Sample records for based networks yield

  1. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  2. Sea ice classification using fast learning neural networks

    NASA Technical Reports Server (NTRS)

    Dawson, M. S.; Fung, A. K.; Manry, M. T.

    1992-01-01

    A first learning neural network approach to the classification of sea ice is presented. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) were tested on simulated data sets based on the known dominant scattering characteristics of the target class. Four classes were used in the data simulation: open water, thick lossy saline ice, thin saline ice, and multiyear ice. The BP network was unable to consistently converge to less than 25 percent error while the FL method yielded an average error of approximately 1 percent on the first iteration of training. The fast learning method presented can significantly reduce the CPU time necessary to train a neural network as well as consistently yield higher classification accuracy than BP networks.

  3. A network-based approach for semi-quantitative knowledge mining and its application to yield variability

    NASA Astrophysics Data System (ADS)

    Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph

    2016-12-01

    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.

  4. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  5. A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system.

    PubMed

    Govender, Nisha; Senan, Siju; Mohamed-Hussein, Zeti-Azura; Wickneswari, Ratnam

    2018-06-15

    The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.

  6. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were compared to 17 years of crop yield estimates from the FAOSTAT database (1998-2014). Results showed that the 30-cm soil moisture anomalies explained 89% of the crop yield variation in Niger, 72% in Burkina Faso, 82% in Mali and 84% in Senegal.

  7. Heterogeneous fractionation profiles of meta-analytic coactivation networks.

    PubMed

    Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T

    2017-04-01

    Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Heterogeneous fractionation profiles of meta-analytic coactivation networks

    PubMed Central

    Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.

    2017-01-01

    Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386

  9. Application of artificial neural networks in nonlinear analysis of trusses

    NASA Technical Reports Server (NTRS)

    Alam, J.; Berke, L.

    1991-01-01

    A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.

  10. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  11. Water management in the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, Brian J.; van Beek, Rens L. P. H.; Meeks, Elijah; Klein Goldewijk, Kees; Bierkens, Marc F. P.; Scheidel, Walter; Wassen, Martin J.; van der Velde, Ype; Dekker, Stefan C.

    2014-05-01

    Climate variability can have extreme impacts on societies in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or redistributing water resources through trade in food. Here, we explore how such water management strategies affected the resilience of the Roman Empire to climate variability in the water-limited region of the Mediterranean. Using the large-scale hydrological model PCR-GLOBWB and estimates of landcover based on the Historical Database of the Global Environment (HYDE) we generate potential agricultural yield maps under variable climate. HYDE maps of population density in conjunction with potential yield estimates are used to develop maps of agricultural surplus and deficit. The surplus and deficit regions are abstracted to nodes on a water redistribution network based on the Stanford Geospatial Network Model of the Roman World (ORBIS). This demand-driven, water redistribution network allows us to quantitatively explore how water management strategies such as irrigation and food trade improved the resilience of the Roman Empire to climate variability.

  12. A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks

    PubMed Central

    Riel-Mehan, Megan M; Shokat, Kevan M

    2014-01-01

    SUMMARY Despite the continuing progress made towards mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe, and report that the dialdehyde based probes possesses a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we develop a crosslinking scheme based on a kinase activity-based probe, and this new cross-linker provides an increase in efficiency and substrate specificity, including in the context of cell lysate. PMID:24746561

  13. Hidden long evolutionary memory in a model biochemical network

    NASA Astrophysics Data System (ADS)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  14. ANALYSIS OF CLINICAL AND DERMOSCOPIC FEATURES FOR BASAL CELL CARCINOMA NEURAL NETWORK CLASSIFICATION

    PubMed Central

    Cheng, Beibei; Stanley, R. Joe; Stoecker, William V; Stricklin, Sherea M.; Hinton, Kristen A.; Nguyen, Thanh K.; Rader, Ryan K.; Rabinovitz, Harold S.; Oliviero, Margaret; Moss, Randy H.

    2012-01-01

    Background Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the United States. In this research, we examine four different feature categories used for diagnostic decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are more restricted versions of the common dermoscopic features. Methods Combinations of the four feature categories are analyzed over a data set of 700 lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural Network Ensembles. Results Experiment results based on ten-fold cross validation for training and testing the different neural network-based techniques yielded an area under the receiver operating characteristic curve as high as 0.981 when all features were combined. The common dermoscopic lesion features generally yielded higher discrimination results than other individual feature categories. Conclusions Experimental results show that combining clinical and image information provides enhanced lesion discrimination capability over either information source separately. This research highlights the potential of data fusion as a model for the diagnostic process. PMID:22724561

  15. A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies

    ERIC Educational Resources Information Center

    Yorek, Nurettin; Ugulu, Ilker

    2015-01-01

    In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…

  16. Growth and Yield of Thinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1972-01-01

    Diameter distributions and yields for various combinations of site index, age, and density for unthinned and largely undisturbed stands of yellow-poplar (Liriodendron tulipifera L. ) have been presented by McGee and Della-Bianca (1967) and Beck and Della-Bianca (1970). Their results were based on the initial measurements of a network of permanent sample plots...

  17. Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development

    PubMed Central

    Rong, Junkang; Feltus, F. Alex; Waghmare, Vijay N.; Pierce, Gary J.; Chee, Peng W.; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J.; Wilkins, Thea A.; May, O. Lloyd; Smith, C. Wayne; Gannaway, John R.; Wendel, Jonathan F.; Paterson, Andrew H.

    2007-01-01

    QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. PMID:17565937

  18. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development.

    PubMed

    Rong, Junkang; Feltus, F Alex; Waghmare, Vijay N; Pierce, Gary J; Chee, Peng W; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J; Wilkins, Thea A; May, O Lloyd; Smith, C Wayne; Gannaway, John R; Wendel, Jonathan F; Paterson, Andrew H

    2007-08-01

    QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.

  19. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    PubMed

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-04-25

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  20. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    PubMed

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  1. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  2. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  3. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  4. Automatic breast density classification using a convolutional neural network architecture search procedure

    NASA Astrophysics Data System (ADS)

    Fonseca, Pablo; Mendoza, Julio; Wainer, Jacques; Ferrer, Jose; Pinto, Joseph; Guerrero, Jorge; Castaneda, Benjamin

    2015-03-01

    Breast parenchymal density is considered a strong indicator of breast cancer risk and therefore useful for preventive tasks. Measurement of breast density is often qualitative and requires the subjective judgment of radiologists. Here we explore an automatic breast composition classification workflow based on convolutional neural networks for feature extraction in combination with a support vector machines classifier. This is compared to the assessments of seven experienced radiologists. The experiments yielded an average kappa value of 0.58 when using the mode of the radiologists' classifications as ground truth. Individual radiologist performance against this ground truth yielded kappa values between 0.56 and 0.79.

  5. Online Social Networks for Crowdsourced Multimedia-Involved Behavioral Testing: An Empirical Study

    PubMed Central

    Choi, Jun-Ho; Lee, Jong-Seok

    2016-01-01

    Online social networks have emerged as effective crowdsourcing media to recruit participants in recent days. However, issues regarding how to effectively exploit them have not been adequately addressed yet. In this paper, we investigate the reliability and effectiveness of multimedia-involved behavioral testing via social network-based crowdsourcing, especially focused on Facebook as a medium to recruit participants. We conduct a crowdsourcing-based experiment for a music recommendation problem. It is shown that different advertisement methods yield different degrees of efficiency and there exist significant differences in behavioral patterns across different genders and different age groups. In addition, we perform a comparison of our experiment with other multimedia-involved crowdsourcing experiments built on Amazon Mechanical Turk (MTurk), which suggests that crowdsourcing-based experiments using social networks for recruitment can achieve comparable efficiency. Based on the analysis results, advantages and disadvantages of social network-based crowdsourcing and suggestions for successful experiments are also discussed. We conclude that social networks have the potential to support multimedia-involved behavioral tests to gather in-depth data even for long-term periods. PMID:26793137

  6. Online Social Networks for Crowdsourced Multimedia-Involved Behavioral Testing: An Empirical Study.

    PubMed

    Choi, Jun-Ho; Lee, Jong-Seok

    2015-01-01

    Online social networks have emerged as effective crowdsourcing media to recruit participants in recent days. However, issues regarding how to effectively exploit them have not been adequately addressed yet. In this paper, we investigate the reliability and effectiveness of multimedia-involved behavioral testing via social network-based crowdsourcing, especially focused on Facebook as a medium to recruit participants. We conduct a crowdsourcing-based experiment for a music recommendation problem. It is shown that different advertisement methods yield different degrees of efficiency and there exist significant differences in behavioral patterns across different genders and different age groups. In addition, we perform a comparison of our experiment with other multimedia-involved crowdsourcing experiments built on Amazon Mechanical Turk (MTurk), which suggests that crowdsourcing-based experiments using social networks for recruitment can achieve comparable efficiency. Based on the analysis results, advantages and disadvantages of social network-based crowdsourcing and suggestions for successful experiments are also discussed. We conclude that social networks have the potential to support multimedia-involved behavioral tests to gather in-depth data even for long-term periods.

  7. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  8. A dynamic network model for interbank market

    NASA Astrophysics Data System (ADS)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  9. Virtual water management in the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B.; Van Beek, L. P.; Meeks, E.; Klein Goldewijk, K.; Bierkens, M. F.; Scheidel, W.; Wassen, M. J.; Van der Velde, Y.; Dekker, S. C.

    2013-12-01

    Climate change can have extreme societal impacts particularly in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or the redistribution of virtual water resources through trade in food. Here, we explore how such water management strategies improve societal resilience by examining virtual water management during the Roman Empire in the water-limited region of the Mediterranean. Climate was prescribed based on previously published reconstructions which show that during the Roman Empire when the Central Mediterranean was wetter, the West and Southeastern Mediterranean became drier and vice-versa. Evidence indicates that these shifts in the climatic seesaw may have occurred relatively rapidly. Using the Global hydrological model PCR GLOBWB and estimates of landcover based on the HYDE dataset we generate potential agricultural yield maps under two extremes of this climatic seesaw. HYDE estimates of population in conjunction with potential yield estimates are used to identify regions of Mediterranean with a yield surplus or deficit. The surplus and deficit regions form nodes on a virtual water redistribution network with transport costs taken from the Stanford Geospatial Network Model of the Roman World (ORBIS). Our demand-driven, virtual water redistribution network allows us to quantitatively explore the importance of water management strategies such as irrigation and food trade for the Romans. By examining virtual water transport cost anomalies between climate scenarios our analysis highlights regions of the Mediterranean that were most vulnerable to climate change during the Roman Period.

  10. A user-centred methodology for designing an online social network to motivate health behaviour change.

    PubMed

    Kamal, Noreen; Fels, Sidney

    2013-01-01

    Positive health behaviour is critical to preventing illness and managing chronic conditions. A user-centred methodology was employed to design an online social network to motivate health behaviour change. The methodology was augmented by utilizing the Appeal, Belonging, Commitment (ABC) Framework, which is based on theoretical models for health behaviour change and use of online social networks. The user-centred methodology included four phases: 1) initial user inquiry on health behaviour and use of online social networks; 2) interview feedback on paper prototypes; 2) laboratory study on medium fidelity prototype; and 4) a field study on the high fidelity prototype. The points of inquiry through these phases were based on the ABC Framework. This yielded an online social network system that linked to external third party databases to deploy to users via an interactive website.

  11. Optical and Scintillation Properties of Polydimethyl-Diphenylsiloxane Based Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Quaranta, Alberto; Carturan, Sara Maria; Marchi, Tommaso; Kravchuk, Vladimir L.; Gramegna, Fabiana; Maggioni, Gianluigi; Degerlier, Meltem

    2010-04-01

    Polysiloxane based scintillators with high light yield have been synthesized. The polymer consists in cross-linked polydimethyl-co-diphenylsiloxane with different molar percentages of phenyl units. 2,5-diphenyl oxazole (PPO) and 2,5-bis(5-ter-butyl-2-benzoxazolyl)thiophene (BBOT) have been dispersed in the polymer as dopants. The energy transfer and scintillation capabilities have been investigated, for two different amounts of phenyl groups in the polymer network and for different concentrations of dye molecules, by means of fluorescence spectroscopy, ion beam induced luminescence (IBIL) and scintillation yield measurements with ¿ particles from an 241Am source. The luminescence features and the scintillation yields have been correlated to the composition of the scintillators.

  12. Photoacoustic image reconstruction via deep learning

    NASA Astrophysics Data System (ADS)

    Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes

    2018-02-01

    Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.

  13. A remote-sensing driven tool for estimating crop stress and yields

    USDA-ARS?s Scientific Manuscript database

    Biophysical crop simulation models are normally forced with precipitation data recorded with either gages or ground-based radar. However, ground based recording networks are not available at spatial and temporal scales needed to drive the models at many critical places on earth. An alternative would...

  14. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  15. Societal resilience to hydroclimatic change in the Roman World

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; van Beek, Rens; Bierkens, Marc; Dekker, Stefan

    2016-04-01

    The Romans were masters of water resource management. They employed sophisticated irrigation techniques alongside a highly integrated food redistribution system that provided stable food supplies under the variable hydroclimatic regime within the Roman World. However, a number of paleoclimate studies have demonstrated hydroclimatic changes during the Roman Period that exceeded the amplitude and persistence of normal climate variability. In particular, there was a shift from warmer and more stable hydroclimatic conditions in the Roman Warm Period (c.250 BC - 250 AD) to cooler and more variable conditions in Late Roman Period (after c.250 AD). In this study we use a socio-hydrological model of the Roman world to explore the impact of hydroclimatic changes between the Roman Warm Period and Late Roman Period on the Roman food production and redistribution system. We calculate crop yields based on temperature and water resource availability using PC Raster Global Water Balance model (PCR-GLOBWB). PCR-GLOBWB is forced with reanalysis climate fields reflecting reconstructions of Roman Warm Period to the Late Roman climate patterns. Cropland areas and settlement patterns are derived from a database of 14,700 Roman settlement sites and crop suitability maps. We simulate food redistribution using a multi-agent food redistribution network with link weights based on Orbis: The Stanford Geospatial Network of the Roman World. Our analysis indicates a reduction in crop yields during the Late Roman Period compared with the Roman Warm Period owing to cooler temperatures. In addition, our simulations indicate that increased hydroclimatic variability decreased the stability of yields in the Late Roman period. Crop yields in the Western Empire are simulated to have been impacted most by the change in climate owing to cooler average temperatures and greater hydroclimatic variability compared with the Eastern part of the Empire. The food redistribution network was essential to buffer against lower and less stable yields in the Late Roman Period. However, the Late Roman Period coincided with a breakdown in the food redistribution network, making the Western Roman Empire particularly vulnerable to changing climate conditions. Our analysis demonstrates a number of important processes that have general implications for water resource management in food production and redistribution systems.

  16. Recruiting Young Adult Cancer Survivors for Behavioral Research

    PubMed Central

    Horowitz, Santina; Marcus, Bess

    2012-01-01

    Young adults have been dramatically underrepresented in cancer survivorship research. One contributing factor is the difficulty recruiting this population. To identify effective recruitment strategies, the current study assessed the yield of strategies used to recruit young survivors for an exercise intervention including: clinic-based recruitment, recruitment at cancer-related events, mailings, telephone-based recruitment, advertising on the internet, radio, television and social networking media, distributing brochures and word-of-mouth referrals. When taking into account the strategies for which we could track the number of survivors approached, recruitment at an oncology clinic was the most productive: 38 % of those approached were screened and 8 % enrolled. When evaluating which strategy yielded the greatest percentage of the sample, however, mailings were the most productive. Given widespread use of the internet and social networking by young adults, investigators should also consider these low-cost recruitment strategies. PMID:22810954

  17. Recruiting young adult cancer survivors for behavioral research.

    PubMed

    Rabin, Carolyn; Horowitz, Santina; Marcus, Bess

    2013-03-01

    Young adults have been dramatically underrepresented in cancer survivorship research. One contributing factor is the difficulty recruiting this population. To identify effective recruitment strategies, the current study assessed the yield of strategies used to recruit young survivors for an exercise intervention including: clinic-based recruitment, recruitment at cancer-related events, mailings, telephone-based recruitment, advertising on the internet, radio, television and social networking media, distributing brochures and word-of-mouth referrals. When taking into account the strategies for which we could track the number of survivors approached, recruitment at an oncology clinic was the most productive: 38 % of those approached were screened and 8 % enrolled. When evaluating which strategy yielded the greatest percentage of the sample, however, mailings were the most productive. Given widespread use of the internet and social networking by young adults, investigators should also consider these low-cost recruitment strategies.

  18. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  19. Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks

    NASA Astrophysics Data System (ADS)

    Gong, Xinwei

    This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.

  20. Blood vessels segmentation of hatching eggs based on fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Qiu, Ling; Wu, Jun; Xiao, Zhitao

    2018-04-01

    FCN, trained end-to-end, pixels-to-pixels, predict result of each pixel. It has been widely used for semantic segmentation. In order to realize the blood vessels segmentation of hatching eggs, a method based on FCN is proposed in this paper. The training datasets are composed of patches extracted from very few images to augment data. The network combines with lower layer and deconvolution to enables precise segmentation. The proposed method frees from the problem that training deep networks need large scale samples. Experimental results on hatching eggs demonstrate that this method can yield more accurate segmentation outputs than previous researches. It provides a convenient reference for fertility detection subsequently.

  1. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Fieuzal, R.; Marais Sicre, C.; Baup, F.

    2017-05-01

    The yield forecasting of corn constitutes a key issue in agricultural management, particularly in the context of demographic pressure and climate change. This study presents two methods to estimate yields using artificial neural networks: a diagnostic approach based on all the satellite data acquired throughout the agricultural season, and a real-time approach, where estimates are updated after each image was acquired in the microwave and optical domains (Formosat-2, Spot-4/5, TerraSAR-X, and Radarsat-2) throughout the crop cycle. The results are based on the Multispectral Crop Monitoring experimental campaign conducted by the CESBIO (Centre d'Études de la BIOsphère) laboratory in 2010 over an agricultural region in southwestern France. Among the tested sensor configurations (multi-frequency, multi-polarization or multi-source data), the best yield estimation performance (using the diagnostic approach) is obtained with reflectance acquired in the red wavelength region, with a coefficient of determination of 0.77 and an RMSE of 6.6 q ha-1. In the real-time approach the combination of red reflectance and CHH backscattering coefficients provides the best compromise between the accuracy and earliness of the yield estimate (more than 3 months before the harvest), with an R2 of 0.69 and an RMSE of 7.0 q ha-1 during the development of the central stem. The two best yield estimates are similar in most cases (for more than 80% of the monitored fields), and the differences are related to discrepancies in the crop growth cycle and/or the consequences of pests.

  2. Adaptive Network Dynamics - Modeling and Control of Time-Dependent Social Contacts

    PubMed Central

    Schwartz, Ira B.; Shaw, Leah B.; Shkarayev, Maxim S.

    2013-01-01

    Real networks consisting of social contacts do not possess static connections. That is, social connections may be time dependent due to a variety of individual behavioral decisions based on current network connections. Examples of adaptive networks occur in epidemics, where information about infectious individuals may change the rewiring of healthy people, or in the recruitment of individuals to a cause or fad, where rewiring may optimize recruitment of susceptible individuals. In this paper, we will review some of the dynamical properties of adaptive networks, and show how they predict novel phenomena as well as yield insight into new controls. The applications will be control of epidemic outbreaks and terrorist recruitment modeling. PMID:25414913

  3. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks.

    PubMed

    Mei, Suyu; Zhu, Hao

    2015-01-26

    Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.

  5. Riemannian multi-manifold modeling and clustering in brain networks

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  6. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  7. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny L. Anderson

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates amore » new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.« less

  8. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    PubMed

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.

  9. Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.

    PubMed

    An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon

    2015-07-01

    Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Information filtering based on corrected redundancy-eliminating mass diffusion.

    PubMed

    Zhu, Xuzhen; Yang, Yujie; Chen, Guilin; Medo, Matus; Tian, Hui; Cai, Shi-Min

    2017-01-01

    Methods used in information filtering and recommendation often rely on quantifying the similarity between objects or users. The used similarity metrics often suffer from similarity redundancies arising from correlations between objects' attributes. Based on an unweighted undirected object-user bipartite network, we propose a Corrected Redundancy-Eliminating similarity index (CRE) which is based on a spreading process on the network. Extensive experiments on three benchmark data sets-Movilens, Netflix and Amazon-show that when used in recommendation, the CRE yields significant improvements in terms of recommendation accuracy and diversity. A detailed analysis is presented to unveil the origins of the observed differences between the CRE and mainstream similarity indices.

  11. Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (nemertea).

    PubMed

    Chen, Haixia; Strand, Malin; Norenburg, Jon L; Sun, Shichun; Kajihara, Hiroshi; Chernyshev, Alexey V; Maslakova, Svetlana A; Sundberg, Per

    2010-09-21

    It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.

  12. Management of ATM-based networks supporting multimedia medical information systems

    NASA Astrophysics Data System (ADS)

    Whitman, Robert A.; Blaine, G. James; Fritz, Kevin; Goodgold, Ken; Heisinger, Patrick

    1997-05-01

    Medical information systems are acquiring the ability to collect and deliver many different types of medical information. In support of the increased network demands necessitated by these expanded capabilities, asynchronous transfer mode (ATM) based networks are being deployed in medical care systems. While ATM supplies a much greater line rate than currently deployed networks, the management and standards surrounding ATM are yet to mature. This paper explores the management and control issues surrounding an ATM network supporting medical information systems, and examines how management impacts network performance and robustness. A multivendor ATM network at the BJC Health System/Washington University and the applications using the network are discussed. Performance information for specific applications is presented and analyzed. Network management's influence on application reliability is outlined. The information collected is used to show how ATM network standards and management tools influence network reliability and performance. Performance of current applications using the ATM network is discussed. Special attention is given to issues encountered in implementation of hypertext transfer protocol over ATM internet protocol (IP) communications. A classical IP ATM implementation yields greater than twenty percent higher network performance over LANE. Maximum performance for a host's suite of applications can be obtained by establishing multiple individually engineered IP links through its ATM network connection.

  13. Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-02-01

    Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.

  14. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly.

    PubMed

    Therriault, Daniel; White, Scott R; Lewis, Jennifer A

    2003-04-01

    The creation of geometrically complex fluidic devices is a subject of broad fundamental and technological interest. Here, we demonstrate the fabrication of three-dimensional (3D) microvascular networks through direct-write assembly of a fugitive organic ink. This approach yields a pervasive network of smooth cylindrical channels (approximately 10-300 microm) with defined connectivity. Square-spiral towers, isolated within this vascular network, promote fluid mixing through chaotic advection. These vertical towers give rise to dramatic improvements in mixing relative to simple straight (1D) and square-wave (2D) channels while significantly reducing the device planar footprint. We envisage that 3D microvascular networks will provide an enabling platform for a wide array of fluidic-based applications.

  15. A Self-organized MIMO-OFDM-based Cellular Network

    NASA Astrophysics Data System (ADS)

    Grünheid, Rainer; Fellenberg, Christian

    2012-05-01

    This paper presents a system proposal for a self-organized cellular network, which is based on the MIMO-OFDM transmission technique. Multicarrier transmission, combined with appropriate beamforming concepts, yields high bandwidth-efficiency and shows a robust behavior in multipath radio channels. Moreover, it provides a fine and tuneable granularity of space-time-frequency resources. Using a TDD approach and interference measurements in each cell, the Base Stations (BSs) decide autonomously which of the space-time-frequency resource blocks are allocated to the Mobile Terminals (MTs) in the cell, in order to fulfil certain Quality of Service (QoS) parameters. Since a synchronized Single Frequency Network (SFN), i.e., a re-use factor of one is applied, the resource blocks can be shared adaptively and flexibly among the cells, which is very advantageous in the case of a non-uniform MT distribution.

  16. Generalised power graph compression reveals dominant relationship patterns in complex networks

    PubMed Central

    Ahnert, Sebastian E.

    2014-01-01

    We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified. PMID:24663099

  17. Speech reconstruction using a deep partially supervised neural network.

    PubMed

    McLoughlin, Ian; Li, Jingjie; Song, Yan; Sharifzadeh, Hamid R

    2017-08-01

    Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more recently, restricted Boltzmann machine arrays; however, deep neural network (DNN)-based systems have been hampered by the limited amount of training data available from individual voice-loss patients. The authors propose a novel DNN structure that allows a partially supervised training approach on spectral features from smaller data sets, yielding very good results compared with the current state-of-the-art.

  18. Prediction of β-turns in proteins from multiple alignment using neural network

    PubMed Central

    Kaur, Harpreet; Raghava, Gajendra Pal Singh

    2003-01-01

    A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033

  19. Implementing a Standardized Social Networks Testing Strategy in a Low HIV Prevalence Jurisdiction.

    PubMed

    Schumann, Casey; Kahn, Danielle; Broaddus, Michelle; Dougherty, Jacob; Elderbrook, Megan; Vergeront, James; Westergaard, Ryan

    2018-05-15

    Alternative HIV testing strategies are needed to engage individuals not reached by traditional clinical or non-clinical testing programs. A social networks recruitment strategy, in which people at risk for or living with HIV are enlisted and trained by community-based agencies to recruit individuals from their social, sexual, or drug-using networks for HIV testing, demonstrates higher positivity rates compared to other non-clinical recruitment strategies in some jurisdictions. During 2013-2015, a social networks testing protocol was implemented in Wisconsin to standardize an existing social networks testing program. Six community-based, non-clinical agencies with multiple sites throughout the state implemented the protocol over the 2-year period. Both quantitative and qualitative data were collected. The new positivity rate (0.49%) through social networks testing did not differ from that of traditional counseling, testing, and referral recruitment methods (0.48%). Although social networks testing did not yield a higher new positivity rate compared to other testing strategies, it proved to be successful at reaching high risk individuals who may not otherwise engage in HIV testing.

  20. Parrondo's games based on complex networks and the paradoxical effect.

    PubMed

    Ye, Ye; Wang, Lu; Xie, Nenggang

    2013-01-01

    Parrondo's games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo's games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo's model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo's paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo's paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo's paradox occurs. The region of the parameter space where the strong Parrondo's paradox occurs reduces slightly when the average degree of the network increases.

  1. Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness.

    PubMed

    Truyers, Carla; Lesaffre, Emmanuel; Bartholomeeusen, Stefaan; Aertgeerts, Bert; Snacken, René; Brochier, Bernard; Yane, Fernande; Buntinx, Frank

    2010-03-22

    Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the H1N1 flu can easily spread from one region to another. In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks.

  2. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis.

    PubMed

    Zheng, Yangyang; Yuan, Qianqian; Yang, Xiaoyan; Ma, Hongwu

    2017-11-01

    Poly-(3-hydroxybutyrate) (P3HB) is a promising biodegradable plastic synthesized from acetyl-CoA. One important factor affecting the P3HB production cost is the P3HB yield. Through flux balance analysis of an extended genome-scale metabolic network of E. coli, we found that the introduction of non-oxidative glycolysis pathway (NOG), a previously reported pathway enabling complete carbon conservation, can increase the theoretical carbon yield from 67% to 89%, equivalent to the theoretical mass yield from 0.48g P3HB/g glucose to 0.64g P3HB/g glucose. Based on this analysis result, we introduced phosphoketolase and enhanced the NOG pathway in E. coli. The mass yield in the engineered strain was increased from 0.16g P3HB/g glucose to 0.24g P3HB/g glucose. We further overexpressed pntAB to enhance the NADPH availability and down-regulated TCA cycle to divert more acetyl-CoA toward P3HB. The final construct accumulated 5.7g/L P3HB and reached a carbon yield of 0.43 (a mass yield of 0.31g P3HB/g glucose) in shake flask cultures in shake flask cultures. The introduction of NOG pathway could also be useful for improving yields of many other biochemicals derived from acetyl-coA. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Impact of reduced scale free network on wireless sensor network

    NASA Astrophysics Data System (ADS)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  4. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    PubMed

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. A suffix arrays based approach to semantic search in P2P systems

    NASA Astrophysics Data System (ADS)

    Shi, Qingwei; Zhao, Zheng; Bao, Hu

    2007-09-01

    Building a semantic search system on top of peer-to-peer (P2P) networks is becoming an attractive and promising alternative scheme for the reason of scalability, Data freshness and search cost. In this paper, we present a Suffix Arrays based algorithm for Semantic Search (SASS) in P2P systems, which generates a distributed Semantic Overlay Network (SONs) construction for full-text search in P2P networks. For each node through the P2P network, SASS distributes document indices based on a set of suffix arrays, by which clusters are created depending on words or phrases shared between documents, therefore, the search cost for a given query is decreased by only scanning semantically related documents. In contrast to recently announced SONs scheme designed by using metadata or predefined-class, SASS is an unsupervised approach for decentralized generation of SONs. SASS is also an incremental, linear time algorithm, which efficiently handle the problem of nodes update in P2P networks. Our simulation results demonstrate that SASS yields high search efficiency in dynamic environments.

  6. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    PubMed

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  7. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    PubMed

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  8. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks

    PubMed Central

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-01-01

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed. PMID:29186756

  9. CUFID-query: accurate network querying through random walk based network flow estimation.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.

