. Detailed mapping of restoring wetlands can offer valuable information about changes in vegetation and geomorphology, which can inform the restoration process and ultimately help to improve chances of restoration success. I studied six tidal marshes in the San Francisco Estuary, CA, US, between 2003 and 2004 in order to develop techniques for mapping tidal marshes at multiple scales by incorporating specific restoration objectives for improved longer term monitoring. I explored a "pixel-based" remote sensing image analysis method for mapping vegetation in restored and natural tidal marshes, describing the benefits and limitations of this type of approach (Chapter 2). I also performed a multi-scale analysis of vegetation pattern metrics for a recently restored tidal marsh in order to target the metrics that are consistent across scales and will be robust measures of marsh vegetation change (Chapter 3). Finally, I performed an "object-based" image analysis using the same remotely sensed imagery, which maps vegetation type and specific wetland functions at multiple scales (Chapter 4). The combined results of my work highlight important trends and management implications for monitoring wetland restoration using remote sensing, and will better enable restoration ecologists to use remote sensing for tidal marsh monitoring. Several findings important for tidal marsh restoration monitoring were made. Overall results showed that pixel-based methods are effective at quantifying landscape changes in composition and diversity in recently restored marshes, but are limited in their use for quantifying smaller, more fine-scale changes. While pattern metrics can highlight small but important changes in vegetation composition and configuration across years, scientists should exercise caution when using metrics in their studies or to validate restoration management decisions, and multi-scale analyses should be performed before metrics are used in restoration science for important management decisions. Lastly, restoration objectives, ecosystem function, and scale can each be integrated into monitoring techniques using remote sensing for improved restoration monitoring.
Multiscale field-aligned current analyzer
NASA Astrophysics Data System (ADS)
Bunescu, C.; Marghitu, O.; Constantinescu, D.; Narita, Y.; Vogt, J.; Blǎgǎu, A.
2015-11-01
The magnetosphere-ionosphere coupling is achieved, essentially, by a superposition of quasi-stationary and time-dependent field-aligned currents (FACs), over a broad range of spatial and temporal scales. The planarity of the FAC structures observed by satellite data and the orientation of the planar FAC sheets can be investigated by the well-established minimum variance analysis (MVA) of the magnetic perturbation. However, such investigations are often constrained to a predefined time window, i.e., to a specific scale of the FAC. The multiscale field-aligned current analyzer, introduced here, relies on performing MVA continuously and over a range of scales by varying the width of the analyzing window, appropriate for the complexity of the magnetic field signatures above the auroral oval. The proposed technique provides multiscale information on the planarity and orientation of the observed FACs. A new approach, based on the derivative of the largest eigenvalue of the magnetic variance matrix with respect to the length of the analysis window, makes possible the inference of the current structures' location (center) and scale (thickness). The capabilities of the FAC analyzer are explored analytically for the magnetic field profile of the Harris sheet and tested on synthetic FAC structures with uniform current density and infinite or finite geometry in the cross-section plane of the FAC. The method is illustrated with data observed by the Cluster spacecraft on crossing the nightside auroral region, and the results are cross checked with the optical observations from the Time History of Events and Macroscale Interactions during Substorms ground network.
Yang, Yu-Jiao; Wang, Shuai; Zhang, Biao; Shen, Hong-Bin
2018-06-25
As a relatively new technology to solve the three-dimensional (3D) structure of a protein or protein complex, single-particle reconstruction (SPR) of cryogenic electron microscopy (cryo-EM) images shows much superiority and is in a rapidly developing stage. Resolution measurement in SPR, which evaluates the quality of a reconstructed 3D density map, plays a critical role in promoting methodology development of SPR and structural biology. Because there is no benchmark map in the generation of a new structure, how to realize the resolution estimation of a new map is still an open problem. Existing approaches try to generate a hypothetical benchmark map by reconstructing two 3D models from two halves of the original 2D images for cross-reference, which may result in a premature estimation with a half-data model. In this paper, we report a new self-reference-based resolution estimation protocol, called SRes, that requires only a single reconstructed 3D map. The core idea of SRes is to perform a multiscale spectral analysis (MSSA) on the map through multiple size-variable masks segmenting the map. The MSSA-derived multiscale spectral signal-to-noise ratios (mSSNRs) reveal that their corresponding estimated resolutions will show a cliff jump phenomenon, indicating a significant change in the SSNR properties. The critical point on the cliff borderline is demonstrated to be the right estimator for the resolution of the map.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu
2016-01-01
This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.
Kobayashi, M; Irino, T; Sweldens, W
2001-10-23
Multiscale computing (MSC) involves the computation, manipulation, and analysis of information at different resolution levels. Widespread use of MSC algorithms and the discovery of important relationships between different approaches to implementation were catalyzed, in part, by the recent interest in wavelets. We present two examples that demonstrate how MSC can help scientists understand complex data. The first is from acoustical signal processing and the second is from computer graphics.
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery.
Xue, Xiaoming; Zhou, Jianzhong
2017-01-01
To make further improvement in the diagnosis accuracy and efficiency, a mixed-domain state features data based hybrid fault diagnosis approach, which systematically blends both the statistical analysis approach and the artificial intelligence technology, is proposed in this work for rolling element bearings. For simplifying the fault diagnosis problems, the execution of the proposed method is divided into three steps, i.e., fault preliminary detection, fault type recognition and fault degree identification. In the first step, a preliminary judgment about the health status of the equipment can be evaluated by the statistical analysis method based on the permutation entropy theory. If fault exists, the following two processes based on the artificial intelligence approach are performed to further recognize the fault type and then identify the fault degree. For the two subsequent steps, mixed-domain state features containing time-domain, frequency-domain and multi-scale features are extracted to represent the fault peculiarity under different working conditions. As a powerful time-frequency analysis method, the fast EEMD method was employed to obtain multi-scale features. Furthermore, due to the information redundancy and the submergence of original feature space, a novel manifold learning method (modified LGPCA) is introduced to realize the low-dimensional representations for high-dimensional feature space. Finally, two cases with 12 working conditions respectively have been employed to evaluate the performance of the proposed method, where vibration signals were measured from an experimental bench of rolling element bearing. The analysis results showed the effectiveness and the superiority of the proposed method of which the diagnosis thought is more suitable for practical application. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis
NASA Astrophysics Data System (ADS)
Liu, Jin
2012-11-01
Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.
Hu, Meng; Liang, Hualou
2013-04-01
Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.
2012-01-01
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897
Interpreting multiscale domains of tree cover disturbance patterns in North America
Kurt Riitters; Jennifer K. Costanza; Brian Buma
2017-01-01
Spatial patterns at multiple observation scales provide a framework to improve understanding of pattern-related phenomena. However, the metrics that are most sensitive to local patterns are least likely to exhibit consistent scaling relations with increasing extent (observation scale). A conceptual framework based on multiscale domains (i.e., geographic locations...
NASA Astrophysics Data System (ADS)
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
NASA Astrophysics Data System (ADS)
Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi
2018-03-01
This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.
Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels.
Xue, Dai; Wang, Yancheng; Zhang, Jiaxin; Mei, Deqing; Wang, Yue; Chen, Shaochen
2018-06-13
To fully actualize artificial, cell-laden biological models in tissue engineering, such as 3D organoids and organs-on-a-chip systems, cells need to be patterned such that they can precisely mimic natural microenvironments in vitro. Despite increasing interest in this area, patterning cells at multiscale (∼10 μm to 10 mm) remains a significant challenge in bioengineering. Here, we report a projection-based 3D printing system that achieves rapid and high-resolution fabrication of hydrogel scaffolds featuring intricate channels for multiscale cell patterning. Using this system, we were able to use biocompatible poly(ethylene glycol)diacrylate in fabricating a variety of scaffold architectures, ranging from regular geometries such as serpentine, spiral, and fractal-like to more irregular/intricate geometries, such as biomimetic arborescent and capillary networks. A red food dye solution was able to freely fill all channels in the scaffolds, from the trunk (>1100 μm in width) to the small branch (∼17 μm in width) without an external pump. The dimensions of the printed scaffolds remained stable over 3 days while being immersed in Dulbecco's phosphate-buffered saline at 37 °C, and a penetration analysis revealed that these scaffolds are suitable for metabolic and nutrient transport. Cell patterning experiments showed that red fluorescent protein-transfected A549 human nonsmall lung cancer cells adhered well in the scaffolds' channels, and showed further attachment and penetration during cell culture proliferation.
A novel fruit shape classification method based on multi-scale analysis
NASA Astrophysics Data System (ADS)
Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin
2005-11-01
Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.
Multi-scale curvature for automated identification of glaciated mountain landscapes
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar
2014-03-01
Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes.
Bridging scales through multiscale modeling: a case study on protein kinase A.
Boras, Britton W; Hirakis, Sophia P; Votapka, Lane W; Malmstrom, Robert D; Amaro, Rommie E; McCulloch, Andrew D
2015-01-01
The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.
Identity in agent-based models : modeling dynamic multiscale social processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozik, J.; Sallach, D. L.; Macal, C. M.
Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework
Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.
Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong
2016-01-01
In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.
Multiscale integral analysis of a HT leakage in a fusion nuclear power plant
NASA Astrophysics Data System (ADS)
Velarde, M.; Fradera, J.; Perlado, J. M.; Zamora, I.; Martínez-Saban, E.; Colomer, C.; Briani, P.
2016-05-01
The present work presents an example of the application of an integral methodology based on a multiscale analysis that covers the whole tritium cycle within a nuclear fusion power plant, from a micro scale, analyzing key components where tritium is leaked through permeation, to a macro scale, considering its atmospheric transport. A leakage from the Nuclear Power Plants, (NPP) primary to the secondary side of a heat exchanger (HEX) is considered for the present example. Both primary and secondary loop coolants are assumed to be He. Leakage is placed inside the HEX, leaking tritium in elementary tritium (HT) form to the secondary loop where it permeates through the piping structural material to the exterior. The Heating Ventilation and Air Conditioning (HVAC) system removes the leaked tritium towards the NPP exhaust. The HEX is modelled with system codes and coupled to Computational Fluid Dynamic (CFD) to account for tritium dispersion inside the nuclear power plants buildings and in site environment. Finally, tritium dispersion is calculated with an atmospheric transport code and a dosimetry analysis is carried out. Results show how the implemented methodology is capable of assessing the impact of tritium from the microscale to the atmospheric scale including the dosimetric aspect.
NASA Astrophysics Data System (ADS)
Adarsh, S.; Reddy, M. Janga
2017-07-01
In this paper, the Hilbert-Huang transform (HHT) approach is used for the multiscale characterization of All India Summer Monsoon Rainfall (AISMR) time series and monsoon rainfall time series from five homogeneous regions in India. The study employs the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for multiscale decomposition of monsoon rainfall in India and uses the Normalized Hilbert Transform and Direct Quadrature (NHT-DQ) scheme for the time-frequency characterization. The cross-correlation analysis between orthogonal modes of All India monthly monsoon rainfall time series and that of five climate indices such as Quasi Biennial Oscillation (QBO), El Niño Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multi Decadal Oscillation (AMO), and Equatorial Indian Ocean Oscillation (EQUINOO) in the time domain showed that the links of different climate indices with monsoon rainfall are expressed well only for few low-frequency modes and for the trend component. Furthermore, this paper investigated the hydro-climatic teleconnection of ISMR in multiple time scales using the HHT-based running correlation analysis technique called time-dependent intrinsic correlation (TDIC). The results showed that both the strength and nature of association between different climate indices and ISMR vary with time scale. Stemming from this finding, a methodology employing Multivariate extension of EMD and Stepwise Linear Regression (MEMD-SLR) is proposed for prediction of monsoon rainfall in India. The proposed MEMD-SLR method clearly exhibited superior performance over the IMD operational forecast, M5 Model Tree (MT), and multiple linear regression methods in ISMR predictions and displayed excellent predictive skill during 1989-2012 including the four extreme events that have occurred during this period.
3D deblending of simultaneous source data based on 3D multi-scale shaping operator
NASA Astrophysics Data System (ADS)
Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin
2018-04-01
We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.
