Sample records for based optically transparent

  1. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    NASA Astrophysics Data System (ADS)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  2. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption

    NASA Astrophysics Data System (ADS)

    Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-01

    Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.

  3. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, S., E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Darak, Mayur Sudesh, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Kumar, D. Sriram, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cellmore » antenna used in satellite systems.« less

  4. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  5. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  6. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  7. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam, P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F.

    2013-07-01

    In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ˜67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  8. Plasmonic transparent conductors

    NASA Astrophysics Data System (ADS)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  9. Optical based tactile shear and normal load sensor

    DOEpatents

    Salisbury, Curt Michael

    2015-06-09

    Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.

  10. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Realisation of video-frequency filters on the basis of a new mode of operation of an acousto-optical correlator with spatial integration

    NASA Astrophysics Data System (ADS)

    Ushakov, V. N.

    1995-10-01

    A video-frequency acousto-optical correlator with spatial integration, which widens the functional capabilities of correlation-type acousto-optical processors, is described. The correlator is based on a two-dimensional reference transparency and it can filter arbitrary video signals of spectral width limited by the pass band of an acousto-optical modulator. The calculated pulse characteristic is governed by the structure of the reference transparency. A procedure for the synthesis of this transparency is considered and experimental results are reported.

  11. Transparent Conductive Nanofiber Paper for Foldable Solar Cells

    PubMed Central

    Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi

    2015-01-01

    Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells. PMID:26607742

  12. All-optical regeneration using SOA-based polarization-discriminated switch injected by transparent assist light

    NASA Astrophysics Data System (ADS)

    Usami, Masashi; Tsurusawa, Munefumi; Inohara, Ryo; Nishimura, Kohsuke

    2003-08-01

    All optical regenerations or wavelength conversions using SOA-based polarization discriminated switch injected by a transparent assist light are reviewed. First, the reduction of a gain recovery time in SOA by injection of a transparent assist light wass discussed. A simple measurement technique of cross gain modulation (XGM) and cross phase modulation (XPM) in SOA was shown to confirm that the injection of transparent cw assist light reduced a gain recovery time without significant reduction in the amount of XGM and XPM. All optical regeneration operation 40Gbit/s as well as bit-rate tunable operation from 10Gbit/s to 80Gbit/s were presented. Simultaneous demultiplexing from 80Gbit/s to 2 channels of 40Gbit/s signals with little loss was also demonstrated. Finally, tolerance to amplitude noise and timing jitter was discussed. Those results indicate that the SOA-based polarization discriminated switch is a promising candidate for all-optical regenerator from the practical point of view.

  13. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics. PMID:24435059

  14. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-17

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.

  15. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  16. Temperature-dependent optical constants of highly transparent solids determined by the combined double optical pathlength transmission-ellipsometry method.

    PubMed

    Li, X C; Wang, C C; Zhao, J M; Liu, L H

    2018-02-10

    The optical constants of five highly transparent substrates (polycrystalline BaF 2 , CaF 2 , MgF 2 , ZnSe, and ZnS) were experimentally determined based on a combined technique using both the double optical pathlength transmission method and the ellipsometry method within temperature range 20°C-350°C in the ultraviolet-infrared region (0.2-20 μm). The results show that the refractive index spectra of polycrystalline BaF 2 , CaF 2 , and MgF 2 are similar, but differ from that of polycrystalline ZnSe and ZnS. The thermo-optic coefficient of these highly transparent substrates increases with increasing temperature. The absorption indices show a significant temperature-dependent behavior, which increases with increasing temperature from 20°C to 350°C over the transparent region. For the sake of application, the fitted formulas of the refractive index of the five highly transparent substrates as a function of wavelength and temperature are presented.

  17. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj

    2016-09-05

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route ofmore » high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.« less

  18. Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas

    NASA Astrophysics Data System (ADS)

    Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar

    2015-02-01

    An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.

  19. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.