  10. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  11. Information filtering based on corrected redundancy-eliminating mass diffusion

    PubMed Central

    Zhu, Xuzhen; Yang, Yujie; Chen, Guilin; Medo, Matus; Tian, Hui

    2017-01-01

    Methods used in information filtering and recommendation often rely on quantifying the similarity between objects or users. The used similarity metrics often suffer from similarity redundancies arising from correlations between objects’ attributes. Based on an unweighted undirected object-user bipartite network, we propose a Corrected Redundancy-Eliminating similarity index (CRE) which is based on a spreading process on the network. Extensive experiments on three benchmark data sets—Movilens, Netflix and Amazon—show that when used in recommendation, the CRE yields significant improvements in terms of recommendation accuracy and diversity. A detailed analysis is presented to unveil the origins of the observed differences between the CRE and mainstream similarity indices. PMID:28749976

  12. Multitask assessment of roads and vehicles network (MARVN)

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Yi, Meng; Cai, Yiran; Blasch, Erik; Sullivan, Nichole; Sheaff, Carolyn; Chen, Genshe; Ling, Haibin

    2018-05-01

    Vehicle detection in wide area motion imagery (WAMI) has drawn increasing attention from the computer vision research community in recent decades. In this paper, we present a new architecture for vehicle detection on road using multi-task network, which is able to detect and segment vehicles, estimate their pose, and meanwhile yield road isolation for a given region. The multi-task network consists of three components: 1) vehicle detection, 2) vehicle and road segmentation, and 3) detection screening. Segmentation and detection components share the same backbone network and are trained jointly in an end-to-end way. Unlike background subtraction or frame differencing based methods, the proposed Multitask Assessment of Roads and Vehicles Network (MARVN) method can detect vehicles which are slowing down, stopped, and/or partially occluded in a single image. In addition, the method can eliminate the detections which are located at outside road using yielded road segmentation so as to decrease the false positive rate. As few WAMI datasets have road mask and vehicles bounding box anotations, we extract 512 frames from WPAFB 2009 dataset and carefully refine the original annotations. The resulting dataset is thus named as WAMI512. We extensively compare the proposed method with state-of-the-art methods on WAMI512 dataset, and demonstrate superior performance in terms of efficiency and accuracy.

  13. Joint physical and numerical modeling of water distribution networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.

    2009-01-01

    This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in somemore » cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.« less

  14. Self-Consistent Field Lattice Model for Polymer Networks.

    PubMed

    Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G

    2017-12-26

    A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

  15. Estimating the variance for heterogeneity in arm-based network meta-analysis.

    PubMed

    Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R

    2018-04-19

    Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  16. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies.

    PubMed

    Davis, Michael J; Janke, Robert

    2018-01-04

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  17. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert

    2018-05-01

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  18. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  19. Retained executive abilities in mild cognitive impairment are associated with increased white matter network connectivity.

    PubMed

    Farrar, Danielle C; Mian, Asim Z; Budson, Andrew E; Moss, Mark B; Koo, Bang Bon; Killiany, Ronald J

    2018-01-01

    To describe structural network differences in individuals with mild cognitive impairment (MCI) with high versus low executive abilities, as reflected by measures of white matter connectivity using diffusion tensor imaging (DTI). This was a retrospective, cross-sectional study. Of the 128 participants from the Alzheimer's Disease Neuroimaging Initiative database who had both a DTI scan as well as a diagnosis of MCI, we used an executive function score to classify the top 15 scoring patients as high executive ability, and the bottom-scoring 16 patients as low executive ability. Using a regions-of-interest-based analysis, we constructed networks and calculated graph theory measures on the constructed networks. We used automated tractography in order to compare differences in major white matter tracts. The high executive ability group yielded greater network size, density and clustering coefficient. The high executive ability group reflected greater fractional anisotropy bilaterally in the inferior and superior longitudinal fasciculi. The network measures of the high executive ability group demonstrated greater white matter integrity. This suggests that white matter reserve may confer greater protection of executive abilities. Loss of this reserve may lead to greater impairment in the progression to Alzheimer's disease dementia. • The MCI high executive ability group yielded a larger network. • The MCI high executive ability group had greater FA in numerous tracts. • White matter reserve may confer greater protection of executive abilities. • Loss of executive reserve may lead to greater impairment in AD dementia.

  20. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.

    PubMed

    Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong

    2013-11-01

    In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. A permutation testing framework to compare groups of brain networks.

    PubMed

    Simpson, Sean L; Lyday, Robert G; Hayasaka, Satoru; Marsh, Anthony P; Laurienti, Paul J

    2013-01-01

    Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Current comparison approaches generally either rely on a summary metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent topological properties of the network, yielding little power and failing to make network level comparisons. Gleaning deeper insights into normal and abnormal changes in complex brain function demands methods that take advantage of the wealth of data present in an entire brain network. Here we propose a permutation testing framework that allows comparing groups of networks while incorporating topological features inherent in each individual network. We validate our approach using simulated data with known group differences. We then apply the method to functional brain networks derived from fMRI data.

  2. Can Learning Collaboratives Support Implementation by Rewiring Professional Networks?

    PubMed

    Bunger, Alicia C; Hanson, Rochelle F; Doogan, Nathan J; Powell, Byron J; Cao, Yiwen; Dunn, Jerry

    2016-01-01

    This study examined how a learning collaborative focusing on trauma-focused CBT (TF-CBT) impacted advice-seeking patterns between clinicians and three key learning sources: (1) training experts who share technical knowledge about TF-CBT, (2) peers from other participating organizations who share their implementation experiences, and (3) colleagues from their own agency who provide social and professional support. Based on surveys administered to 132 clinicians from 32 agencies, participants' professional networks changed slightly over time by forming new advice-seeking relationships with training experts. While small, these changes at the clinician-level yielded substantial changes in the structure of the regional advice network.

  3. Can Learning Collaboratives Support Implementation By Rewiring Professional Networks?

    PubMed Central

    Hanson, Rochelle F.; Doogan, Nathan J.; Powell, Byron J.; Cao, Yiwen; Dunn, Jerry

    2015-01-01

    This study examined how a learning collaborative focusing on Trauma-Focused CBT (TF-CBT) impacted advice-seeking patterns between clinicians and three key learning sources: (1) training experts who share technical knowledge about TF-CBT, (2) peers from other participating organizations who share their implementation experiences, and (3) colleagues from their own agency who provide social and professional support. Based on surveys administered to 132 clinicians from 32 agencies, participants’ professional networks changed slightly over time by forming new advice-seeking relationships with training experts. While small, these changes at the clinician-level yielded substantial changes in the structure of the regional advice network. PMID:25542237

  4. Understanding the scale and drivers of ecosystem services in working landscapes of the southeastern US

    USDA-ARS?s Scientific Manuscript database

    The USDA Long Term Agroecosystem Research (LTAR) network exists to build knowledge required for “sustainable intensification of agriculture, increasing yields from the current agricultural land base while minimizing or reversing agriculture’s adverse environmental impacts.” Of the 18 current LTAR lo...

  5. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  6. Comparison Between the Use of SAR and Optical Data for Wheat Yield Estimations Using Crop Model Assimilation

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Yang, Hao; Jin, X. L.; Yang, Guijun; Casa, Raffaele; Pignatti, Stefano

    2016-08-01

    The ultimate aim of this work is to develop methods for the assimilation of the biophysical variables estimated by remote sensing in a suitable crop growth model. Two strategies were followed, one based on the use of Leaf Area Index (LAI) estimated by optical data, and the other based on the use of biomass estimated by SAR. The first one estimates LAI from the reflectance measured by the optical sensors on board of HJ1A, HJ1B and Landsat, using a method based on the training of artificial neural networks (ANN) with PROSAIL model simulations. The retrieved LAI is used to improve wheat yield estimation, using assimilation methods based on the Ensemble Kalman Filter, which assimilate the biophysical variables into growth crop model. The second strategy estimates biomass from SAR imagery. Polarimetric decomposition methods were used based on multi-temporal fully polarimetric Radarsat-2 data during the entire growing season. The estimated biomass was assimilating to FAO Aqua crop model for improving the winter wheat yield estimation, with the Particle Swarm Optimization (PSO) method. These procedures were used in a spatial application with data collected in the rural area of Yangling (Shaanxi Province) in 2014 and were validated for a number of wheat fields for which ground yield data had been recorded and according to statistical yield data for the area.

  7. Real-time yield estimation based on deep learning

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Sheppard, Clay

    2017-05-01

    Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.

  8. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  9. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  10. A high-capacity model for one shot association learning in the brain

    PubMed Central

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs. PMID:25426060

  11. A high-capacity model for one shot association learning in the brain.

    PubMed

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs.

  12. Characterization of Chemically and Thermally Treated Oil-in-Water Heteroaggregates and Comparison to Conventional Emulsions.

    PubMed

    Maier, Christiane; Reichert, Corina L; Weiss, Jochen

    2016-10-01

    Heteroaggregated oil-in-water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3-dimensional network at comparably low-fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d 43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ 0 ) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP-based emulsions (τ 0 , SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29-fold (glutaraldehyde) and 2-fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin-driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents. © 2016 Institute of Food Technologists®.

  13. Mixed-method Exploration of Social Network Links to Participation

    PubMed Central

    Kreider, Consuelo M.; Bendixen, Roxanna M.; Mann, William C.; Young, Mary Ellen; McCarty, Christopher

    2015-01-01

    The people who regularly interact with an adolescent form that youth's social network, which may impact participation. We investigated the relationship of social networks to participation using personal network analysis and individual interviews. The sample included 36 youth, age 11 – 16 years. Nineteen had diagnoses of learning disability, attention disorder, or high-functioning autism and 17 were typically developing. Network analysis yielded 10 network variables, of which 8 measured network composition and 2 measured network structure, with significant links to at least one measure of participation using the Children's Assessment of Participation and Enjoyment (CAPE). Interviews from youth in the clinical group yielded description of strategies used to negotiate social interactions, as well as processes and reasoning used to remain engaged within social networks. Findings contribute to understanding the ways social networks are linked to youth participation and suggest the potential of social network factors for predicting rehabilitation outcomes. PMID:26594737

  14. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  15. Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyi; Zhong, Donglai; Qiu, Chenguang; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2018-01-01

    In this letter, we explore the vertical scaling-down behavior of carbon nanotube (CNT) network film field-effect transistors (FETs) and show that by using a high-efficiency gate insulator, we can substantially improve the subthreshold swing (SS) and its uniformity. By using an HfO2 layer with a thickness of 7.3 nm as the gate insulator, we fabricated CNT network film FETs with a long channel (>2 μm) that exhibit an SS of approximately 60 mV/dec. The preferred thickness of HfO2 as the gate insulator in a CNT network FET is between 7 nm and 10 nm, simultaneously yielding an excellent SS (<80 mV/decade) and low gate leakage. However, because of the statistical fluctuations of the network CNT channel, the lateral scaling of CNT network film-based FETs is more difficult than that of conventional FETs. Experiments suggest that excellent SS is difficult to achieve statistically in CNT network film FETs with a small channel length (smaller than the mean length of the CNTs), which eventually limits the further scaling down of this kind of CNT FET to the sub-micrometer regime.

  16. A fast community detection method in bipartite networks by distance dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Hong-liang; Ch'ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-bing

    2018-04-01

    Many real bipartite networks are found to be divided into two-mode communities. In this paper, we formulate a new two-mode community detection algorithm BiAttractor. It is based on distance dynamics model Attractor proposed by Shao et al. with extension from unipartite to bipartite networks. Since Jaccard coefficient of distance dynamics model is incapable to measure distances of different types of vertices in bipartite networks, our main contribution is to extend distance dynamics model from unipartite to bipartite networks using a novel measure Local Jaccard Distance (LJD). Furthermore, distances between different types of vertices are not affected by common neighbors in the original method. This new idea makes clear assumptions and yields interpretable results in linear time complexity O(| E |) in sparse networks, where | E | is the number of edges. Experiments on synthetic networks demonstrate it is capable to overcome resolution limit compared with existing other methods. Further research on real networks shows that this model can accurately detect interpretable community structures in a short time.

  17. Robust hepatic vessel segmentation using multi deep convolution network

    NASA Astrophysics Data System (ADS)

    Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei

    2017-03-01

    Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.

  18. Eradicating catastrophic collapse in interdependent networks via reinforced nodes

    PubMed Central

    Yuan, Xin; Hu, Yanqing; Havlin, Shlomo

    2017-01-01

    In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter—the functioning component—comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdős–Rényi (ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks. PMID:28289204

  19. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity.

    PubMed

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-09-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  20. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity

    PubMed Central

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-01-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. PMID:26073648

  1. Deep Visual Attention Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Wenguan; Shen, Jianbing

    2018-05-01

    In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.

  2. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  3. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  4. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    PubMed

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  5. The SUNY biomedical communication network: six years of progress in on-line bibiographic retrieval.

    PubMed Central

    Egeland, J

    1975-01-01

    The SUNY Biomedical Communication Network became operational in 1968 as the first on-line bibliograhpic retrieval service for biomedical literature. Since 1968, the SUNY/BCN has grown in size from nine to thirty-two medical and university libraries and has expanded its data base coverage to include the ERIC and Psychological Abstracts data bases in addition to the full ten-year retrospective MEDLARS data base. Aside from the continuous provision of an on-line searching system, the SUNY experience over the last six years has yielded valuable information in the following areas of: (1) monograph indexing and retrieval, (2) shared cataloging, (3) user interaction and education in on-line systems, and (4) member participation in Network policy-making processes. The continued success of the SUNY/BCN is evidence that it is possible to provide a high quality on-line bibliographic retrieval system at cost to academic institutions. SUNY's success in this effort is the result of centralized resource sharing and effective regional networking, combined with thoughtful planning by user advisory committees. PMID:1173557

  6. Preferential paths in yield stress fluid flow through a porous medium

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  7. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis.

    PubMed

    Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H

    2014-05-01

    Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

  8. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm.

    PubMed

    Jacob, Samuel; Banerjee, Rintu

    2016-08-01

    A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V

    2006-12-12

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.

  10. Nanoporous Polymers Based on Liquid Crystals

    PubMed Central

    Mulder, Dirk Jan; Sijbesma, Rint; Schenning, Albert

    2018-01-01

    In the present review, we discuss recent advances in the field of nanoporous networks based on polymerisable liquid crystals. The field has matured in the last decade, yielding polymers having 1D, 2D, and 3D channels with pore sizes on the nanometer scale. Next to the current progress, some of the future challenges are presented, with the integration of nanoporous membranes in functional devices considered as the biggest challenge. PMID:29324669

  11. Network-Based Approaches in Drug Discovery and Early Development

    PubMed Central

    Harrold, JM; Ramanathan, M; Mager, DE

    2015-01-01

    Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802

  12. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.

    PubMed

    Hardy, Simon; Robillard, Pierre N

    2008-01-15

    Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs.

  13. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia.

    PubMed

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.

  14. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia

    PubMed Central

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.

    2015-01-01

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745

  15. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.

  16. Value of recruitment strategies used in a primary care practice-based trial.

    PubMed

    Ellis, Shellie D; Bertoni, Alain G; Bonds, Denise E; Clinch, C Randall; Balasubramanyam, Aarthi; Blackwell, Caroline; Chen, Haiying; Lischke, Michael; Goff, David C

    2007-05-01

    "Physicians-recruiting-physicians" is the preferred recruitment approach for practice-based research. However, yields are variable; and the approach can be costly and lead to biased, unrepresentative samples. We sought to explore the potential efficiency of alternative methods. We conducted a retrospective analysis of the yield and cost of 10 recruitment strategies used to recruit primary care practices to a randomized trial to improve cardiovascular disease risk factor management. We measured response and recruitment yields and the resources used to estimate the value of each strategy. Providers at recruited practices were surveyed about motivation for participation. Response to 6 opt-in marketing strategies was 0.40% (53/13290), ranging from 0% to 2.86% by strategy; 33.96% (18/53) of responders were recruited to the study. Of those recruited from opt-out strategies, 8.68% joined the study, ranging from 5.35% to 41.67% per strategy. A strategy that combined both opt-in and opt-out approaches resulted in a 51.14% (90/176) response and a 10.80% (19/90) recruitment rate. Cost of recruitment was $613 per recruited practice. Recruitment approaches based on in-person meetings (41.67%), previous relationships (33.33%), and borrowing an Area Health Education Center's established networks (10.80%), yielded the most recruited practices per effort and were most cost efficient. Individual providers who chose to participate were motivated by interest in improving their clinical practice (80.5%); contributing to CVD primary prevention (54.4%); and invigorating their practice with new ideas (42.1%). This analysis provides suggestions for future recruitment efforts and research. Translational studies with limited funds could consider multi-modal recruitment approaches including in-person presentations to practice groups and exploitation of previous relationships, which require the providers to opt-out, and interactive opt-in approaches which rely on borrowed networks. These approaches can be supplemented with non-relationship-based opt-out strategies such as cold calls strategically targeted to underrepresented provider groups.

  17. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    PubMed

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks.

    PubMed

    Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei

    2017-07-19

    Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).

  19. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    PubMed Central

    Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus

    2013-01-01

    This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992

  20. A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks

    PubMed Central

    Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei

    2017-01-01

    Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951

  1. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    PubMed

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Yield of reversible colloidal gels during flow start-up: release from kinetic arrest.

    PubMed

    Johnson, Lilian C; Landrum, Benjamin J; Zia, Roseanna N

    2018-06-05

    Yield of colloidal gels during start-up of shear flow is characterized by an overshoot in shear stress that accompanies changes in network structure. Prior studies of yield of reversible colloidal gels undergoing strong flow model the overshoot as the point at which network rupture permits fluidization. However, yield under weak flow, which is of interest in many biological and industrial fluids shows no such disintegration. The mechanics of reversible gels are influenced by bond strength and durability, where ongoing rupture and re-formation impart aging that deepens kinetic arrest [Zia et al., J. Rheol., 2014, 58, 1121], suggesting that yield be viewed as release from kinetic arrest. To explore this idea, we study reversible colloidal gels during start-up of shear flow via dynamic simulation, connecting rheological yield to detailed measurements of structure, bond dynamics, and potential energy. We find that pre-yield stress grows temporally with the changing roles of microscopic transport processes: early time behavior is set by Brownian diffusion; later, advective displacements permit relative particle motion that stretches bonds and stores energy. Stress accumulates in stretched, oriented bonds until yield, which is a tipping point to energy release, and is passed with a fully intact network, where the loss of very few bonds enables relaxation of many, easing glassy arrest. This is immediately followed by a reversal to growth in potential energy during bulk plastic deformation and condensation into larger particle domains, supporting the view that yield is an activated release from kinetic arrest. The continued condensation of dense domains and shrinkage of network surfaces, along with a decrease in the potential energy, permit the gel to evolve toward more complete phase separation, supporting our view that yield of weakly sheared gels is a 'non-equilibrium phase transition'. Our findings may be particularly useful for industrial or other coatings, where weak, slow application via shear may lead to phase separation, inhibiting smooth distribution.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qing; Department of Modern Physics, University of Science and Technology of China, Hefei 230026; Cheng Jianhua

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  4. Entraining the topology and the dynamics of a network of phase oscillators

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  5. Design and implementation of a random neural network routing engine.

    PubMed

    Kocak, T; Seeber, J; Terzioglu, H

    2003-01-01

    Random neural network (RNN) is an analytically tractable spiked neural network model that has been implemented in software for a wide range of applications for over a decade. This paper presents the hardware implementation of the RNN model. Recently, cognitive packet networks (CPN) is proposed as an alternative packet network architecture where there is no routing table, instead the RNN based reinforcement learning is used to route packets. Particularly, we describe implementation details for the RNN based routing engine of a CPN network processor chip: the smart packet processor (SPP). The SPP is a dual port device that stores, modifies, and interprets the defining characteristics of multiple RNN models. In addition to hardware design improvements over the software implementation such as the dual access memory, output calculation step, and reduced output calculation module, this paper introduces a major modification to the reinforcement learning algorithm used in the original CPN specification such that the number of weight terms are reduced from 2n/sup 2/ to 2n. This not only yields significant memory savings, but it also simplifies the calculations for the steady state probabilities (neuron outputs in RNN). Simulations have been conducted to confirm the proper functionality for the isolated SPP design as well as for the multiple SPP's in a networked environment.

  6. LVQ and backpropagation neural networks applied to NASA SSME data

    NASA Technical Reports Server (NTRS)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  7. Sparse network-based models for patient classification using fMRI

    PubMed Central

    Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina

    2015-01-01

    Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459

  8. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  9. Slotted Waveguide and Antenna Study for HPM and RF Applications

    DTIC Science & Technology

    2017-07-25

    parallel metal plates separated by lmm, depending on the particular characteristics of the case (waveguide dimensions, SEY (secondary e lectron yield...waveguide antenna, shown in Figure 23, was studied . A new feed ing network based on a composite right-hand/left-hand (CRLH) waveguide structure was...approach is based on the assumption that the external coupling between the array elements is negligible, which is acceptable in the case of the

  10. Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver

    NASA Astrophysics Data System (ADS)

    Gutzler, Rico; Cardenas, Luis; Lipton-Duffin, Josh; El Garah, Mohamed; Dinca, Laurentiu E.; Szakacs, Csaba E.; Fu, Chaoying; Gallagher, Mark; Vondráček, Martin; Rybachuk, Maksym; Perepichka, Dmitrii F.; Rosei, Federico

    2014-02-01

    We report the synthesis of extended two-dimensional organic networks on Cu(111), Ag(111), Cu(110), and Ag(110) from thiophene-based molecules. A combination of scanning tunnelling microscopy and X-ray photoemission spectroscopy yields insight into the reaction pathways from single molecules towards the formation of two-dimensional organometallic and polymeric structures via Ullmann reaction dehalogenation and C-C coupling. The thermal stability of the molecular networks is probed by annealing at elevated temperatures of up to 500 °C. On Cu(111) only organometallic structures are formed, while on Ag(111) both organometallic and covalent polymeric networks were found to coexist. The ratio between organometallic and covalent bonds could be controlled by means of the annealing temperature. The thiophene moieties start degrading at 200 °C on the copper surface, whereas on silver the degradation process becomes significant only at 400 °C. Our work reveals how the interplay of a specific surface type and temperature steers the formation of organometallic and polymeric networks and describes how these factors influence the structural integrity of two-dimensional organic networks.We report the synthesis of extended two-dimensional organic networks on Cu(111), Ag(111), Cu(110), and Ag(110) from thiophene-based molecules. A combination of scanning tunnelling microscopy and X-ray photoemission spectroscopy yields insight into the reaction pathways from single molecules towards the formation of two-dimensional organometallic and polymeric structures via Ullmann reaction dehalogenation and C-C coupling. The thermal stability of the molecular networks is probed by annealing at elevated temperatures of up to 500 °C. On Cu(111) only organometallic structures are formed, while on Ag(111) both organometallic and covalent polymeric networks were found to coexist. The ratio between organometallic and covalent bonds could be controlled by means of the annealing temperature. The thiophene moieties start degrading at 200 °C on the copper surface, whereas on silver the degradation process becomes significant only at 400 °C. Our work reveals how the interplay of a specific surface type and temperature steers the formation of organometallic and polymeric networks and describes how these factors influence the structural integrity of two-dimensional organic networks. Electronic supplementary information (ESI) available: Additional STM data and DFT results. See DOI: 10.1039/c3nr05710k

  11. Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)

    2000-01-01

    In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.

  12. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks

    PubMed Central

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627

  13. Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant

    PubMed Central

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  14. Predicting the performance of local seismic networks using Matlab and Google Earth.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Eric Paul

    2009-11-01

    We have used Matlab and Google Earth to construct a prototype application for modeling the performance of local seismic networks for monitoring small, contained explosions. Published equations based on refraction experiments provide estimates of peak ground velocities as a function of event distance and charge weight. Matlab routines implement these relations to calculate the amplitudes across a network of stations from sources distributed over a geographic grid. The amplitudes are then compared to ambient noise levels at the stations, and scaled to determine the smallest yield that could be detected at each source location by a specified minimum number ofmore » stations. We use Google Earth as the primary user interface, both for positioning the stations of a hypothetical local network, and for displaying the resulting detection threshold contours.« less

  15. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns

    PubMed Central

    Lezon, Timothy R.; Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V.

    2006-01-01

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. PMID:17138668

  16. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  17. Modeling soil erosion processes on a hillslope with dendritic rill network

    NASA Astrophysics Data System (ADS)

    Chen, L.; Wu, S.

    2017-12-01

    The effect of planform of dendritic rill network on hillslope rainfall-runoff and soil erosion processes was usually neglected in previous studies, which, however, could dramatically alter the mechanisms of the hydrologic and geomorphic processes. In the present study, the interrill areas were treated as two-dimensional (2D), while the complicated rill network was represented by a piecewise one-dimensional (1D) rill retaining the characteristic of rill network (the rill density and average rill deflection angle). Based on a 2D diffusive wave overland flow model, and the WEPP erosion theory, the 1D and 2D coupling model was developed to simulate the hillslope runoff and soil erosion on both the interrill areas and the representative rill. The rill number and rill inclination angle were introduced in the model to reflect the actual rill density, rill length, rill slope gradient, and confluence processes from the interrill areas to the rill. The excess rainfall and sediment load coming into the representative rill were not only from the two lateral interrill areas but also from the upstream interrill areas. The model was successfully tested against experimental data obtained from a hillslope with complicated rill network. Comparison of the results obtained from the present model with WEPP indicates that WEPP calculated the hillslope runoff yield accurately but overestimated the amount of rill erosion. Moreover, the effects of rill deflection angle and rill number distribution on both interrill and rill erosions were examined and found neglecting the planar characteristic of rill network has a considerable impact on soil erosion prediction. It is expected that the model can extend the scope of WEPP application and predict more accurately the runoff and erosion yield on a hillslope with complicated rill network.

  18. Exploring the networking behaviors of hospital organizations.

    PubMed

    Di Vincenzo, Fausto

    2018-05-08

    Despite an extensive body of knowledge exists on network outcomes and on how hospital network structures may contribute to the creation of outcomes at different levels of analysis, less attention has been paid to understanding how and why hospital organizational networks evolve and change. The aim of this paper is to study the dynamics of networking behaviors of hospital organizations. Stochastic actor-based model for network dynamics was used to quantitatively examine data covering six-years of patient transfer relations among 35 hospital organizations. Specifically, the study investigated about determinants of patient transfer evolution modeling partner selection choice as a combination of multiple organizational attributes and endogenous network-based processes. The results indicate that having overlapping specialties and treating patients with the same case-mix decrease the likelihood of observing network ties between hospitals. Also, results revealed as geographical proximity and membership of the same LHA have a positive impact on the networking behavior of hospitals organizations, there is a propensity in the network to choose larger hospitals as partners, and to transfer patients between hospitals facing similar levels of operational uncertainty. Organizational attributes (overlapping specialties and case-mix), institutional factors (LHA), and geographical proximity matter in the formation and shaping of hospital networks over time. Managers can benefit from the use of these findings by clearly identifying the role and strategic positioning of their hospital with respect to the entire network. Social network analysis can yield novel information and also aid policy makers in the formation of interventions, encouraging alliances among providers as well as planning health system restructuring.

  19. CENet: A Cabinet Environmental Sensing Network

    PubMed Central

    Zhang, Zusheng; Yu, Fengqi; Chen, Liang; Cao, Guangmin

    2010-01-01

    For data center cooling and intelligent substation systems, real time cabinet environmental monitoring is a strong requirement. Monitoring data, such as temperature, humidity, and noise, is important for operators to manage the facilities in cabinets. We here propose a sensing network, called CENet, which is energy efficient and reliable for cabinet environmental monitoring. CENet achieves above 93% reliable data yield and sends fewer beacons compared to periodic beaconing. It does so through a data-aided routing protocol. In addition, based on B-MAC, we propose a scheduling scheme to increase the lifetime of the network by reducing unnecessary message snooping and channel listening, thus it is more energy efficient than B-MAC. The performance of CENet is evaluated by simulations and experiments. PMID:22205856

  20. ICA model order selection of task co-activation networks.

    PubMed

    Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.

  1. ICA model order selection of task co-activation networks

    PubMed Central

    Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802

  2. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    NASA Astrophysics Data System (ADS)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  3. Multi-casting approach for vascular networks in cellularized hydrogels.

    PubMed

    Justin, Alexander W; Brooks, Roger A; Markaki, Athina E

    2016-12-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel. © 2016 The Authors.

  4. Interaction mining and skill-dependent recommendations for multi-objective team composition

    PubMed Central

    Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram

    2011-01-01

    Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939

  5. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Early Yields of Biomass Plantations in the North-Central U.S.

    Treesearch

    Edward Hansen

    1990-01-01

    A network of hybrid poplar short-rotation plantations was established across the north-central region of the U.S. during 1986-1988. This paper documents the greater than expected early yields from these plantations and dicusses potential yields and uncertainties surrounding potential yield estimates.

  7. Network geometry inference using common neighbors

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-08-01

    We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.

  8. Resting State EEG-based biometrics for individual identification using convolutional neural networks.

    PubMed

    Lan Ma; Minett, James W; Blu, Thierry; Wang, William S-Y

    2015-08-01

    Biometrics is a growing field, which permits identification of individuals by means of unique physical features. Electroencephalography (EEG)-based biometrics utilizes the small intra-personal differences and large inter-personal differences between individuals' brainwave patterns. In the past, such methods have used features derived from manually-designed procedures for this purpose. Another possibility is to use convolutional neural networks (CNN) to automatically extract an individual's best and most unique neural features and conduct classification, using EEG data derived from both Resting State with Open Eyes (REO) and Resting State with Closed Eyes (REC). Results indicate that this CNN-based joint-optimized EEG-based Biometric System yields a high degree of accuracy of identification (88%) for 10-class classification. Furthermore, rich inter-personal difference can be found using a very low frequency band (0-2Hz). Additionally, results suggest that the temporal portions over which subjects can be individualized is less than 200 ms.

  9. Discovery and validation of gene classifiers for endocrine-disrupting chemicals in zebrafish (danio rerio)

    PubMed Central

    2012-01-01

    Background Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions. PMID:22849515

  10. An ensemble framework for clustering protein-protein interaction networks.

    PubMed

    Asur, Sitaram; Ucar, Duygu; Parthasarathy, Srinivasan

    2007-07-01

    Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. Supplementary data are available at Bioinformatics online.