Sibole, Scott C.; Erdemir, Ahmet
2012-01-01
Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535
NASA Astrophysics Data System (ADS)
Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.
2017-12-01
A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.
Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity
2007-10-26
Ferroelectric Ceramics , Materials Science Forum, 404-407, 413-418 2002. 42. R. T. Brewer, H. A. Atwater Rapid biaxial texture development during...Multiscale Study of Internal Stress and Texture in Electroceramics, 106th Annual Meeting of the American Ceramic Society, Indianapolis, Indiana, 20...Rogan, Texture and Strain Analysis of PZT by In-Situ Neutron Diffraction, MRS Spring Meeting, San Francisco, CA; April 2002. 43. E. Ustundag
2010-11-21
The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further... geology and engineering – to understand and predict the multiscale behaviour of granular materials. Several pioneering achievements have led to...breakage. Purpose of the Research We have recently established, in close collaboration with experimentalists (from geology , physics
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.
Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita
2014-04-01
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Qiang
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of whichmore » is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.« less
NASA Astrophysics Data System (ADS)
Wu, Yue; Shang, Pengjian; Li, Yilong
2018-03-01
A modified multiscale sample entropy measure based on symbolic representation and similarity (MSEBSS) is proposed in this paper to research the complexity of stock markets. The modified algorithm reduces the probability of inducing undefined entropies and is confirmed to be robust to strong noise. Considering the validity and accuracy, MSEBSS is more reliable than Multiscale entropy (MSE) for time series mingled with much noise like financial time series. We apply MSEBSS to financial markets and results show American stock markets have the lowest complexity compared with European and Asian markets. There are exceptions to the regularity that stock markets show a decreasing complexity over the time scale, indicating a periodicity at certain scales. Based on MSEBSS, we introduce the modified multiscale cross-sample entropy measure based on symbolic representation and similarity (MCSEBSS) to consider the degree of the asynchrony between distinct time series. Stock markets from the same area have higher synchrony than those from different areas. And for stock markets having relative high synchrony, the entropy values will decrease with the increasing scale factor. While for stock markets having high asynchrony, the entropy values will not decrease with the increasing scale factor sometimes they tend to increase. So both MSEBSS and MCSEBSS are able to distinguish stock markets of different areas, and they are more helpful if used together for studying other features of financial time series.
Fast online generalized multiscale finite element method using constraint energy minimization
NASA Astrophysics Data System (ADS)
Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat
2018-02-01
Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.
Extended AIC model based on high order moments and its application in the financial market
NASA Astrophysics Data System (ADS)
Mao, Xuegeng; Shang, Pengjian
2018-07-01
In this paper, an extended method of traditional Akaike Information Criteria(AIC) is proposed to detect the volatility of time series by combining it with higher order moments, such as skewness and kurtosis. Since measures considering higher order moments are powerful in many aspects, the properties of asymmetry and flatness can be observed. Furthermore, in order to reduce the effect of noise and other incoherent features, we combine the extended AIC algorithm with multiscale wavelet analysis, in which the newly extended AIC algorithm is applied to wavelet coefficients at several scales and the time series are reconstructed by wavelet transform. After that, we create AIC planes to derive the relationship among AIC values using variance, skewness and kurtosis respectively. When we test this technique on the financial market, the aim is to analyze the trend and volatility of the closing price of stock indices and classify them. And we also adapt multiscale analysis to measure complexity of time series over a range of scales. Empirical results show that the singularity of time series in stock market can be detected via extended AIC algorithm.
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2014-01-01
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569
Multi-scale graph-cut algorithm for efficient water-fat separation.
Berglund, Johan; Skorpil, Mikael
2017-09-01
To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning
Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.
2013-01-01
This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554
Real-Time Nonlocal Means-Based Despeckling.
Breivik, Lars Hofsoy; Snare, Sten Roar; Steen, Erik Normann; Solberg, Anne H Schistad
2017-06-01
In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.
Dual-scale Galerkin methods for Darcy flow
NASA Astrophysics Data System (ADS)
Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex
2018-02-01
The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.
Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography
Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian
2016-01-01
Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT. PMID:27557544
Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography.
Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian
2016-08-25
Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.
McFadden, Michael J; Iqbal, Muzammil; Dillon, Thomas; Nair, Rohit; Gu, Tian; Prather, Dennis W; Haney, Michael W
2006-09-01
The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.
Multiscale pore structure and its effect on gas transport in organic-rich shale
NASA Astrophysics Data System (ADS)
Wu, Tianhao; Li, Xiang; Zhao, Junliang; Zhang, Dongxiao
2017-07-01
A systematic investigation of multiscale pore structure in organic-rich shale by means of the combination of various imaging techniques is presented, including the state-of-the-art Helium-Ion-Microscope (HIM). The study achieves insight into the major features at each scale and suggests the affordable techniques for specific objectives from the aspects of resolution, dimension, and cost. The pores, which appear to be isolated, are connected by smaller pores resolved by higher-resolution imaging. This observation provides valuable information, from the microscopic perspective of pore structure, for understanding how gas accumulates and transports from where it is generated. A comprehensive workflow is proposed based on the characteristics acquired from the multiscale pore structure analysis to simulate the gas transport process. The simulations are completed with three levels: the microscopic mechanisms should be taken into consideration at level I; the spatial distribution features of organic matter, inorganic matter, and macropores constitute the major issue at level II; and the microfracture orientation and topological structure are dominant factors at level III. The results of apparent permeability from simulations agree well with the values acquired from experiments. By means of the workflow, the impact of various gas transport mechanisms at different scales can be investigated more individually and precisely than conventional experiments.
Multiscale time-dependent density functional theory: Demonstration for plasmons.
Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J
2017-08-07
Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.
Multi-Scale Effects in the Strength of Ceramics
Cook, Robert F.
2016-01-01
Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150
Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites
2016-03-09
A - Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Incorporation of carbon nanotubes (CNTs) into epoxy-based composites for...materials with higher moduli and strength characteristics. 15. SUBJECT TERMS Molecular Dynamics, Carbon Nanotubes , Multi-scale Modeling, Micromechanics...Gregory M. Odegard Michigan Technological University Introduction This project was inspired from the AFOSR-sponsored workshop “ Nanotube
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Independent Component Analysis of Textures
NASA Technical Reports Server (NTRS)
Manduchi, Roberto; Portilla, Javier
2000-01-01
A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.
Multiscale turbulence models based on convected fluid microstructure
NASA Astrophysics Data System (ADS)
Holm, Darryl D.; Tronci, Cesare
2012-11-01
The Euler-Poincaré approach to complex fluids is used to derive multiscale equations for computationally modeling Euler flows as a basis for modeling turbulence. The model is based on a kinematic sweeping ansatz (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest two-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modeling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.
Formalizing Knowledge in Multi-Scale Agent-Based Simulations
Somogyi, Endre; Sluka, James P.; Glazier, James A.
2017-01-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063
Formalizing Knowledge in Multi-Scale Agent-Based Simulations.
Somogyi, Endre; Sluka, James P; Glazier, James A
2016-10-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.
Multiscale Simulation of Microbe Structure and Dynamics
Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.
2012-01-01
A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438
NASA Astrophysics Data System (ADS)
Hristova-Veleva, S. M.; Chen, H.; Gopalakrishnan, S.; Haddad, Z. S.
2017-12-01
Tropical cyclones (TCs) are the product of complex multi-scale processes and interactions. The role of the environment has long been recognized. However, recent research has shown that convective-scale processes in the hurricane core might also play a crucial role in determining TCs intensity and size. Several studies have linked Rapid Intensification to the characteristics of the convective clouds (shallow versus deep), their organization (isolated versus wide-spread) and their location with respect to dynamical controls (the vertical shear, the radius of maximum wind). Yet a third set of controls signifies the interaction between the storm-scale and large-scale processes. Our goal is to use observations and models to advance the still-lacking understanding of these processes. Recently, hurricane models have improved significantly. However, deterministic forecasts have limitations due to the uncertainty in the representation of the physical processes and initial conditions. A crucial step forward is the use of high-resolution ensembles. We adopt the following approach: i) generate a high resolution ensemble forecast using HWRF; ii) produce synthetic data (e.g. brightness temperature) from the model fields for direct comparison to satellite observations; iii) develop metrics to allow us to sub-select the realistic members of the ensemble, based on objective measures of the similarity between observed and forecasted structures; iv) for these most-realistic members, determine the skill in forecasting TCs to provide"guidance on guidance"; v) use the members with the best predictive skill to untangle the complex multi-scale interactions. We will report on the first three goals of our research, using forecasts and observations of hurricane Edouard (2014), focusing on RI. We will focus on describing the metrics for the selection of the most appropriate ensemble members, based on applying low-wave number analysis (WNA - Hristova-Veleva et al., 2016) to the observed and forecasted 2D fields to develop objective criteria for consistency. We investigate the WNA cartoons of environmental moisture, precipitation structure and surface convergence. We will present the preliminary selection of most skillful members and will outline our future goals - analyzing the multi-scale interactions using these members
Integrating Cellular Metabolism into a Multiscale Whole-Body Model
Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars
2012-01-01
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351
Multiscale agent-based cancer modeling.
Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S
2009-04-01
Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.
Scalable High-order Methods for Multi-Scale Problems: Analysis, Algorithms and Application
2016-02-26
Karniadakis, “Resilient algorithms for reconstructing and simulating gappy flow fields in CFD ”, Fluid Dynamic Research, vol. 47, 051402, 2015. 2. Y. Yu, H...simulation, domain decomposition, CFD , gappy data, estimation theory, and gap-tooth algorithm. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...objective of this project was to develop a general CFD framework for multifidelity simula- tions to target multiscale problems but also resilience in
Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering
NASA Technical Reports Server (NTRS)
Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)
2001-01-01
Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.
2007-03-01
Chains," Mathematics of Control, Signals, and Systems, vol. 3(1), pp. 1-29, 1990. [4] A . Arnold, J . A . Carrillo, and I. Gamba, "Low and High Field...Aronson, C. L. A ., and J . L. Vázquez, "Interfaces with a corner point in one- dimensional porous medium flow," Comm. Pure Appl. Math, vol. 38(4), pp. 375...K. Levin, "Damage analysis of fiber composites," Computer Methods in Applied Mechanics and Engineering. [10] K. S. Barber, A . Goel, T. J . Graser, T
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang
2018-06-19
In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.
High-resolution time-frequency representation of EEG data using multi-scale wavelets
NASA Astrophysics Data System (ADS)
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation
NASA Astrophysics Data System (ADS)
Wang, M.; Wang, J.; Wang, B. T.
2018-02-01
Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.
Mood states modulate complexity in heartbeat dynamics: A multiscale entropy analysis
NASA Astrophysics Data System (ADS)
Valenza, G.; Nardelli, M.; Bertschy, G.; Lanata, A.; Scilingo, E. P.
2014-07-01
This paper demonstrates that heartbeat complex dynamics is modulated by different pathological mental states. Multiscale entropy analysis was performed on R-R interval series gathered from the electrocardiogram of eight bipolar patients who exhibited mood states among depression, hypomania, and euthymia, i.e., good affective balance. Three different methodologies for the choice of the sample entropy radius value were also compared. We show that the complexity level can be used as a marker of mental states being able to discriminate among the three pathological mood states, suggesting to use heartbeat complexity as a more objective clinical biomarker for mental disorders.
Automated retina identification based on multiscale elastic registration.