  20. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm2 order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials. PMID:23903825

  1. Direct ink write fabrication of transparent ceramic gain media

    NASA Astrophysics Data System (ADS)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.

    2018-01-01

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.

  2. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  3. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

    PubMed Central

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee

    2016-01-01

    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes. PMID:27911774

  4. Optical switch based on tunable aperture.

    PubMed

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2012-08-15

    We propose an optical switch based on the electrowetting effect. A transparent oil and a dye-doped water fill a cell. The two liquids are immiscible and form a curved interface. A transparent pillar-shaped platform with a round dome is fixed on the substrate. The dome of the platform is submerged in the water. As a result, light is highly absorbed by the covered water. When the shape of the water is changed, the oil can touch the dome of the platform due to the electrowetting effect. Then the transparent platform and the oil form a channel which can pass through the incident light. Our results show that the system can obtain a high optical attenuation (∼928:1) and reasonable response time (∼47  ms). The diameter of the aperture can be tuned from 0 to ∼3.0  mm. The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.

  5. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    PubMed

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  6. Direct ink write fabrication of transparent ceramic gain media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less

  7. Direct ink write fabrication of transparent ceramic gain media

    DOE PAGES

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; ...

    2018-11-06

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less

  8. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  9. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency.

    PubMed

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A; Chen, Ying-Cheng

    2018-05-04

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  10. Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.

    PubMed

    Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai

    2017-01-01

    In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.

  11. Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn-Al-O Interfaces Fabricated by Atomic Layer Deposition.

    PubMed

    Li, Yang; Yao, Rui; Wang, Huanhuan; Wu, Xiaoming; Wu, Jinzhu; Wu, Xiaohong; Qin, Wei

    2017-04-05

    Highly conductive and optical transparent Al-doped ZnO (AZO) thin film composed of ZnO with a Zn-Al-O interface was fabricated by thermal atomic layer deposition (ALD) method. The as-prepared AZO thin film exhibits excellent electrical and optical properties with high stability and compatibility with temperature-sensitive flexible photoelectronic devices; film resistivity is as low as 5.7 × 10 -4 Ω·cm, the carrier concentration is high up to 2.2 × 10 21 cm -3 . optical transparency is greater than 80% in a visible range, and the growth temperature is below 150 °C on the PEN substrate. Compared with the conventional AZO film containing by a ZnO-Al 2 O 3 interface, we propose that the underlying mechanism of the enhanced electrical conductivity for the current AZO thin film is attributed to the oxygen vacancies deficiency derived from the free competitive growth mode of Zn-O and Al-O bonds in the Zn-Al-O interface. The flexible transparent transistor based on this AZO electrode exhibits a favorable threshold voltage and I on /I off ratio, showing promising for use in high-resolution, fully transparent, and flexible display applications.

  12. Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis

    NASA Astrophysics Data System (ADS)

    Davoodzadeh, Nami; Uahengo, Gottlieb; Halaney, David; Garay, Javier E.; Aguilar, Guillermo

    2018-02-01

    Laser-based diagnostics and therapeutics show promise for many neurological disorders. However, the poor transparency of cranial bone limits the spatial resolution and interaction depth that can be achieved. We addressed this limitation previously, by introducing a novel cranial prosthesis made of a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) which aims to enhance the diagnosis and treatment of neurological diseases by providing chronic optical access to the brain. By using optical coherence tomography, we have demonstrated the initial feasibility of ncYSZ implants for cortical imaging in an acute murine model. Although zirconia-based implants have been known for their excellent mechanical properties, the in vivo application was found to be affected by long-term failures, due to low temperature degradation. Accelerated aging simulations in humid environments at slightly elevated temperatures and over long periods typically transforms the ceramic surface into a monoclinic structure through a stress-corrosion-type mechanism. It was expected that the new nc-YSZ would show sufficient resistance to humid environments in comparison to the conventional zirconia implant. However, even a modest amount of transformation can change optical characteristics such as transparency. Herein we present the results of a simulated ageing study following the guidelines from the ISO 13356:2008 on aging of surgical zirconia ceramics. Comparison of %monoclinic transformation, optical transparency and mechanical hardness of nc-YSZ samples at baseline and following 25 and 100 h hydrothermal treatments shows our implant can withstand these extended ageing treatments.