  11. White blood cells identification system based on convolutional deep neural learning networks.

    PubMed

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  12. Revisiting tests for neglected nonlinearity using artificial neural networks.

    PubMed

    Cho, Jin Seo; Ishida, Isao; White, Halbert

    2011-05-01

    Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.

  13. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China

    NASA Astrophysics Data System (ADS)

    Xu, Shiluo; Niu, Ruiqing

    2018-02-01

    Every year, landslides pose huge threats to thousands of people in China, especially those in the Three Gorges area. It is thus necessary to establish an early warning system to help prevent property damage and save peoples' lives. Most of the landslide displacement prediction models that have been proposed are static models. However, landslides are dynamic systems. In this paper, the total accumulative displacement of the Baijiabao landslide is divided into trend and periodic components using empirical mode decomposition. The trend component is predicted using an S-curve estimation, and the total periodic component is predicted using a long short-term memory neural network (LSTM). LSTM is a dynamic model that can remember historical information and apply it to the current output. Six triggering factors are chosen to predict the periodic term using the Pearson cross-correlation coefficient and mutual information. These factors include the cumulative precipitation during the previous month, the cumulative precipitation during a two-month period, the reservoir level during the current month, the change in the reservoir level during the previous month, the cumulative increment of the reservoir level during the current month, and the cumulative displacement during the previous month. When using one-step-ahead prediction, LSTM yields a root mean squared error (RMSE) value of 6.112 mm, while the support vector machine for regression (SVR) and the back-propagation neural network (BP) yield values of 10.686 mm and 8.237 mm, respectively. Meanwhile, the Elman network (Elman) yields an RMSE value of 6.579 mm. In addition, when using multi-step-ahead prediction, LSTM obtains an RMSE value of 8.648 mm, while SVR, BP and the Elman network obtains RSME values of 13.418 mm, 13.014 mm, and 13.370 mm. The predicted results indicate that, to some extent, the dynamic model (LSTM) achieves results that are more accurate than those of the static models (i.e., SVR and BP). LSTM even displays better performance than the Elman network, which is also a dynamic method.

  14. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    PubMed Central

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  15. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    PubMed

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.

  16. Regulation Mechanism of Salt Ions for Superlubricity of Hydrophilic Polymer Cross-Linked Networks on Ti6Al4V.

    PubMed

    Zhang, Caixia; Liu, Yuhong; Liu, Zhifeng; Zhang, Hongyu; Cheng, Qiang; Yang, Congbin

    2017-03-07

    Poly(vinylphosphonic acid) (PVPA) cross-linked networks on Ti 6 Al 4 V show superlubricity behavior when sliding against polytetrafluoroethylene in water-based lubricants. The superlubricity can occur but only with the existence of salt ions in the polymer cross-linked networks. This is different from the phenomenon in most polymer brushes. An investigation into the mechanism revealed that cations and anions in the lubricants worked together to yield the superlubricity even under harsh conditions. It is proposed that the preferential interactions of cations with PVPA molecules rather than water molecules are the main reason for the superlubricity in water-based lubricants. The interaction of anions with water molecules regulates the properties of the tribological interfaces, which influences the magnitude of the friction coefficient. Owing to the novel cross-linked networks and the interactions between cations and polymer molecules, their superlubricity can be maintained even at a high salt ion concentration of 5 M. These excellent properties make PVPA-modified Ti 6 Al 4 V a potential candidate for application in artificial implants.

  17. Unsupervised sputum color image segmentation for lung cancer diagnosis based on a Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sammouda, Rachid; Niki, Noboru; Nishitani, Hiroshi; Nakamura, S.; Mori, Shinichiro

    1997-04-01

    The paper presents a method for automatic segmentation of sputum cells with color images, to develop an efficient algorithm for lung cancer diagnosis based on a Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of squared errors, and the second term a temporary noise added to the network as an excitation to escape certain local minima with the result of being closer to the global minimum. To increase the accuracy in segmenting the regions of interest, a preclassification technique is used to extract the sputum cell regions within the color image and remove those of the debris cells. The former is then given with the raw image to the input of Hopfield neural network to make a crisp segmentation by assigning each pixel to label such as background, cytoplasm, and nucleus. The proposed technique has yielded correct segmentation of complex scene of sputum prepared by ordinary manual staining method in most of the tested images selected from our database containing thousands of sputum color images.

  18. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  19. An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS

    NASA Astrophysics Data System (ADS)

    Segarra, Josep; Sales, Vicent; Prat, Josep

    2007-04-01

    A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.

  20. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.

  1. Elasticity and photoelasticity relationships for polyethylene terephthalate fiber networks by molecular simulation

    NASA Astrophysics Data System (ADS)

    Nayak, Kapileswar; Das, Sushanta; Nanavati, Hemant

    2008-01-01

    We present a framework for the development of elasticity and photoelasticity relationships for polyethylene terephthalate fiber networks, incorporating aspects of the primary molecular structure. Semicrystalline polymeric fiber networks are modeled as sequentially arranged crystalline and amorphous regions. Rotational isomeric states-Monte Carlo simulations of amorphous chains of up to 360 bonds (degree of polymerization, DP =60), confined between and bridging infinite impenetrable crystalline walls, have been characterized by Ω, the probability density of the intercrystal separation h, and Δβ, the polarizability anisotropy. lnΩ and Δβ have been modeled as functions of h, yielding the chain deformation relationships. The development has been extended to the fiber network to yield the photoelasticity relationships. We execute our framework by fitting to experimental stress-elongation data and employing the single fitted parameter to directly predict the birefringence-elongation behavior, without any further fitting. Incorporating the effect of strain-induced crystallization into the framework makes it physically more meaningful and yields accurate predictions of the birefringence-elongation behavior.

  2. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    NASA Astrophysics Data System (ADS)

    Jafari, Mehdi; Kasaei, Shohreh

    2012-01-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  3. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    NASA Astrophysics Data System (ADS)

    Jafari, Mehdi; Kasaei, Shohreh

    2011-12-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  4. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    PubMed

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Redrawing the map of Great Britain from a network of human interactions.

    PubMed

    Ratti, Carlo; Sobolevsky, Stanislav; Calabrese, Francesco; Andris, Clio; Reades, Jonathan; Martino, Mauro; Claxton, Rob; Strogatz, Steven H

    2010-12-08

    Do regional boundaries defined by governments respect the more natural ways that people interact across space? This paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person's links. We tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales from Great Britain would be twice as disruptive for the human network than that of Scotland.

  6. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    NASA Astrophysics Data System (ADS)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  7. Entanglement branching operator

    NASA Astrophysics Data System (ADS)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  8. Human-computer interaction reflected in the design of user interfaces for general practitioners.

    PubMed

    Stoicu-Tivadar, Lacramioara; Stoicu-Tivadar, Vasile

    2006-01-01

    To address the problem of properly built health information systems in general practice as an important issue for their approval and use in clinical practice. We present how a national general practitioner (GP) network was built, put in practice and several results of its activity seen from the clinician's and the software application team's points of view. We used a multi-level incremental development appropriate for the conditions of the required information system. After the development of the first version of the software components (based on rapid prototyping) of the sentinel network, a questionnaire addressed the needs and improvements required by the health professionals. Based on the answers, the functionality of the system and the interface were improved regarding the real needs expressed by the end-users. The network is functional and the collected data from the network are being processed using statistical methods. The academic software team developed a GP application that is well received by the GPs in the network, as resulted from the survey and discussions during the training period. As an added confirmation, several GPs outside the network enrolled after seeing the software at work. Another confirmation that we did a good job was that after the final presentation of the results of the project a representative from the Romanian Society for Cardiology expressed the wish of this society to access the data yielded by the network.

  9. A Climate Trend Analysis of Burkina Faso

    USGS Publications Warehouse

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in rainfall and air temperatures. These analyses are based on quality controlled station observations. Conclusions: * Summer rains have remained steady over the past 20 years, but remain 15 percent below the 1920-69 average. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * The amount of farmland per person is low, and declining. * Burkina Faso has offset rapid population growth with improved yields. * Continued yield growth would maintain current levels of per capita food production.

  10. A climate trend analysis of Mali

    USGS Publications Warehouse

    Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies modest declines in rainfall, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have remained relatively steady for the past 20 years, but are 12 percent below the 1920-1969 average. * Temperatures have increased by 0.8° Celsius since 1975, amplifying the effect of droughts. * Cereal yields are low but have been improving. * Current population and agricultural trends indicate that increased yields have offset population expansion, keeping per capita cereal production steady.

  11. Diagnosis of edge condition based on force measurement during milling of composites

    NASA Astrophysics Data System (ADS)

    Felusiak, Agata; Twardowski, Paweł

    2018-04-01

    The present paper presents comparative results of the forecasting of a cutting tool wear with the application of different methods of diagnostic deduction based on the measurement of cutting force components. The research was carried out during the milling of the Duralcan F3S.10S aluminum-ceramic composite. Prediction of the toolwear was based on one variable, two variables regression Multilayer Perceptron(MLP)and Radial Basis Function(RBF)neural networks. Forecasting the condition of the cutting tool on the basis of cutting forces has yielded very satisfactory results.

  12. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs.

    PubMed

    Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan

    2017-12-13

    Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.

  13. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs

    PubMed Central

    Hu, Xiaopeng; Wang, Fan

    2017-01-01

    Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031

  14. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  15. Protein Inference from the Integration of Tandem MS Data and Interactome Networks.

    PubMed

    Zhong, Jiancheng; Wang, Jianxing; Ding, Xiaojun; Zhang, Zhen; Li, Min; Wu, Fang-Xiang; Pan, Yi

    2017-01-01

    Since proteins are digested into a mixture of peptides in the preprocessing step of tandem mass spectrometry (MS), it is difficult to determine which specific protein a shared peptide belongs to. In recent studies, besides tandem MS data and peptide identification information, some other information is exploited to infer proteins. Different from the methods which first use only tandem MS data to infer proteins and then use network information to refine them, this study proposes a protein inference method named TMSIN, which uses interactome networks directly. As two interacting proteins should co-exist, it is reasonable to assume that if one of the interacting proteins is confidently inferred in a sample, its interacting partners should have a high probability in the same sample, too. Therefore, we can use the neighborhood information of a protein in an interactome network to adjust the probability that the shared peptide belongs to the protein. In TMSIN, a multi-weighted graph is constructed by incorporating the bipartite graph with interactome network information, where the bipartite graph is built with the peptide identification information. Based on multi-weighted graphs, TMSIN adopts an iterative workflow to infer proteins. At each iterative step, the probability that a shared peptide belongs to a specific protein is calculated by using the Bayes' law based on the neighbor protein support scores of each protein which are mapped by the shared peptides. We carried out experiments on yeast data and human data to evaluate the performance of TMSIN in terms of ROC, q-value, and accuracy. The experimental results show that AUC scores yielded by TMSIN are 0.742 and 0.874 in yeast dataset and human dataset, respectively, and TMSIN yields the maximum number of true positives when q-value less than or equal to 0.05. The overlap analysis shows that TMSIN is an effective complementary approach for protein inference.

  16. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  17. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity

    NASA Astrophysics Data System (ADS)

    Zhang, Bijun; Vogt, Martin; Maggiora, Gerald M.; Bajorath, Jürgen

    2015-07-01

    Chemical space networks (CSNs) have recently been introduced as a conceptual alternative to coordinate-based representations of chemical space. CSNs were initially designed as threshold networks using the Tanimoto coefficient as a continuous similarity measure. The analysis of CSNs generated from sets of bioactive compounds revealed that many statistical properties were strongly dependent on their edge density. While it was difficult to compare CSNs at pre-defined similarity threshold values, CSNs with constant edge density were directly comparable. In the current study, alternative CSN representations were constructed by applying the matched molecular pair (MMP) formalism as a substructure-based similarity criterion. For more than 150 compound activity classes, MMP-based CSNs (MMP-CSNs) were compared to corresponding threshold CSNs (THR-CSNs) at a constant edge density by applying different parameters from network science, measures of community structure distributions, and indicators of structure-activity relationship (SAR) information content. MMP-CSNs were found to be an attractive alternative to THR-CSNs, yielding low edge densities and well-resolved topologies. MMP-CSNs and corresponding THR-CSNs often had similar topology and closely corresponding community structures, although there was only limited overlap in similarity relationships. The homophily principle from network science was shown to affect MMP-CSNs and THR-CSNs in different ways, despite the presence of conserved topological features. Moreover, activity cliff distributions in alternative CSN designs markedly differed, which has important implications for SAR analysis.

  18. Recurrent neural networks for breast lesion classification based on DCE-MRIs

    NASA Astrophysics Data System (ADS)

    Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen

    2018-02-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a significant role in breast cancer screening, cancer staging, and monitoring response to therapy. Recently, deep learning methods are being rapidly incorporated in image-based breast cancer diagnosis and prognosis. However, most of the current deep learning methods make clinical decisions based on 2-dimentional (2D) or 3D images and are not well suited for temporal image data. In this study, we develop a deep learning methodology that enables integration of clinically valuable temporal components of DCE-MRIs into deep learning-based lesion classification. Our work is performed on a database of 703 DCE-MRI cases for the task of distinguishing benign and malignant lesions, and uses the area under the ROC curve (AUC) as the performance metric in conducting that task. We train a recurrent neural network, specifically a long short-term memory network (LSTM), on sequences of image features extracted from the dynamic MRI sequences. These features are extracted with VGGNet, a convolutional neural network pre-trained on a large dataset of natural images ImageNet. The features are obtained from various levels of the network, to capture low-, mid-, and high-level information about the lesion. Compared to a classification method that takes as input only images at a single time-point (yielding an AUC = 0.81 (se = 0.04)), our LSTM method improves lesion classification with an AUC of 0.85 (se = 0.03).

  19. Behavior-based network management: a unique model-based approach to implementing cyber superiority

    NASA Astrophysics Data System (ADS)

    Seng, Jocelyn M.

    2016-05-01

    Behavior-Based Network Management (BBNM) is a technological and strategic approach to mastering the identification and assessment of network behavior, whether human-driven or machine-generated. Recognizing that all five U.S. Air Force (USAF) mission areas rely on the cyber domain to support, enhance and execute their tasks, BBNM is designed to elevate awareness and improve the ability to better understand the degree of reliance placed upon a digital capability and the operational risk.2 Thus, the objective of BBNM is to provide a holistic view of the digital battle space to better assess the effects of security, monitoring, provisioning, utilization management, allocation to support mission sustainment and change control. Leveraging advances in conceptual modeling made possible by a novel advancement in software design and implementation known as Vector Relational Data Modeling (VRDM™), the BBNM approach entails creating a network simulation in which meaning can be inferred and used to manage network behavior according to policy, such as quickly detecting and countering malicious behavior. Initial research configurations have yielded executable BBNM models as combinations of conceptualized behavior within a network management simulation that includes only concepts of threats and definitions of "good" behavior. A proof of concept assessment called "Lab Rat," was designed to demonstrate the simplicity of network modeling and the ability to perform adaptation. The model was tested on real world threat data and demonstrated adaptive and inferential learning behavior. Preliminary results indicate this is a viable approach towards achieving cyber superiority in today's volatile, uncertain, complex and ambiguous (VUCA) environment.

  20. Social network recruitment for Yo Puedo: an innovative sexual health intervention in an underserved urban neighborhood—sample and design implications.

    PubMed

    Minnis, Alexandra M; vanDommelen-Gonzalez, Evan; Luecke, Ellen; Cheng, Helen; Dow, William; Bautista-Arredondo, Sergio; Padian, Nancy S

    2015-02-01

    Most existing evidence-based sexual health interventions focus on individual-level behavior, even though there is substantial evidence that highlights the influential role of social environments in shaping adolescents' behaviors and reproductive health outcomes. We developed Yo Puedo, a combined conditional cash transfer and life skills intervention for youth to promote educational attainment, job training, and reproductive health wellness that we then evaluated for feasibility among 162 youth aged 16-21 years in a predominantly Latino community in San Francisco, CA. The intervention targeted youth's social networks and involved recruitment and randomization of small social network clusters. In this paper we describe the design of the feasibility study and report participants' baseline characteristics. Furthermore, we examined the sample and design implications of recruiting social network clusters as the unit of randomization. Baseline data provide evidence that we successfully enrolled high risk youth using a social network recruitment approach in community and school-based settings. Nearly all participants (95%) were high risk for adverse educational and reproductive health outcomes based on multiple measures of low socioeconomic status (81%) and/or reported high risk behaviors (e.g., gang affiliation, past pregnancy, recent unprotected sex, frequent substance use; 62%). We achieved variability in the study sample through heterogeneity in recruitment of the index participants, whereas the individuals within the small social networks of close friends demonstrated substantial homogeneity across sociodemographic and risk profile characteristics. Social networks recruitment was feasible and yielded a sample of high risk youth willing to enroll in a randomized study to evaluate a novel sexual health intervention.

  1. Improved neural network based scene-adaptive nonuniformity correction method for infrared focal plane arrays.

    PubMed

    Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin

    2008-08-20

    An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.

  2. Fast and accurate detection of spread source in large complex networks.

    PubMed

    Paluch, Robert; Lu, Xiaoyan; Suchecki, Krzysztof; Szymański, Bolesław K; Hołyst, Janusz A

    2018-02-06

    Spread over complex networks is a ubiquitous process with increasingly wide applications. Locating spread sources is often important, e.g. finding the patient one in epidemics, or source of rumor spreading in social network. Pinto, Thiran and Vetterli introduced an algorithm (PTVA) to solve the important case of this problem in which a limited set of nodes act as observers and report times at which the spread reached them. PTVA uses all observers to find a solution. Here we propose a new approach in which observers with low quality information (i.e. with large spread encounter times) are ignored and potential sources are selected based on the likelihood gradient from high quality observers. The original complexity of PTVA is O(N α ), where α ∈ (3,4) depends on the network topology and number of observers (N denotes the number of nodes in the network). Our Gradient Maximum Likelihood Algorithm (GMLA) reduces this complexity to O (N 2 log (N)). Extensive numerical tests performed on synthetic networks and real Gnutella network with limitation that id's of spreaders are unknown to observers demonstrate that for scale-free networks with such limitation GMLA yields higher quality localization results than PTVA does.

  3. Graph Curvature for Differentiating Cancer Networks

    PubMed Central

    Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen

    2015-01-01

    Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480

  4. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks

    PubMed Central

    2014-01-01

    Background Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. Results In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. Conclusions This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally. PMID:24739361

  5. Prediction of protein tertiary structure from sequences using a very large back-propagation neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.; Wilcox, G.L.

    1993-12-31

    We have implemented large scale back-propagation neural networks on a 544 node Connection Machine, CM-5, using the C language in MIMD mode. The program running on 512 processors performs backpropagation learning at 0.53 Gflops, which provides 76 million connection updates per second. We have applied the network to the prediction of protein tertiary structure from sequence information alone. A neural network with one hidden layer and 40 million connections is trained to learn the relationship between sequence and tertiary structure. The trained network yields predicted structures of some proteins on which it has not been trained given only their sequences.more » Presentation of the Fourier transform of the sequences accentuates periodicity in the sequence and yields good generalization with greatly increased training efficiency. Training simulations with a large, heterologous set of protein structures (111 proteins from CM-5 time) to solutions with under 2% RMS residual error within the training set (random responses give an RMS error of about 20%). Presentation of 15 sequences of related proteins in a testing set of 24 proteins yields predicted structures with less than 8% RMS residual error, indicating good apparent generalization.« less

  6. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier.

    PubMed

    Hu, Jianjun; Li, Chong; Guo, Qianhui; Dang, Jiatao; Zhang, Quanguo; Lee, Duu-Jong; Yang, Yunlong

    2018-05-03

    The iron-based oxygen carriers (OC's), Fe 2 O 3 /support (Al 2 O 3 , TiO 2 , SiO 2 and ZrO 2 ), for chemical looping gasification of wheat straw were prepared using impregnation method. The surface morphology, crystal structure, carbon deposition potential, lattice oxygen activity and selectivity of the yielded OCs were examined. The Fe 2 O 3 /Al 2 O 3 OCs at 60% loading has the highest H 2 yield, H 2 /CO ratio, gas yield, and carbon conversion amongst the tested OC's. Parametric studies revealed that an optimal loading Fe 2 O 3 of 60%, steam-to-biomass ratio of 0.8 and oxygen carrier-to-biomass ratio of 1.0 led to the maximum H 2 /CO ratio, gas yield, H 2  + CO ratio, and carbon conversion from the gasified wheat straw. High temperature, up to 950 °C, enhanced the gasification performance. A kinetic network interpreted the noted experimental results. The lattice oxygen provided by the prepared Fe 2 O 3 /Al 2 O 3 oxygen carriers promotes chemical looping gasification efficiencies from wheat straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

  8. On-line Tool Wear Detection on DCMT070204 Carbide Tool Tip Based on Noise Cutting Audio Signal using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.

    2018-01-01

    This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.

  9. Exploiting Bounded Signal Flow for Graph Orientation Based on Cause-Effect Pairs

    NASA Astrophysics Data System (ADS)

    Dorn, Britta; Hüffner, Falk; Krüger, Dominikus; Niedermeier, Rolf; Uhlmann, Johannes

    We consider the following problem: Given an undirected network and a set of sender-receiver pairs, direct all edges such that the maximum number of "signal flows" defined by the pairs can be routed respecting edge directions. This problem has applications in communication networks and in understanding protein interaction based cell regulation mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation algorithms and tractable special cases. We take the viewpoint of parameterized algorithmics and examine several parameters related to the maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case. We examine the value of these parameters for several real-world network instances. For many relevant cases, the NP-hard problem can be solved to optimality. In this way, parameterized analysis yields both deeper insight into the computational complexity and practical solving strategies.

  10. Accuracy comparison among different machine learning techniques for detecting malicious codes

    NASA Astrophysics Data System (ADS)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  11. Learning relevant features of data with multi-scale tensor networks

    NASA Astrophysics Data System (ADS)

    Miles Stoudenmire, E.

    2018-07-01

    Inspired by coarse-graining approaches used in physics, we show how similar algorithms can be adapted for data. The resulting algorithms are based on layered tree tensor networks and scale linearly with both the dimension of the input and the training set size. Computing most of the layers with an unsupervised algorithm, then optimizing just the top layer for supervised classification of the MNIST and fashion MNIST data sets gives very good results. We also discuss mixing a prior guess for supervised weights together with an unsupervised representation of the data, yielding a smaller number of features nevertheless able to give good performance.

  12. Computational foundations of the visual number sense.

    PubMed

    Stoianov, Ivilin Peev; Zorzi, Marco

    2017-01-01

    We provide an emergentist perspective on the computational mechanism underlying numerosity perception, its development, and the role of inhibition, based on our deep neural network model. We argue that the influence of continuous visual properties does not challenge the notion of number sense, but reveals limit conditions for the computation that yields invariance in numerosity perception. Alternative accounts should be formalized in a computational model.

  13. Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants.

    PubMed

    Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J

    2016-03-22

    The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.

  14. Characteristics of oxidative homolytic alkylation of imidazoles and organic-inorganic hybrid extended networks from large aromatic building blocks

    NASA Astrophysics Data System (ADS)

    Li, Kunhao

    The discovery of the dramatic in vitro antimalarial activity of 2-iodo-L-histidine and 2-fluoro-L-histidine, as well as their in vivo limitations, has prompted a systematic search for novel 2-substituted imidazoles and bioimidazoles as agents against human malaria. Previous research has shown that the regioselective alkyl free radical substitution on imidazoles and bioimidazoles could serve as a simple and efficient route to a wide variety of 2-alkylimidazoles. In this research, this methodology was successfully extended to include alkyl radicals substituted with various functional groups such as amide or ester. While this novel methodology should be of some synthetic utility when tertiary radicals are used, poorer yields are usually encountered in the cases of primary radicals. In the second part of this dissertation, a series of novel ligands containing multiple ortho-bis(organothio) groups were synthesized and their coordination and network forming properties were studied in the context of crystalline organic-inorganic hybrid extended networks. For the syntheses of HRTTs [2,3,6,7,10,11-hexakis(alkylthio)triphenylenes], a simpler, safer and higher yielding one-pot process was developed. Quenching the hexa-anions (formed when sodium methylthiolate was refluxed with hexabromotriphenylene) with alkyl halides or acid chlorides afforded HRTTs. This newly developed process was also successfully expanded to the pyrene system. In the syntheses of unsymmetrically substituted triphenlyenes, it was shown for the first time that the oxidative cyclization process is applicable to thioether containing systems, pointing to a novel strategy for the preparation of this type of unsymmetrically substituted triphenlyenes. Treating these novel ligands with various metal salts [i.e. bismuth(III) chloride and bismuth(III) bromide] under carefully controlled conditions resulted in a series of air-stable semiconductive coordination networks. Their single crystal structures were determined by X-ray diffraction and properties such as semiconductivity and solution processability, as well as the structure-property relationship, were also studied. As a reasonable extension of this research, two phenylacetylene-based thioether containing ligands L1 and L2, were prepared. Similar to the triphenylene-based ligands, they also formed semiconductive extended networks with bismuth(III) bromide. The preparation of HArTTs [2,3,6,7,10,11-hexakis-(arylthio)triphenlyenes] and a series of crystalline extended networks based on the coordination of these ligands and various silver salts are reported in Chapter 5.

  15. In-silico studies of neutral drift for functional protein interaction networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.

  16. A function approximation approach to anomaly detection in propulsion system test data

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Hoyt, W. A.

    1993-01-01

    Ground test data from propulsion systems such as the Space Shuttle Main Engine (SSME) can be automatically screened for anomalies by a neural network. The neural network screens data after being trained with nominal data only. Given the values of 14 measurements reflecting external influences on the SSME at a given time, the neural network predicts the expected nominal value of a desired engine parameter at that time. We compared the ability of three different function-approximation techniques to perform this nominal value prediction: a novel neural network architecture based on Gaussian bar basis functions, a conventional back propagation neural network, and linear regression. These three techniques were tested with real data from six SSME ground tests containing two anomalies. The basis function network trained more rapidly than back propagation. It yielded nominal predictions with, a tight enough confidence interval to distinguish anomalous deviations from the nominal fluctuations in an engine parameter. Since the function-approximation approach requires nominal training data only, it is capable of detecting unknown classes of anomalies for which training data is not available.

  17. Practice-based research networks (PBRNs) are promising laboratories for conducting dissemination and implementation research.

    PubMed

    Heintzman, John; Gold, Rachel; Krist, Alexander; Crosson, Jay; Likumahuwa, Sonja; DeVoe, Jennifer E

    2014-01-01

    Dissemination and implementation science addresses the application of research findings in varied health care settings. Despite the potential benefit of dissemination and implementation work to primary care, ideal laboratories for this science have been elusive. Practice-based research networks (PBRNs) have a long history of conducting research in community clinical settings, demonstrating an approach that could be used to execute multiple research projects over time in broad and varied settings. PBRNs also are uniquely structured and increasingly involved in pragmatic trials, a research design central to dissemination and implementation science. We argue that PBRNs and dissemination and implementation scientists are ideally suited to work together and that the collaboration of these 2 groups will yield great value for the future of primary care and the delivery of evidence-based health care. © Copyright 2014 by the American Board of Family Medicine.

  18. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

    PubMed

    Godino-Llorente, J I; Gómez-Vilda, P

    2004-02-01

    It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

  19. Dynamical systems approach to the study of a sociophysics agent-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timpanaro, Andre M.; Prado, Carmen P. C.

    2011-03-24

    The Sznajd model is a Potts-like model that has been studied in the context of sociophysics [1,2](where spins are interpreted as opinions). In a recent work [3], we generalized the Sznajd model to include assymetric interactions between the spins (interpreted as biases towards opinions) and used dynamical systems techniques to tackle its mean-field version, given by the flow: {eta}{sub {sigma}} = {Sigma}{sub {sigma}}'{sup M} = 1{eta}{sub {sigma}}{eta}{sigma}'({eta}{sub {sigma}}{rho}{sigma}'{yields}{sigma}-{sigma}'{rho}{sigma}{yields}{sigma}').Where hs is the proportion of agents with opinion (spin){sigma}', M is the number of opinions and {sigma}'{yields}{sigma}' is the probability weight for an agent with opinion {sigma} being convinced by another agentmore » with opinion {sigma}'. We made Monte Carlo simulations of the model in a complex network (using Barabasi-Albert networks [4]) and they displayed the same attractors than the mean-field. Using linear stability analysis, we were able to determine the mean-field attractor structure analytically and to show that it has connections with well known graph theory problems (maximal independent sets and positive fluxes in directed graphs). Our dynamical systems approach is quite simple and can be used also in other models, like the voter model.« less

  20. A novel community detection method in bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  1. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  2. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  3. Computationally assisted screening and design of cell-interactive peptides by a cell-based assay using peptide arrays and a fuzzy neural network algorithm.

    PubMed

    Kaga, Chiaki; Okochi, Mina; Tomita, Yasuyuki; Kato, Ryuji; Honda, Hiroyuki

    2008-03-01

    We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.

  4. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  5. Online Vibration Monitoring of a Water Pump Machine to Detect Its Malfunction Components Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Rahmawati, P.; Prajitno, P.

    2018-04-01

    Vibration monitoring is a measurement instrument used to identify, predict, and prevent failures in machine instruments[6]. This is very needed in the industrial applications, cause any problem with the equipment or plant translates into economical loss and they are mostly monitored component off-line[2]. In this research, a system has been developed to detect the malfunction of the components of Shimizu PS-128BT water pump machine, such as capacitor, bearing and impeller by online measurements. The malfunction components are detected by taking vibration data using a Micro-Electro-Mechanical System(MEMS)-based accelerometer that are acquired by using Raspberry Pi microcomputer and then the data are converted into the form of Relative Power Ratio(RPR). In this form the signal acquired from different components conditions have different patterns. The collected RPR used as the base of classification process for recognizing the damage components of the water pump that are conducted by Artificial Neural Network(ANN). Finally, the damage test result will be sent via text message using GSM module that are connected to Raspberry Pi microcomputer. The results, with several measurement readings, with each reading in 10 minutes duration for each different component conditions, all cases yield 100% of accuracies while in the case of defective capacitor yields 90% of accuracy.