Figueiredo, Isabel N; Moura, Susana; Neves, Júlio S; Pinto, Luís; Kumar, Sunil; Oliveira, Carlos M; Ramos, João D
2016-12-01
In this work we propose a novel method for identifying individuals based on retinal fundus image matching. The method is based on the image registration of retina blood vessels, since it is known that the retina vasculature of an individual is a signature, i.e., a distinctive pattern of the individual. The proposed image registration consists of a multiscale affine registration followed by a multiscale elastic registration. The major advantage of this particular two-step image registration procedure is that it is able to account for both rigid and non-rigid deformations either inherent to the retina tissues or as a result of the imaging process itself. Afterwards a decision identification measure, relying on a suitable normalized function, is defined to decide whether or not the pair of images belongs to the same individual. The method is tested on a data set of 21721 real pairs generated from a total of 946 retinal fundus images of 339 different individuals, consisting of patients followed in the context of different retinal diseases and also healthy patients. The evaluation of its performance reveals that it achieves a very low false rejection rate (FRR) at zero FAR (the false acceptance rate), equal to 0.084, as well as a low equal error rate (EER), equal to 0.053. Moreover, the tests performed by using only the multiscale affine registration, and discarding the multiscale elastic registration, clearly show the advantage of the proposed approach. The outcome of this study also indicates that the proposed method is reliable and competitive with other existing retinal identification methods, and forecasts its future appropriateness and applicability in real-life applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-Scale Characterization of Orthotropic Microstructures
2008-04-01
D. Valiveti, S. J. Harris, J. Boileau, A domain partitioning based pre-processor for multi-scale modelling of cast aluminium alloys , Modelling and...SUPPLEMENTARY NOTES Journal article submitted to Modeling and Simulation in Materials Science and Engineering. PAO Case Number: WPAFB 08-3362...element for charac- terization or simulation to avoid misleading predictions of macroscopic defor- mation, fracture, or transport behavior. Likewise
An aquatic multiscale assessment and planning framework approach—forest plan revision case study
Kerry Overton; Ann D. Carlson; Cynthia Tait
2010-01-01
The Aquatic Multiscale Assessment and Planning Framework is a Web-based decision-support tool developed to assist aquatic practitioners in managing fisheries and watershed information. This tool, or framework, was designed to assist resource assessments and planning efforts from the broad scale to the fine scale, to document procedures, and to link directly to relevant...
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; Farrell, N. J.
2017-12-01
Numerous laboratory brittle deformation experiments have shown that a rapid transition exists in the behaviour of porous materials under stress: at a certain point, early formed tensile cracks interact and coalesce into a `single' narrow zone, the shear plane, rather than remaining distributed throughout the material. In this work, we present and apply a novel image processing tool which is able to quantify this transition between distributed (`stable') damage accumulation and localised (`unstable') deformation, in terms of size, density, and orientation of cracks at the point of failure. Our technique, based on a two-dimensional (2D) continuous Morlet wavelet analysis, can recognise, extract and visually separate the multi-scale changes occurring in the fracture network during the deformation process. We have analysed high-resolution SEM-BSE images of thin sections of Hopeman Sandstone (Scotland, UK) taken from core plugs deformed under triaxial conditions, with increasing confining pressure. Through this analysis, we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, exploiting the total areal coverage of the analysed image. In addition, by comparing patterns of fractures in thin sections derived from triaxial (σ1>σ2=σ3=Pc) laboratory experiments conducted at different confining pressures (Pc), we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. The methodology presented here can have important implications for larger-scale mechanical problems related to major fault propagation. Just as a core plug scale fault localises through extension and coalescence of microcracks, larger faults also grow by extension and coalescence of segments in a multi-scale process by which microscopic cracks can ultimately lead to macroscopic faulting. Consequently, wavelet analysis represents a useful tool for fracture pattern recognition, applicable to the detection of the transitions occurring at the time of catastrophic rupture.
2006-10-01
The objective was to construct a bridge between existing and future microscopic simulation codes ( kMC , MD, MC, BD, LB etc.) and traditional, continuum...kinetic Monte Carlo, kMC , equilibrium MC, Lattice-Boltzmann, LB, Brownian Dynamics, BD, or general agent-based, AB) simulators. It also, fortuitously...cond-mat/0310460 at arXiv.org. 27. Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems", R. Rico-Martinez, C. W
Wavelet-based multiscale window transform and energy and vorticity analysis
NASA Astrophysics Data System (ADS)
Liang, Xiang San
A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to investigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid flows which are intermittent in space and time. The development begins with the construction of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the real line then modified onto a finite domain. Properties are explored, the most important one being the property of marginalization which brings together a quadratic quantity in physical space with its phase space representation. Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-, meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes thus represented are classified into four categories: transport; transfer, conversion, and dissipation/diffusion. The separation of transport from transfer is made possible with the introduction of the concept of perfect transfer. By the property of marginalization, the classical energetic analysis proves to be a particular case of the MS-EVA. The MS-EVA developed is validated with classical instability problems. The validation is carried out through two steps. First, it is established that the barotropic and baroclinic instabilities are indicated by the spatial averages of certain transfer term interaction analyses. Then calculations of these indicators are made with an Eady model and a Kuo model. The results agree precisely with what is expected from their analytical solutions, and the energetics reproduced reveal a consistent and important aspect of the unknown dynamic structures of instability processes. As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) variability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Harvard Ocean Prediction System using the data gathered during the 1993 NRV Alliance cruise. The application starts with a determination of the scale window bounds, which characterize a double-peak structure in either the time wavelet spectrum or the space wavelet spectrum. The resulting energetics, when locally averaged, reveal that there is a clear baroclinic instability happening around the cold tongue intrusion observed in the forecast. Moreover, an interaction analysis shows that the energy released by the instability indeed goes to the meso-scale window and fuel the growth of the intrusion. The sensitivity study shows that, in this case, the key to a successful application is a correct decomposition of the large-scale window from the meso-scale window.
A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.
2008-01-01
A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.
NASA Astrophysics Data System (ADS)
Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen
2017-04-01
Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy precipitation. Keywords: Complex network, event synchronization, wavelet, regional climate network, multiscale community mining
a Region-Based Multi-Scale Approach for Object-Based Image Analysis
NASA Astrophysics Data System (ADS)
Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.
2016-06-01
Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.
Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia
2016-05-05
Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans
2018-04-01
Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.
Multi-scale curvature for automated identification of glaciated mountain landscapes☆
Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar
2014-01-01
Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes. PMID:24748703
Bernier, Eveline; Gosselin, Pierre; Badard, Thierry; Bédard, Yvan
2009-04-03
Climate change has a significant impact on population health. Population vulnerabilities depend on several determinants of different types, including biological, psychological, environmental, social and economic ones. Surveillance of climate-related health vulnerabilities must take into account these different factors, their interdependence, as well as their inherent spatial and temporal aspects on several scales, for informed analyses. Currently used technology includes commercial off-the-shelf Geographic Information Systems (GIS) and Database Management Systems with spatial extensions. It has been widely recognized that such OLTP (On-Line Transaction Processing) systems were not designed to support complex, multi-temporal and multi-scale analysis as required above. On-Line Analytical Processing (OLAP) is central to the field known as BI (Business Intelligence), a key field for such decision-support systems. In the last few years, we have seen a few projects that combine OLAP and GIS to improve spatio-temporal analysis and geographic knowledge discovery. This has given rise to SOLAP (Spatial OLAP) and a new research area. This paper presents how SOLAP and climate-related health vulnerability data were investigated and combined to facilitate surveillance. Based on recent spatial decision-support technologies, this paper presents a spatio-temporal web-based application that goes beyond GIS applications with regard to speed, ease of use, and interactive analysis capabilities. It supports the multi-scale exploration and analysis of integrated socio-economic, health and environmental geospatial data over several periods. This project was meant to validate the potential of recent technologies to contribute to a better understanding of the interactions between public health and climate change, and to facilitate future decision-making by public health agencies and municipalities in Canada and elsewhere. The project also aimed at integrating an initial collection of geo-referenced multi-scale indicators that were identified by Canadian specialists and end-users as relevant for the surveillance of the public health impacts of climate change. This system was developed in a multidisciplinary context involving researchers, policy makers and practitioners, using BI and web-mapping concepts (more particularly SOLAP technologies), while exploring new solutions for frequent automatic updating of data and for providing contextual warnings for users (to minimize the risk of data misinterpretation). According to the project participants, the final system succeeds in facilitating surveillance activities in a way not achievable with today's GIS. Regarding the experiments on frequent automatic updating and contextual user warnings, the results obtained indicate that these are meaningful and achievable goals but they still require research and development for their successful implementation in the context of surveillance and multiple organizations. Surveillance of climate-related health vulnerabilities may be more efficiently supported using a combination of BI and GIS concepts, and more specifically, SOLAP technologies (in that it facilitates and accelerates multi-scale spatial and temporal analysis to a point where a user can maintain an uninterrupted train of thought by focussing on "what" she/he wants (not on "how" to get it) and always obtain instant answers, including to the most complex queries that take minutes or hours with OLTP systems (e.g., aggregated, temporal, comparative)). The developed system respects Newell's cognitive band of 10 seconds when performing knowledge discovery (exploring data, looking for hypotheses, validating models). The developed system provides new operators for easily and rapidly exploring multidimensional data at different levels of granularity, for different regions and epochs, and for visualizing the results in synchronized maps, tables and charts. It is naturally adapted to deal with multiscale indicators such as those used in the surveillance community, as confirmed by this project's end-users.
NASA Astrophysics Data System (ADS)
Bonetti, Rita M.; Reinfelds, Ivars V.; Butler, Gavin L.; Walsh, Chris T.; Broderick, Tony J.; Chisholm, Laurie A.
2016-05-01
Natural barriers such as waterfalls, cascades, rapids and riffles limit the dispersal and in-stream range of migratory fish, yet little is known of the interplay between these gradient dependent landforms, their hydraulic characteristics and flow rates that facilitate fish passage. The resurgence of dam construction in numerous river basins world-wide provides impetus to the development of robust techniques for assessment of the effects of downstream flow regime changes on natural fish passage barriers and associated consequences as to the length of rivers available to migratory species. This paper outlines a multi-scale technique for quantifying the relative magnitude of natural fish passage barriers in river systems and flow rates that facilitate passage by fish. First, a GIS-based approach is used to quantify channel gradients for the length of river or reach under investigation from a high resolution DEM, setting the magnitude of identified passage barriers in a longer context (tens to hundreds of km). Second, LiDAR, topographic and bathymetric survey-based hydrodynamic modelling is used to assess flow rates that can be regarded as facilitating passage across specific barriers identified by the river to reach scale gradient analysis. Examples of multi-scale approaches to fish passage assessment for flood-flow and low-flow passage issues are provided from the Clarence and Shoalhaven Rivers, NSW, Australia. In these river systems, passive acoustic telemetry data on actual movements and migrations by Australian bass (Macquaria novemaculeata) provide a means of validating modelled assessments of flow rates associated with successful fish passage across natural barriers. Analysis of actual fish movements across passage barriers in these river systems indicates that two dimensional hydraulic modelling can usefully quantify flow rates associated with the facilitation of fish passage across natural barriers by a majority of individual fishes for use in management decisions regarding environmental or instream flows.
Infrared small target detection based on multiscale center-surround contrast measure
NASA Astrophysics Data System (ADS)
Fu, Hao; Long, Yunli; Zhu, Ran; An, Wei
2018-04-01
Infrared(IR) small target detection plays a critical role in the Infrared Search And Track (IRST) system. Although it has been studied for years, there are some difficulties remained to the clutter environment. According to the principle of human discrimination of small targets from a natural scene that there is a signature of discontinuity between the object and its neighboring regions, we develop an efficient method for infrared small target detection called multiscale centersurround contrast measure (MCSCM). First, to determine the maximum neighboring window size, an entropy-based window selection technique is used. Then, we construct a novel multiscale center-surround contrast measure to calculate the saliency map. Compared with the original image, the MCSCM map has less background clutters and noise residual. Subsequently, a simple threshold is used to segment the target. Experimental results show our method achieves better performance.
Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables.