  13. Spatial and spectral characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Marshall, Elizabeth J.; Tanis, Frederick J.

    1989-01-01

    Results from this study demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis was that seasonal and multiyear changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing, nonscattering material which has the greatest impact at short visible wavelengths, including Thematic Mapper band 1. Acid-sensitive lakes have high concentrations of aluminum which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for observed increases in lake transparency in acid-sensitive lakes. Thus seasonal changes in the optical transparency of lakes should provide an indication of the stress due to acid deposition and loading.

  14. Simulation and analysis of OOK-to-BPSK format conversion based on gain-transparent SOA used as optical phase-modulator.

    PubMed

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2007-12-24

    All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.

  15. Optical micro-cavities on silicon

    NASA Astrophysics Data System (ADS)

    Dai, Daoxin; Liu, Erhu; Tan, Ying

    2018-01-01

    Silicon-based optical microcavities are very popular for many applications because of the ultra-compact footprint, easy scalability, and functional versatility. In this paper we give a discussion about the challenges of the optical microcavities on silicon and also give a review of our recent work, including the following parts. First, a near-"perfect" high-order MRR optical filter with a box-like filtering response is realized by introducing bent directional couplers to have sufficient coupling between the access waveguide and the microrings. Second, an efficient thermally-tunable MRR-based optical filter with graphene transparent nano-heater is realized by introducing transparent graphene nanoheaters. Thirdly, a polarization-selective microring-based optical filter is realized to work with resonances for only one of TE and TM polarizations for the first time. Finally, a on-chip reconfigurable optical add-drop multiplexer for hybrid mode- /wavelength-division-multiplexing systems is realized for the first time by monolithically integrating a mode demultiplexer, four MRR optical switches, and a mode multiplexer.

  16. Organic solvent-free sugar-based transparency nanopatterning material derived from biomass for eco-friendly optical biochips using green lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ito, Kenta; Sugahara, Kigenn; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2014-05-01

    An organic solvent-free sugar-based transparency nanopatterning material which had specific desired properties such as nanostructures of subwavelength grating and moth-eye antireflection, acceptable thermal stability of 160 °C, and low imaginary refractive index of less than 0.005 at 350-800 nm was proposed using electron beam lithography. The organic solvent-free sugar-based transparency nanopatterning material is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of tetramethylammonium hydroxide. 120 nm moth-eye antireflection nanopatterns images with exposure dose of 10 μC/cm2 were provided by specific process conditions of electron beam lithography. The developed sugar derivatives with hydroxyl groups and EB sensitive groups in the organic solvent-free sugar-based transparency nanopatterning material were applicable to future development of optical interface films of biology and electronics as a novel chemical design.

  17. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications

    PubMed Central

    Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.

    2014-01-01

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513

  18. Optically transparent microwave screens based on engineered graphene layers.

    PubMed

    Grande, M; Bianco, G V; Vincenti, M A; de Ceglia, D; Capezzuto, P; Petruzzelli, V; Scalora, M; Bruno, G; D'Orazio, A

    2016-10-03

    We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band. These findings are fully supported by an analytical approach based on an equivalent circuital model. Engineering and integration of graphene sheets could facilitate the realization of innovative microwave absorbers with additional electromagnetic and optical functionalities that could circumvent some of the major limitations of opaque microwave absorbers.

  19. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  20. UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.

    PubMed

    Simone, Giuseppina; Perozziello, Gerardo

    2011-03-01

    Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.