  6. Network-Based Method for Identifying Co-Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues

    PubMed Central

    Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Cai, Yu-Dong

    2017-01-01

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein–protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method. PMID:28974058

  7. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    PubMed

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  8. Determining Usability Versus Cost and Yields of a Regional Transport

    NASA Technical Reports Server (NTRS)

    Gvozdenovic, Slobodan

    1999-01-01

    Regional transports are designed to operate on air networks having the basic characteristics of short trip distances and low density passengers/cargo, i.e. small numbers of passengers per flight. Regional transports passenger capacity is from 10 to 100 seats and operate on routes from 350 to 1000 nautical miles (nm). In order to meet passenger requirements providing low fares and high or required number of frequencies, airlines must constantly monitor operational costs and keep them low. It is obvious that costs of operating aircraft must be lower than yield obtained by transporting passengers and cargo. The requirement to achieve favorable yield/cost ratio must provide the answer to the question of which aircraft will best meet a specific air network (Simpson, 1972). An air network is defined by the number of services, the trip distance of each service, and the number of flights (frequencies) per day and week.

  9. Simulating adverse event spontaneous reporting systems as preferential attachment networks: application to the Vaccine Adverse Event Reporting System.

    PubMed

    Scott, J; Botsis, T; Ball, R

    2014-01-01

    Spontaneous Reporting Systems [SRS] are critical tools in the post-licensure evaluation of medical product safety. Regulatory authorities use a variety of data mining techniques to detect potential safety signals in SRS databases. Assessing the performance of such signal detection procedures requires simulated SRS databases, but simulation strategies proposed to date each have limitations. We sought to develop a novel SRS simulation strategy based on plausible mechanisms for the growth of databases over time. We developed a simulation strategy based on the network principle of preferential attachment. We demonstrated how this strategy can be used to create simulations based on specific databases of interest, and provided an example of using such simulations to compare signal detection thresholds for a popular data mining algorithm. The preferential attachment simulations were generally structurally similar to our targeted SRS database, although they had fewer nodes of very high degree. The approach was able to generate signal-free SRS simulations, as well as mimicking specific known true signals. Explorations of different reporting thresholds for the FDA Vaccine Adverse Event Reporting System suggested that using proportional reporting ratio [PRR] > 3.0 may yield better signal detection operating characteristics than the more commonly used PRR > 2.0 threshold. The network analytic approach to SRS simulation based on the principle of preferential attachment provides an attractive framework for exploring the performance of safety signal detection algorithms. This approach is potentially more principled and versatile than existing simulation approaches. The utility of network-based SRS simulations needs to be further explored by evaluating other types of simulated signals with a broader range of data mining approaches, and comparing network-based simulations with other simulation strategies where applicable.

  10. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-02-01

    Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.

  11. The Global Oscillation Network Group site survey, 2: Results

    NASA Technical Reports Server (NTRS)

    Hill, Frank; Fischer, George; Forgach, Suzanne; Grier, Jennifer; Leibacher, John W.; Jones, Harrison P.; Jones, Patricia B.; Kupke, Renate; Stebbins, Robin T.; Clay, Donald W.

    1994-01-01

    The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile. Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable networks assembled from the individual site records is compared using a statistical principal components analysis. An accompanying paper descibes the analysis methods in detail; here we present the results of both the network and individual site analyses. The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 x 10(exp -4) with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum.

  12. Development and testing of a compartmentalized reaction network model for redox zones in contaminated aquifers

    USGS Publications Warehouse

    Abrams , Robert H.; Loague, Keith; Kent, Douglas B.

    1998-01-01

    The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.

  13. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    PubMed

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Performance, implementation and network management techniques for a European CDMA-based land-mobile satellite system

    NASA Astrophysics Data System (ADS)

    Arenaccio, S.; Vernucci, A.; Padovani, R.; Arcidiacono, A.

    Results of a detailed comparative performance assessment between two candidate access solutions for the provision of land-mobile services, i.e., FDMA and CDMA, for the European Land-Mobile Satellite Services (LMSS) provision are presented. The design of the CDMA access system and the network architecture, system procedures, network control, operation in fading environments, and implementation aspects of the system are described. The CDMA system is shown to yield superior traffic capability, despite the absence of polarization reuse due to payload design, especially in the second-generation era (multiple spot-beams). In this case, the advantage was found to be largely dependent on the traffic distribution across spot beams. Power control techniques are proposed to cope with the geographical disadvantage suffered by mobile stations located at the beam borders to compensate for fadings.

  15. Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.

    2012-12-01

    Based on rainfall intensity-duration-frequency (IDF) curves, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimisation can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short and a long term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. So, it is proposed to virtually augment it by 25, 50, 100 and 160% which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.

  16. Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.

    2013-10-01

    Based on rainfall intensity-duration-frequency (IDF) curves, fitted in several locations of a given area, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimization can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables, and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short- and a long-term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. Therefore, it is proposed to augment it by 25, 50, 100 and 160% virtually, which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.

  17. Evaluation of weather-based rice yield models in India.

    PubMed

    Sudharsan, D; Adinarayana, J; Reddy, D Raji; Sreenivas, G; Ninomiya, S; Hirafuji, M; Kiura, T; Tanaka, K; Desai, U B; Merchant, S N

    2013-01-01

    The objective of this study was to compare two different rice simulation models--standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])--with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  18. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  19. Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling.

    PubMed

    Bang, Seungho; Duong, Ngoc Thanh; Lee, Jubok; Cho, Yoo Hyun; Oh, Hye Min; Kim, Hyun; Yun, Seok Joon; Park, Chulho; Kwon, Min-Ki; Kim, Ja-Yeon; Kim, Jeongyong; Jeong, Mun Seok

    2018-04-11

    Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS 2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS 2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS 2 . Consequently, the overall photocurrent of the hybrid 1L-MoS 2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS 2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.

  20. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  1. Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix

    2016-09-01

    Potato is one of the staple foods and cash crops in Bangladesh. It is widely cultivated in all of the districts and ranks second after rice in production. Bangladesh is the fourth largest potato producer in Asia and is among the world's top 15 potato producing countries. The weather condition for potato cultivation is favorable during the sowing, growing and harvesting period. It is a winter crop and is cultivated during the period of November to March. Bangladesh is mainly an agricultural based country with respect to agriculture's contribution to GDP, employment and consumption. Potato is a prominent crop in consideration of production, its internal demand and economic value. Bangladesh has a big economic activities related to potato cultivation and marketing, especially the economic relations among farmers, traders, stockers and cold storage owners. Potato yield prediction before harvest is an important issue for the Government and the stakeholders in managing and controlling the potato market. Advanced very high resolution radiometer (AVHRR) based satellite data product vegetation health indices VCI (vegetation condition index) and TCI (temperature condition index) are used as predictors for early prediction. Artificial neural network (ANN) is used to develop a prediction model. The simulated result from this model is encouraging and the error of prediction is less than 10%.

  2. Flow of colloidal suspensions and gels

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna

    Our recent studies of yield of colloidal gels under shear show that yield in such gels occurs in distinct stages. Under fixed stress, yield follows a finite delay period of slow solid-like creep. Post yield, the gel fluidizes and may undergo long-time viscous flow or, in some cases, may re-solidify. Under imposed strain rate, the transition from equilibrium to long-time flow is characterized by one or more stress overshoots, signifying a yield process here as well. These rheological changes are accompanied by evolution in morphology and dynamics of the gel network. Similar regimes have been observed in gels subjected to gravitational forcing; the gel initially supports its own weight, or perhaps undergoes slow, weak compaction. This may be followed by a sudden transition to rapid compaction or sedimentation. Various models have been put forth to explain these behaviors based on structural evolution, but this detail is difficult to observe in experiment. Here we examine the detailed microstructural evolution and rheology of reversible colloidal gels as they deform under gravity, identifying the critical buoyant force at which yield occurs, the role played by ongoing gel coarsening, and similarities and differences compared to yield under shear. We gratefully acknowledge the support of the NSF XSEDE Computational Resource, the NSF Early CAREER Program, and the Office of Naval Research Young Investigator Program.

  3. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

    PubMed Central

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  4. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  5. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  6. A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman; Samimi, Peyman; Dixit, Vikas; Collins, Peter C.

    2015-11-01

    While it is useful to predict properties in metallic materials based upon the composition and microstructure, the complexity of real, multi-component, and multi-phase engineering alloys presents difficulties when attempting to determine constituent-based phenomenological equations. This paper applies an approach based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and Monte Carlo simulations to determine a mechanism-based equation for the yield strength of α+ β processed Ti-6Al-4V (all compositions in weight percent) which consists of a complex multi-phase microstructure with varying spatial and morphological distributions of the key microstructural features. Notably, this is an industrially important alloy yet an alloy for which such an equation does not exist in the published literature. The equation ultimately derived in this work not only can accurately describe the properties of the current dataset but also is consistent with the limited and dissociated information available in the literature regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. In addition, this equation suggests new interesting opportunities for controlling yield strength by controlling the relative intrinsic strengths of the two phases through solid solution strengthening.

  7. Discrete Indoor Three-Dimensional Localization System Based on Neural Networks Using Visible Light Communication

    PubMed Central

    Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.

    2018-01-01

    Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525

  8. A multi-scale convolutional neural network for phenotyping high-content cellular images.

    PubMed

    Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian

    2017-07-01

    Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Integrated inference and evaluation of host–fungi interaction networks

    PubMed Central

    Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.

    2015-01-01

    Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851

  10. Social network recruitment for Yo Puedo - an innovative sexual health intervention in an underserved urban neighborhood: sample and design implications

    PubMed Central

    Minnis, Alexandra M.; vanDommelen-Gonzalez, Evan; Luecke, Ellen; Cheng, Helen; Dow, William; Bautista-Arredondo, Sergio; Padian, Nancy S.

    2016-01-01

    Most existing evidence-based sexual health interventions focus on individual-level behavior, even though there is substantial evidence that highlights the influential role of social environments in shaping adolescents’ behaviors and reproductive health outcomes. We developed Yo Puedo, a combined conditional cash transfer (CCT) and life skills intervention for youth to promote educational attainment, job training, and reproductive health wellness that we then evaluated for feasibility among 162 youth aged 16–21 years in a predominantly Latino community in San Francisco, CA. The intervention targeted youth’s social networks and involved recruitment and randomization of small social network clusters. In this paper we describe the design of the feasibility study and report participants’ baseline characteristics. Furthermore, we examined the sample and design implications of recruiting social network clusters as the unit of randomization. Baseline data provide evidence that we successfully enrolled high risk youth using a social network recruitment approach in community and school-based settings. Nearly all participants (95%) were high risk for adverse educational and reproductive health outcomes based on multiple measures of low socioeconomic status (81%) and/or reported high risk behaviors (e.g., gang affiliation, past pregnancy, recent unprotected sex, frequent substance use) (62%). We achieved variability in the study sample through heterogeneity in recruitment of the index participants, whereas the individuals within the small social networks of close friends demonstrated substantial homogeneity across sociodemographic and risk profile characteristics. Social networks recruitment was feasible and yielded a sample of high risk youth willing to enroll in a randomized study to evaluate a novel sexual health intervention. PMID:25358834

  11. Insula Demonstrates a Non-Linear Response to Varying Demand for Cognitive Control and Weaker Resting Connectivity With the Executive Control Network in Smokers.

    PubMed

    Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A

    2016-09-01

    Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.

  12. Wireless sensor network effectively controls center pivot irrigation of sorghum

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  13. Crop weather models of barley and spring wheat yield for agrophysical units in North Dakota

    NASA Technical Reports Server (NTRS)

    Leduc, S. (Principal Investigator)

    1982-01-01

    Models based on multiple regression were developed to estimate barley yield and spring wheat yield from weather data for Agrophysical units(APU) in North Dakota. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for Crop Reporting Districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU models show sight improvements in some of the statistics of the models, e.g., explained variation. These models are to be independently evaluated and compared to the previously evaluated CRD models. The comparison will indicate the preferred model area for this application, i.e., APU or CRD.

  14. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas E; Schuman, Catherine D; Young, Steven R

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less

  15. Social Networks among the Older Chinese Population in the USA: Findings from the PINE Study.

    PubMed

    Dong, XinQi; Chang, E-Shien

    2017-01-01

    Social network research has become central to studies of health and aging. Its results may yield public health insights that are actionable and improve the quality of life of older adults. However, little is known about the social networks of older immigrant adults, whose social relationships often develop in the context of migration, compounded by cultural and linguistic barriers. This report aims to describe the structure, composition, and emotional components of social networks in the Chinese aging population of the USA, and to explore ways in which their social networks may be critical to their health decision-making. Our data come from the PINE study, a population-based epidemiological study of community-dwelling older Chinese American adults, aged 60 years and above, in the greater Chicago area. We conducted individual interviews in participants' homes from 2011 until 2013. Based on sociodemographic and socioeconomic characteristics, this study computed descriptive statistics and trend tests for the social network measures adapted from the National Social Life, Health, and Aging Project study. The findings show that older Chinese adults have a relatively small social network in comparison with their counterparts from other ethnic and racial backgrounds. Only 29.6% of the participants could name 5 close network members, and 2.2% could name 0 members. Their network composition was more heavily kin oriented (95.0%). Relationships with network members differed according to the older adults' sociodemographic and socioeconomic characteristics. Subgroup variations included the likelihood of discussing health-related issues with network members. This study highlights the dynamic nature of social networks in later-life Chinese immigrants. For healthcare practitioners, developing cost-effective strategies that can mobilize social network support remains a critical undertaking in health intervention. Longitudinal studies are needed to examine the causal impact of social networks on various domains of health. © 2017 S. Karger AG, Basel.

  16. Network Sampling with Memory: A proposal for more efficient sampling from social networks.

    PubMed

    Mouw, Ted; Verdery, Ashton M

    2012-08-01

    Techniques for sampling from networks have grown into an important area of research across several fields. For sociologists, the possibility of sampling from a network is appealing for two reasons: (1) A network sample can yield substantively interesting data about network structures and social interactions, and (2) it is useful in situations where study populations are difficult or impossible to survey with traditional sampling approaches because of the lack of a sampling frame. Despite its appeal, methodological concerns about the precision and accuracy of network-based sampling methods remain. In particular, recent research has shown that sampling from a network using a random walk based approach such as Respondent Driven Sampling (RDS) can result in high design effects (DE)-the ratio of the sampling variance to the sampling variance of simple random sampling (SRS). A high design effect means that more cases must be collected to achieve the same level of precision as SRS. In this paper we propose an alternative strategy, Network Sampling with Memory (NSM), which collects network data from respondents in order to reduce design effects and, correspondingly, the number of interviews needed to achieve a given level of statistical power. NSM combines a "List" mode, where all individuals on the revealed network list are sampled with the same cumulative probability, with a "Search" mode, which gives priority to bridge nodes connecting the current sample to unexplored parts of the network. We test the relative efficiency of NSM compared to RDS and SRS on 162 school and university networks from Add Health and Facebook that range in size from 110 to 16,278 nodes. The results show that the average design effect for NSM on these 162 networks is 1.16, which is very close to the efficiency of a simple random sample (DE=1), and 98.5% lower than the average DE we observed for RDS.

  17. Network Sampling with Memory: A proposal for more efficient sampling from social networks

    PubMed Central

    Mouw, Ted; Verdery, Ashton M.

    2013-01-01

    Techniques for sampling from networks have grown into an important area of research across several fields. For sociologists, the possibility of sampling from a network is appealing for two reasons: (1) A network sample can yield substantively interesting data about network structures and social interactions, and (2) it is useful in situations where study populations are difficult or impossible to survey with traditional sampling approaches because of the lack of a sampling frame. Despite its appeal, methodological concerns about the precision and accuracy of network-based sampling methods remain. In particular, recent research has shown that sampling from a network using a random walk based approach such as Respondent Driven Sampling (RDS) can result in high design effects (DE)—the ratio of the sampling variance to the sampling variance of simple random sampling (SRS). A high design effect means that more cases must be collected to achieve the same level of precision as SRS. In this paper we propose an alternative strategy, Network Sampling with Memory (NSM), which collects network data from respondents in order to reduce design effects and, correspondingly, the number of interviews needed to achieve a given level of statistical power. NSM combines a “List” mode, where all individuals on the revealed network list are sampled with the same cumulative probability, with a “Search” mode, which gives priority to bridge nodes connecting the current sample to unexplored parts of the network. We test the relative efficiency of NSM compared to RDS and SRS on 162 school and university networks from Add Health and Facebook that range in size from 110 to 16,278 nodes. The results show that the average design effect for NSM on these 162 networks is 1.16, which is very close to the efficiency of a simple random sample (DE=1), and 98.5% lower than the average DE we observed for RDS. PMID:24159246

  18. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.

    PubMed

    Chen, Lei; Liu, Tao; Zhao, Xian

    2018-06-01

    The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation for relationship among source parameters of underground nuclear tests in Northern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, G.; Che, I. Y.

    2017-12-01

    We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.

  20. Deep convolutional neural network for prostate MR segmentation

    NASA Astrophysics Data System (ADS)

    Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei

    2017-03-01

    Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.

  1. Pulse-firing winner-take-all networks

    NASA Technical Reports Server (NTRS)

    Meador, Jack L.

    1991-01-01

    Winner-take-all (WTA) neural networks using pulse-firing processing elements are introduced. In the pulse-firing WTA (PWTA) networks described, input and activation signal shunting is controlled by one shared lateral inhibition signal. This organization yields an O(n) area complexity that is convenient for integrated circuit implementation. Appropriately specified network parameters allow for the accurate continuous evaluation of inputs using a signal representation compatible with established pulse-firing neural network implementations.

  2. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa

    PubMed Central

    Gehan, Malia A; Mockler, Todd C; Weinig, Cynthia; Ewers, Brent E

    2017-01-01

    The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought. PMID:28826479

  3. Redrawing the Map of Great Britain from a Network of Human Interactions

    PubMed Central

    Ratti, Carlo; Sobolevsky, Stanislav; Calabrese, Francesco; Andris, Clio; Reades, Jonathan; Martino, Mauro; Claxton, Rob; Strogatz, Steven H.

    2010-01-01

    Do regional boundaries defined by governments respect the more natural ways that people interact across space? This paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person's links. We tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales from Great Britain would be twice as disruptive for the human network than that of Scotland. PMID:21170390

  4. A lightweight network anomaly detection technique

    DOE PAGES

    Kim, Jinoh; Yoo, Wucherl; Sim, Alex; ...

    2017-03-13

    While the network anomaly detection is essential in network operations and management, it becomes further challenging to perform the first line of detection against the exponentially increasing volume of network traffic. In this paper, we develop a technique for the first line of online anomaly detection with two important considerations: (i) availability of traffic attributes during the monitoring time, and (ii) computational scalability for streaming data. The presented learning technique is lightweight and highly scalable with the beauty of approximation based on the grid partitioning of the given dimensional space. With the public traffic traces of KDD Cup 1999 andmore » NSL-KDD, we show that our technique yields 98.5% and 83% of detection accuracy, respectively, only with a couple of readily available traffic attributes that can be obtained without the help of post-processing. Finally, the results are at least comparable with the classical learning methods including decision tree and random forest, with approximately two orders of magnitude faster learning performance.« less

  5. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  6. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  7. A lightweight network anomaly detection technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Yoo, Wucherl; Sim, Alex

    While the network anomaly detection is essential in network operations and management, it becomes further challenging to perform the first line of detection against the exponentially increasing volume of network traffic. In this paper, we develop a technique for the first line of online anomaly detection with two important considerations: (i) availability of traffic attributes during the monitoring time, and (ii) computational scalability for streaming data. The presented learning technique is lightweight and highly scalable with the beauty of approximation based on the grid partitioning of the given dimensional space. With the public traffic traces of KDD Cup 1999 andmore » NSL-KDD, we show that our technique yields 98.5% and 83% of detection accuracy, respectively, only with a couple of readily available traffic attributes that can be obtained without the help of post-processing. Finally, the results are at least comparable with the classical learning methods including decision tree and random forest, with approximately two orders of magnitude faster learning performance.« less

  8. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less

  9. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    DOE PAGES

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; ...

    2017-03-06

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less

  10. Model and Dynamic Behavior of Malware Propagation over Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Song, Yurong; Jiang, Guo-Ping

    Based on the inherent characteristics of wireless sensor networks (WSN), the dynamic behavior of malware propagation in flat WSN is analyzed and investigated. A new model is proposed using 2-D cellular automata (CA), which extends the traditional definition of CA and establishes whole transition rules for malware propagation in WSN. Meanwhile, the validations of the model are proved through theoretical analysis and simulations. The theoretical analysis yields closed-form expressions which show good agreement with the simulation results of the proposed model. It is shown that the malware propaga-tion in WSN unfolds neighborhood saturation, which dominates the effects of increasing infectivity and limits the spread of the malware. MAC mechanism of wireless sensor networks greatly slows down the speed of malware propagation and reduces the risk of large-scale malware prevalence in these networks. The proposed model can describe accurately the dynamic behavior of malware propagation over WSN, which can be applied in developing robust and efficient defense system on WSN.

  11. Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network

    NASA Astrophysics Data System (ADS)

    Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.

    2016-11-01

    Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.

  12. A low complexity visualization tool that helps to perform complex systems analysis

    NASA Astrophysics Data System (ADS)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  13. Network representation of protein interactions: Theory of graph description and analysis.

    PubMed

    Kurzbach, Dennis

    2016-09-01

    A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin. © 2016 The Protein Society.

  14. Supporting Effective Collaboration: Using a Rearview Mirror to Look Forward

    ERIC Educational Resources Information Center

    McManus, Margaret M.; Aiken, Robert M.

    2016-01-01

    Our original research, to design and develop an Intelligent Collaborative Learning System (ICLS), yielded the creation of a Group Leader Tutor software system which utilizes a Collaborative Skills Network to monitor students working collaboratively in a networked environment. The Collaborative Skills Network was a conceptualization of…

  15. Performance of a wireless sensor network for crop monitoring and irrigation control

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  16. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  17. Measuring heterogenous stress fields in a 3D colloidal glass

    NASA Astrophysics Data System (ADS)

    Lin, Neil; Bierbaum, Matthew; Bi, Max; Sethna, James; Cohen, Itai

    Glass in our common experience is hard and fragile. But it still bends, yields, and flows slowly under loads. The yielding of glass, a well documented yet not fully understood flow behavior, is governed by the heterogenous local stresses in the material. While resolving stresses at the atomic scale is not feasible, measurements of stresses at the single particle level in colloidal glasses, a widely used model system for atomic glasses, has recently been made possible using Stress Assessment from Local Structural Anisotropy (SALSA). In this work, we use SALSA to visualize the three dimensional stress network in a hard-sphere glass during start-up shear. By measuring the evolution of this stress network we identify local-yielding. We find that these local-yielding events often require only minimal structural rearrangement and as such have most likely been ignored in previous analyses. We then relate these micro-scale yielding events to the macro-scale flow behavior observed using bulk measurements.

  18. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  19. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  20. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  1. Fast flux module detection using matroid theory.

    PubMed

    Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen

    2015-05-01

    Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.

  2. Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies.

    PubMed

    Vanrolleghem, P A; de Jong-Gubbels, P; van Gulik, W M; Pronk, J T; van Dijken, J P; Heijnen, S

    1996-01-01

    Setting up a metabolic network model for respiratory growth of Saccharomyces cerevisiae requires the estimation of only two (energetic) stoichiometric parameters: (1) the operational PO ratio and (2) a growth-related maintenance factor k. It is shown, both theoretically and practically, how chemostat cultivations with different mixtures of two substrates allow unique values to be given to these unknowns of the proposed metabolic model. For the yeast and model considered, an effective PO ratio of 1.09 mol of ATP/mol of O (95% confidence interval 1.07-1.11) and a k factor of 0.415 mol of ATP/C-mol of biomass (0.385-0.445) were obtained from biomass substrate yield data on glucose/ethanol mixtures. Symbolic manipulation software proved very valuable in this study as it supported the proof of theoretical identifiability and significantly reduced the necessary computations for parameter estimation. In the transition from 100% glucose to 100% ethanol in the feed, four metabolic regimes occur. Switching between these regimes is determined by cessation of an irreversible reaction and initiation of an alternative reaction. Metabolic network predictions of these metabolic switches compared well with activity measurements of key enzymes. As a second validation of the network, the biomass yield of S. cerevisiae on acetate was also compared to the network prediction. An excellent agreement was found for a network in which acetate transport was modeled with a proton symport, while passive diffusion of acetate gave significantly higher yield predictions.

  3. Energy loss, range, and bremsstrahlung yield for 10-keV to 100-MeV electrons in various elements and chemical compounds

    NASA Astrophysics Data System (ADS)

    Pages, Lucien; Bertel, Evelyne; Joffre, Henri; Sklavenitis, Laodamas

    2012-12-01

    Even though the United States lacks a national climate policy, significant action has occurred at the local and regional levels. Some of the most aggressive climate change policies have occurred at the state and local levels and in interagency cooperation on specific management issues. While there is a long history of partnerships in dealing with a wide variety of policy issues, the uncertainty and the political debate surrounding climate change has generated new challenges to establishing effective policy networks. This paper investigates the formation of climate policy networks in the State of Nevada. It presents a methodology based on social network analysis for assessing the structure and function of local policy networks across a range of substantive climate impacted resources (water, landscape management, conservation, forestry and others). It draws from an emerging literature on federalism and climate policy, public sector innovation, and institutional analysis in socio-ecological systems. Comparisons across different policy issue networks in the state are used to highlight the influence of network structure, connectivity, bridging across vertical and horizontal organizational units, organizational diversity, and flows between organizational nodes.

  4. Managment oriented analysis of sediment yield time compression

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in particular months, even in catchment with low or no inter-annual time compression. The analysis of seasonality of time compression showed that in most of the catchments large sediment yields were more likely to occur between October and January, while in two catchments it was in summer (June and July). The appropriate sediment yield management measure: enhancement of soil properties, (dis)connectivity measures or vegetation cover, should therefore be selected with regard to the type of inter-annual time compression, to the properties of the individual catchments, and to the magnitudes of sediment yield. To increase the effectivity and lower the costs of the applied measures, the management in the months or periods when large sediment yields are most likely to occur should be prioritized. The analysis of the monthly time compression might be used for their identification in areas where no event datasets are available. The R-OSMed network of Mediterranean erosion research catchments was funded by "SicMed-Mistrals" grants from 2011 to 2014. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196). João Pedro Nunes has received support from the European Union (in the framework of the European Social Fund) and the Portuguese Government under a post-doctoral fellowship (SFRH/BPD/87571/2012).

  5. Projecting climate change impacts on the stability of productivities of maize and soybean in terms of probability of concurrent failure

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Sakurai, G.; Iizumi, T.

    2012-12-01

    The globalization of the trade of food commodities has arranged agricultural production areas in the world. Current main production areas of maize and soybean, which are major cereal crops for human food and animal diet, are localized in the United States, China and Brazil. The amounts of production of maize and soybean from these three countries reached 70% and 74% of total production in the world in 2009, respectively. These three countries are hubs for the world food supply network. Simultaneous external disturbances to the localized hubs can make the network system unstable. Here, we projected the changes in stability of the productivities of maize and soybean under climate change. We used a process-based model for evaluating crop yield at a large scale for maize and soybean. The parameters are determined based on the historical agricultural statistics issued by administrative agencies during a period of 1981 to 2006 and a reanalysis data JRA25 provided by Japan Meteorological Agency. We used the climate change scenarios from outputs of MIROC5.0 simulations. We projected the time changes in maize and soybean yields of three countries under four climate change scenarios: RCP 2.6, 4.5, 6.0 and 8.5 for a period of 2010 to 2070. The significant declining trend of maize yield with time was projected in RCP 8.5 for all countries, while the yield appeared to decrease after 2050 in other RCP scenarios. The extents to which maize yield decrease in 2060s compared to the average over 1980 to 2006 were projected to be about 20% for the United States, 10% for Brazil and China in RCP 2.6, 4.5 and 6.0; 30% for the United States and Brazil, 40% for China in RCP 8.5. On the other hand, the projected changes in soybean yield were complicated. The projected extent to which soybean yield decrease in 2060s compared to the average over 1980 to 2006 was about 30% for the United States and Brazil and 20% for China in RCP 2.6. In RCP 4.5 and 6.0, the yield was projected to be constant or slightly increase compared to the average over 1980 to 2006 in Brazil and China, while the yield decrease by 20% in the United States. Yields of all the countries were projected to decrease up to 50% in RCP 8.5. We estimated the probability of concurrent failure, which is defined as function of the extent to which yields of three countries at a year decreased compared to the average yield over the past three years. We applied copula to measure the probability, which describe the relationship among multivariate probability distribution functions. For maize, the probability was projected to significantly increase in RCP 2.6 and 8.5, while that was projected to significantly increase only in RCP8.5 for soybean. The change in the probability was attributed to the increase of yearly yield variation and decreasing trend of yield over time. We extracted the trend component due to the improvements on agricultural technologies, therefore, the yearly variation and time trend in yield examined here can be attributed to climate change. From the sensitivity analyses, we found that the time trends in yields for maize and soybean were brought about mainly by the increase trend of mean temperature during the growing season.

  6. Technological Aspects of Waterworks Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Belkanova, M. Yu; Nikolaenko, E. V.; Gevel, D. A.