Pugno, Nicola M; Bosia, Federico; Carpinteri, Alberto
2008-08-01
Thousands of multiscale stochastic simulations are carried out in order to perform the first in-silico tensile tests of carbon nanotube (CNT)-based macroscopic cables with varying length. The longest treated cable is the space-elevator megacable but more realistic shorter cables are also considered in this bottom-up investigation. Different sizes, shapes, and concentrations of defects are simulated, resulting in cable macrostrengths not larger than approximately 10 GPa, which is much smaller than the theoretical nanotube strength (approximately 100 GPa). No best-fit parameters are present in the multiscale simulations: the input at level 1 is directly estimated from nanotensile tests of CNTs, whereas its output is considered as the input for the level 2, and so on up to level 5, corresponding to the megacable. Thus, five hierarchical levels are used to span lengths from that of a single nanotube (approximately 100 nm) to that of the space-elevator megacable (approximately 100 Mm).
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Multiscale Analysis of Solar Image Data
NASA Astrophysics Data System (ADS)
Young, C. A.; Myers, D. C.
2001-12-01
It is often said that the blessing and curse of solar physics is that there is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also cursed us with an increased amount of higher complexity data than previous missions. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present a preliminary analysis of multiscale techniques applied to solar image data. Specifically, we explore the use of the 2-d wavelet transform and related transforms with EIT, LASCO and TRACE images. This work was supported by NASA contract NAS5-00220.
Powathil, Gibin G; Swat, Maciej; Chaplain, Mark A J
2015-02-01
The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiscale model reduction for shale gas transport in poroelastic fractured media
NASA Astrophysics Data System (ADS)
Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe
2018-01-01
Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.
NASA Astrophysics Data System (ADS)
Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele
2017-10-01
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.
Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Giordano, S.
2013-02-01
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.
Rupert Seidl; Thomas A. Spies; Werner Rammer; E. Ashley Steel; Robert J. Pabst; Keith. Olsen
2012-01-01
Forest ecosystems are the most important terrestrial carbon (C) storage globally, and presently mitigate anthropogenic climate change by acting as a large and persistent sink for atmospheric CO2. Yet, forest C density varies greatly in space, both globally and at stand and landscape levels. Understanding the multi-scale drivers of this variation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.; Bessa, M. A.; Liu, W.K.
A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical andmore » concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about 43,000 is achieved by using the SCA method, as opposed to FE2, enabling the solution of an otherwise computationally intractable problem. The second example uses a crystal plasticity constitutive law and computes the fatigue potency of extrinsic microscale features such as voids. This shows that local stress and strain are capture sufficiently well by SCA. This model has been incorporated in a process-structure-properties prediction framework for process design in additive manufacturing.« less
Multiscale weighted colored graphs for protein flexibility and rigidity analysis
NASA Astrophysics Data System (ADS)
Bramer, David; Wei, Guo-Wei
2018-02-01
Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.
Multiscale entropy analysis of human gait dynamics
NASA Astrophysics Data System (ADS)
Costa, M.; Peng, C.-K.; L. Goldberger, Ary; Hausdorff, Jeffrey M.
2003-12-01
We compare the complexity of human gait time series from healthy subjects under different conditions. Using the recently developed multiscale entropy algorithm, which provides a way to measure complexity over a range of scales, we observe that normal spontaneous walking has the highest complexity when compared to slow and fast walking and also to walking paced by a metronome. These findings have implications for modeling locomotor control and for quantifying gait dynamics in physiologic and pathologic states.
Multiscale power analysis for heart rate variability
NASA Astrophysics Data System (ADS)
Zeng, Peng; Liu, Hongxing; Ni, Huangjing; Zhou, Jing; Xia, Lan; Ning, Xinbao
2015-06-01
We first introduce multiscale power (MSP) method to assess the power distribution of physiological signals on multiple time scales. Simulation on synthetic data and experiments on heart rate variability (HRV) are tested to support the approach. Results show that both physical and psychological changes influence power distribution significantly. A quantitative parameter, termed power difference (PD), is introduced to evaluate the degree of power distribution alteration. We find that dynamical correlation of HRV will be destroyed completely when PD>0.7.
Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite
Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai
2013-04-01
The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.
2011-09-26
most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized...is intrinsically multiscale and is arguably one of, if not, the most challenging to characterize and model of the gamut of granular behaviour...the most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized
Finite Dimensional Approximations for Continuum Multiscale Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlyand, Leonid
2017-01-24
The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less
Multiscale Image Processing of Solar Image Data
NASA Astrophysics Data System (ADS)
Young, C.; Myers, D. C.
2001-12-01
It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.
Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements
NASA Astrophysics Data System (ADS)
Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.
2012-12-01
The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some validation experiments demonstrated that the models yield accurate estimates at flux measurement sites, the question remains whether they are performing well over the broader landscape. Moreover, a large number of RS_ET products have been released in recent years. Thus, we also pay attention to the cross-validation method of RS_ET derived from multi-source models. "The Multi-scale Observation Experiment on Evapotranspiration over Heterogeneous Land Surfaces: Flux Observation Matrix" campaign is carried out at the middle reaches of the Heihe River Basin, China in 2012. Flux measurements from an observation matrix composed of 22 EC and 4 LAS are acquired to investigate the cross-validation of multi-source models over different landscapes. In this case, six remote sensing models, including the empirical statistical model, the one-source and two-source models, the Penman-Monteith equation based model, the Priestley-Taylor equation based model, and the complementary relationship based model, are used to perform an intercomparison. All the results from the two cases of RS_ET validation showed that the proposed validation methods are reasonable and feasible.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Aouadi, Souha; Vasic, Ana; Paloor, Satheesh; Torfeh, Tarraf; McGarry, Maeve; Petric, Primoz; Riyas, Mohamed; Hammoud, Rabih; Al-Hammadi, Noora
2017-10-01
To create a synthetic CT (sCT) from conventional brain MRI using a patch-based method for MRI-only radiotherapy planning and verification. Conventional T1 and T2-weighted MRI and CT datasets from 13 patients who underwent brain radiotherapy were included in a retrospective study whereas 6 patients were tested prospectively. A new contribution to the Non-local Means Patch-Based Method (NMPBM) framework was done with the use of novel multi-scale and dual-contrast patches. Furthermore, the training dataset was improved by pre-selecting the closest database patients to the target patient for computation time/accuracy balance. sCT and derived DRRs were assessed visually and quantitatively. VMAT planning was performed on CT and sCT for hypothetical PTVs in homogeneous and heterogeneous regions. Dosimetric analysis was done by comparing Dose Volume Histogram (DVH) parameters of PTVs and organs at risk (OARs). Positional accuracy of MRI-only image-guided radiation therapy based on CBCT or kV images was evaluated. The retrospective (respectively prospective) evaluation of the proposed Multi-scale and Dual-contrast Patch-Based Method (MDPBM) gave a mean absolute error MAE=99.69±11.07HU (98.95±8.35HU), and a Dice in bones DI bone =83±0.03 (0.82±0.03). Good agreement with conventional planning techniques was obtained; the highest percentage of DVH metric deviations was 0.43% (0.53%) for PTVs and 0.59% (0.75%) for OARs. The accuracy of sCT/CBCT or DRR sCT /kV images registration parameters was <2mm and <2°. Improvements with MDPBM, compared to NMPBM, were significant. We presented a novel method for sCT generation from T1 and T2-weighted MRI potentially suitable for MRI-only external beam radiotherapy in brain sites. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Dysart, Arthur D.; Burgos, Juan C.; Mistry, Aashutosh; ...
2016-02-09
In this work, a novel heterofunctional, bimodal-porous carbon morphology, termed the carbon compartment (CC), is utilized as a sulfur host as a lithium-sulfur battery cathode. A multi-scale model explores the physics and chemistry of the lithium-sulfur battery cathode. The CCs are synthesized by a rapid, low cost process to improve electrode-electrolyte interfacial contact and accommodate volumetric expansion associated with sulfide formation. The CCs demonstrate high sulfur loading (47 %-wt. S) and ca. 700 mAh g -1 reversible capacity with high coulombic efficiency due to their unique structures. Density functional theory and ab initio Molecular Dynamics characterize the interface between themore » C/S composite and electrolyte during the sulfur reduction mechanism. Stochastic realizations of 3D electrode microstructures are reconstructed based on representative SEM images to study the influence of solid sulfur loading and lithium sulfide precipitation on microstructural and electrochemical properties. A macroscale electrochemical performance model is developed to analyze the performance of lithium-sulfur batteries. The combined multi-scale simulation studies explain key fundamentals of sulfur reduction and its relation to the polysulfide shuttle mechanism: how the process is affected due to the presence of carbon substrate, thermodynamics of lithium sulfide formation and deposition on carbon, and microstructural effects on the overall cell performance.« less
Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli
2016-01-01
Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements. PMID:27007388
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir
2016-07-01
The topic of the review article [1] is the derivation of a multiscale paradigm for the modeling of fibrosis. Firstly, the biological process of the physiological and pathological fibrosis including therapeutical actions is reviewed. Fibrosis can be a consequence of tissue damage, infections and autoimmune diseases, foreign material, tumors. Some questions regarding the pathogenesis, progression and possible regression of fibrosis are lacking. At each scale of observation, different theoretical tools coming from computational, mathematical and physical biology have been proposed. However a complete framework that takes into account the different mechanisms occurring at different scales is still missing. Therefore with the main aim to define a multiscale approach for the modeling of fibrosis, the authors of [1] have presented different top-down and bottom-up approaches that have been developed in the literature. Specifically, their description refers to models for fibrosis diseases based on ordinary and partial differential equation, agents [2], thermostatted kinetic theory [3-5], coarse-grained structures [6-8] and constitutive laws for fibrous collagen networks [9]. A critical analysis has been addressed for all frameworks discussed in the paper. Open problems and future research directions referring to both biological and modeling insight of fibrosis are presented. The paper concludes with the ambitious aim of a multiscale model.
Differential morphology and image processing.
Maragos, P
1996-01-01
Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform
NASA Astrophysics Data System (ADS)
Liu, W.; Yao, H.; Yang, H. Y.
2017-12-01
Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.
Multi-Level Anomaly Detection on Time-Varying Graph Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A; Collins, John P; Ferragut, Erik M
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, thismore » multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K
2017-03-03
Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 5 to 1 × 10 6 cells/mm 3 . Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estep, Donald
2015-11-30
This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.
NASA Astrophysics Data System (ADS)
Li, Jinyang; Shang, Pengjian
2018-07-01
Irreversibility is an important property of time series. In this paper, we propose the higher moments and multiscale Kullback-Leibler divergence to analyze time series irreversibility. The higher moments Kullback-Leibler divergence (HMKLD) can amplify irreversibility and make the irreversibility variation more obvious. Therefore, many time series whose irreversibility is hard to be found are also able to show the variations. We employ simulated data and financial stock data to test and verify this method, and find that HMKLD of stock data is growing in the form of fluctuations. As for multiscale Kullback-Leibler divergence (MKLD), it is very complex in the dynamic system, so that exploring the law of simulation and stock system is difficult. In conventional multiscale entropy method, the coarse-graining process is non-overlapping, however we apply a different coarse-graining process and obtain a surprising discovery. The result shows when the scales are 4 and 5, their entropy is nearly similar, which demonstrates MKLD is efficient to display characteristics of time series irreversibility.
Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel
2016-11-13
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.
Admissible Diffusion Wavelets and Their Applications in Space-Frequency Processing.
Hou, Tingbo; Qin, Hong
2013-01-01
As signal processing tools, diffusion wavelets and biorthogonal diffusion wavelets have been propelled by recent research in mathematics. They employ diffusion as a smoothing and scaling process to empower multiscale analysis. However, their applications in graphics and visualization are overshadowed by nonadmissible wavelets and their expensive computation. In this paper, our motivation is to broaden the application scope to space-frequency processing of shape geometry and scalar fields. We propose the admissible diffusion wavelets (ADW) on meshed surfaces and point clouds. The ADW are constructed in a bottom-up manner that starts from a local operator in a high frequency, and dilates by its dyadic powers to low frequencies. By relieving the orthogonality and enforcing normalization, the wavelets are locally supported and admissible, hence facilitating data analysis and geometry processing. We define the novel rapid reconstruction, which recovers the signal from multiple bands of high frequencies and a low-frequency base in full resolution. It enables operations localized in both space and frequency by manipulating wavelet coefficients through space-frequency filters. This paper aims to build a common theoretic foundation for a host of applications, including saliency visualization, multiscale feature extraction, spectral geometry processing, etc.