  1. Graphene and silver-nanoprism dispersion for printing optically-transparent electrodes

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2017-02-01

    Optically transparent electrodes (OTEs) are used for bioelectronics, touch screens, visual displays, and photovoltaic cells. Although the conductive coating for these electrodes is often composed of indium tin oxide (ITO), indium is a very expensive material and thin ITO films are relatively brittle compared to conductive polymer or graphene thin films. An alternative highly conductive optically transparent thin film based on a graphene (G) and silver-nanoprism (AgNP) dispersion is introduced in this paper. The aqueous G ink is first synthesized using carboxymethyl cellulose (CMC) as a stabilizing agent. Silver (Ag) nanoprisms are then prepared separately by a simple thermal process which involves the reduction of silver nitrate by sodium borohydride. These Ag nanoprisms are only a few nanometers thick but have relatively large surface areas (>1000 nm2). As a consequence, the nanoprisms provide more efficient injection of free carriers to the G layer. The concentrated G-AgNP dispersions are then deposited on optically transparent glass and polyimide substrates using an inkjet printer with a HP6602A print head. After printing, these optically thin films can be thermally treated to further increase electrical conductivity. Thermal treatment decomposes CMC which frees elemental carbon from polymer chain and, simultaneously, causes the film to become hydrophobic. Preliminary experiments demonstrate that the G-AgNP films on glass substrates exhibit high conductivity at 70% transparency (550 nm). Additional tests on the Gr-AgNP thin films printed on polymide substrates show mechanical stability under bending with minimal reduction in electrical conductivity or optical transparency.

  2. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Marshall, E. M.

    1989-01-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  3. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOEpatents

    Tench, D Morgan [Camarillo, CA; Cunningham, Michael A [Thousand Oaks, CA; Kobrin, Paul H [Newbury Park, CA

    2008-01-08

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  4. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    PubMed Central

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578

  5. Transmission in Optically Transparent Core Networks

    NASA Astrophysics Data System (ADS)

    Kilper, Dan; Jensen, Rich; Petermann, Klaus; Karasek, Miroslav

    2007-03-01

    Call for Papers: Transmission in Optically Transparent Core Networks

    Guest Feature Editors

    Dan Kilper and Rich Jensen, Coordinating Associate Editors Klaus Petermann and Miroslav Karasek, Guest Feature Editors

    Submission deadline: 15 June 2007
    Optically transparent networks in which optical transport signals are routed uninterrupted through multiple nodes have long been viewed as an important evolutionary step in fiber optic communications. More than a decade of research and development on transparent network technologies together with the requisite traffic growth has culminated in the recent deployment of commercial optically transparent systems. Although many of the traditional research goals of optical transmission remain important, optical transparency introduces new challenges. Greater emphasis is placed on system efficiency and control. The goal of minimizing signal terminations, which has been pursued through increasing reach and channel capacity, also can be realized through wavelength routing techniques. Rather than bounding system operation by rigid engineering rules, the physical layer is controlled and managed by automation tools. Many static signal impairments become dynamic due to network reconfiguration and transient fault events. Recently new directions in transmission research have emerged to address transparent networking problems. This special issue of the Journal of Optical Networking will examine the technologies and theory underpinning transmission in optically transparent core networks, including both metropolitan and long haul systems.

    Scope of Submission

    The special issue editors are soliciting high-quality original research papers related to transmission in optically transparent core networks. Although this does not include edge networks such as access or enterprise networks, core networks that have access capabilities will be considered in scope as will topics related to the interworking between core and edge networks. The core network topics suitable for inclusion in this feature issue are:
    • Optically transparent system design issues, transmission experiments, and field trials
    • Optically transparent network architectures and topologies
    • Dispersion management in reconfigurable and mesh systems
    • Optically transparent network device and sub-system performance, design, characterization and control, including: amplifiers, transmitters, receivers, switches, add/drop multiplexers
    • Transient and fault management
    • Physical layer system control
    • Monitoring and compensation to support transparency
    • Wavelength routing and planning as they relate to physical layer transmission
    • Hardware cost and configuration optimization for optically transparent networks
    To submit to this special issue, follow the normal procedure for submission to JON and select "TTCN" in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "TTCN." Additional information can be found on the JON website: . Submission Deadline: 15 June 2007

  6. Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows.