    2017-11-01

    The water yielding capacity of the sludge in water-supply network treatment facilities is determined by the water quality in a water source and its treatment technology. The paper studies the sludge of water-supply network treatment facilities formed in the conditions of low turbidity and average water colour index in the water source. Such sludge has a low water yielding capacity and is subject to conditioning. The paper shows the influence of seasonal variations of turbidity, water colour index and temperature of the feed water on the specific sludge filtration resistance. It considers the specific features of sludge formation in different settling basins influencing its water yielding capacity. It is shown that the washwater return performed at one of the blocks of the facilities increases the feed water turbidity and leads to the formation of the sludge easily susceptible to conditioning. The paper studies the following methods of the reagent sludge treatment: polyacrylamide-based flocculant treatment, joint treatment with flocculant and vermiculite filler, lime treatment. The use of vermiculite allows to reduce the required flocculant dose. The author determines optimum doses of reagents allowing to direct the sludge for further mechanical dewatering after conditioning. It is shown that, when the sludge is processed with lime, the filtrate formed at dewatering can be reused as an alkalifying agent, which will allow one to cut the costs for the acquisition of reagents.

  7. Metabolomic prediction of yield in hybrid rice.

    PubMed

    Xu, Shizhong; Xu, Yang; Gong, Liang; Zhang, Qifa

    2016-10-01

    Rice (Oryza sativa) provides a staple food source for more than 50% of the world's population. An increase in yield can significantly contribute to global food security. Hybrid breeding can potentially help to meet this goal because hybrid rice often shows a considerable increase in yield when compared with pure-bred cultivars. We recently developed a marker-guided prediction method for hybrid yield and showed a substantial increase in yield through genomic hybrid breeding. We now have transcriptomic and metabolomic data as potential resources for prediction. Using six prediction methods, including least absolute shrinkage and selection operator (LASSO), best linear unbiased prediction (BLUP), stochastic search variable selection, partial least squares, and support vector machines using the radial basis function and polynomial kernel function, we found that the predictability of hybrid yield can be further increased using these omic data. LASSO and BLUP are the most efficient methods for yield prediction. For high heritability traits, genomic data remain the most efficient predictors. When metabolomic data are used, the predictability of hybrid yield is almost doubled compared with genomic prediction. Of the 21 945 potential hybrids derived from 210 recombinant inbred lines, selection of the top 10 hybrids predicted from metabolites would lead to a ~30% increase in yield. We hypothesize that each metabolite represents a biologically built-in genetic network for yield; thus, using metabolites for prediction is equivalent to using information integrated from these hidden genetic networks for yield prediction. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network

    PubMed Central

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-01-01

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO2, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO2 and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO2; smoke and temperature; smoke, CO2 and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%–92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition. PMID:27527175

  9. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  10. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    PubMed

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  11. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  12. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    PubMed

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  13. Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories.

    PubMed

    Vitalis, Andreas; Caflisch, Amedeo

    2012-03-13

    The coarse-graining of data from molecular simulations yields conformational space networks that may be used for predicting the system's long time scale behavior, to discover structural pathways connecting free energy basins in the system, or simply to represent accessible phase space regions of interest and their connectivities in a two-dimensional plot. In this contribution, we present a tree-based algorithm to partition conformations of biomolecules into sets of similar microstates, i.e., to coarse-grain trajectory data into mesostates. On account of utilizing an architecture similar to that of established tree-based algorithms, the proposed scheme operates in near-linear time with data set size. We derive expressions needed for the fast evaluation of mesostate properties and distances when employing typical choices for measures of similarity between microstates. Using both a pedagogically useful and a real-word application, the algorithm is shown to be robust with respect to tree height, which in addition to mesostate threshold size is the main adjustable parameter. It is demonstrated that the derived mesostate networks can preserve information regarding the free energy basins and barriers by which the system is characterized.

  14. Multiplex visibility graphs to investigate recurrent neural network dynamics

    NASA Astrophysics Data System (ADS)

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-03-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.

  15. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    PubMed

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  16. Multiplex visibility graphs to investigate recurrent neural network dynamics

    PubMed Central

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-01-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods. PMID:28281563

  17. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  18. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  19. Estimation of Dynamic Systems for Gene Regulatory Networks from Dependent Time-Course Data.

    PubMed

    Kim, Yoonji; Kim, Jaejik

    2018-06-15

    Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.

  20. Nitrous oxide emission from denitrification in stream and river networks

    USGS Publications Warehouse

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3-. We suggest that increased stream NO3- loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  1. Topological Filtering of Dynamic Functional Brain Networks Unfolds Informative Chronnectomics: A Novel Data-Driven Thresholding Scheme Based on Orthogonal Minimal Spanning Trees (OMSTs)

    PubMed Central

    Dimitriadis, Stavros I.; Salis, Christos; Tarnanas, Ioannis; Linden, David E.

    2017-01-01

    The human brain is a large-scale system of functionally connected brain regions. This system can be modeled as a network, or graph, by dividing the brain into a set of regions, or “nodes,” and quantifying the strength of the connections between nodes, or “edges,” as the temporal correlation in their patterns of activity. Network analysis, a part of graph theory, provides a set of summary statistics that can be used to describe complex brain networks in a meaningful way. The large-scale organization of the brain has features of complex networks that can be quantified using network measures from graph theory. The adaptation of both bivariate (mutual information) and multivariate (Granger causality) connectivity estimators to quantify the synchronization between multichannel recordings yields a fully connected, weighted, (a)symmetric functional connectivity graph (FCG), representing the associations among all brain areas. The aforementioned procedure leads to an extremely dense network of tens up to a few hundreds of weights. Therefore, this FCG must be filtered out so that the “true” connectivity pattern can emerge. Here, we compared a large number of well-known topological thresholding techniques with the novel proposed data-driven scheme based on orthogonal minimal spanning trees (OMSTs). OMSTs filter brain connectivity networks based on the optimization between the global efficiency of the network and the cost preserving its wiring. We demonstrated the proposed method in a large EEG database (N = 101 subjects) with eyes-open (EO) and eyes-closed (EC) tasks by adopting a time-varying approach with the main goal to extract features that can totally distinguish each subject from the rest of the set. Additionally, the reliability of the proposed scheme was estimated in a second case study of fMRI resting-state activity with multiple scans. Our results demonstrated clearly that the proposed thresholding scheme outperformed a large list of thresholding schemes based on the recognition accuracy of each subject compared to the rest of the cohort (EEG). Additionally, the reliability of the network metrics based on the fMRI static networks was improved based on the proposed topological filtering scheme. Overall, the proposed algorithm could be used across neuroimaging and multimodal studies as a common computationally efficient standardized tool for a great number of neuroscientists and physicists working on numerous of projects. PMID:28491032

  2. Neural Network Prediction of ICU Length of Stay Following Cardiac Surgery Based on Pre-Incision Variables

    PubMed Central

    Pothula, Venu M.; Yuan, Stanley C.; Maerz, David A.; Montes, Lucresia; Oleszkiewicz, Stephen M.; Yusupov, Albert; Perline, Richard

    2015-01-01

    Background Advanced predictive analytical techniques are being increasingly applied to clinical risk assessment. This study compared a neural network model to several other models in predicting the length of stay (LOS) in the cardiac surgical intensive care unit (ICU) based on pre-incision patient characteristics. Methods Thirty six variables collected from 185 cardiac surgical patients were analyzed for contribution to ICU LOS. The Automatic Linear Modeling (ALM) module of IBM-SPSS software identified 8 factors with statistically significant associations with ICU LOS; these factors were also analyzed with the Artificial Neural Network (ANN) module of the same software. The weighted contributions of each factor (“trained” data) were then applied to data for a “new” patient to predict ICU LOS for that individual. Results Factors identified in the ALM model were: use of an intra-aortic balloon pump; O2 delivery index; age; use of positive cardiac inotropic agents; hematocrit; serum creatinine ≥ 1.3 mg/deciliter; gender; arterial pCO2. The r2 value for ALM prediction of ICU LOS in the initial (training) model was 0.356, p <0.0001. Cross validation in prediction of a “new” patient yielded r2 = 0.200, p <0.0001. The same 8 factors analyzed with ANN yielded a training prediction r2 of 0.535 (p <0.0001) and a cross validation prediction r2 of 0.410, p <0.0001. Two additional predictive algorithms were studied, but they had lower prediction accuracies. Our validated neural network model identified the upper quartile of ICU LOS with an odds ratio of 9.8(p <0.0001). Conclusions ANN demonstrated a 2-fold greater accuracy than ALM in prediction of observed ICU LOS. This greater accuracy would be presumed to result from the capacity of ANN to capture nonlinear effects and higher order interactions. Predictive modeling may be of value in early anticipation of risks of post-operative morbidity and utilization of ICU facilities. PMID:26710254

  3. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    PubMed

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  4. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.

    PubMed

    Zhang, Chong; Lv, Feng-Xiang; Xing, Xin-Hui

    2011-09-01

    Enterobacter aerogenes is one of the most widely-studied model strains for fermentative hydrogen production. To improve the hydrogen yield of E. aerogenes, the bioengineering on a biomolecular level and metabolic network level is of importance. In this review, the fermentative technology of E. aerogenes for hydrogen production will be first briefly summarized. And then the bioengineering of E. aerogenes for the improvement of hydrogen yield will be thoroughly reviewed, including the anaerobic metabolic networks for hydrogen evolution in E. aerogenes, metabolic engineering for improving hydrogen production in E. aerogenes and mixed culture of E. aerogenes with other hydrogen-producing bacteria to enhance the overall yield in anaerobic cultivation. Finally, a perspective on E. aerogenes as a hydrogen producer including systems bioengineering approach for improving the hydrogen yield and application of the engineered E. aerogenes in mixed culture will be presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks.

    PubMed

    Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin

    2018-04-26

    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance.

  6. Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks

    PubMed Central

    Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin

    2018-01-01

    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance. PMID:29701668

  7. A Climate Trend Analysis of Niger

    USGS Publications Warehouse

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies a substantial recovery of rainfall in Niger, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have increased during the past 20 years and have almost returned to 1960-89 levels. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant, and the population is growing very rapidly. * Niger has offset very rapid population growth with a large expansion of cultivated land. * If the expansion of farmland slows down, stagnant yields and population growth could lead to increased food insecurity.

  8. Social Networks and the Diffusion of Adolescent Problem Behavior: Reliable Estimates of Selection and Influence from Sixth Through Ninth Grades.

    PubMed

    Osgood, D Wayne; Feinberg, Mark E; Ragan, Daniel T

    2015-08-01

    Seeking to reduce problematic peer influence is a prominent theme of programs to prevent adolescent problem behavior. To support the refinement of this aspect of prevention programming, we examined peer influence and selection processes for three problem behaviors (delinquency, alcohol use, and smoking). We assessed not only the overall strengths of these peer processes, but also their consistency versus variability across settings. We used dynamic stochastic actor-based models to analyze five waves of friendship network data across sixth through ninth grades for a large sample of U.S. adolescents. Our sample included two successive grade cohorts of youth in 26 school districts participating in the PROSPER study, yielding 51 longitudinal social networks based on respondents' friendship nominations. For all three self-reported antisocial behaviors, we found evidence of both peer influence and selection processes tied to antisocial behavior. There was little reliable variance in these processes across the networks, suggesting that the statistical imprecision of the peer influence and selection estimates in previous studies likely accounts for inconsistencies in results. Adolescent friendship networks play a strong role in shaping problem behavior, but problem behaviors also inform friendship choices. In addition to preferring friends with similar levels of problem behavior, adolescents tend to choose friends who engage in problem behaviors, thus creating broader diffusion.

  9. Social Networks and the Diffusion of Adolescent Problem Behavior: Reliable Estimates of Selection and Influence from 6th through 9th Grade

    PubMed Central

    Osgood, D. Wayne; Feinberg, Mark E.; Ragan, Daniel T.

    2015-01-01

    Seeking to reduce problematic peer influence is a prominent theme of programs to prevent adolescent problem behavior. To support the refinement of this aspect of prevention programming, we examined peer influence and selection processes for three problem behaviors (delinquency, alcohol use, and smoking). We assessed not only the overall strengths of these peer processes, but also their consistency versus variability across settings. We used dynamic stochastic actor-based models to analyze five waves of friendship network data across sixth through ninth grades for a large sample of U.S. adolescents. Our sample included two successive grade cohorts of youth in 26 school districts participating in the PROSPER study, yielding 51 longitudinal social networks based on respondents’ friendship nominations. For all three self-reported antisocial behaviors, we found evidence of both peer influence and selection processes tied to antisocial behavior. There was little reliable variance in these processes across the networks, suggesting that the statistical imprecision of the peer influence and selection estimates in previous studies likely accounts for inconsistencies in results. Adolescent friendship networks play a strong role in shaping problem behavior, but problem behaviors also inform friendship choices. In addition to preferring friends with similar levels of problem behavior, adolescents tend to choose friends who engage in problem behaviors, thus creating broader diffusion. PMID:25943034

  10. Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael

    2018-06-01

    We analyze growth mechanisms of complex networks and focus on their validation by measurements. To this end we consider the equation Δ K =A (t ) (K +K0) Δ t , where K is the node's degree, Δ K is its increment, A (t ) is the aging constant, and K0 is the initial attractivity. This equation has been commonly used to validate the preferential attachment mechanism. We show that this equation is undiscriminating and holds for the fitness model [Caldarelli et al., Phys. Rev. Lett. 89, 258702 (2002), 10.1103/PhysRevLett.89.258702] as well. In other words, accepted method of the validation of the microscopic mechanism of network growth does not discriminate between "rich-gets-richer" and "good-gets-richer" scenarios. This means that the growth mechanism of many natural complex networks can be based on the fitness model rather than on the preferential attachment, as it was believed so far. The fitness model yields the long-sought explanation for the initial attractivity K0, an elusive parameter which was left unexplained within the framework of the preferential attachment model. We show that the initial attractivity is determined by the width of the fitness distribution. We also present the network growth model based on recursive search with memory and show that this model contains both the preferential attachment and the fitness models as extreme cases.

  11. Effects of pre-cooked cheeses of different emulsifying conditions on mechanical properties and microstructure of processed cheese.

    PubMed

    Fu, Wei; Watanabe, Yurika; Inoue, Keita; Moriguchi, Natsumi; Fusa, Kazunao; Yanagisawa, Yuya; Mutoh, Takaaki; Nakamura, Takashi

    2018-04-15

    The effect of pre-cooked cheeses of different emulsifying conditions on the viscosities, mechanical properties, fat globules, and microstructure of processed cheese was investigated, and changes in protein network relating to the creaming effect and the occurrence of yielding point were discussed. The addition of pre-cooked cheeses with a short stirring time had no obvious impact on the fat globules and protein network. The random network brought low viscosities and a gradual increase in the fracture stress/strain curve. The addition of pre-cooked cheeses with the long stirring time caused protein network to become fine-stranded. The fine-stranded network caused creaming effect, and brought yielding points in the mechanical properties. The pre-cooked cheese with the small fat globules also caused fat globules to become smaller, and give the processed cheese more firmness. This study provides a potential solution to control the functional properties of processed cheese by using a variety of pre-cooked cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Convolutional neural networks with balanced batches for facial expressions recognition

    NASA Astrophysics Data System (ADS)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  13. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.

    PubMed

    Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L

    2017-10-11

    Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.

  14. Time-varying multiplex network: Intralayer and interlayer synchronization

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  15. Time-varying multiplex network: Intralayer and interlayer synchronization.

    PubMed

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  16. Moving from theory to practice: A participatory social network mapping approach to address unmet need for family planning in Benin.

    PubMed

    Igras, Susan; Diakité, Mariam; Lundgren, Rebecka

    2017-07-01

    In West Africa, social factors influence whether couples with unmet need for family planning act on birth-spacing desires. Tékponon Jikuagou is testing a social network-based intervention to reduce social barriers by diffusing new ideas. Individuals and groups judged socially influential by their communities provide entrée to networks. A participatory social network mapping methodology was designed to identify these diffusion actors. Analysis of monitoring data, in-depth interviews, and evaluation reports assessed the methodology's acceptability to communities and staff and whether it produced valid, reliable data to identify influential individuals and groups who diffuse new ideas through their networks. Results indicated the methodology's acceptability. Communities were actively and equitably engaged. Staff appreciated its ability to yield timely, actionable information. The mapping methodology also provided valid and reliable information by enabling communities to identify highly connected and influential network actors. Consistent with social network theory, this methodology resulted in the selection of informal groups and individuals in both informal and formal positions. In-depth interview data suggest these actors were diffusing new ideas, further confirming their influence/connectivity. The participatory methodology generated insider knowledge of who has social influence, challenging commonly held assumptions. Collecting and displaying information fostered staff and community learning, laying groundwork for social change.

  17. Community Detection in Complex Networks via Clique Conductance.

    PubMed

    Lu, Zhenqi; Wahlström, Johan; Nehorai, Arye

    2018-04-13

    Network science plays a central role in understanding and modeling complex systems in many areas including physics, sociology, biology, computer science, economics, politics, and neuroscience. One of the most important features of networks is community structure, i.e., clustering of nodes that are locally densely interconnected. Communities reveal the hierarchical organization of nodes, and detecting communities is of great importance in the study of complex systems. Most existing community-detection methods consider low-order connection patterns at the level of individual links. But high-order connection patterns, at the level of small subnetworks, are generally not considered. In this paper, we develop a novel community-detection method based on cliques, i.e., local complete subnetworks. The proposed method overcomes the deficiencies of previous similar community-detection methods by considering the mathematical properties of cliques. We apply the proposed method to computer-generated graphs and real-world network datasets. When applied to networks with known community structure, the proposed method detects the structure with high fidelity and sensitivity. When applied to networks with no a priori information regarding community structure, the proposed method yields insightful results revealing the organization of these complex networks. We also show that the proposed method is guaranteed to detect near-optimal clusters in the bipartition case.

  18. Estimation of monthly water yields and flows for 1951-2012 for the United States portion of the Great Lakes Basin with AFINCH

    USGS Publications Warehouse

    Luukkonen, Carol L.; Holtschlag, David J.; Reeves, Howard W.; Hoard, Christopher J.; Fuller, Lori M.

    2015-01-01

    Monthly water yields from 105,829 catchments and corresponding flows in 107,691 stream segments were estimated for water years 1951–2012 in the Great Lakes Basin in the United States. Both sets of estimates were computed by using the Analysis of Flows In Networks of CHannels (AFINCH) application within the NHDPlus geospatial data framework. AFINCH provides an environment to develop constrained regression models to integrate monthly streamflow and water-use data with monthly climatic data and fixed basin characteristics data available within NHDPlus or supplied by the user. For this study, the U.S. Great Lakes Basin was partitioned into seven study areas by grouping selected hydrologic subregions and adjoining cataloguing units. This report documents the regression models and data used to estimate monthly water yields and flows in each study area. Estimates of monthly water yields and flows are presented in a Web-based mapper application. Monthly flow time series for individual stream segments can be retrieved from the Web application and used to approximate monthly flow-duration characteristics and to identify possible trends.

  19. Detecting altered connectivity patterns in HIV associated neurocognitive impairment using mutual connectivity analysis

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.

  20. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  1. Modelling drought-related yield losses in Iberia using remote sensing and multiscalar indices

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia F. S.; Russo, Ana; Gouveia, Célia M.; Páscoa, Patrícia

    2018-04-01

    The response of two rainfed winter cereal yields (wheat and barley) to drought conditions in the Iberian Peninsula (IP) was investigated for a long period (1986-2012). Drought hazard was evaluated based on the multiscalar Standardized Precipitation Evapotranspiration Index (SPEI) and three remote sensing indices, namely the Vegetation Condition (VCI), the Temperature Condition (TCI), and the Vegetation Health (VHI) Indices. A correlation analysis between the yield and the drought indicators was conducted, and multiple linear regression (MLR) and artificial neural network (ANN) models were established to estimate yield at the regional level. The correlation values suggested that yield reduces with moisture depletion (low values of VCI) during early-spring and with too high temperatures (low values of TCI) close to the harvest time. Generally, all drought indicators displayed greatest influence during the plant stages in which the crop is photosynthetically more active (spring and summer), rather than the earlier moments of plants life cycle (autumn/winter). Our results suggested that SPEI is more relevant in the southern sector of the IP, while remote sensing indices are rather good in estimating cereal yield in the northern sector of the IP. The strength of the statistical relationships found by MLR and ANN methods is quite similar, with some improvements found by the ANN. A great number of true positives (hits) of occurrence of yield-losses exhibiting hit rate (HR) values higher than 69% was obtained.

  2. Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime; Gerberich, William; Francis, Lorraine

    2000-03-01

    In an effort to lower the percolation threshold of carbon black-filled polymer composites, various polymer microstructures were examined. Composites were prepared using polyvinyl acetate (PVAc) latex, PVAc water-dispersible powder and polyvinylpyrrolidone (PVP) solution as the matrix starting material. Composites prepared using the particulate microstructures showed a significantly lowered percolation threshold relative to an equivalently prepared composite using the PVP solution. The PVAc latex-based composites has a percolation threshold of 3 volthe PVP solution-based composite yielded a percolation threshold near 15 voloccupied by polymer particles, the particulate matrix-based composites create a segregated CB network at low filler concentration.

  3. Evaluation of weather-based rice yield models in India

    NASA Astrophysics Data System (ADS)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  4. Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield

    PubMed Central

    Choe, Eunsoo; Drnevich, Jenny; Williams, Martin M.

    2016-01-01

    Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. PMID:26796516

  5. Morphology and linear-elastic moduli of random network solids.

    PubMed

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  7. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    PubMed

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  8. Resting-State Seed-Based Analysis: An Alternative to Task-Based Language fMRI and Its Laterality Index.

    PubMed

    Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C

    2017-06-01

    Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.

  9. Prediction of cassava protein interactome based on interolog method.

    PubMed

    Thanasomboon, Ratana; Kalapanulak, Saowalak; Netrphan, Supatcharee; Saithong, Treenut

    2017-12-08

    Cassava is a starchy root crop whose role in food security becomes more significant nowadays. Together with the industrial uses for versatile purposes, demand for cassava starch is continuously growing. However, in-depth study to uncover the mystery of cellular regulation, especially the interaction between proteins, is lacking. To reduce the knowledge gap in protein-protein interaction (PPI), genome-scale PPI network of cassava was constructed using interolog-based method (MePPI-In, available at http://bml.sbi.kmutt.ac.th/ppi ). The network was constructed from the information of seven template plants. The MePPI-In included 90,173 interactions from 7,209 proteins. At least, 39 percent of the total predictions were found with supports from gene/protein expression data, while further co-expression analysis yielded 16 highly promising PPIs. In addition, domain-domain interaction information was employed to increase reliability of the network and guide the search for more groups of promising PPIs. Moreover, the topology and functional content of MePPI-In was similar to the networks of Arabidopsis and rice. The potential contribution of MePPI-In for various applications, such as protein-complex formation and prediction of protein function, was discussed and exemplified. The insights provided by our MePPI-In would hopefully enable us to pursue precise trait improvement in cassava.

  10. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.

    PubMed

    Hosoya, Haruo

    2012-08-01

    We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.

  11. Use of pattern recognition and neural networks for non-metric sex diagnosis from lateral shape of calvarium: an innovative model for computer-aided diagnosis in forensic and physical anthropology.

    PubMed

    Cavalli, Fabio; Lusnig, Luca; Trentin, Edmondo

    2017-05-01

    Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.

  12. Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.

    PubMed

    Rashidi, Mohammad; Wolkow, Robert A

    2018-05-23

    Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.

  13. Advice Networks and Local Diffusion of Technological Innovations

    NASA Astrophysics Data System (ADS)

    Barahona, Juan Carlos; Pentland, Alex Sandy

    Classical writers such as John Stuart Mill and Karl Marx speculated that the standard of living could not rise indefinitely unless advances in technology increased the yield of the means of production. Neoclassical growth theory, based on capital accumulation, supports this intuition [1]. Digital tools increase personal productivity. Communication technologies enhance the coordination among individuals and increase the efficacy and efficiency of collective efforts. In both ways, technology contributes with wealth creation and the overall welfare of the community.

  14. Dynamic Wireless Network Based on Open Physical Layer

    DTIC Science & Technology

    2011-02-18

    would yield the error- exponent optimal solutions. We solved this problem, and the detailed works are reported in [?]. It turns out that when Renyi ...is, during the communication session. A natural set of metrics of interests are the family of Renyi divergences. With a parameter of α that can be...tuned, Renyi entropy of a given distribution corresponds to the Shannon entropy, at α = 1, to the probability of detection error, at α =∞. This gives a

  15. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming.

    PubMed

    Vaezi, Mohammad; Black, Cameron; Gibbs, David M R; Oreffo, Richard O C; Brady, Mark; Moshrefi-Torbati, Mohamed; Yang, Shoufeng

    2016-05-26

    Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  16. Integrative network alignment reveals large regions of global network similarity in yeast and human.

    PubMed

    Kuchaiev, Oleksii; Przulj, Natasa

    2011-05-15

    High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.

  17. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  18. Efficient methods and readily customizable libraries for managing complexity of large networks.

    PubMed

    Dogrusoz, Ugur; Karacelik, Alper; Safarli, Ilkin; Balci, Hasan; Dervishi, Leonard; Siper, Metin Can

    2018-01-01

    One common problem in visualizing real-life networks, including biological pathways, is the large size of these networks. Often times, users find themselves facing slow, non-scaling operations due to network size, if not a "hairball" network, hindering effective analysis. One extremely useful method for reducing complexity of large networks is the use of hierarchical clustering and nesting, and applying expand-collapse operations on demand during analysis. Another such method is hiding currently unnecessary details, to later gradually reveal on demand. Major challenges when applying complexity reduction operations on large networks include efficiency and maintaining the user's mental map of the drawing. We developed specialized incremental layout methods for preserving a user's mental map while managing complexity of large networks through expand-collapse and hide-show operations. We also developed open-source JavaScript libraries as plug-ins to the web based graph visualization library named Cytsocape.js to implement these methods as complexity management operations. Through efficient specialized algorithms provided by these extensions, one can collapse or hide desired parts of a network, yielding potentially much smaller networks, making them more suitable for interactive visual analysis. This work fills an important gap by making efficient implementations of some already known complexity management techniques freely available to tool developers through a couple of open source, customizable software libraries, and by introducing some heuristics which can be applied upon such complexity management techniques to ensure preserving mental map of users.

  19. A SYSTEMS BIOLOGY APPROACH TO DEVELOPMENTAL TOXICOLOGY

    EPA Science Inventory

    Abstract
    Recent advances in developmental biology have yielded detailed models of gene regulatory networks (GRNs) involved in cell specification and other processes in embryonic differentiation. Such networks form the bedrock on which a systems biology approach to developme...

  20. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  1. Neural Network Modeling for Gallium Arsenide IC Fabrication Process and Device Characteristics.

    NASA Astrophysics Data System (ADS)

    Creech, Gregory Lee, I.

    This dissertation presents research focused on the utilization of neurocomputing technology to achieve enhanced yield and effective yield prediction in integrated circuit (IC) manufacturing. Artificial neural networks are employed to model complex relationships between material and device characteristics at critical stages of the semiconductor fabrication process. Whole wafer testing was performed on the starting substrate material and during wafer processing at four critical steps: Ohmic or Post-Contact, Post-Recess, Post-Gate and Final, i.e., at completion of fabrication. Measurements taken and subsequently used in modeling include, among others, doping concentrations, layer thicknesses, planar geometries, layer-to-layer alignments, resistivities, device voltages, and currents. The neural network architecture used in this research is the multilayer perceptron neural network (MLPNN). The MLPNN is trained in the supervised mode using the generalized delta learning rule. It has one hidden layer and uses continuous perceptrons. The research focuses on a number of different aspects. First is the development of inter-process stage models. Intermediate process stage models are created in a progressive fashion. Measurements of material and process/device characteristics taken at a specific processing stage and any previous stages are used as input to the model of the next processing stage characteristics. As the wafer moves through the fabrication process, measurements taken at all previous processing stages are used as input to each subsequent process stage model. Secondly, the development of neural network models for the estimation of IC parametric yield is demonstrated. Measurements of material and/or device characteristics taken at earlier fabrication stages are used to develop models of the final DC parameters. These characteristics are computed with the developed models and compared to acceptance windows to estimate the parametric yield. A sensitivity analysis is performed on the models developed during this yield estimation effort. This is accomplished by analyzing the total disturbance of network outputs due to perturbed inputs. When an input characteristic bears no, or little, statistical or deterministic relationship to the output characteristics, it can be removed as an input. Finally, neural network models are developed in the inverse direction. Characteristics measured after the final processing step are used as the input to model critical in-process characteristics. The modeled characteristics are used for whole wafer mapping and its statistical characterization. It is shown that this characterization can be accomplished with minimal in-process testing. The concepts and methodologies used in the development of the neural network models are presented. The modeling results are provided and compared to the actual measured values of each characteristic. An in-depth discussion of these results and ideas for future research are presented.

  2. Determining Usability Versus Cost and Yields of a Regional Transport

    NASA Technical Reports Server (NTRS)

    Gvozdenovic, Slobodan

    1999-01-01

    Regional transports are designed to operate on air networks having the basic characteristics of short trip distances and low density passengers/cargo, i.e. small numbers of passengers per flight. Regional transports passenger capacity is from 10 to 100 seats and operate on routes from 350 to 1000 nautical miles (nm). An air network operated by regional transports has the following characteristics: (1) connecting regional centers; (2) operating on low density passengers/cargo flow services with minimum two frequencies per day; (3) operating on high density passengers/cargo flow with more than two frequencies per day; and (4) operating supplemental services whenever market demands in order to help bigger capacity aircraft already operating the same routes. In order to meet passenger requirements providing low fares and high or required number of frequencies, airlines must constantly monitor operational costs and keep them low. It is obvious that costs of operating aircraft must be lower than yield obtained by transporting passengers and cargo. The requirement to achieve favorable yield/cost ratio must provide the answer to the question of which aircraft will best meet a specific air network. An air network is defined by the number of services, the trip distance of each service, and the number of flights (frequencies) per day and week.