NASA Astrophysics Data System (ADS)
Gamzina, Diana
Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
A Telescopic Binary Learning Machine for Training Neural Networks.
Brunato, Mauro; Battiti, Roberto
2017-03-01
This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.
Le Gonidec, Yves; Gibert, Dominique
2006-11-01
We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.
NASA Astrophysics Data System (ADS)
Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2015-01-01
The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.
Multiscale Methods for Nuclear Reactor Analysis
NASA Astrophysics Data System (ADS)
Collins, Benjamin S.
The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly interface, the fuel/reflector interface, and assemblies where control rods are inserted. The embedded method also allows for multiple solution levels to be applied in a single calculation. The addition of intermediate levels to the solution improves the accuracy of the method. Both multiscale methods considered here have benefits and drawbacks, but both can provide improvements over the current PPR methodology.
NASA Astrophysics Data System (ADS)
Chung, C.; Nagol, J. R.; Tao, X.; Anand, A.; Dempewolf, J.
2015-12-01
Increasing agricultural production while at the same time preserving the environment has become a challenging task. There is a need for new approaches for use of multi-scale and multi-source remote sensing data as well as ground based measurements for mapping and monitoring crop and ecosystem state to support decision making by governmental and non-governmental organizations for sustainable agricultural development. High resolution sub-meter imagery plays an important role in such an integrative framework of landscape monitoring. It helps link the ground based data to more easily available coarser resolution data, facilitating calibration and validation of derived remote sensing products. Here we present a hierarchical Object Based Image Analysis (OBIA) approach to classify sub-meter imagery. The primary reason for choosing OBIA is to accommodate pixel sizes smaller than the object or class of interest. Especially in non-homogeneous savannah regions of Tanzania, this is an important concern and the traditional pixel based spectral signature approach often fails. Ortho-rectified, calibrated, pan sharpened 0.5 meter resolution data acquired from DigitalGlobe's WorldView-2 satellite sensor was used for this purpose. Multi-scale hierarchical segmentation was performed using multi-resolution segmentation approach to facilitate the use of texture, neighborhood context, and the relationship between super and sub objects for training and classification. eCognition, a commonly used OBIA software program, was used for this purpose. Both decision tree and random forest approaches for classification were tested. The Kappa index agreement for both algorithms surpassed the 85%. The results demonstrate that using hierarchical OBIA can effectively and accurately discriminate classes at even LCCS-3 legend.
Minimum risk wavelet shrinkage operator for Poisson image denoising.
Cheng, Wu; Hirakawa, Keigo
2015-05-01
The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.
A variational multiscale method for particle-cloud tracking in turbomachinery flows
NASA Astrophysics Data System (ADS)
Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.
2014-11-01
We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D
2015-05-08
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.
2015-01-01
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xingye; Hu, Bin; Wei, Changdong
Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less
Neurophysiological basis of creativity in healthy elderly people: a multiscale entropy approach.
Ueno, Kanji; Takahashi, Tetsuya; Takahashi, Koichi; Mizukami, Kimiko; Tanaka, Yuji; Wada, Yuji
2015-03-01
Creativity, which presumably involves various connections within and across different neural networks, reportedly underpins the mental well-being of older adults. Multiscale entropy (MSE) can characterize the complexity inherent in EEG dynamics with multiple temporal scales. It can therefore provide useful insight into neural networks. Given that background, we sought to clarify the neurophysiological bases of creativity in healthy elderly subjects by assessing EEG complexity with MSE, with emphasis on assessment of neural networks. We recorded resting state EEG of 20 healthy elderly subjects. MSE was calculated for each subject for continuous 20-s epochs. Their relevance to individual creativity was examined concurrently with intellectual function. Higher individual creativity was linked closely to increased EEG complexity across higher temporal scales, but no significant relation was found with intellectual function (IQ score). Considering the general "loss of complexity" theory of aging, our finding of increased EEG complexity in elderly people with heightened creativity supports the idea that creativity is associated with activated neural networks. Results reported here underscore the potential usefulness of MSE analysis for characterizing the neurophysiological bases of elderly people with heightened creativity. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-01-01
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-09-03
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.
NASA Astrophysics Data System (ADS)
Horstemeyer, M. F.
This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
Multiscale analysis of restoration priorities for marine shoreline planning.
Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K
2009-10-01
Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.
Ho, Lap; Cheng, Haoxiang; Wang, Jun; Simon, James E; Wu, Qingli; Zhao, Danyue; Carry, Eileen; Ferruzzi, Mario G; Faith, Jeremiah; Valcarcel, Breanna; Hao, Ke; Pasinetti, Giulio M
2018-03-05
The development of a given botanical preparation for eventual clinical application requires extensive, detailed characterizations of the chemical composition, as well as the biological availability, biological activity, and safety profiles of the botanical. These issues are typically addressed using diverse experimental protocols and model systems. Based on this consideration, in this study we established a comprehensive database and analysis framework for the collection, collation, and integrative analysis of diverse, multiscale data sets. Using this framework, we conducted an integrative analysis of heterogeneous data from in vivo and in vitro investigation of a complex bioactive dietary polyphenol-rich preparation (BDPP) and built an integrated network linking data sets generated from this multitude of diverse experimental paradigms. We established a comprehensive database and analysis framework as well as a systematic and logical means to catalogue and collate the diverse array of information gathered, which is securely stored and added to in a standardized manner to enable fast query. We demonstrated the utility of the database in (1) a statistical ranking scheme to prioritize response to treatments and (2) in depth reconstruction of functionality studies. By examination of these data sets, the system allows analytical querying of heterogeneous data and the access of information related to interactions, mechanism of actions, functions, etc., which ultimately provide a global overview of complex biological responses. Collectively, we present an integrative analysis framework that leads to novel insights on the biological activities of a complex botanical such as BDPP that is based on data-driven characterizations of interactions between BDPP-derived phenolic metabolites and their mechanisms of action, as well as synergism and/or potential cancellation of biological functions. Out integrative analytical approach provides novel means for a systematic integrative analysis of heterogeneous data types in the development of complex botanicals such as polyphenols for eventual clinical and translational applications.
Asymmetric multiscale multifractal analysis of wind speed signals
NASA Astrophysics Data System (ADS)
Zhang, Xiaonei; Zeng, Ming; Meng, Qinghao
We develop a new method called asymmetric multiscale multifractal analysis (A-MMA) to explore the multifractality and asymmetric autocorrelations of the signals with a variable scale range. Three numerical experiments are provided to demonstrate the effectiveness of our approach. Then, the proposed method is applied to investigate multifractality and asymmetric autocorrelations of difference sequences between wind speed fluctuations with uptrends or downtrends. The results show that these sequences appear to be far more complex and contain abundant fractal dynamics information. Through analyzing the Hurst surfaces of nine difference sequences, we found that all series exhibit multifractal properties and multiscale structures. Meanwhile, the asymmetric autocorrelations are observed in all variable scale ranges and the asymmetry results are of good consistency within a certain spatial range. The sources of multifractality and asymmetry in nine difference series are further discussed using the corresponding shuffled series and surrogate series. We conclude that the multifractality of these series is due to both long-range autocorrelation and broad probability density function, but the major source of multifractality is long-range autocorrelation, and the source of asymmetry is affected by the spatial distance.
NASA Astrophysics Data System (ADS)
Hussein, Rafid M.; Chandrashekhara, K.
2017-11-01
A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
NASA Astrophysics Data System (ADS)
Abedi, S.; Mashhadian, M.; Noshadravan, A.
2015-12-01
Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.
Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation
Wang, Yan; Swiler, Laura
2017-09-07
The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.
Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Swiler, Laura
The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.
Analysis of Multi-Scale Phenomena in Heterogeneous Materials
2011-02-22
requires the use of properties of the Catalan numbers to show that the series coefficients are exponentially bounded in the H1 Sobolev norm. This is joint...the use of a small number of optimal local basis functions. The local bases are supported on sub domains of fixed diameter within the computa- tional...not display a currently valid OMB control number . 1. REPORT DATE 22 FEB 2011 2. REPORT TYPE FINAL REPORT 3. DATES COVERED 03-01-2008 to 03-03
The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, Y. L.
2017-02-01
The production of Gannan oranges is the largest in China, which occupied an important part in the world. The extraction of citrus orchard quickly and effectively has important significance for fruit pathogen defense, fruit production and industrial planning. The traditional spectra extraction method of citrus orchard based on pixel has a lower classification accuracy, difficult to avoid the “pepper phenomenon”. In the influence of noise, the phenomenon that different spectrums of objects have the same spectrum is graveness. Taking Xunwu County citrus fruit planting area of Ganzhou as the research object, aiming at the disadvantage of the lower accuracy of the traditional method based on image element classification method, a decision tree classification method based on object-oriented rule set is proposed. Firstly, multi-scale segmentation is performed on the GF-1 remote sensing image data of the study area. Subsequently the sample objects are selected for statistical analysis of spectral features and geometric features. Finally, combined with the concept of decision tree classification, a variety of empirical values of single band threshold, NDVI, band combination and object geometry characteristics are used hierarchically to execute the information extraction of the research area, and multi-scale segmentation and hierarchical decision tree classification is implemented. The classification results are verified with the confusion matrix, and the overall Kappa index is 87.91%.
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan
2016-10-01
Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.
Poisson denoising on the sphere
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...
2015-04-29
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less
Object-based class modelling for multi-scale riparian forest habitat mapping
NASA Astrophysics Data System (ADS)
Strasser, Thomas; Lang, Stefan
2015-05-01
Object-based class modelling allows for mapping complex, hierarchical habitat systems. The riparian zone, including forests, represents such a complex ecosystem. Forests within riparian zones are biologically high productive and characterized by a rich biodiversity; thus considered of high community interest with an imperative to be protected and regularly monitored. Satellite earth observation (EO) provides tools for capturing the current state of forest habitats such as forest composition including intermixture of non-native tree species. Here we present a semi-automated object based image analysis (OBIA) approach for the mapping of riparian forests by applying class modelling of habitats based on the European Nature Information System (EUNIS) habitat classifications and the European Habitats Directive (HabDir) Annex 1. A very high resolution (VHR) WorldView-2 satellite image provided the required spatial and spectral details for a multi-scale image segmentation and rule-base composition to generate a six-level hierarchical representation of riparian forest habitats. Thereby habitats were hierarchically represented within an image object hierarchy as forest stands, stands of homogenous tree species and single trees represented by sunlit tree crowns. 522 EUNIS level 3 (EUNIS-3) habitat patches with a mean patch size (MPS) of 12,349.64 m2 were modelled from 938 forest stand patches (MPS = 6868.20 m2) and 43,742 tree stand patches (MPS = 140.79 m2). The delineation quality of the modelled EUNIS-3 habitats (focal level) was quantitatively assessed to an expert-based visual interpretation showing a mean deviation of 11.71%.
NASA Astrophysics Data System (ADS)
Cesar, Roberto Marcondes; Costa, Luciano da Fontoura
1997-05-01
The estimation of the curvature of experimentally obtained curves is an important issue in many applications of image analysis including biophysics, biology, particle physics, and high energy physics. However, the accurate calculation of the curvature of digital contours has proven to be a difficult endeavor, mainly because of the noise and distortions that are always present in sampled signals. Errors ranging from 1% to 1000% have been reported with respect to the application of standard techniques in the estimation of the curvature of circular contours [M. Worring and A. W. M. Smeulders, CVGIP: Im. Understanding, 58, 366 (1993)]. This article explains how diagrams of multiscale bending energy can be easily obtained from curvegrams and used as a robust general feature for morphometric characterization of neural cells. The bending energy is an interesting global feature for shape characterization that expresses the amount of energy needed to transform the specific shape under analysis into its lowest energy state (i.e., a circle). The curvegram, which can be accurately obtained by using digital signal processing techniques (more specifically through the Fourier transform and its inverse, as described in this work), provides multiscale representation of the curvature of digital contours. The estimation of the bending energy from the curvegram is introduced and exemplified with respect to a series of neural cells. The masked high curvature effect is reported and its implications to shape analysis are discussed. It is also discussed and illustrated that, by normalizing the multiscale bending energy with respect to a standard circle of unitary perimeter, this feature becomes an effective means for expressing shape complexity in a way that is invariant to rotation, translation, and scaling, and that is robust to noise and other artifacts implied by image acquisition.
Hybrid multiscale modeling and prediction of cancer cell behavior
Habibi, Jafar
2017-01-01
Background Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Results Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Conclusion Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset. PMID:28846712
Multiscale modeling of mucosal immune responses
2015-01-01
Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787
Multiscale modeling of mucosal immune responses.
Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep
2015-01-01
Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.
Hybrid multiscale modeling and prediction of cancer cell behavior.
Zangooei, Mohammad Hossein; Habibi, Jafar
2017-01-01
Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.
A general multiscale framework for the emergent effective elastodynamics of metamaterials
NASA Astrophysics Data System (ADS)
Sridhar, A.; Kouznetsova, V. G.; Geers, M. G. D.
2018-02-01
This paper presents a general multiscale framework towards the computation of the emergent effective elastodynamics of heterogeneous materials, to be applied for the analysis of acoustic metamaterials and phononic crystals. The generality of the framework is exemplified by two key characteristics. First, the underlying formalism relies on the Floquet-Bloch theorem to derive a robust definition of scales and scale separation. Second, unlike most homogenization approaches that rely on a classical volume average, a generalized homogenization operator is defined with respect to a family of particular projection functions. This yields a generalized macro-scale continuum, instead of the classical Cauchy continuum. This enables (in a micromorphic sense) to homogenize the rich dispersive behavior resulting from both Bragg scattering and local resonance. For an arbitrary unit cell, the homogenization projection functions are constructed using the Floquet-Bloch eigenvectors obtained in the desired frequency regime at select high symmetry points, which effectively resolves the emergent phenomena dominating that regime. Furthermore, a generalized Hill-Mandel condition is proposed that ensures power consistency between the homogenized and full-scale model. A high-order spatio-temporal gradient expansion is used to localize the multiscale problem leading to a series of recursive unit cell problems giving the appropriate micro-mechanical corrections. The developed multiscale method is validated against standard numerical Bloch analysis of the dispersion spectra of example unit cells encompassing multiple high-order branches generated by local resonance and/or Bragg scattering.
Rong, Libin; Guedj, Jeremie; Dahari, Harel; ...
2013-03-14
The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). In this paper, we describe and study a recently developed multiscale age-structured model that explicitly considers the potential effects of DAAs on intracellular viral RNA production, degradation, and secretion as virus into the circulation. We show that when therapy significantly blocks both intracellular viral RNA production and virus secretion,more » the serum viral load decline has three phases, with slopes reflecting the rate of serum viral clearance, the rate of loss of intracellular viral RNA, and the rate of loss of intracellular replication templates and infected cells, respectively. We also derive analytical approximations of the multiscale model and use one of them to analyze data from patients treated for 14 days with the HCV protease inhibitor danoprevir. Analysis suggests that danoprevir significantly blocks intracellular viral production (with mean effectiveness 99.2%), enhances intracellular viral RNA degradation about 5-fold, and moderately inhibits viral secretion (with mean effectiveness 56%). Finally, the multiscale model can be used to study viral dynamics in patients treated with other DAAs and explore their mechanisms of action in treatment of hepatitis C.« less
Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D
2011-11-01
There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.
The Multiscale Robin Coupled Method for flows in porous media
NASA Astrophysics Data System (ADS)
Guiraldello, Rafael T.; Ausas, Roberto F.; Sousa, Fabricio S.; Pereira, Felipe; Buscaglia, Gustavo C.
2018-02-01
A multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed. The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The domain decomposition procedure is defined in terms of two independent spaces on the skeleton of the decomposition, corresponding to interface pressures and fluxes, that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. The well-posedness of the new domain decomposition procedure is established and its connection with the method of Douglas et al. (1993) [12], is identified, also allowing us to reinterpret the known procedure as an optimized Schwarz (or Two-Lagrange-Multiplier) method. The multiscale property of the new domain decomposition method is indicated, and its relation with the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method is discussed. Numerical simulations are presented aiming at illustrating several features of the new method. Initially we illustrate the possibility of switching from MMMFEM to MHM by suitably varying the Robin condition parameter in the new multiscale method. Then we turn our attention to realistic flows in high-contrast, channelized porous formations. We show that for a range of values of the Robin condition parameter our method provides better approximations for pressure and velocity than those computed with either the MMMFEM and the MHM. This is an indication that our method has the potential to produce more accurate velocity fields in the presence of rough, realistic permeability fields of petroleum reservoirs.
Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny
2014-01-01
We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818
Refined generalized multiscale entropy analysis for physiological signals
NASA Astrophysics Data System (ADS)
Liu, Yunxiao; Lin, Youfang; Wang, Jing; Shang, Pengjian
2018-01-01
Multiscale entropy analysis has become a prevalent complexity measurement and been successfully applied in various fields. However, it only takes into account the information of mean values (first moment) in coarse-graining procedure. Then generalized multiscale entropy (MSEn) considering higher moments to coarse-grain a time series was proposed and MSEσ2 has been implemented. However, the MSEσ2 sometimes may yield an imprecise estimation of entropy or undefined entropy, and reduce statistical reliability of sample entropy estimation as scale factor increases. For this purpose, we developed the refined model, RMSEσ2, to improve MSEσ2. Simulations on both white noise and 1 / f noise show that RMSEσ2 provides higher entropy reliability and reduces the occurrence of undefined entropy, especially suitable for short time series. Besides, we discuss the effect on RMSEσ2 analysis from outliers, data loss and other concepts in signal processing. We apply the proposed model to evaluate the complexity of heartbeat interval time series derived from healthy young and elderly subjects, patients with congestive heart failure and patients with atrial fibrillation respectively, compared to several popular complexity metrics. The results demonstrate that RMSEσ2 measured complexity (a) decreases with aging and diseases, and (b) gives significant discrimination between different physiological/pathological states, which may facilitate clinical application.
Dash, Ranjan K; Li, Yanjun; Kim, Jaeyeon; Beard, Daniel A; Saidel, Gerald M; Cabrera, Marco E
2008-09-09
Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya
2013-02-01
Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.
NASA Astrophysics Data System (ADS)
Wietsma, T.; Minsker, B. S.
2012-12-01
Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun
2017-11-01
The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
NASA Astrophysics Data System (ADS)
Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.
Bianchi, Daniele; Monaldo, Elisabetta; Gizzi, Alessio; Marino, Michele; Filippi, Simonetta; Vairo, Giuseppe
2017-09-01
A novel fluid-structure computational framework for vascular applications is herein presented. It is developed by combining the double multi-scale nature of vascular physiopathology in terms of both tissue properties and blood flow. Addressing arterial tissues, they are modelled via a nonlinear multiscale constitutive rationale, based only on parameters having a clear histological and biochemical meaning. Moreover, blood flow is described by coupling a three-dimensional fluid domain (undergoing physiological inflow conditions) with a zero-dimensional model, which allows to reproduce the influence of the downstream vasculature, furnishing a realistic description of the outflow proximal pressure. The fluid-structure interaction is managed through an explicit time-marching approach, able to accurately describe tissue nonlinearities within each computational step for the fluid problem. A case study associated to a patient-specific aortic abdominal aneurysmatic geometry is numerically investigated, highlighting advantages gained from the proposed multiscale strategy, as well as showing soundness and effectiveness of the established framework for assessing useful clinical quantities and risk indexes. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matouš, Karel, E-mail: kmatous@nd.edu; Geers, Marc G.D.; Kouznetsova, Varvara G.
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platformmore » in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Claire; Bloomer, Breaunnah E.; Provis, John L.
2012-05-16
With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, includingmore » the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.« less
Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
Yan, Xiaoan; Jia, Minping; Zhang, Wan; Zhu, Lin
2018-02-01
Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing. Copyright © 2018. Published by Elsevier Ltd.
Somvanshi, Pramod Rajaram; Venkatesh, K V
2014-03-01
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.
NASA Astrophysics Data System (ADS)
Fedi, M.; Florio, G.; Cascone, L.
2012-01-01
We use a multiscale approach as a semi-automated interpreting tool of potential fields. The depth to the source and the structural index are estimated in two steps: first the depth to the source, as the intersection of the field ridges (lines built joining the extrema of the field at various altitudes) and secondly, the structural index by the scale function. We introduce a new criterion, called 'ridge consistency' in this strategy. The criterion is based on the principle that the structural index estimations on all the ridges converging towards the same source should be consistent. If these estimates are significantly different, field differentiation is used to lessen the interference effects from nearby sources or regional fields, to obtain a consistent set of estimates. In our multiscale framework, vertical differentiation is naturally joint to the low-pass filtering properties of the upward continuation, so is a stable process. Before applying our criterion, we studied carefully the errors on upward continuation caused by the finite size of the survey area. To this end, we analysed the complex magnetic synthetic case, known as Bishop model, and evaluated the best extrapolation algorithm and the optimal width of the area extension, needed to obtain accurate upward continuation. Afterwards, we applied the method to the depth estimation of the whole Bishop basement bathymetry. The result is a good reconstruction of the complex basement and of the shape properties of the source at the estimated points.
The Structure of Borders in a Small World
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-01-01
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity. PMID:21124970
The structure of borders in a small world.
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-11-18
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity.
Analysis of crude oil markets with improved multiscale weighted permutation entropy
NASA Astrophysics Data System (ADS)
Niu, Hongli; Wang, Jun; Liu, Cheng
2018-03-01
Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
An automated assay for the assessment of cardiac arrest in fish embryo.
Puybareau, Elodie; Genest, Diane; Barbeau, Emilie; Léonard, Marc; Talbot, Hugues
2017-02-01
Studies on fish embryo models are widely developed in research. They are used in several research fields including drug discovery or environmental toxicology. In this article, we propose an entirely automated assay to detect cardiac arrest in Medaka (Oryzias latipes) based on image analysis. We propose a multi-scale pipeline based on mathematical morphology. Starting from video sequences of entire wells in 24-well plates, we focus on the embryo, detect its heart, and ascertain whether or not the heart is beating based on intensity variation analysis. Our image analysis pipeline only uses commonly available operators. It has a low computational cost, allowing analysis at the same rate as acquisition. From an initial dataset of 3192 videos, 660 were discarded as unusable (20.7%), 655 of them correctly so (99.25%) and only 5 incorrectly so (0.75%). The 2532 remaining videos were used for our test. On these, 45 errors were made, leading to a success rate of 98.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures.
Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Feng, Xiaoming; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan
2017-08-30
Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO 2 -based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO 2 -based BCRs. More importantly, the SiO 2 -based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.
An automated approach for extracting Barrier Island morphology from digital elevation models
NASA Astrophysics Data System (ADS)
Wernette, Phillipe; Houser, Chris; Bishop, Michael P.
2016-06-01
The response and recovery of a barrier island to extreme storms depends on the elevation of the dune base and crest, both of which can vary considerably alongshore and through time. Quantifying the response to and recovery from storms requires that we can first identify and differentiate the dune(s) from the beach and back-barrier, which in turn depends on accurate identification and delineation of the dune toe, crest and heel. The purpose of this paper is to introduce a multi-scale automated approach for extracting beach, dune (dune toe, dune crest and dune heel), and barrier island morphology. The automated approach introduced here extracts the shoreline and back-barrier shoreline based on elevation thresholds, and extracts the dune toe, dune crest and dune heel based on the average relative relief (RR) across multiple spatial scales of analysis. The multi-scale automated RR approach to extracting dune toe, dune crest, and dune heel based upon relative relief is more objective than traditional approaches because every pixel is analyzed across multiple computational scales and the identification of features is based on the calculated RR values. The RR approach out-performed contemporary approaches and represents a fast objective means to define important beach and dune features for predicting barrier island response to storms. The RR method also does not require that the dune toe, crest, or heel are spatially continuous, which is important because dune morphology is likely naturally variable alongshore.