  3. Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia

    PubMed Central

    Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail

    2015-01-01

    Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635

  4. Temporal stability in human interaction networks

    NASA Astrophysics Data System (ADS)

    Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais

    2017-11-01

    This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, < 15% of the vertices are hubs, 15%-45% are intermediary and > 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.

  5. A load balancing bufferless deflection router for network-on-chip

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Zhou; Zhangming, Zhu; Duan, Zhou

    2016-07-01

    The bufferless router emerges as an interesting option for cost-efficient in network-on-chip (NoC) design. However, the bufferless router only works well under low network load because deflection more easily occurs as the injection rate increases. In this paper, we propose a load balancing bufferless deflection router (LBBDR) for NoC that relieves the effect of deflection in bufferless NoC. The proposed LBBDR employs a balance toggle identifier in the source router to control the initial routing direction of X or Y for a flit in the network. Based on this mechanism, the flit is routed according to XY or YX routing in the network afterward. When two or more flits contend the same one desired output port a priority policy called nearer-first is used to address output ports allocation contention. Simulation results show that the proposed LBBDR yields an improvement of routing performance over the reported bufferless routing in the flit deflection rate, average packet latency and throughput by up to 13%, 10% and 6% respectively. The layout area and power consumption compared with the reported schemes are 12% and 7% less respectively. Project supported by the National Natural Science Foundation of China (Nos. 61474087, 61322405, 61376039).

  6. Inefficient epidemic spreading in scale-free networks

    NASA Astrophysics Data System (ADS)

    Piccardi, Carlo; Casagrandi, Renato

    2008-02-01

    Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.

  7. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, Troy; Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee; Liu, Liwang

    As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity,more » peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of neural networks for temperature reconstruction improves the accuracy of the measurement.« less

  8. Linking Fine-Scale Observations and Model Output with Imagery at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Sadler, J.; Walthall, C. L.

    2014-12-01

    The development and implementation of a system for seasonal worldwide agricultural yield estimates is underway with the international Group on Earth Observations GeoGLAM project. GeoGLAM includes a research component to continually improve and validate its algorithms. There is a history of field measurement campaigns going back decades to draw upon for ways of linking surface measurements and model results with satellite observations. Ground-based, in-situ measurements collected by interdisciplinary teams include yields, model inputs and factors affecting scene radiation. Data that is comparable across space and time with careful attention to calibration is essential for the development and validation of agricultural applications of remote sensing. Data management to ensure stewardship, availability and accessibility of the data are best accomplished when considered an integral part of the research. The expense and logistical challenges of field measurement campaigns can be cost-prohibitive and because of short funding cycles for research, access to consistent, stable study sites can be lost. The use of a dedicated staff for baseline data needed by multiple investigators, and conducting measurement campaigns using existing measurement networks such as the USDA Long Term Agroecosystem Research network can fulfill these needs and ensure long-term access to study sites.

  9. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  10. Geostatistics as a validation tool for setting ozone standards for durum wheat.

    PubMed

    De Marco, Alessandra; Screpanti, Augusto; Paoletti, Elena

    2010-02-01

    Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected > or =90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m(-2) was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  11. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  12. Naming games in two-dimensional and small-world-connected random geometric networks.

    PubMed

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  13. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion.

    PubMed

    Wang, Zhiwei; Zeljic, Kristina; Jiang, Qinying; Gu, Yong; Wang, Wei; Wang, Zheng

    2018-01-01

    Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System

    NASA Astrophysics Data System (ADS)

    Manikumari, N.; Murugappan, A.; Vinodhini, G.

    2017-07-01

    Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 - 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.

  15. CrosstalkNet: A Visualization Tool for Differential Co-expression Networks and Communities.

    PubMed

    Manem, Venkata; Adam, George Alexandru; Gruosso, Tina; Gigoux, Mathieu; Bertos, Nicholas; Park, Morag; Haibe-Kains, Benjamin

    2018-04-15

    Variations in physiological conditions can rewire molecular interactions between biological compartments, which can yield novel insights into gain or loss of interactions specific to perturbations of interest. Networks are a promising tool to elucidate intercellular interactions, yet exploration of these large-scale networks remains a challenge due to their high dimensionality. To retrieve and mine interactions, we developed CrosstalkNet, a user friendly, web-based network visualization tool that provides a statistical framework to infer condition-specific interactions coupled with a community detection algorithm for bipartite graphs to identify significantly dense subnetworks. As a case study, we used CrosstalkNet to mine a set of 54 and 22 gene-expression profiles from breast tumor and normal samples, respectively, with epithelial and stromal compartments extracted via laser microdissection. We show how CrosstalkNet can be used to explore large-scale co-expression networks and to obtain insights into the biological processes that govern cross-talk between different tumor compartments. Significance: This web application enables researchers to mine complex networks and to decipher novel biological processes in tumor epithelial-stroma cross-talk as well as in other studies of intercompartmental interactions. Cancer Res; 78(8); 2140-3. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and Car-Parrinello molecular dynamics.

    PubMed

    Hayakawa, Daichi; Nishiyama, Yoshiharu; Mazeau, Karim; Ueda, Kazuyoshi

    2017-09-08

    Crystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra. In contrast, network B, which is a minor structure, was unstable because its hydroxymethyl groups reoriented during the CPMD simulation, yielding a different crystal structure to that determined by experiments. For the II allomorph, a HB network A is proposed based on diffraction data, whereas molecular modeling identifies an alternative network B. Our simulations showed that the interaction energies of the cellulose II (B) model are slightly more favorable than model II(A). However, the evaluation of the free energy should be waited for the accurate determination from the energy point of view. For the IR calculation, cellulose II (B) model reproduces the spectra better than model II (A). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A fresh look at functional link neural network for motor imagery-based brain-computer interface.

    PubMed

    Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid

    2018-05-04

    Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Processable high-carbon-yielding polymer for micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.

    2003-01-01

    Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.

  19. Multi-level Hierarchical Poly Tree computer architectures

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Gute, Doug

    1990-01-01

    Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.

  20. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  1. Modelling neural correlates of working memory: A coordinate-based meta-analysis

    PubMed Central

    Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B.

    2011-01-01

    Working memory subsumes the capability to memorize, retrieve and utilize information for a limited period of time which is essential to many human behaviours. Moreover, impairments of working memory functions may be found in nearly all neurological and psychiatric diseases. To examine what brain regions are commonly and differently active during various working memory tasks, we performed a coordinate-based meta-analysis over 189 fMRI experiments on healthy subjects. The main effect yielded a widespread bilateral fronto-parietal network. Further meta-analyses revealed that several regions were sensitive to specific task components, e.g. Broca’s region was selectively active during verbal tasks or ventral and dorsal premotor cortex were preferentially involved in memory for object identity and location, respectively. Moreover, the lateral prefrontal cortex showed a division in a rostral and a caudal part based on differential involvement in task-set and load effects. Nevertheless, a consistent but more restricted “core” network emerged from conjunctions across analyses of specific task designs and contrasts. This “core” network appears to comprise the quintessence of regions, which are necessary during working memory tasks. It may be argued that the core regions form a distributed executive network with potentially generalized functions for focusing on competing representations in the brain. The present study demonstrates that meta-analyses are a powerful tool to integrate the data of functional imaging studies on a (broader) psychological construct, probing the consistency across various paradigms as well as the differential effects of different experimental implementations. PMID:22178808

  2. Community Interagency Connections for Immigrant Worker Health Interventions, King County, Washington State, 2012-2013.

    PubMed

    Tsai, Jenny Hsin-Chin; Petrescu-Prahova, Miruna

    2016-06-02

    Cross-sector community partnerships are a potentially powerful strategy to address population health problems, including health disparities. US immigrants - commonly employed in low-wage jobs that pose high risks to their health - experience such disparities because of hazardous exposures in the workplace. Hazardous exposures contribute to chronic health problems and complicate disease management. Moreover, prevention strategies such as worksite wellness programs are not effective for low-wage immigrant groups. The purpose of this article was to describe an innovative application of social network analysis to characterize interagency connections and knowledge needed to design and deliver a comprehensive community-based chronic disease prevention program for immigrant workers. Using iterative sample expansion, we identified 42 agencies representing diverse community sectors (service agencies, faith-based organizations, unions, nonprofits, government agencies) pertinent to the health of Chinese immigrant workers. To capture data on shared information, resources, and services as well as organizational characteristics, we jointly interviewed 2 representatives from each agency. We used social network analysis to describe interagency network structure and the positions of agencies within the networks. Agency interconnections were established primarily for information sharing. In the overall interagency network, a few service-oriented agencies held central or gatekeeper positions. Strong interconnectedness occurred predominately across service, public, and nonprofit sectors. The Chinese and Pan-Asian service sectors showed the strongest interconnectedness. Network analysis yields critical understanding of community structural links and assets needed to inform decisions about actual and potential community collaborations. Alternative intervention strategies may be needed to address health disparities among immigrant workers.

  3. Modality-specificity of Selective Attention Networks.

    PubMed

    Stewart, Hannah J; Amitay, Sygal

    2015-01-01

    To establish the modality specificity and generality of selective attention networks. Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled "general attention." The third component was labeled "auditory attention," as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as "spatial orienting" and "spatial conflict," respectively-they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task-all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.

  4. Template-based procedures for neural network interpretation.

    PubMed

    Alexander, J A.; Mozer, M C.

    1999-04-01

    Although neural networks often achieve impressive learning and generalization performance, their internal workings are typically all but impossible to decipher. This characteristic of the networks, their opacity, is one of the disadvantages of connectionism compared to more traditional, rule-oriented approaches to artificial intelligence. Without a thorough understanding of the network behavior, confidence in a system's results is lowered, and the transfer of learned knowledge to other processing systems - including humans - is precluded. Methods that address the opacity problem by casting network weights in symbolic terms are commonly referred to as rule extraction techniques. This work describes a principled approach to symbolic rule extraction from standard multilayer feedforward networks based on the notion of weight templates, parameterized regions of weight space corresponding to specific symbolic expressions. With an appropriate choice of representation, we show how template parameters may be efficiently identified and instantiated to yield the optimal match to the actual weights of a unit. Depending on the requirements of the application domain, the approach can accommodate n-ary disjunctions and conjunctions with O(k) complexity, simple n-of-m expressions with O(k(2)) complexity, or more general classes of recursive n-of-m expressions with O(k(L+2)) complexity, where k is the number of inputs to an unit and L the recursion level of the expression class. Compared to other approaches in the literature, our method of rule extraction offers benefits in simplicity, computational performance, and overall flexibility. Simulation results on a variety of problems demonstrate the application of our procedures as well as the strengths and the weaknesses of our general approach.

  5. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    PubMed

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  6. Plasma extraction rate enhancement scheme for a real-time and continuous blood plasma separation device using a sheathless cell concentrator

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Hyun; Kim, Kyongtae; Kim, Yong-Jun

    2018-02-01

    Microfluidic devices for plasma extraction are popular because they offer the advantage of smaller reagent consumption compared to conventional centrifugations. The plasma yield (volume percentage of plasma that can be extracted) is an important factor for diagnoses in microdevices with small reagent consumptions. However, recently designed microfluidic devices tend to have a low plasma yield because they have been optimized to improve the purity of extracted plasma. Thus, these devices require large amounts of reagents, and this complexity has eliminated the advantage of microfluidic devices that can operate with only small amounts of reagents. We therefore propose a continuous, real-time, blood plasma separation device, for plasma extraction rate enhancements. Moreover, a blood plasma separation device was designed to achieve improved plasma yields with high-purity efficiency. To obtain a high plasma yield, microstructures were placed on the bottom side of the channel to increase the concentration of blood cells. Plasma separation was then accomplished via microfluidic networks based on the Zweifach-Fung effect. The proposed device was fabricated based on the polydimethylsiloxane molding process using the SU-8 microfluidic channel for the fabrication of the mold and bottom structures. Human blood diluted in a phosphate buffered saline solution (25% hematocrit) was injected into the inlet of the device. The purity efficiencies were approximately equal to 96% with a maximum of 96.75% at a flow rate of 2 µl min-1, while the plasma yield was approximately 59% with a maximum of 59.92% at a flow rate of 4 µl min-1. Compared to results obtained using other devices, our proposed device could obtain comparable or higher plasma purity and a high plasma yield.

  7. Spatially Explicit Estimates of Suspended Sediment and Bedload Transport Rates for Western Oregon and Northwestern California

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.

    2015-12-01

    Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The combined fluxes can also be compared to long-term rock uplift and cosmogenically determined landscape erosion rates.

  8. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form them.

  9. Comparison of continuously acquired resting state and extracted analogues from active tasks.

    PubMed

    Ganger, Sebastian; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S; Spies, Marie; Vanicek, Thomas; Seiger, René; Sladky, Ronald; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-10-01

    Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting-state data, the application to task-specific fMRI has received growing attention. Three major methods for extraction of resting-state data from task-related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite widespread application in current research, consensus on which method best resembles resting-state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were assessed (emotion discrimination and right finger-tapping) and five well-described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R(2) ) showed that regression against task effects yields functional connectivity networks most alike to resting-state. However, all methods exhibited significant differences when compared to continuous resting-state and similarity metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting-state when extracting signals from task designs, although functional connectivity computed from task-specific data may indeed yield interesting information. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Comparison of continuously acquired resting state and extracted analogues from active tasks

    PubMed Central

    Ganger, Sebastian; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S.; Spies, Marie; Vanicek, Thomas; Seiger, René; Sladky, Ronald; Windischberger, Christian; Kasper, Siegfried

    2015-01-01

    Abstract Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting‐state data, the application to task‐specific fMRI has received growing attention. Three major methods for extraction of resting‐state data from task‐related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in‐between task blocks. Despite widespread application in current research, consensus on which method best resembles resting‐state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting‐state, two different task paradigms were assessed (emotion discrimination and right finger‐tapping) and five well‐described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting‐state (Dice, Intraclass correlation coefficient (ICC), R 2) showed that regression against task effects yields functional connectivity networks most alike to resting‐state. However, all methods exhibited significant differences when compared to continuous resting‐state and similarity metrics were lower than test‐retest of two resting‐state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting‐state when extracting signals from task designs, although functional connectivity computed from task‐specific data may indeed yield interesting information. Hum Brain Mapp 36:4053–4063, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178250

  11. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets.

    PubMed

    Qiu, Yongcai; Zhang, Xinfeng; Yang, Shihe

    2011-07-21

    Thermal nitridation of reduced graphene oxide sheets yields highly conductive (∼1000-3000 S m(-1)) N-doped graphene sheets, as a result of the restoration of the graphene network by the formation of C-N bonded groups and N-doping. Even without carbon additives, supercapacitors made of the N-doped graphene electrodes can deliver remarkable energy and power when operated at higher voltages, in the range of 0-4 V. This journal is © the Owner Societies 2011

  12. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    NASA Astrophysics Data System (ADS)

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-03-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.

  13. Mrg: A Magnitude Scale for 1 s Rayleigh Waves at Local Distances with Focus on Yield Estimation

    DTIC Science & Technology

    2016-08-23

    typical of “hard” rock emplacement media. The MRg estimates using Eq. 5 are shown in Figure 3c. The network average MRg, which is estimated after...MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other...convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them. This report was cleared for public

  14. Findings from a national needs assessment of American Indian/Alaska native child welfare programs.

    PubMed

    Leake, Robin; Potter, Cathryn; Lucero, Nancy; Gardner, Jerry; Deserly, Kathy

    2012-01-01

    The National Child Welfare Resource Center for Tribes, a member of the Children's Bureau Child Welfare Training and Technical Assistance Network, conducted a national needs assessment of tribal child welfare. This assessment explored current practices in tribal child welfare to identify unique systemic strengths and challenges. A culturally based, multi-method design yielded findings in five areas: tribal child welfare practice, foster care and adoption, the Indian Child Welfare Act, legal and judicial, and program operations.

  15. Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.

    PubMed

    Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing

    2017-01-01

    Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.

  16. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.

    PubMed

    Weng, Wei-Hung; Wagholikar, Kavishwar B; McCray, Alexa T; Szolovits, Peter; Chueh, Henry C

    2017-12-01

    The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. We constructed the pipeline using the clinical NLP system, clinical Text Analysis and Knowledge Extraction System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus, Semantic Network, and learning algorithms to extract features from two datasets - clinical notes from Integrating Data for Analysis, Anonymization, and Sharing (iDASH) data repository (n = 431) and Massachusetts General Hospital (MGH) (n = 91,237), and built medical subdomain classifiers with different combinations of data representation methods and supervised learning algorithms. We evaluated the performance of classifiers and their portability across the two datasets. The convolutional recurrent neural network with neural word embeddings trained-medical subdomain classifier yielded the best performance measurement on iDASH and MGH datasets with area under receiver operating characteristic curve (AUC) of 0.975 and 0.991, and F1 scores of 0.845 and 0.870, respectively. Considering better clinical interpretability, linear support vector machine-trained medical subdomain classifier using hybrid bag-of-words and clinically relevant UMLS concepts as the feature representation, with term frequency-inverse document frequency (tf-idf)-weighting, outperformed other shallow learning classifiers on iDASH and MGH datasets with AUC of 0.957 and 0.964, and F1 scores of 0.932 and 0.934 respectively. We trained classifiers on one dataset, applied to the other dataset and yielded the threshold of F1 score of 0.7 in classifiers for half of the medical subdomains we studied. Our study shows that a supervised learning-based NLP approach is useful to develop medical subdomain classifiers. The deep learning algorithm with distributed word representation yields better performance yet shallow learning algorithms with the word and concept representation achieves comparable performance with better clinical interpretability. Portable classifiers may also be used across datasets from different institutions.

  17. Regulatory modules controlling maize inflorescence architecture

    USDA-ARS?s Scientific Manuscript database

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...

  18. Convolutional neural network architectures for predicting DNA–protein binding

    PubMed Central

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  19. A triangular climate-based decision model to forecast crop anomalies in Kenya

    NASA Astrophysics Data System (ADS)

    Guimarães Nobre, G.; Davenport, F.; Veldkamp, T.; Jongman, B.; Funk, C. C.; Husak, G. J.; Ward, P.; Aerts, J.

    2017-12-01

    By the end of 2017, the world is expected to experience unprecedented demands for food assistance where, across 45 countries, some 81 million people will face a food security crisis. Prolonged droughts in Eastern Africa are playing a major role in these crises. To mitigate famine risk and save lives, government bodies and international donor organisations are increasingly building up efforts to resolve conflicts and secure humanitarian relief. Disaster-relief and financing organizations traditionally focus on emergency response, providing aid after an extreme drought event, instead of taking actions in advance based on early warning. One of the reasons for this approach is that the seasonal risk information provided by early warning systems is often considered highly uncertain. Overcoming the reluctance to act based on early warnings greatly relies on understanding the risk of acting in vain, and assessing the cost-effectiveness of early actions. This research develops a triangular climate-based decision model for multiple seasonal time-scales to forecast strong anomalies in crop yield shortages in Kenya using Casual Discovery Algorithms and Fast and Frugal Decision Trees. This Triangular decision model (1) estimates the causality and strength of the relationship between crop yields and hydro climatological predictors (extracted from the Famine Early Warning Systems Network's data archive) during the crop growing season; (2) provides probabilistic forecasts of crop yield shortages in multiple time scales before the harvesting season; and (3) evaluates the cost-effectiveness of different financial mechanisms to respond to early warning indicators of crop yield shortages obtained from the model. Furthermore, we reflect on how such a model complements and advances the current state-of-art FEWS Net system, and examine its potential application to improve the management of agricultural risks in Kenya.

  20. The genetic and molecular basis of crop height based on a rice model.

    PubMed

    Liu, Fang; Wang, Pandi; Zhang, Xiaobo; Li, Xiaofei; Yan, Xiaohong; Fu, Donghui; Wu, Gang

    2018-01-01

    This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity. Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the 'green revolution' benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.

  1. Gelation And Mechanical Response of Patchy Rods

    NASA Astrophysics Data System (ADS)

    Kazem, Navid; Majidi, Carmel; Maloney, Craig

    We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.

  2. Geometry of complex networks and topological centrality

    NASA Astrophysics Data System (ADS)

    Ranjan, Gyan; Zhang, Zhi-Li

    2013-09-01

    We explore the geometry of complex networks in terms of an n-dimensional Euclidean embedding represented by the Moore-Penrose pseudo-inverse of the graph Laplacian (L). The squared distance of a node i to the origin in this n-dimensional space (lii+), yields a topological centrality index, defined as C∗(i)=1/lii+. In turn, the sum of reciprocals of individual node centralities, ∑i1/C∗(i)=∑ilii+, or the trace of L, yields the well-known Kirchhoff index (K), an overall structural descriptor for the network. To put into context this geometric definition of centrality, we provide alternative interpretations of the proposed indices that connect them to meaningful topological characteristics - first, as forced detour overheads and frequency of recurrences in random walks that has an interesting analogy to voltage distributions in the equivalent electrical network; and then as the average connectedness of i in all the bi-partitions of the graph. These interpretations respectively help establish the topological centrality (C∗(i)) of node i as a measure of its overall position as well as its overall connectedness in the network; thus reflecting the robustness of i to random multiple edge failures. Through empirical evaluations using synthetic and real world networks, we demonstrate how the topological centrality is better able to distinguish nodes in terms of their structural roles in the network and, along with Kirchhoff index, is appropriately sensitive to perturbations/re-wirings in the network.

  3. The role of topology in microstructure-property relations: a 2D DEM based study

    NASA Astrophysics Data System (ADS)

    Saleme Ruiz, Katerine; Emelianenko, Maria

    2018-01-01

    We compare Rényi entropy-based mesoscale approaches for characterizing 2D polycrystalline network topology and geometry, based on the grain number of sides and grain areas, respectively. We study the effect of microstructure disorder on mechanical properties such as elastic and damage response by performing simulations of quasi-static uniaxial compression loading tests on an idealized material using grain-level micro-mechanical discrete element model. While not comprehensive enough to make general conclusions, this study allows us to make observations about the sensitivity of mechanical parameters such as Young's modulus, proportional limit, first yield stress, toughness and amount of microstructure damage to different entropy measures.

  4. Reliable Freestanding Position-Based Routing in Highway Scenarios

    PubMed Central

    Galaviz-Mosqueda, Gabriel A.; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-01-01

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model. PMID:23202159

  5. Neural and neurochemical basis of reinforcement-guided decision making.

    PubMed

    Khani, Abbas; Rainer, Gregor

    2016-08-01

    Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making. Copyright © 2016 the American Physiological Society.

  6. Decision Network for Blue Green Solutions to Influence Policy Impact Assessments

    NASA Astrophysics Data System (ADS)

    Mijic, A.; Theodoropoulos, G.; El Hattab, M. H.; Brown, K.

    2017-12-01

    Sustainable Urban Drainage Systems (SuDS) deliver ecosystems services that can potentially yield multiple benefits to the urban environment. These benefits can be achieved through optimising SUDS' integration with the local environment and water resources, creating so-called Blue Green Solutions (BGS). The BGS paradigm, however, presents several challenges, in particular quantifying the benefits and creating the scientific evidence-base that can persuade high-level decision-makers and stakeholders to implement BGS at large scale. This work presents the development of the easily implemented and tailored-made approach that allows a robust assessment of the BGS co-benefits, and can influence the types of information that are included in policy impact assessments. The Analytic Network Process approach is used to synthesise the available evidence on the co-benefits of the BGS. The approach enables mapping the interactions between individual BGS selection criteria, and creates a platform to assess the synergetic benefits that arise from components interactions. By working with Government departments and other public and private sector stakeholders, this work has produced a simple decision criteria-based network that will enable the co-benefits and trade-offs of BGS to be quantified and integrated into UK policy appraisals.

  7. Reliable freestanding position-based routing in highway scenarios.

    PubMed

    Galaviz-Mosqueda, Gabriel A; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-10-24

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.

  8. Exploring the underlying structure of mental disorders: cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach.

    PubMed

    Wigman, J T W; van Os, J; Borsboom, D; Wardenaar, K J; Epskamp, S; Klippel, A; Viechtbauer, W; Myin-Germeys, I; Wichers, M

    2015-08-01

    It has been suggested that the structure of psychopathology is best described as a complex network of components that interact in dynamic ways. The goal of the present paper was to examine the concept of psychopathology from a network perspective, combining complementary top-down and bottom-up approaches using momentary assessment techniques. A pooled Experience Sampling Method (ESM) dataset of three groups (individuals with a diagnosis of depression, psychotic disorder or no diagnosis) was used (pooled N = 599). The top-down approach explored the network structure of mental states across different diagnostic categories. For this purpose, networks of five momentary mental states ('cheerful', 'content', 'down', 'insecure' and 'suspicious') were compared between the three groups. The complementary bottom-up approach used principal component analysis to explore whether empirically derived network structures yield meaningful higher order clusters. Individuals with a clinical diagnosis had more strongly connected moment-to-moment network structures, especially the depressed group. This group also showed more interconnections specifically between positive and negative mental states than the psychotic group. In the bottom-up approach, all possible connections between mental states were clustered into seven main components that together captured the main characteristics of the network dynamics. Our combination of (i) comparing network structure of mental states across three diagnostically different groups and (ii) searching for trans-diagnostic network components across all pooled individuals showed that these two approaches yield different, complementary perspectives in the field of psychopathology. The network paradigm therefore may be useful to map transdiagnostic processes.

  9. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  10. Zinc oxide nanowire networks for macroelectronic devices

    NASA Astrophysics Data System (ADS)

    Unalan, Husnu Emrah; Zhang, Yan; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J.

    2009-04-01

    Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.

  11. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    PubMed

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  12. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    NASA Astrophysics Data System (ADS)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  13. Spatialized Application of Remotely Sensed Data Assimilation Methods for Farmland Drought Monitoring Using Two Different Crop Models

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang

    2016-08-01

    The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.

  14. Nitrous oxide emission from denitrification in stream and river networks

    PubMed Central

    Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay P.; Bernot, Melody J.; Burgin, Amy J.; Crenshaw, Chelsea L.; Helton, Ashley M.; Johnson, Laura T.; O'Brien, Jonathan M.; Potter, Jody D.; Sheibley, Richard W.; Sobota, Daniel J.; Thomas, Suzanne M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change. PMID:21173258

  15. Stimuli-responsive cellulose-based nematogels

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Smalyukh, Ivan

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.

  16. Assembly of P3HT/CdSe nanowire networks in an insulating polymer host.

    PubMed

    Heo, Kyuyoung; Miesch, Caroline; Na, Jun-Hee; Emrick, Todd; Hayward, Ryan C

    2018-06-27

    Nanoparticles may act as compatibilizing agents for blending of immiscible polymers, leading to changes in blend morphology through a variety of mechanisms including interfacial adsorption, aggregation, and nucleation of polymer crystals. Herein, we report an approach to define highly structured donor/acceptor networks based on poly(3-hexylthiophene) (P3HT) and CdSe quantum dots (QDs) by demixing from an insulating polystyrene (PS) matrix. The incorporation of QDs led to laterally phase-separated co-continuous structures with sub-micrometer dimensions, and promoted crystallization of P3HT, yielding highly interconnected P3HT/QD hybrid nanowires embedded in the polymer matrix. These nanohybrid materials formed by controlling phase separation, interfacial activity, and crystallization within ternary donor/acceptor/insulator blends, offer attractive morphologies for potential use in optoelectronics.

  17. Construction of a magnetostrictive hysteresis operator using a tripod-like primitive hopfield neural network

    NASA Astrophysics Data System (ADS)

    Adly, A. A.; Abd-El-Hafiz, S. K.

    2018-05-01

    It is well known that accurate modeling of magnetostrictive hysteresis is crucial to different industrial applications. Although several magnetostrictive models have been developed in the past, the accuracy-efficiency balance has always been crucial. Recently, the possibility of constructing a primitive vector hysteresis operator using a tri-node Hopfield Neural Network (HNN) was demonstrated. Based upon the fact that mechanical stress along a certain direction results in dimensional deformation, this paper introduces a novel extension to the aforementioned recently developed approach. More specifically, a stress-driven evolution of a tri-node HNN hysteresis operator pair is proposed, thus yielding a tripod-like HNN pair having different input offset values. Model identification, sample simulation results and comparison with experimental measurements are given in the paper.

  18. PSNet: prostate segmentation on MRI based on a convolutional neural network.

    PubMed

    Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei

    2018-04-01

    Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.

  19. Novel perspectives for the engineering of abiotic stress tolerance in plants.

    PubMed

    Cabello, Julieta V; Lodeyro, Anabella F; Zurbriggen, Matias D

    2014-04-01

    Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Liquid crystalline cellulose-based nematogels

    DOE PAGES

    Liu, Qingkun; Smalyukh, Ivan I.

    2017-08-18

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less

  1. Can Multilayer Networks Advance Animal Behavior Research?

    PubMed

    Silk, Matthew J; Finn, Kelly R; Porter, Mason A; Pinter-Wollman, Noa

    2018-06-01

    Interactions among individual animals - and between these individuals and their environment - yield complex, multifaceted systems. The development of multilayer network analysis offers a promising new approach for studying animal social behavior and its relation to eco-evolutionary dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1982 ANNUAL REPORT

    EPA Science Inventory

    The National Crop Loss Assessment Network (NCLAN) is a group of organizations cooperating in research to assess the short- and long-term economic impact of air pollution on crop production. The primary objectives are (1) to define relationships between yield of major agricultural...

  3. Mining the modular structure of protein interaction networks.

    PubMed

    Berenstein, Ariel José; Piñero, Janet; Furlong, Laura Inés; Chernomoretz, Ariel

    2015-01-01

    Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera's cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.