Han, Zhongyi; Wei, Benzheng; Leung, Stephanie; Nachum, Ilanit Ben; Laidley, David; Li, Shuo
2018-02-15
Pathogenesis-based diagnosis is a key step to prevent and control lumbar neural foraminal stenosis (LNFS). It conducts both early diagnosis and comprehensive assessment by drawing crucial pathological links between pathogenic factors and LNFS. Automated pathogenesis-based diagnosis would simultaneously localize and grade multiple spinal organs (neural foramina, vertebrae, intervertebral discs) to diagnose LNFS and discover pathogenic factors. The automated way facilitates planning optimal therapeutic schedules and relieving clinicians from laborious workloads. However, no successful work has been achieved yet due to its extreme challenges since 1) multiple targets: each lumbar spine has at least 17 target organs, 2) multiple scales: each type of target organ has structural complexity and various scales across subjects, and 3) multiple tasks, i.e., simultaneous localization and diagnosis of all lumbar organs, are extremely difficult than individual tasks. To address these huge challenges, we propose a deep multiscale multitask learning network (DMML-Net) integrating a multiscale multi-output learning and a multitask regression learning into a fully convolutional network. 1) DMML-Net merges semantic representations to reinforce the salience of numerous target organs. 2) DMML-Net extends multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs. 3) DMML-Net joins a multitask regression module and a multitask loss module to prompt the mutual benefit between tasks. Extensive experimental results demonstrate that DMML-Net achieves high performance (0.845 mean average precision) on T1/T2-weighted MRI scans from 200 subjects. This endows our method an efficient tool for clinical LNFS diagnosis.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.; ...
2016-01-01
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
Multiscale equation-free algorithms for molecular dynamics
NASA Astrophysics Data System (ADS)
Abi Mansour, Andrew
Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.
NASA Astrophysics Data System (ADS)
Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.
2008-12-01
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.
Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart
Amr, Ali; Neumann, Dominik; Georgescu, Bogdan; Seegerer, Philipp; Kamen, Ali; Haas, Jan; Frese, Karen S.; Irawati, Maria; Wirsz, Emil; King, Vanessa; Buss, Sebastian; Mereles, Derliz; Zitron, Edgar; Keller, Andreas; Katus, Hugo A.; Comaniciu, Dorin; Meder, Benjamin
2015-01-01
Background Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. Methods and Results State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. Conclusion This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation. PMID:26230546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.
2009-05-01
Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.
NASA Astrophysics Data System (ADS)
Yang, Shuyu; Mitra, Sunanda
2002-05-01
Due to the huge volumes of radiographic images to be managed in hospitals, efficient compression techniques yielding no perceptual loss in the reconstructed images are becoming a requirement in the storage and management of such datasets. A wavelet-based multi-scale vector quantization scheme that generates a global codebook for efficient storage and transmission of medical images is presented in this paper. The results obtained show that even at low bit rates one is able to obtain reconstructed images with perceptual quality higher than that of the state-of-the-art scalar quantization method, the set partitioning in hierarchical trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samala, Ravi K., E-mail: rsamala@umich.edu; Chan, Heang-Ping; Lu, Yao
Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was furthermore » improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a sensitivity of 85% was achieved at an FP rate of 2.16 per DBT volume. For case-based detection, a sensitivity of 85% was achieved at an FP rate of 0.85 per DBT volume. JAFROC analysis showed a significant improvement in the performance of the current CADe system compared to that of our previous system (p = 0.003). Conclusions: MBSF regularized SART reconstruction enhances MCs. The enhancement in the signals, in combination with properly designed adaptive threshold criteria, effective MC feature analysis, and false positive reduction techniques, leads to a significant improvement in the detection of clustered MCs in DBT.« less
NASA Astrophysics Data System (ADS)
Memarianfard, H.; Turusov, R. A.
2017-11-01
A nonlinear numerical multiscale analysis to predict the residual shrinkage and thermal stresses arising during curing and cooling of thickwall cross-ply filament-wound cylinders of a reinforced polymer is performed at macro- and microscales using the representative volume element (RVE) of the composite. The mechanical behavior of the polymeric matrix is described by a nonlinear viscoelastic model with account of chemical shrinkage. The fiber material is considered elastic, isotropic, and temperature-independent. The maximum residual macrostresses arising during manufacture of the cylinders were calculated. The fields of residual microstresses in the RVE in three different zones across the thickness of the cylinders were found. Results of the microscale analysis showed that microstresses in some zones of RVE were several times higher than macrostresses in these areas.
Fusion of infrared polarization and intensity images based on improved toggle operator
NASA Astrophysics Data System (ADS)
Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua
2018-01-01
Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.
Heart rate complexity in sinoaortic-denervated mice.
Silva, Luiz Eduardo V; Rodrigues, Fernanda Luciano; de Oliveira, Mauro; Salgado, Hélio Cesar; Fazan, Rubens
2015-02-01
What is the central question of this study? New measurements for cardiovascular complexity, such as detrended fluctuation analysis (DFA) and multiscale entropy (MSE), have been shown to predict cardiovascular outcomes. Given that cardiovascular diseases are accompanied by autonomic imbalance and decreased baroreflex sensitivity, the central question is: do baroreceptors contribute to cardiovascular complexity? What is the main finding and its importance? Sinoaortic denervation altered both DFA scaling exponents and MSE, indicating that both short- and long-term mechanisms of complexity are altered in sinoaortic denervated mice, resulting in a loss of physiological complexity. These results suggest that the baroreflex is a key element in the complex structures involved in heart rate variability regulation. Recently, heart rate (HR) oscillations have been recognized as complex behaviours derived from non-linear processes. Physiological complexity theory is based on the idea that healthy systems present high complexity, i.e. non-linear, fractal variability at multiple scales, with long-range correlations. The loss of complexity in heart rate variability (HRV) has been shown to predict adverse cardiovascular outcomes. Based on the idea that most cardiovascular diseases are accompanied by autonomic imbalance and a decrease in baroreflex sensitivity, we hypothesize that the baroreflex plays an important role in complex cardiovascular behaviour. Mice that had been subjected to sinoaortic denervation (SAD) were implanted with catheters in the femoral artery and jugular vein 5 days prior to the experiment. After recording the baseline arterial pressure (AP), pulse interval time series were generated from the intervals between consecutive values of diastolic pressure. The complexity of the HRV was determined using detrended fluctuation analysis and multiscale entropy. The detrended fluctuation analysis α1 scaling exponent (a short-term index) was remarkably decreased in the SAD mice (0.79 ± 0.06 versus 1.13 ± 0.04 for the control mice), whereas SAD slightly increased the α2 scaling exponent (a long-term index; 1.12 ± 0.03 versus 1.04 ± 0.02 for control mice). In the SAD mice, the total multiscale entropy was decreased (13.2 ± 1.3) compared with the control mice (18.9 ± 1.4). In conclusion, fractal and regularity structures of HRV are altered in SAD mice, affecting both short- and long-term mechanisms of complexity, suggesting that the baroreceptors play a considerable role in the complex structure of HRV. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Multi-scale analysis and characterization of the ITER pre-compression rings
NASA Astrophysics Data System (ADS)
Foussat, A.; Park, B.; Rajainmaki, H.
2014-01-01
The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has revealed a complete picture of the stress levels within the fiber and the matrix regarding the static and fatigue performance of the rings structure including the presence of a delamination defect of critical size. The analysis results of the composite material demonstrate that the rings performance objectives under all loading and strength conditions are met.
A simple and fast representation space for classifying complex time series
NASA Astrophysics Data System (ADS)
Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.
2017-03-01
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
Understanding perception of active noise control system through multichannel EEG analysis.
Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad
2018-06-01
In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.
Zufiria, Pedro J; Pastor-Escuredo, David; Úbeda-Medina, Luis; Hernandez-Medina, Miguel A; Barriales-Valbuena, Iker; Morales, Alfredo J; Jacques, Damien C; Nkwambi, Wilfred; Diop, M Bamba; Quinn, John; Hidalgo-Sanchís, Paula; Luengo-Oroz, Miguel
2018-01-01
We propose a framework for the systematic analysis of mobile phone data to identify relevant mobility profiles in a population. The proposed framework allows finding distinct human mobility profiles based on the digital trace of mobile phone users characterized by a Matrix of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized description of individual trajectories that enables multi-scale representations along time and space, which can be used to extract aggregated indicators such as a dynamic multi-scale population count. Unsupervised clustering of individual trajectories generates mobility profiles (clusters of similar individual trajectories) which characterize relevant group behaviors preserving optimal aggregation levels for detailed and privacy-secured mobility characterization. The application of the proposed framework is illustrated by analyzing fully anonymized data on human mobility from mobile phones in Senegal at the arrondissement level over a calendar year. The analysis of monthly mobility patterns at the livelihood zone resolution resulted in the discovery and characterization of seasonal mobility profiles related with economic activities, agricultural calendars and rainfalls. The use of these mobility profiles could support the timely identification of mobility changes in vulnerable populations in response to external shocks (such as natural disasters, civil conflicts or sudden increases of food prices) to monitor food security.
NASA Astrophysics Data System (ADS)
Peterson, K. T.; Wulamu, A.
2017-12-01
Water, essential to all living organisms, is one of the Earth's most precious resources. Remote sensing offers an ideal approach to monitor water quality over traditional in-situ techniques that are highly time and resource consuming. Utilizing a multi-scale approach, incorporating data from handheld spectroscopy, UAS based hyperspectal, and satellite multispectral images were collected in coordination with in-situ water quality samples for the two midwestern watersheds. The remote sensing data was modeled and correlated to the in-situ water quality variables including chlorophyll content (Chl), turbidity, and total dissolved solids (TDS) using Normalized Difference Spectral Indices (NDSI) and Partial Least Squares Regression (PLSR). The results of the study supported the original hypothesis that correlating water quality variables with remotely sensed data benefits greatly from the use of more complex modeling and regression techniques such as PLSR. The final results generated from the PLSR analysis resulted in much higher R2 values for all variables when compared to NDSI. The combination of NDSI and PLSR analysis also identified key wavelengths for identification that aligned with previous study's findings. This research displays the advantages and future for complex modeling and machine learning techniques to improve water quality variable estimation from spectral data.
Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stander, Nielen; Basudhar, Anirban; Basu, Ushnish
2015-09-14
Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less
On unified modeling, theory, and method for solving multi-scale global optimization problems
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-10-01
A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
Understanding Prairie Fen Hydrology - a Hierarchical Multi-Scale Groundwater Modeling Approach
NASA Astrophysics Data System (ADS)
Sampath, P.; Liao, H.; Abbas, H.; Ma, L.; Li, S.
2012-12-01
Prairie fens provide critical habitat to more than 50 rare species and significantly contribute to the biodiversity of the upper Great Lakes region. The sustainability of these globally unique ecosystems, however, requires that they be fed by a steady supply of pristine, calcareous groundwater. Understanding the hydrology that supports the existence of such fens is essential in preserving these valuable habitats. This research uses process-based multi-scale groundwater modeling for this purpose. Two fen-sites, MacCready Fen and Ives Road Fen, in Southern Michigan were systematically studied. A hierarchy of nested steady-state models was built for each fen-site to capture the system's dynamics at spatial scales ranging from the regional groundwater-shed to the local fens. The models utilize high-resolution Digital Elevation Models (DEM), National Hydrologic Datasets (NHD), a recently-assembled water-well database, and results from a state-wide groundwater mapping project to represent the complex hydro-geological and stress framework. The modeling system simulates both shallow glacial and deep bedrock aquifers as well as the interaction between surface water and groundwater. Aquifer heterogeneities were explicitly simulated with multi-scale transition probability geo-statistics. A two-way hydraulic head feedback mechanism was set up between the nested models, such that the parent models provided boundary conditions to the child models, and in turn the child models provided local information to the parent models. A hierarchical mass budget analysis was performed to estimate the seepage fluxes at the surface water/groundwater interfaces and to assess the relative importance of the processes at multiple scales that contribute water to the fens. The models were calibrated using observed base-flows at stream gauging stations and/or static water levels at wells. Three-dimensional particle tracking was used to predict the sources of water to the fens. We observed from the multi-scale simulations that the water system that supports the fens is a much larger, more connected, and more complex one than expected. The water in the fen can be traced back to a network of sources, including lakes and wetlands at different elevations, which are connected to a regional mound through a "cascade delivery mechanism". This "master recharge area" is the ultimate source of water not only to the fens in its vicinity, but also for many major rivers and aquifers. The implication of this finding is that prairie fens must be managed as part of a much larger, multi-scale groundwater system and we must consider protection of the shorter and long-term water sources. This will require a fundamental reassessment of our current approach to fen conservation, which is primarily based on protection of individual fens and their immediate surroundings. Clearly, in the future we must plan for conservation of the broad recharge areas and the multiple fen complexes they support.