  4. Connectome sensitivity or specificity: which is more important?

    PubMed

    Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael

    2016-11-15

    Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Multidimensional density shaping by sigmoids.

    PubMed

    Roth, Z; Baram, Y

    1996-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.

  6. Efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems

    PubMed Central

    Yang, Jin; Hlavacek, William S.

    2011-01-01

    Rule-based models, which are typically formulated to represent cell signaling systems, can now be simulated via various network-free simulation methods. In a network-free method, reaction rates are calculated for rules that characterize molecular interactions, and these rule rates, which each correspond to the cumulative rate of all reactions implied by a rule, are used to perform a stochastic simulation of reaction kinetics. Network-free methods, which can be viewed as generalizations of Gillespie’s method, are so named because these methods do not require that a list of individual reactions implied by a set of rules be explicitly generated, which is a requirement of other methods for simulating rule-based models. This requirement is impractical for rule sets that imply large reaction networks (i.e., long lists of individual reactions), as reaction network generation is expensive. Here, we compare the network-free simulation methods implemented in RuleMonkey and NFsim, general-purpose software tools for simulating rule-based models encoded in the BioNetGen language. The method implemented in NFsim uses rejection sampling to correct overestimates of rule rates, which introduces null events (i.e., time steps that do not change the state of the system being simulated). The method implemented in RuleMonkey uses iterative updates to track rule rates exactly, which avoids null events. To ensure a fair comparison of the two methods, we developed implementations of the rejection and rejection-free methods specific to a particular class of kinetic models for multivalent ligand-receptor interactions. These implementations were written with the intention of making them as much alike as possible, minimizing the contribution of irrelevant coding differences to efficiency differences. Simulation results show that performance of the rejection method is equal to or better than that of the rejection-free method over wide parameter ranges. However, when parameter values are such that ligand-induced aggregation of receptors yields a large connected receptor cluster, the rejection-free method is more efficient. PMID:21832806

  7. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  8. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  9. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks.

    PubMed

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  10. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  11. A QoS Optimization Approach in Cognitive Body Area Networks for Healthcare Applications.

    PubMed

    Ahmed, Tauseef; Le Moullec, Yannick

    2017-04-06

    Wireless body area networks are increasingly featuring cognitive capabilities. This work deals with the emerging concept of cognitive body area networks. In particular, the paper addresses two important issues, namely spectrum sharing and interferences. We propose methods for channel and power allocation. The former builds upon a reinforcement learning mechanism, whereas the latter is based on convex optimization. Furthermore, we also propose a mathematical channel model for off-body communication links in line with the IEEE 802.15.6 standard. Simulation results for a nursing home scenario show that the proposed approach yields the best performance in terms of throughput and QoS for dynamic environments. For example, in a highly demanding scenario our approach can provide throughput up to 7 Mbps, while giving an average of 97.2% of time QoS satisfaction in terms of throughput. Simulation results also show that the power optimization algorithm enables reducing transmission power by approximately 4.5 dBm, thereby sensibly and significantly reducing interference.

  12. A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    PubMed Central

    Kiefer, Christiane; Koch, Marcus A.

    2012-01-01

    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data. PMID:22606266

  13. How to Tackle Key Challenges in the Promotion of Physical Activity among Older Adults (65+): The AEQUIPA Network Approach

    PubMed Central

    Forberger, Sarah; Bammann, Karin; Bauer, Jürgen; Boll, Susanne; Bolte, Gabriele; Brand, Tilman; Hein, Andreas; Koppelin, Frauke; Lippke, Sonia; Meyer, Jochen; Pischke, Claudia R.; Voelcker-Rehage, Claudia; Zeeb, Hajo

    2017-01-01

    The paper introduces the theoretical framework and methods/instruments used by the Physical Activity and Health Equity: Primary Prevention for Healthy Ageing (AEQUIPA) prevention research network as an interdisciplinary approach to tackle key challenges in the promotion of physical activity among older people (65+). Drawing on the social-ecological model, the AEQUIPA network developed an interdisciplinary methodological design including quantitative/qualitative studies and systematic reviews, while combining expertise from diverse fields: public health, psychology, urban planning, sports sciences, health technology and geriatrics. AEQUIPA tackles key challenges when promoting physical activity (PA) in older adults: tailoring of interventions, fostering community readiness and participation, strengthening intersectoral collaboration, using new technological devices and evaluating intervention generated inequalities. AEQUIPA aims to strengthen the evidence base for age-specific preventive PA interventions and to yield new insights into the explanatory power of individual and contextual factors. Currently, the empirical work is still underway. First experiences indicate that the network has achieved a strong regional linkage with communities, local stakeholders and individuals. However, involving inactive persons and individuals from minority groups remained challenging. A review of existing PA intervention studies among the elderly revealed the potential to assess equity effects. The results will add to the theoretical and methodological discussion on evidence-based age-specific PA interventions and will contribute to the discussion about European and national health targets. PMID:28375177

  14. Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding

    PubMed Central

    Naik, Nisarga; Caves, Jeffrey

    2013-01-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  15. Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image-based, multiscale pore network model

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    The two-phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image-based models are being developed. Resulting simulations are however problematic in several important classes of rocks with broad pore-size distributions. We present a new multiscale pore network model to simulate secondary waterflooding in these rocks, which may undergo wettability alteration after primary drainage. This novel approach permits to include the effect of microporosity on the imbibition sequence without the need to describe each individual micropore. Instead, we show that fluid transport through unresolved pores can be taken into account in an upscaled fashion, by the inclusion of symbolic links between macropores, resulting in strongly decreased computational demands. Rules to describe the behavior of these links in the quasistatic invasion sequence are derived from percolation theory. The model is validated by comparison to a fully detailed network representation, which takes each separate micropore into account. Strongly and weakly water-and oil-wet simulations show good results, as do mixed-wettability scenarios with different pore-scale wettability distributions. We also show simulations on a network extracted from a micro-CT scan of Estaillades limestone, which yields good agreement with water-wet and mixed-wet experimental results.

  16. Divergent modes of integration: the Canadian way.

    PubMed

    Jiwani, Izzat; Fleury, Marie-Josée

    2011-01-01

    The paper highlights key trajectories and outcomes of the recent policy developments toward integrated health care delivery systems in Quebec and Ontario in the primary care sector and in the development of regional networks of health and social services. It particularly explores how policy legacies, interests and cultures may be mitigated to develop and sustain different models of integrated health care that are pertinent to the local contexts. In Quebec, three decades of iterative developments in health and social services evolved in 2005 into integrated centres for health and social services at the local levels (CSSSs). Four integrated university-based health care networks provide ultra-specialised services. Family Medicine Groups and network clinics are designed to enhance access and continuity of care. Ontario's Family Health Teams (2004) constitute an innovative public funding for private delivery model that is set up to enhance the capacity of primary care and to facilitate patient-based care. Ontario's Local Health Integration Networks (LHINs) with autonomous boards of provider organisations are intended to coordinate and integrate care. Integration strategies in Quebec and Ontario yield clinical autonomy and power to physicians while simultaneously making them key partners in change. Contextual factors combined with increased and varied forms of physician remunerations and incentives mitigated some of the challenges from policy legacies, interests and cultures. Virtual partnerships and accountability agreements between providers promise positive but gradual movement toward integrated health service systems.

  17. Echo State Networks for data-driven downhole pressure estimation in gas-lift oil wells.

    PubMed

    Antonelo, Eric A; Camponogara, Eduardo; Foss, Bjarne

    2017-01-01

    Process measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become unstable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory behavior of the downhole pressure measurement. Given the importance of this measurement and the unreliability of the related sensor, this work aims at designing data-driven soft-sensors for downhole pressure estimation in two contexts: one for speeding up first-principle model simulation of a vertical riser model; and another for estimating the downhole pressure using real-world data from an oil well from Petrobras based only on topside platform measurements. Both tasks are tackled by employing Echo State Networks (ESN) as an efficient technique for training Recurrent Neural Networks. We show that a single ESN is capable of robustly modeling both the slugging flow behavior and a steady state based only on a square wave input signal representing the production choke opening in the vertical riser. Besides, we compare the performance of a standard network to the performance of a multiple timescale hierarchical architecture in the second task and show that the latter architecture performs better in modeling both large irregular transients and more commonly occurring small oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Artificial neural network models: A decision support tool for enhancing seedling selection in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Currently, sugarcane selection begins at the seedling stage with visual selection for cane yield and other yield-related traits. Although subjective and inefficient, visual selection remains the primary method for selection. Visual selection is inefficient because of the confounding effect of genoty...

  19. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  20. Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis.

    PubMed

    Duong, Bach Phi; Kim, Jong-Myon

    2018-04-07

    The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance.

  1. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.

    PubMed

    Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente

    2016-08-31

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.

  2. Application of two direct runoff prediction methods in Puerto Rico

    USGS Publications Warehouse

    Sepulveda, N.

    1997-01-01

    Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.

  3. Recognition Stage for a Speed Supervisor Based on Road Sign Detection

    PubMed Central

    Carrasco, Juan-Pablo; de la Escalera, Arturo; Armingol, José María

    2012-01-01

    Traffic accidents are still one of the main health problems in the World. A number of measures have been applied in order to reduce the number of injuries and fatalities in roads, i.e., implementation of Advanced Driver Assistance Systems (ADAS) based on image processing. In this paper, a real time speed supervisor based on road sign recognition that can work both in urban and non-urban environments is presented. The system is able to recognize 135 road signs, belonging to the danger, yield, prohibition obligation and indication types, and sends warning messages to the driver upon the combination of two pieces of information: the current speed of the car and the road sign symbol. The core of this paper is the comparison between the two main methods which have been traditionally used for detection and recognition of road signs: template matching (TM) and neural networks (NN). The advantages and disadvantages of the two approaches will be shown and commented. Additionally we will show how the use of well-known algorithms to avoid illumination issues reduces the amount of images needed to train a neural network.

  4. Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state.

    PubMed

    Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S

    2009-10-01

    A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.

  5. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation

    PubMed Central

    Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente

    2016-01-01

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763

  6. Propagation, cascades, and agreement dynamics in complex communication and social networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming

    Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.

  7. EXAMINATION OF THE ROLE OF PHYSICAL RESOLUTION AND SCALE ON SEDIMENT AND NUTRIENT YIELDS

    EPA Science Inventory

    Currently, watershed delineation and extraction of stream networks are accomplished with GIS databases of digital elevation maps (DEMs). The most common method for extracting channel networks requires the a-priori specification of a critical source area that is required for chann...

  8. Design of QoS-Aware Multi-Level MAC-Layer for Wireless Body Area Network.

    PubMed

    Hu, Long; Zhang, Yin; Feng, Dakui; Hassan, Mohammad Mehedi; Alelaiwi, Abdulhameed; Alamri, Atif

    2015-12-01

    With the advances in wearable computing and various wireless technologies, there is an increasing trend to outsource body signals from wireless body area network (WBAN) to outside world including cyber space, healthcare big data clouds, etc. Since the environmental and physiological data collected by multimodal sensors have different importance, the provisioning of quality of service (QoS) for the sensory data in WBAN is a critical issue. This paper proposes multiple level-based QoS design at WBAN media access control layer in terms of user level, data level and time level. In the proposed QoS provisioning scheme, different users have different priorities, various sensory data collected by different sensor nodes have different importance, while data priority for the same sensor node varies over time. The experimental results show that the proposed multi-level based QoS provisioning solution in WBAN yields better performance for meeting QoS requirements of personalized healthcare applications while achieving energy saving.

  9. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  10. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema.

    PubMed

    Mondoñedo, Jarred R; Suki, Béla

    2017-02-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.

  11. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema

    PubMed Central

    Mondoñedo, Jarred R.

    2017-01-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686

  12. Application of AFINCH as a tool for evaluating the effects of streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the southeast Lake Michigan hydrologic subregion

    USGS Publications Warehouse

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations.  Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the size and composition of the streamflow-gaging network affected the average apparent errors and variability of the estimated flows and (b) whether results for certain months were more variable than for others. The six flow lines were categorized into one of three types depending upon their network topology and position relative to operating streamflow-gaging stations.    Statistical analysis of the model results indicates that (1) less precise (that is, more variable) estimates resulted from smaller streamflow-gaging networks as compared to larger streamflow-gaging networks, (2) precision of AFINCH flow estimates at an ungaged flow line is improved by operation of one or more streamflow gages upstream and (or) downstream in the enclosing basin, (3) no consistent seasonal trend in estimate variability was evident, and (4) flow lines from ungaged basins appeared to exhibit the smallest absolute apparent percent errors (APEs) and smallest changes in average APE as a function of increasing censoring level. The counterintuitive results described in item (4) above likely reflect both the nature of the base-streamflow estimate from which the errors were computed and insensitivity in the average model-derived estimates to changes in the streamflow-gaging-network size and composition. Another analysis demonstrated that errors for flow lines in ungaged basins have the potential to be much larger than indicated by their APEs if measured relative to their true (but unknown) flows.     “Missing gage” analyses, based on examination of censoring subset results where the streamflow gage of interest was omitted from the calibration data set, were done to better understand the true error characteristics for ungaged flow lines as a function of network size. Results examined for 2 water years indicated that the probability of computing a monthly streamflow estimate within 10 percent of the true value with AFINCH decreased from greater than 0.9 at about a 10-percent network-censoring level to less than 0.6 as the censoring level approached 75 percent. In addition, estimates for typically dry months tended to be characterized by larger percent errors than typically wetter months.

  13. Real-Time Data Filtering and Compression in Wide Area Simulation Networks

    DTIC Science & Technology

    1992-10-02

    Area Simulation Networks Achieving the real-time linkage among multiple , geographically-distant, local area networks that support distributed...November 1989, pp. 52-61. [IEEE85] IEEE/ANSI Standard 8802/3 "Carrier sense multiple access with collision detection (CSMA/CD) access method and...decoding/encoding of multiple bits. The hardware is programmable, easily adaptable and yields a high compression rate. A prototype 2-micron VLSI chip

  14. An exploratory comparison of name generator content: Data from rural India.

    PubMed

    Shakya, Holly B; Christakis, Nicholas A; Fowler, James H

    2017-01-01

    Since the 1970s sociologists have explored the best means for measuring social networks, although few name generator analyses have used sociocentric data or data from developing countries, partly because sociocentric studies in developing countries have been scant. Here, we analyze 12 different name generators used in a sociocentric network study conducted in 75 villages in rural Karnataka, India. Having unusual sociocentric data from a non-Western context allowed us to extend previous name generator research through the unique analyses of network structural measures, an extensive consideration of homophily, and investigation of status difference between egos and alters. We found that domestic interaction questions generated networks that were highly clustered and highly centralized. Similarity between respondents and their nominated contacts was strongest for gender, caste, and religion. We also found that domestic interaction name generators yielded the most homogeneous ties, while advice questions yielded the most heterogeneous. Participants were generally more likely to nominate those of higher social status, although certain questions, such as who participants talk to uncovered more egalitarian relationships, while other name generators elicited the names of social contacts distinctly higher or lower in status than the respondent. Some questions also seemed to uncover networks that were specific to the cultural context, suggesting that network researchers should balance local relevance with global generalizability when choosing name generators.

  15. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  16. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  17. Mapping the Structure of Semantic Memory

    ERIC Educational Resources Information Center

    Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.

    2013-01-01

    Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…

  18. Uncovering the Nutritional Landscape of Food

    PubMed Central

    Kim, Seunghyeon; Sung, Jaeyun; Foo, Mathias; Jin, Yong-Su; Kim, Pan-Jun

    2015-01-01

    Recent progresses in data-driven analysis methods, including network-based approaches, are revolutionizing many classical disciplines. These techniques can also be applied to food and nutrition, which must be studied to design healthy diets. Using nutritional information from over 1,000 raw foods, we systematically evaluated the nutrient composition of each food in regards to satisfying daily nutritional requirements. The nutrient balance of a food was quantified and termed nutritional fitness; this measure was based on the food’s frequency of occurrence in nutritionally adequate food combinations. Nutritional fitness offers a way to prioritize recommendable foods within a global network of foods, in which foods are connected based on the similarities of their nutrient compositions. We identified a number of key nutrients, such as choline and α-linolenic acid, whose levels in foods can critically affect the nutritional fitness of the foods. Analogously, pairs of nutrients can have the same effect. In fact, two nutrients can synergistically affect the nutritional fitness, although the individual nutrients alone may not have an impact. This result, involving the tendency among nutrients to exhibit correlations in their abundances across foods, implies a hidden layer of complexity when exploring for foods whose balance of nutrients within pairs holistically helps meet nutritional requirements. Interestingly, foods with high nutritional fitness successfully maintain this nutrient balance. This effect expands our scope to a diverse repertoire of nutrient-nutrient correlations, which are integrated under a common network framework that yields unexpected yet coherent associations between nutrients. Our nutrient-profiling approach combined with a network-based analysis provides a more unbiased, global view of the relationships between foods and nutrients, and can be extended towards nutritional policies, food marketing, and personalized nutrition. PMID:25768022

  19. Irrigation-water quality during 1976 irrigation season in the Sulphur Creek basin, Yakima and Benton counties, Washington

    USGS Publications Warehouse

    Boucher, P.R.; Fretwell, M.O.

    1982-01-01

    A water-quality-sampling network was designed for the Sulphur Creek basin to observe the effects of farming practices on irrigation. Sediment and nutrient yield, discharge, and water temperature data were collected during the 1976 irrigation season and the following fall and winter. The suspended-sediment yield of the basin during this period was 2.0 tons per acre of irrigated cropland. Only about 3% of the net outflow of sediment occurred during the nonirrigation season. The yield computed by subbasin ranged from 0.7 to 7 tons per acre, depending mainly on land slope, but a high percentage of orchard land in the subbasins was probably also significant in reducing loads. Nutrient outflows during the study period were 1,180,000 pounds of nitrogen and 120,000 pounds of phosphorous. Nitrate-plus-nitrite represent 70% of the nitrogen outflow in the irrigation season and 84% in the nonirrigation season. The monitoring network was discontinued at the end of the study period, due largely to insufficient farmer participation. Network sensitivity in the control subbasins was inadequate to detect the effects of a planned demonstration program of best management practices. (USGS)

  20. Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines

    PubMed Central

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-01-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Biotechnol. Bioeng. 2011; 108:1570–1578. © 2011 Wiley Periodicals, Inc. PMID:21337337

  1. Decentralized modal identification using sparse blind source separation

    NASA Astrophysics Data System (ADS)

    Sadhu, A.; Hazra, B.; Narasimhan, S.; Pandey, M. D.

    2011-12-01

    Popular ambient vibration-based system identification methods process information collected from a dense array of sensors centrally to yield the modal properties. In such methods, the need for a centralized processing unit capable of satisfying large memory and processing demands is unavoidable. With the advent of wireless smart sensor networks, it is now possible to process information locally at the sensor level, instead. The information at the individual sensor level can then be concatenated to obtain the global structure characteristics. A novel decentralized algorithm based on wavelet transforms to infer global structure mode information using measurements obtained using a small group of sensors at a time is proposed in this paper. The focus of the paper is on algorithmic development, while the actual hardware and software implementation is not pursued here. The problem of identification is cast within the framework of under-determined blind source separation invoking transformations of measurements to the time-frequency domain resulting in a sparse representation. The partial mode shape coefficients so identified are then combined to yield complete modal information. The transformations are undertaken using stationary wavelet packet transform (SWPT), yielding a sparse representation in the wavelet domain. Principal component analysis (PCA) is then performed on the resulting wavelet coefficients, yielding the partial mixing matrix coefficients from a few measurement channels at a time. This process is repeated using measurements obtained from multiple sensor groups, and the results so obtained from each group are concatenated to obtain the global modal characteristics of the structure.

  2. Modality-specificity of Selective Attention Networks

    PubMed Central

    Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled “general attention.” The third component was labeled “auditory attention,” as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as “spatial orienting” and “spatial conflict,” respectively—they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task—all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific. PMID:26635709

  3. Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores

    PubMed Central

    Gonçalves, Joana P.; Francisco, Alexandre P.; Moreau, Yves; Madeira, Sara C.

    2012-01-01

    Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes. Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2) scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based prioritization related to local clustering on graphs and considering full topology of weighted gene association networks integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall, increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous associations consistently delivered superior performance over single source data across the majority of methods. Results on the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms of the disease. PMID:23185389

  4. Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin

    2011-01-01

    Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799

  5. An adaptable toolkit to assess commercial fishery costs and benefits related to marine protected area network design.

    PubMed

    Daigle, Rémi M; Monaco, Cristián J; Elgin, Ashley K

    2015-01-01

    Around the world, governments are establishing Marine Protected Area (MPA) networks to meet their commitments to the United Nations Convention on Biological Diversity. MPAs are often used in an effort to conserve biodiversity and manage fisheries stocks. However, their efficacy and effect on fisheries yields remain unclear. We conducted a case-study on the economic impact of different MPA network design strategies on the Atlantic cod ( Gadus morhua ) fisheries in Canada. The open-source R package that we developed to analyze this case study can be customized to conduct similar analyses for other systems. We used a spatially-explicit individual-based model of population growth and dispersal coupled with a fisheries management and harvesting component. We found that MPA networks that both protect the target species' habitat and were spatially optimized to improve population connectivity had the highest net present value (i.e., were most profitable for the fishing industry). These higher profits were achieved primarily by reducing the distance travelled for fishing and reducing the probability of a moratorium event. These findings add to a growing body of knowledge demonstrating the importance of incorporating population connectivity in the MPA planning process, as well as the ability of this R package to explore ecological and economic consequences of alternative MPA network designs.

  6. On the Role of Situational Stressors in the Disruption of Global Neural Network Stability during Problem Solving.

    PubMed

    Liu, Mengting; Amey, Rachel C; Forbes, Chad E

    2017-12-01

    When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.

  7. Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families.

    PubMed

    Reinharz, Vladimir; Soulé, Antoine; Westhof, Eric; Waldispühl, Jérôme; Denise, Alain

    2018-05-04

    The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are made of organised sets of long-range tertiary interactions which connect distinct secondary structure elements in 3D structures. Here, we present a de novo data-driven approach to extract automatically from large data sets of full RNA 3D structures the recurrent interaction networks (RINs). Our methodology enables us for the first time to detect the interaction networks connecting distinct components of the RNA structure, highlighting their diversity and conservation through non-related functional RNAs. We use a graphical model to perform pairwise comparisons of all RNA structures available and to extract RINs and modules. Our analysis yields a complete catalog of RNA 3D structures available in the Protein Data Bank and reveals the intricate hierarchical organization of the RNA interaction networks and modules. We assembled our results in an online database (http://carnaval.lri.fr) which will be regularly updated. Within the site, a tool allows users with a novel RNA structure to detect automatically whether the novel structure contains previously observed RINs.

  8. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks

    PubMed Central

    Avsec, Žiga; Cheng, Jun; Gagneur, Julien

    2018-01-01

    Abstract Motivation Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Results Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Availability and implementation Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017. Contact avsec@in.tum.de or gagneur@in.tum.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29155928

  9. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    NASA Astrophysics Data System (ADS)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments using sediment storage in reservoirs provides a good opportunity: i) to test the reliability of the empirical methods used to estimate the sediment yield; ii) to investigate the catchment dynamics and its spatial and temporal evolution in terms of erosion, transport and deposition. References Ciccacci S., Fredi F., Lupia Palmieri E., Pugliese F., 1980. Contributo dell'analisi geomorfica quantitativa alla valutazione dell'entita dell'erosione nei bacini fluviali. Bollettino della Società Geologica Italiana 99: 455-516. Mitasova H, Hofierka J, Zlocha M, Iverson LR. 1996. Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems 10: 629-641. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA-ARS, Agricultural Handbook No. 703.

  10. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    PubMed

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.

  11. Assessment of different gridded weather data for soybean yield simulations in Brazil

    NASA Astrophysics Data System (ADS)

    Battisti, R.; Bender, F. D.; Sentelhas, P. C.

    2018-01-01

    A high-density, well-distributed, and consistent historical weather data series is of major importance for agricultural planning and climatic risk evaluation. A possible option for regions where weather station network is irregular is the use of gridded weather data (GWD), which can be downloaded online from different sources. Based on that, the aim of this study was to assess the suitability of two GWD, AgMERRA and XAVIER, by comparing them with measured weather data (MWD) for estimating soybean yield in Brazil. The GWD and MWD were obtained for 24 locations across Brazil, considering the period between 1980 and 2010. These data were used to estimate soybean yield with DSSAT-CROPGRO-Soybean model. The comparison of MWD with GWD resulted in a good agreement between climate variables, except for solar radiation. The crop simulations with GWD and MWD resulted in a good agreement for vegetative and reproductive phases. Soybean potential yield (Yp) simulated with AgMERRA and XAVIER had a high correlation (r > 0.88) when compared to the estimates with MWD, with the RMSE of about 400 kg ha-1. For attainable yield (Ya), estimates with XAVIER resulted in a RMSE of 700 kg ha-1 against 864 kg ha-1 from AgMERRA, both compared to the simulations using MWD. Even with these differences in Ya simulations, both GWD can be considered suitable for simulating soybean growth, development, and yield in Brazil; however, with XAVIER GWD presenting a better performance for weather and crop variables assessed.

  12. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  13. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  14. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  15. The ground truth about metadata and community detection in networks.

    PubMed

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  16. Network module detection: Affinity search technique with the multi-node topological overlap measure

    PubMed Central

    Li, Ai; Horvath, Steve

    2009-01-01

    Background Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. Findings We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Conclusion Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: PMID:19619323

  17. Network module detection: Affinity search technique with the multi-node topological overlap measure.

    PubMed

    Li, Ai; Horvath, Steve

    2009-07-20

    Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/

  18. Using NCAR Yellowstone for PhotoVoltaic Power Forecasts with Artificial Neural Networks and an Analog Ensemble

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L.

    2016-12-01

    A methodology based on Artificial Neural Networks (ANN) and an Analog Ensemble (AnEn) is presented to generate 72-hour deterministic and probabilistic forecasts of power generated by photovoltaic (PV) power plants using input from a numerical weather prediction model and computed astronomical variables. ANN and AnEn are used individually and in combination to generate forecasts for three solar power plant located in Italy. The computational scalability of the proposed solution is tested using synthetic data simulating 4,450 PV power stations. The NCAR Yellowstone supercomputer is employed to test the parallel implementation of the proposed solution, ranging from 1 node (32 cores) to 4,450 nodes (141,140 cores). Results show that a combined AnEn + ANN solution yields best results, and that the proposed solution is well suited for massive scale computation.

  19. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  20. Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast.

    PubMed

    Baadhe, Rama Raju; Mekala, Naveen Kumar; Palagiri, Satwik Reddy; Parcha, Sreenivasa Rao

    2012-07-01

    In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.

  1. Recognition of partially occluded threat objects using the annealed Hopefield network

    NASA Technical Reports Server (NTRS)

    Kim, Jung H.; Yoon, Sung H.; Park, Eui H.; Ntuen, Celestine A.

    1992-01-01

    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features.

  2. Automated Agatston score computation in non-ECG gated CT scans using deep learning

    NASA Astrophysics Data System (ADS)

    Cano-Espinosa, Carlos; González, Germán.; Washko, George R.; Cazorla, Miguel; San José Estépar, Raúl

    2018-03-01

    Introduction: The Agatston score is a well-established metric of cardiovascular disease related to clinical outcomes. It is computed from CT scans by a) measuring the volume and intensity of the atherosclerotic plaques and b) aggregating such information in an index. Objective: To generate a convolutional neural network that inputs a non-contrast chest CT scan and outputs the Agatston score associated with it directly, without a prior segmentation of Coronary Artery Calcifications (CAC). Materials and methods: We use a database of 5973 non-contrast non-ECG gated chest CT scans where the Agatston score has been manually computed. The heart of each scan is cropped automatically using an object detector. The database is split in 4973 cases for training and 1000 for testing. We train a 3D deep convolutional neural network to regress the Agatston score directly from the extracted hearts. Results: The proposed method yields a Pearson correlation coefficient of r = 0.93; p <= 0.0001 against manual reference standard in the 1000 test cases. It further stratifies correctly 72.6% of the cases with respect to standard risk groups. This compares to more complex state-of-the-art methods based on prior segmentations of the CACs, which achieve r = 0.94 in ECG-gated pulmonary CT. Conclusions: A convolutional neural network can regress the Agatston score from the image of the heart directly, without a prior segmentation of the CACs. This is a new and simpler paradigm in the Agatston score computation that yields similar results to the state-of-the-art literature.

  3. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  4. Activation of professional and personal network relations when experiencing a symptom: a population-based cross-sectional study.

    PubMed

    Elnegaard, Sandra; Andersen, Rikke Sand; Pedersen, Anette Fischer; Jarbøl, Dorte Ejg

    2017-10-15

    To describe patterns of disclosure of symptoms experienced among people in the general population to persons in their personal and/or professional network. A population-based cross-sectional study. Data were collected from a web-based survey. The general population in Denmark. 100 000 individuals randomly selected, representative of the adult Danish population aged ≥20 years were invited. Approximately 5% were not eligible for inclusion. 49 706 (men=23 240; women=26 466) of 95 253 eligible individuals completed the questionnaire; yielding a response rate of 52.2%. Individuals completing all questions regarding social network relations form the study base (n=44 313). Activation of personal and/or professional relations when experiencing a symptom. The 44 313 individuals reported in total 260 079 symptom experiences within the last 4 weeks. No professional network relation was used in two-thirds of all reported symptoms. The general practitioner (GP) was the most frequently reported professional relation activated (22.5%). People reporting to have available personal relations were slightly less inclined to contact the GP (21.9%) when experiencing a symptom compared with people with no reported personal relations (26.8%). The most commonly activated personal relations were spouse/partner (56.4%) and friend (19.6%). More than a quarter of all reported symptom experiences was not shared with anyone, personal nor professional. The symptom experiences with the lowest frequency of network activation were symptoms such as black stool, constipation, change in stool texture and frequent urination. This study emphasises variation in the activation of network relations when experiencing a symptom. Symptoms were shared with both personal and professional relations, but different patterns of disclosures were discovered. For symptoms derived from the urogenital or colorectal region, the use of both personal and professional relations was relatively small, which might indicate reticence to involve other people when experiencing symptoms of that nature. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Activation of professional and personal network relations when experiencing a symptom: a population-based cross-sectional study

    PubMed Central

    Elnegaard, Sandra; Andersen, Rikke Sand; Pedersen, Anette Fischer; Jarbøl, Dorte Ejg

    2017-01-01

    Objective To describe patterns of disclosure of symptoms experienced among people in the general population to persons in their personal and/or professional network. Design A population-based cross-sectional study. Data were collected from a web-based survey. Setting The general population in Denmark. Participants 100 000 individuals randomly selected, representative of the adult Danish population aged ≥20 years were invited. Approximately 5% were not eligible for inclusion. 49 706 (men=23 240; women=26 466) of 95 253 eligible individuals completed the questionnaire; yielding a response rate of 52.2%. Individuals completing all questions regarding social network relations form the study base (n=44 313). Primary and secondary outcome measures Activation of personal and/or professional relations when experiencing a symptom. Results The 44 313 individuals reported in total 260 079 symptom experiences within the last 4 weeks. No professional network relation was used in two-thirds of all reported symptoms. The general practitioner (GP) was the most frequently reported professional relation activated (22.5%). People reporting to have available personal relations were slightly less inclined to contact the GP (21.9%) when experiencing a symptom compared with people with no reported personal relations (26.8%). The most commonly activated personal relations were spouse/partner (56.4%) and friend (19.6%). More than a quarter of all reported symptom experiences was not shared with anyone, personal nor professional. The symptom experiences with the lowest frequency of network activation were symptoms such as black stool, constipation, change in stool texture and frequent urination. Conclusion This study emphasises variation in the activation of network relations when experiencing a symptom. Symptoms were shared with both personal and professional relations, but different patterns of disclosures were discovered. For symptoms derived from the urogenital or colorectal region, the use of both personal and professional relations was relatively small, which might indicate reticence to involve other people when experiencing symptoms of that nature. PMID:29038185

  6. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.

    PubMed

    Yang, Guang; Yu, Simiao; Dong, Hao; Slabaugh, Greg; Dragotti, Pier Luigi; Ye, Xujiong; Liu, Fangde; Arridge, Simon; Keegan, Jennifer; Guo, Yike; Firmin, David; Keegan, Jennifer; Slabaugh, Greg; Arridge, Simon; Ye, Xujiong; Guo, Yike; Yu, Simiao; Liu, Fangde; Firmin, David; Dragotti, Pier Luigi; Yang, Guang; Dong, Hao

    2018-06-01

    Compressed sensing magnetic resonance imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging-based fast MRI, which utilizes multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning-based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training data sets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN)-based model is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilize our U-Net based generator, which provides an end-to-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency-domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CS-MRI reconstruction methods and newly investigated deep learning approaches. Compared with these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing.

  7. Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Pitlick, J.; Smith, M. E.

    2008-12-01

    Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.

  8. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.

    PubMed

    Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki

    2017-09-08

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  9. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

    NASA Astrophysics Data System (ADS)

    Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki

    2017-09-01

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  10. Estimating standard errors in feature network models.

    PubMed

    Frank, Laurence E; Heiser, Willem J

    2007-05-01

    Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.

  11. Elderly fall risk prediction based on a physiological profile approach using artificial neural networks.

    PubMed

    Razmara, Jafar; Zaboli, Mohammad Hassan; Hassankhani, Hadi

    2016-11-01

    Falls play a critical role in older people's life as it is an important source of morbidity and mortality in elders. In this article, elders fall risk is predicted based on a physiological profile approach using a multilayer neural network with back-propagation learning algorithm. The personal physiological profile of 200 elders was collected through a questionnaire and used as the experimental data for learning and testing the neural network. The profile contains a series of simple factors putting elders at risk for falls such as vision abilities, muscle forces, and some other daily activities and grouped into two sets: psychological factors and public factors. The experimental data were investigated to select factors with high impact using principal component analysis. The experimental results show an accuracy of ≈90 percent and ≈87.5 percent for fall prediction among the psychological and public factors, respectively. Furthermore, combining these two datasets yield an accuracy of ≈91 percent that is better than the accuracy of single datasets. The proposed method suggests a set of valid and reliable measurements that can be employed in a range of health care systems and physical therapy to distinguish people who are at risk for falls.

  12. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    PubMed

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC),more » little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.« less

  14. Performance analysis of LAN bridges and routers

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.

    1991-01-01

    Bridges and routers are used to interconnect Local Area Networks (LANs). The performance of these devices is important since they can become bottlenecks in large multi-segment networks. Performance metrics and test methodology for bridges and routers were not standardized. Performance data reported by vendors is not applicable to the actual scenarios encountered in an operational network. However, vendor-provided data can be used to calibrate models of bridges and routers that, along with other models, yield performance data for a network. Several tools are available for modeling bridges and routers - Network II.5 was used. The results of the analysis of some bridges and routers are presented.

  15. Revealing how network structure affects accuracy of link prediction

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-08-01

    Link prediction plays an important role in network reconstruction and network evolution. The network structure affects the accuracy of link prediction, which is an interesting problem. In this paper we use common neighbors and the Gini coefficient to reveal the relation between them, which can provide a good reference for the choice of a suitable link prediction algorithm according to the network structure. Moreover, the statistical analysis reveals correlation between the common neighbors index, Gini coefficient index and other indices to describe the network structure, such as Laplacian eigenvalues, clustering coefficient, degree heterogeneity, and assortativity of network. Furthermore, a new method to predict missing links is proposed. The experimental results show that the proposed algorithm yields better prediction accuracy and robustness to the network structure than existing currently used methods for a variety of real-world networks.

  16. Information Flow in Interaction Networks II: Channels, Path Lengths, and Potentials

    PubMed Central

    Stojmirović, Aleksandar

    2012-01-01

    Abstract In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework. PMID:22409812

  17. Automatic anatomy recognition using neural network learning of object relationships via virtual landmarks

    NASA Astrophysics Data System (ADS)

    Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.

    2018-03-01

    The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.

  18. A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings.

    PubMed

    Xiao, Ran; Xu, Yuan; Pelter, Michele M; Mortara, David W; Hu, Xiao

    2018-01-01

    Patients with suspected acute coronary syndrome (ACS) are at risk of transient myocardial ischemia (TMI), which could lead to serious morbidity or even mortality. Early detection of myocardial ischemia can reduce damage to heart tissues and improve patient condition. Significant ST change in the electrocardiogram (ECG) is an important marker for detecting myocardial ischemia during the rule-out phase of potential ACS. However, current ECG monitoring software is vastly underused due to excessive false alarms. The present study aims to tackle this problem by combining a novel image-based approach with deep learning techniques to improve the detection accuracy of significant ST depression change. The obtained convolutional neural network (CNN) model yields an average area under the curve (AUC) at 89.6% from an independent testing set. At selected optimal cutoff thresholds, the proposed model yields a mean sensitivity at 84.4% while maintaining specificity at 84.9%.

  19. Physiological breeding.

    PubMed

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. An exploratory comparison of name generator content: Data from rural India

    PubMed Central

    Shakya, Holly B.; Christakis, Nicholas A.; Fowler, James H.

    2017-01-01

    Since the 1970s sociologists have explored the best means for measuring social networks, although few name generator analyses have used sociocentric data or data from developing countries, partly because sociocentric studies in developing countries have been scant. Here, we analyze 12 different name generators used in a sociocentric network study conducted in 75 villages in rural Karnataka, India. Having unusual sociocentric data from a non-Western context allowed us to extend previous name generator research through the unique analyses of network structural measures, an extensive consideration of homophily, and investigation of status difference between egos and alters. We found that domestic interaction questions generated networks that were highly clustered and highly centralized. Similarity between respondents and their nominated contacts was strongest for gender, caste, and religion. We also found that domestic interaction name generators yielded the most homogeneous ties, while advice questions yielded the most heterogeneous. Participants were generally more likely to nominate those of higher social status, although certain questions, such as who participants talk to uncovered more egalitarian relationships, while other name generators elicited the names of social contacts distinctly higher or lower in status than the respondent. Some questions also seemed to uncover networks that were specific to the cultural context, suggesting that network researchers should balance local relevance with global generalizability when choosing name generators. PMID:28845086

  1. Paradise Threatened: Land Use and Erosion on St. John, US Virgin Islands

    PubMed

    Macdonald; Anderson; Dietrich

    1997-11-01

    / Rapid development and the concomitant increases in erosion and sedimentation are believed to threaten the reefs and other marine resources that are a primary attraction of St. John and Virgin Islands National Park. Average annual sediment yields from undeveloped areas were estimated from a sediment pond and a mangrove swamp as less than 20 and less than 40 t/km2/yr, respectively. Geomorphic evidence indicates that plantation agriculture during the 18th and 19th centuries did not cause severe erosion. Since about 1950 there has been rapid growth in roads and development due to increasing tourism and second-home development. Our field investigations identified the approximately 50 km of unpaved roads as the primary source of anthropogenic sediment. Field measurements of the road network in two catchments led to the development of a vector-based GIS model to predict road surface erosion and sediment delivery. We estimate that road erosion has caused at least a fourfold increase in island-wide sediment yields and that current sedimentation rates are unprecedented. Paving the dirt roads and implementing standard sediment control practices can greatly reduce current sediment yields and possible adverse effects on the marine ecosystems surrounding St. John.KEY WORDS: Erosion; Sediment yield; Roads; Dry tropics; Development

  2. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    NASA Astrophysics Data System (ADS)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  3. MaxEnt analysis of a water distribution network in Canberra, ACT, Australia

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.

    2015-01-01

    A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.

  4. Interfacial welding of dynamic covalent network polymers

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Shi, Qian; Li, Hao; Jabour, John; Yang, Hua; Dunn, Martin L.; Wang, Tiejun; Qi, H. Jerry

    2016-09-01

    Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.

  5. Seismic Source Scaling and Characteristics of Six North Korean Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Park, J.; Stump, B. W.; Che, I. Y.; Hayward, C.

    2017-12-01

    We estimate the range of yields and source depths for the six North Korean underground nuclear explosions in 2006, 2009, 2013, 2016 (January and September), and 2017, based on regional seismic observations in South Korea and China. Seismic data used in this study are from three seismo-acoustic stations, BRDAR, CHNAR, and KSGAR, cooperatively operated by SMU and KIGAM, the KSRS seismic array operated by the Comprehensive Nuclear Test Ban Treaty Organization, and MDJ, a station in the Global Seismographic Network. We calculate spectral ratios for event pairs using seismograms from the six explosions observed along the same paths and at the same receivers. These relative seismic source scaling spectra for Pn, Pg, Sn, and surface wave windows provide a basis for a grid search source solution that estimates source yield and depth for each event based on both the modified Mueller and Murphy (1971; MM71) and Denny and Johnson (1991; DJ91) source models. The grid search is used to identify the best-fit empirical spectral ratios subject to the source models by minimizing the goodness-of-fit (GOF) in the frequency range of 0.5-15 Hz. For all cases, the DJ91 model produces higher ratios of depth and yield than MM71. These initial results include significant trade-offs between depth and yield in all cases. In order to better take the effect of source depth into account, a modified grid search was implemented that includes the propagation effects for different source depths by including reflectivity Greens functions in the grid search procedure. This revision reduces the trade-offs between depth and yield, results in better model fits to frequencies as high as 15 Hz, and GOF values smaller than those where the depth effects on the Greens functions were ignored. The depth and yield estimates for all six explosions using this new procedure will be presented.

  6. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    PubMed Central

    Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D.

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 – 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets. PMID:29244814

  7. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    PubMed

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.

  8. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    PubMed

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-02

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  9. A TinyOS-enabled MICA2-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Nuyujukian, Paul H; Pesterev, Aleksey; Mody, Istvan; Judy, Jack W

    2006-07-01

    Existing approaches used to develop compact low-power multichannel wireless neural recording systems range from creating custom-integrated circuits to assembling commercial-off-the-shelf (COTS) PC-based components. Custom-integrated-circuit designs yield extremely compact and low-power devices at the expense of high development and upgrade costs and turn-around times, while assembling COTS-PC-technology yields high performance at the expense of large system size and increased power consumption. To achieve a balance between implementing an ultra-compact custom-fabricated neural transceiver and assembling COTS-PC-technology, an overlay of a neural interface upon the TinyOS-based MICA2 platform is described. The system amplifies, digitally encodes, and transmits neural signals real-time at a rate of 9.6 kbps, while consuming less than 66 mW of power. The neural signals are received and forwarded to a client PC over a serial connection. This data rate can be divided for recording on up to 6 channels, with a resolution of 8 bits/sample. This work demonstrates the strengths and limitations of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications and, thus, provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.

  10. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  11. A Dynamic Resilience Approach for WDM Optical Networks

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar

    2017-12-01

    Optical fibres have been developed as a transmission medium to carry traffic in order to provide various services in telecommunications platform. Failure of this fibre caused loss of data which can interrupt communication services. This paper has been focused only on survivable schemes in order to guarantee both protection and restoration in WDM optical networks. In this paper, a dynamic resilience approach has been proposed whose objective is to route the flows in a way which minimizes the total amount of bandwidth used for working and protection paths. In the proposed approach, path-based protection is utilized because it yields lower overhead and is also suitable for global optimization where, in case of a single link failure, all the flows utilizing the failed link are re-routed to a pre-computed set of paths. The simulation results demonstrate that proposed approach is much more efficient as it provides better quality of services (QoS) in terms of network resource utilization, blocking probability etc. as compared to conventional protection and restoration schemes. The proposed approach seems to offer an attractive combination of features, with both ring like speed and mesh-like efficiency.

  12. A null model for Pearson coexpression networks.

    PubMed

    Gobbi, Andrea; Jurman, Giuseppe

    2015-01-01

    Gene coexpression networks inferred by correlation from high-throughput profiling such as microarray data represent simple but effective structures for discovering and interpreting linear gene relationships. In recent years, several approaches have been proposed to tackle the problem of deciding when the resulting correlation values are statistically significant. This is most crucial when the number of samples is small, yielding a non-negligible chance that even high correlation values are due to random effects. Here we introduce a novel hard thresholding solution based on the assumption that a coexpression network inferred by randomly generated data is expected to be empty. The threshold is theoretically derived by means of an analytic approach and, as a deterministic independent null model, it depends only on the dimensions of the starting data matrix, with assumptions on the skewness of the data distribution compatible with the structure of gene expression levels data. We show, on synthetic and array datasets, that the proposed threshold is effective in eliminating all false positive links, with an offsetting cost in terms of false negative detected edges.

  13. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties

    USGS Publications Warehouse

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott

    2015-01-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  14. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  15. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

    PubMed

    Huang, Huasheng; Deng, Jizhong; Lan, Yubin; Yang, Aqing; Deng, Xiaoling; Zhang, Lei

    2018-01-01

    Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is capable of capturing high spatial resolution imagery, which will provide more detailed information for weed mapping. The objective of this paper is to generate an accurate weed cover map based on UAV imagery. The UAV RGB imagery was collected in 2017 October over the rice field located in South China. The Fully Convolutional Network (FCN) method was proposed for weed mapping of the collected imagery. Transfer learning was used to improve generalization capability, and skip architecture was applied to increase the prediction accuracy. After that, the performance of FCN architecture was compared with Patch_based CNN algorithm and Pixel_based CNN method. Experimental results showed that our FCN method outperformed others, both in terms of accuracy and efficiency. The overall accuracy of the FCN approach was up to 0.935 and the accuracy for weed recognition was 0.883, which means that this algorithm is capable of generating accurate weed cover maps for the evaluated UAV imagery.

  16. Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis

    PubMed Central

    Kim, Jong-Myon

    2018-01-01

    The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance. PMID:29642466

  17. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2011-12-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  18. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-02-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  19. Face recognition: database acquisition, hybrid algorithms, and human studies

    NASA Astrophysics Data System (ADS)

    Gutta, Srinivas; Huang, Jeffrey R.; Singh, Dig; Wechsler, Harry

    1997-02-01

    One of the most important technologies absent in traditional and emerging frontiers of computing is the management of visual information. Faces are accessible `windows' into the mechanisms that govern our emotional and social lives. The corresponding face recognition tasks considered herein include: (1) Surveillance, (2) CBIR, and (3) CBIR subject to correct ID (`match') displaying specific facial landmarks such as wearing glasses. We developed robust matching (`classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET database. The hybrid classifier architecture consist of an ensemble of connectionist networks--radial basis functions-- and decision trees. The specific characteristics of our hybrid architecture include (a) query by consensus as provided by ensembles of networks for coping with the inherent variability of the image formation and data acquisition process, and (b) flexible and adaptive thresholds as opposed to ad hoc and hard thresholds. Experimental results, proving the feasibility of our approach, yield (i) 96% accuracy, using cross validation (CV), for surveillance on a data base consisting of 904 images (ii) 97% accuracy for CBIR tasks, on a database of 1084 images, and (iii) 93% accuracy, using CV, for CBIR subject to correct ID match tasks on a data base of 200 images.

  20. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons

    PubMed Central

    2017-01-01

    Systematic reviews and pairwise meta-analyses of randomized controlled trials, at the intersection of clinical medicine, epidemiology and statistics, are positioned at the top of evidence-based practice hierarchy. These are important tools to base drugs approval, clinical protocols and guidelines formulation and for decision-making. However, this traditional technique only partially yield information that clinicians, patients and policy-makers need to make informed decisions, since it usually compares only two interventions at the time. In the market, regardless the clinical condition under evaluation, usually many interventions are available and few of them have been studied in head-to-head studies. This scenario precludes conclusions to be drawn from comparisons of all interventions profile (e.g. efficacy and safety). The recent development and introduction of a new technique – usually referred as network meta-analysis, indirect meta-analysis, multiple or mixed treatment comparisons – has allowed the estimation of metrics for all possible comparisons in the same model, simultaneously gathering direct and indirect evidence. Over the last years this statistical tool has matured as technique with models available for all types of raw data, producing different pooled effect measures, using both Frequentist and Bayesian frameworks, with different software packages. However, the conduction, report and interpretation of network meta-analysis still poses multiple challenges that should be carefully considered, especially because this technique inherits all assumptions from pairwise meta-analysis but with increased complexity. Thus, we aim to provide a basic explanation of network meta-analysis conduction, highlighting its risks and benefits for evidence-based practice, including information on statistical methods evolution, assumptions and steps for performing the analysis. PMID:28503228

  1. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network

    PubMed Central

    Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-01-01

    Background The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM’s semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. Objective The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. Methods In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. Results The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. Conclusions It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively. PMID:27731860

  2. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    PubMed

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  3. Semantic Indexing of Medical Learning Objects: Medical Students' Usage of a Semantic Network.

    PubMed

    Tix, Nadine; Gießler, Paul; Ohnesorge-Radtke, Ursula; Spreckelsen, Cord

    2015-11-11

    The Semantically Annotated Media (SAM) project aims to provide a flexible platform for searching, browsing, and indexing medical learning objects (MLOs) based on a semantic network derived from established classification systems. Primarily, SAM supports the Aachen emedia skills lab, but SAM is ready for indexing distributed content and the Simple Knowledge Organizing System standard provides a means for easily upgrading or even exchanging SAM's semantic network. There is a lack of research addressing the usability of MLO indexes or search portals like SAM and the user behavior with such platforms. The purpose of this study was to assess the usability of SAM by investigating characteristic user behavior of medical students accessing MLOs via SAM. In this study, we chose a mixed-methods approach. Lean usability testing was combined with usability inspection by having the participants complete four typical usage scenarios before filling out a questionnaire. The questionnaire was based on the IsoMetrics usability inventory. Direct user interaction with SAM (mouse clicks and pages accessed) was logged. The study analyzed the typical usage patterns and habits of students using a semantic network for accessing MLOs. Four scenarios capturing characteristics of typical tasks to be solved by using SAM yielded high ratings of usability items and showed good results concerning the consistency of indexing by different users. Long-tail phenomena emerge as they are typical for a collaborative Web 2.0 platform. Suitable but nonetheless rarely used keywords were assigned to MLOs by some users. It is possible to develop a Web-based tool with high usability and acceptance for indexing and retrieval of MLOs. SAM can be applied to indexing multicentered repositories of MLOs collaboratively.

  4. Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis.

    PubMed

    Yu-Kang, Tu

    2016-12-01

    Network meta-analysis for multiple treatment comparisons has been a major development in evidence synthesis methodology. The validity of a network meta-analysis, however, can be threatened by inconsistency in evidence within the network. One particular issue of inconsistency is how to directly evaluate the inconsistency between direct and indirect evidence with regard to the effects difference between two treatments. A Bayesian node-splitting model was first proposed and a similar frequentist side-splitting model has been put forward recently. Yet, assigning the inconsistency parameter to one or the other of the two treatments or splitting the parameter symmetrically between the two treatments can yield different results when multi-arm trials are involved in the evaluation. We aimed to show that a side-splitting model can be viewed as a special case of design-by-treatment interaction model, and different parameterizations correspond to different design-by-treatment interactions. We demonstrated how to evaluate the side-splitting model using the arm-based generalized linear mixed model, and an example data set was used to compare results from the arm-based models with those from the contrast-based models. The three parameterizations of side-splitting make slightly different assumptions: the symmetrical method assumes that both treatments in a treatment contrast contribute to inconsistency between direct and indirect evidence, whereas the other two parameterizations assume that only one of the two treatments contributes to this inconsistency. With this understanding in mind, meta-analysts can then make a choice about how to implement the side-splitting method for their analysis. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Pyo, Jun Beom; Kim, Byoung Soo; Park, Hyunchul; Kim, Tae Ann; Koo, Chong Min; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk

    2015-10-01

    Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03814f

  6. Modeling of contact tracing in social networks

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  7. Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks

    PubMed Central

    von Kamp, Axel; Klamt, Steffen

    2014-01-01

    One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly calculated and screened with neither network size nor the number of required interventions posing major challenges. PMID:24391481

  8. Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds.

    PubMed

    Glassman, Matthew J; Avery, Reginald K; Khademhosseini, Ali; Olsen, Bradley D

    2016-02-08

    Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff, biocontinuous, nanostructured networks, but these gels are limited in applications by their relatively brittle nature. Here, a gel-forming ELP is chain-extended by telechelic oxidative coupling, forming extensible, tough hydrogels. Small angle scattering indicates that the chain-extended polypeptides form a fractal network of nanoscale aggregates over a broad concentration range, accessing moduli ranging from 5 kPa to over 1 MPa over a concentration range of 5-30 wt %. These networks exhibited excellent erosion resistance and allowed for the diffusion and release of encapsulated particles consistent with a bicontinuous, porous structure with a broad distribution of pore sizes. Biofunctionalized, toughened networks were found to maintain the viability of human mesenchymal stem cells (hMSCs) in 2D, demonstrating signs of osteogenesis even in cell media without osteogenic molecules. Furthermore, chondrocytes could be readily mixed into these gels via thermoresponsive assembly and remained viable in extended culture. These studies demonstrate the ability to engineer ELP-based arrested physical networks on the molecular level to form reinforced, cytocompatible hydrogel matrices, supporting the promise of these new materials as candidates for the engineering and regeneration of stiff tissues.

  9. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  10. Modelization of three-layered polymer coated steel-strip ironing process using a neural network

    NASA Astrophysics Data System (ADS)

    Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.

    2012-04-01

    An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network

  11. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  12. Microscopic Spin Model for the STOCK Market with Attractor Bubbling on Regular and Small-World Lattices

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    A multi-agent spin model for changes of prices in the stock market based on the Ising-like cellular automaton with interactions between traders randomly varying in time is investigated by means of Monte Carlo simulations. The structure of interactions has topology of a small-world network obtained from regular two-dimensional square lattices with various coordination numbers by randomly cutting and rewiring edges. Simulations of the model on regular lattices do not yield time series of logarithmic price returns with statistical properties comparable with the empirical ones. In contrast, in the case of networks with a certain degree of randomness for a wide range of parameters the time series of the logarithmic price returns exhibit intermittent bursting typical of volatility clustering. Also the tails of distributions of returns obey a power scaling law with exponents comparable to those obtained from the empirical data.

  13. Social media technologies for HIV prevention study retention among minority men who have sex with men (MSM).

    PubMed

    Young, Sean D

    2014-09-01

    This brief report describes results on study retention among minority men who have sex with men (MSM) from a 12-week, social networking-based, HIV prevention trial with 1-year follow-up. Participants, primarily minority MSM, were recruited using online and offline methods and randomly assigned to a Facebook (intervention or control) group. Participants completed a baseline survey and were asked to complete two follow-up surveys (12-week follow-up and 1-year post-intervention). 94 % of participants completed the first two surveys and over 82 % completed the baseline and both post-intervention surveys. Participants who spent a greater frequency of time online had almost twice the odds of completing all surveys. HIV negative participants, compared to those who were HIV positive, had over 25 times the odds of completing all surveys. HIV prevention studies on social networking sites can yield high participant retention rates.

  14. Fractal ladder models and power law wave equations

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2009-01-01

    The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816

  15. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks.

    PubMed

    Peker, Musa; Şen, Baha; Gürüler, Hüseyin

    2015-02-01

    The effect of anesthesia on the patient is referred to as depth of anesthesia. Rapid classification of appropriate depth level of anesthesia is a matter of great importance in surgical operations. Similarly, accelerating classification algorithms is important for the rapid solution of problems in the field of biomedical signal processing. However numerous, time-consuming mathematical operations are required when training and testing stages of the classification algorithms, especially in neural networks. In this study, to accelerate the process, parallel programming and computing platform (Nvidia CUDA) facilitates dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU) was utilized. The system was employed to detect anesthetic depth level on related electroencephalogram (EEG) data set. This dataset is rather complex and large. Moreover, the achieving more anesthetic levels with rapid response is critical in anesthesia. The proposed parallelization method yielded high accurate classification results in a faster time.

  16. Application of the Intuitionistic Fuzzy InterCriteria Analysis Method with Triples to a Neural Network Preprocessing Procedure

    PubMed Central

    Atanassova, Vassia; Sotirova, Evdokia; Doukovska, Lyubka; Bureva, Veselina; Mavrov, Deyan; Tomov, Jivko

    2017-01-01

    The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network's processing of data and images. PMID:28874908

  17. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    PubMed

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  18. Yielding in a strongly aggregated colloidal gel: 2D simulations and theory

    NASA Astrophysics Data System (ADS)

    Roy, Saikat; Tirumkudulu, Mahesh

    2015-11-01

    We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.

  19. Convolutional neural networks for transient candidate vetting in large-scale surveys

    NASA Astrophysics Data System (ADS)

    Gieseke, Fabian; Bloemen, Steven; van den Bogaard, Cas; Heskes, Tom; Kindler, Jonas; Scalzo, Richard A.; Ribeiro, Valério A. R. M.; van Roestel, Jan; Groot, Paul J.; Yuan, Fang; Möller, Anais; Tucker, Brad E.

    2017-12-01

    Current synoptic sky surveys monitor large areas of the sky to find variable and transient astronomical sources. As the number of detections per night at a single telescope easily exceeds several thousand, current detection pipelines make intensive use of machine learning algorithms to classify the detected objects and to filter out the most interesting candidates. A number of upcoming surveys will produce up to three orders of magnitude more data, which renders high-precision classification systems essential to reduce the manual and, hence, expensive vetting by human experts. We present an approach based on convolutional neural networks to discriminate between true astrophysical sources and artefacts in reference-subtracted optical images. We show that relatively simple networks are already competitive with state-of-the-art systems and that their quality can further be improved via slightly deeper networks and additional pre-processing steps - eventually yielding models outperforming state-of-the-art systems. In particular, our best model correctly classifies about 97.3 per cent of all 'real' and 99.7 per cent of all 'bogus' instances on a test set containing 1942 'bogus' and 227 'real' instances in total. Furthermore, the networks considered in this work can also successfully classify these objects at hand without relying on difference images, which might pave the way for future detection pipelines not containing image subtraction steps at all.

  20. Adolescents' social environment and depression: social networks, extracurricular activity, and family relationship influences.

    PubMed

    Mason, Michael J; Schmidt, Christopher; Abraham, Anisha; Walker, Leslie; Tercyak, Kenneth

    2009-12-01

    The present study examined components of adolescents' social environment (social network, extracurricular activities, and family relationships) in association with depression. A total of 332 adolescents presenting for a routine medical check-up were self-assessed for social network risk (i.e., smoking habits of best male and female friends), extracurricular activity level (i.e., participation in organized sports teams, clubs, etc.), family relationship quality (i.e., cohesion and conflict), and symptoms of depression (i.e., minimal, mild, moderate/severe). Results of a forward linear regression modeling indicate that social environment components were associated with a significant proportion of the variance in adolescent depression (Adjusted R (2) = .177, p < or = .05). Specifically, adolescent females (beta = .166, p < .01) and those having more smokers in their social network (beta = .107, p < .05) presented with significantly greater depression symptoms. Conversely, adolescents who engaged in more extracurricular activities (beta = -.118, p < .05) and experienced higher quality family relationships (beta = -.368, p < .001) presented with significantly lower depressive symptoms. These findings highlight the important role that the social environment plays in adolescent depression, as well as yields new insights into socially-based intervention targets that may ameliorate adolescent depression. These intervention targets may be gender-specific, include positive social network skills training, increase adolescents' engagement in organized activities, and attend to the quality of their family relationships.

Top