Module-based multiscale simulation of angiogenesis in skeletal muscle
2011-01-01
Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529
Monocular precrash vehicle detection: features and classifiers.
Sun, Zehang; Bebis, George; Miller, Ronald
2006-07-01
Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Torres, C.; Streppa, L.; Arneodo, A.
2016-01-18
Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward
There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less
NASA Astrophysics Data System (ADS)
Montero, Marc Villa; Barjasteh, Ehsan; Baid, Harsh K.; Godines, Cody; Abdi, Frank; Nikbin, Kamran
A multi-scale micromechanics approach along with finite element (FE) model predictive tool is developed to analyze low-energy-impact damage footprint and compression-after-impact (CAI) of composite laminates which is also tested and verified with experimental data. Effective fiber and matrix properties were reverse-engineered from lamina properties using an optimization algorithm and used to assess damage at the micro-level during impact and post-impact FE simulations. Progressive failure dynamic analysis (PFDA) was performed for a two step-process simulation. Damage mechanisms at the micro-level were continuously evaluated during the analyses. Contribution of each failure mode was tracked during the simulations and damage and delamination footprint size and shape were predicted to understand when, where and why failure occurred during both impact and CAI events. The composite laminate was manufactured by the vacuum infusion of the aero-grade toughened Benzoxazine system into the fabric preform. Delamination footprint was measured using C-scan data from the impacted panels and compared with the predicated values obtained from proposed multi-scale micromechanics coupled with FE analysis. Furthermore, the residual strength was predicted from the load-displacement curve and compared with the experimental values as well.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.
2014-12-01
Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.
NASA Astrophysics Data System (ADS)
McGranaghan, Ryan M.; Mannucci, Anthony J.; Forsyth, Colin
2017-12-01
We explore the characteristics, controlling parameters, and relationships of multiscale field-aligned currents (FACs) using a rigorous, comprehensive, and cross-platform analysis. Our unique approach combines FAC data from the Swarm satellites and the Advanced Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to create a database of small-scale (˜10-150 km, <1° latitudinal width), mesoscale (˜150-250 km, 1-2° latitudinal width), and large-scale (>250 km) FACs. We examine these data for the repeatable behavior of FACs across scales (i.e., the characteristics), the dependence on the interplanetary magnetic field orientation, and the degree to which each scale "departs" from nominal large-scale specification. We retrieve new information by utilizing magnetic latitude and local time dependence, correlation analyses, and quantification of the departure of smaller from larger scales. We find that (1) FACs characteristics and dependence on controlling parameters do not map between scales in a straight forward manner, (2) relationships between FAC scales exhibit local time dependence, and (3) the dayside high-latitude region is characterized by remarkably distinct FAC behavior when analyzed at different scales, and the locations of distinction correspond to "anomalous" ionosphere-thermosphere behavior. Comparing with nominal large-scale FACs, we find that differences are characterized by a horseshoe shape, maximizing across dayside local times, and that difference magnitudes increase when smaller-scale observed FACs are considered. We suggest that both new physics and increased resolution of models are required to address the multiscale complexities. We include a summary table of our findings to provide a quick reference for differences between multiscale FACs.
Modelling strategies to predict the multi-scale effects of rural land management change
NASA Astrophysics Data System (ADS)
Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.
2011-12-01
Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.
Multiscale wavelet representations for mammographic feature analysis
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu
1992-12-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Multiscale Analysis of Head Impacts in Contact Sports
NASA Astrophysics Data System (ADS)
Guttag, Mark; Sett, Subham; Franck, Jennifer; McNamara, Kyle; Bar-Kochba, Eyal; Crisco, Joseph; Blume, Janet; Franck, Christian
2012-02-01
Traumatic brain injury (TBI) is one of the world's major causes of death and disability. To aid companies in designing safer and improved protective gear and to aid the medical community in producing improved quantitative TBI diagnosis and assessment tools, a multiscale finite element model of the human brain, head and neck is being developed. Recorded impact data from football and hockey helmets instrumented with accelerometers are compared to simulated impact data in the laboratory. Using data from these carefully constructed laboratory experiments, we can quantify impact location, magnitude, and linear and angular accelerations of the head. The resultant forces and accelerations are applied to a fully meshed head-form created from MRI data by Simpleware. With appropriate material properties for each region of the head-form, the Abaqus finite element model can determine the stresses, strains, and deformations in the brain. Simultaneously, an in-vitro cellular TBI criterion is being developed to be incorporated into Abaqus models for the brain. The cell-based injury criterion functions the same way that damage criteria for metals and other materials are used to predict failure in structural materials.
Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plechac, Petr; Vlachos, Dionisios G.
We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less
NASA Astrophysics Data System (ADS)
Hellmich, Christian; Fritsch, Andreas; Dormieux, Luc
Biomimetics deals with the application of nature-made "design solutions" to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand "building plans" inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component "collagen" induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the "collagen reinforcement" breaks. Bone replacement materials should mimic these "microstructural mechanics" features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265-268, 2009).
NASA Astrophysics Data System (ADS)
Edera, Paolo; Bergamini, Davide; Trappe, Véronique; Giavazzi, Fabio; Cerbino, Roberto
2017-12-01
Particle-tracking microrheology (PT-μ r ) exploits the thermal motion of embedded particles to probe the local mechanical properties of soft materials. Despite its appealing conceptual simplicity, PT-μ r requires calibration procedures and operating assumptions that constitute a practical barrier to its wider application. Here we demonstrate differential dynamic microscopy microrheology (DDM-μ r ), a tracking-free approach based on the multiscale, temporal correlation study of the image intensity fluctuations that are observed in microscopy experiments as a consequence of the translational and rotational motion of the tracers. We show that the mechanical moduli of an arbitrary sample are determined correctly over a wide frequency range provided that the standard DDM analysis is reinforced with an iterative, self-consistent procedure that fully exploits the multiscale information made available by DDM. Our approach to DDM-μ r does not require any prior calibration, is in agreement with both traditional rheology and diffusing wave spectroscopy microrheology, and works in conditions where PT-μ r fails, providing thus an operationally simple, calibration-free probe of soft materials.
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-10-01
An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Zhu, W. D.; Smith, S. A.
While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less
Man-made objects cuing in satellite imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2009-01-01
We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less
Geometry-aware multiscale image registration via OBBTree-based polyaffine log-demons.
Seiler, Christof; Pennec, Xavier; Reyes, Mauricio
2011-01-01
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Awad, Ibrahim; Ladani, Leila
2015-12-04
Carbon nanotube (CNT)/copper (Cu) composite material is proposed to replace Cu-based through-silicon vias (TSVs) in micro-electronic packages. The proposed material is believed to offer extraordinary mechanical and electrical properties and the presence of CNTs in Cu is believed to overcome issues associated with miniaturization of Cu interconnects, such as electromigration. This study introduces a multi-scale modeling of the proposed TSV in order to evaluate its mechanical integrity under mechanical and thermo-mechanical loading conditions. Molecular dynamics (MD) simulation was used to determine CNT/Cu interface adhesion properties. A cohesive zone model (CZM) was found to be most appropriate to model the interface adhesion, and CZM parameters at the nanoscale were determined using MD simulation. CZM parameters were then used in the finite element analysis in order to understand the mechanical and thermo-mechanical behavior of composite TSV at micro-scale. From the results, CNT/Cu separation does not take place prior to plastic deformation of Cu in bending, and separation does not take place when standard thermal cycling is applied. Further investigation is recommended in order to alleviate the increased plastic deformation in Cu at the CNT/Cu interface in both loading conditions.
NASA Astrophysics Data System (ADS)
Talagani, Mohamad R.; Abdi, Frank; Saravanos, Dimitris; Chrysohoidis, Nikos; Nikbin, Kamran; Ragalini, Rose; Rodov, Irena
2013-05-01
The paper proposes the diagnostic and prognostic modeling and test validation of a Wireless Integrated Strain Monitoring and Simulation System (WISMOS). The effort verifies a hardware and web based software tool that is able to evaluate and optimize sensorized aerospace composite structures for the purpose of Structural Health Monitoring (SHM). The tool is an extension of an existing suite of an SHM system, based on a diagnostic-prognostic system (DPS) methodology. The goal of the extended SHM-DPS is to apply multi-scale nonlinear physics-based Progressive Failure analyses to the "as-is" structural configuration to determine residual strength, remaining service life, and future inspection intervals and maintenance procedures. The DPS solution meets the JTI Green Regional Aircraft (GRA) goals towards low weight, durable and reliable commercial aircraft. It will take advantage of the currently developed methodologies within the European Clean sky JTI project WISMOS, with the capability to transmit, store and process strain data from a network of wireless sensors (e.g. strain gages, FBGA) and utilize a DPS-based methodology, based on multi scale progressive failure analysis (MS-PFA), to determine structural health and to advice with respect to condition based inspection and maintenance. As part of the validation of the Diagnostic and prognostic system, Carbon/Epoxy ASTM coupons were fabricated and tested to extract the mechanical properties. Subsequently two composite stiffened panels were manufactured, instrumented and tested under compressive loading: 1) an undamaged stiffened buckling panel; and 2) a damaged stiffened buckling panel including an initial diamond cut. Next numerical Finite element models of the two panels were developed and analyzed under test conditions using Multi-Scale Progressive Failure Analysis (an extension of FEM) to evaluate the damage/fracture evolution process, as well as the identification of contributing failure modes. The comparisons between predictions and test results were within 10% accuracy.
Multiscale global identification of porous structures
NASA Astrophysics Data System (ADS)
Hatłas, Marcin; Beluch, Witold
2018-01-01
The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.
An adaptive framework to differentiate receiving water quality impacts on a multi-scale level.
Blumensaat, F; Tränckner, J; Helm, B; Kroll, S; Dirckx, G; Krebs, P
2013-01-01
The paradigm shift in recent years towards sustainable and coherent water resources management on a river basin scale has changed the subject of investigations to a multi-scale problem representing a great challenge for all actors participating in the management process. In this regard, planning engineers often face an inherent conflict to provide reliable decision support for complex questions with a minimum of effort. This trend inevitably increases the risk to base decisions upon uncertain and unverified conclusions. This paper proposes an adaptive framework for integral planning that combines several concepts (flow balancing, water quality monitoring, process modelling, multi-objective assessment) to systematically evaluate management strategies for water quality improvement. As key element, an S/P matrix is introduced to structure the differentiation of relevant 'pressures' in affected regions, i.e. 'spatial units', which helps in handling complexity. The framework is applied to a small, but typical, catchment in Flanders, Belgium. The application to the real-life case shows: (1) the proposed approach is adaptive, covers problems of different spatial and temporal scale, efficiently reduces complexity and finally leads to a transparent solution; and (2) water quality and emission-based performance evaluation must be done jointly as an emission-based performance improvement does not necessarily lead to an improved water quality status, and an assessment solely focusing on water quality criteria may mask non-compliance with emission-based standards. Recommendations derived from the theoretical analysis have been put into practice.
Edge enhancement and noise suppression for infrared image based on feature analysis
NASA Astrophysics Data System (ADS)
Jiang, Meng
2018-06-01
Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.