    PubMed

    Yang, Jihua; Kramer, Nicolaas J; Schramke, Katelyn S; Wheeler, Lance M; Besteiro, Lucas V; Hogan, Christopher J; Govorov, Alexander O; Kortshagen, Uwe R

    2016-02-10

    Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200-3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers ("optical wall") in the UV and blue-green range of the spectrum. Water itself acts as an opaque "wall" in the near-infrared to infrared. We explore the limits of the concept of a "simple" metafluid by computationally testing and validating the effective medium approach based on the Beer-Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions.

  7. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  8. Optical properties of graphene-based materials in transparent polymer matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrak, Osman; Demirci, Emrah, E-mail: E.Demirci@lboro.ac.uk; Silberschmidt, Vadim V.

    2016-08-22

    Different aspects of graphene-based materials (GBMs) and GBM-nanocomposites have been investigated due to their intriguing features; one of these features is their transparency. Transparency of GBMs has been of an interest to scientists and engineers mainly with regard to electronic devices. In this study, optical transmittance of structural, purpose-made nanocomposites reinforced with GBMs was analyzed to lay a foundation for optical microstructural characterization of nanocomposites in future studies. Two main types of GBM reinforcements were studied, graphene oxide (GO) and graphite nanoplates (GNPs). The nanocomposites investigated are GO/poly(vinyl alcohol), GO/sodium alginate, and GNP/epoxy with different volume fractions of GBMs. Togethermore » with UV-visible spectrophotometry, image-processing-assisted micro and macro photography were used to assess the transparency of GBMs embedded in the matrices. The micro and macro photography methods developed were proven to be an alternative way of measuring light transmittance of semi-transparent materials. It was found that there existed a linear relationship between light absorbance and a volume fraction of GBMs embedded in the same type of polymer matrices, provided that the nanocomposites of interest had the same thicknesses. This suggests that the GBM dispersion characteristics in the same type of polymer are similar and any possible change in crystal structure of polymer due to different volumetric contents of GBM does not have an effect on light transmittance of the matrices. The study also showed that the same types of GBMs could display different optical properties in different matrix materials. The results of this study will help to develop practical microstructural characterization techniques for GBM-based nanocomposites.« less

  9. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optoelectronic processors with scanning CCD photodetectors

    NASA Astrophysics Data System (ADS)

    Esepkina, N. A.; Lavrov, A. P.; Anan'ev, M. N.; Blagodarnyi, V. S.; Ivanov, S. I.; Mansyrev, M. I.; Molodyakov, S. A.

    1995-10-01

    Two new types of optoelectronic radio-signal processors were investigated. Charge-coupled device (CCD) photodetectors are used in these processors under continuous scanning conditions, i.e. in a time delay and storage mode. One of these processors is based on a CCD photodetector array with a reference-signal amplitude transparency and the other is an adaptive acousto-optical signal processor with linear frequency modulation. The processor with the transparency performs multichannel discrete—analogue convolution of an input signal with a corresponding kernel of the transformation determined by the transparency. If a light source is an array of light-emitting diodes of special (stripe) geometry, the optical stages of the processor can be made from optical fibre components and the whole processor then becomes a rigid 'sandwich' (a compact hybrid optoelectronic microcircuit). A report is given also of a study of a prototype processor with optical fibre components for the reception of signals from a system with antenna aperture synthesis, which forms a radio image of the Earth.

  10. Polyurethane-Based Ionogels Exhibiting Durable Thermoresponsive Optical Behavior Under High-Temperature Conditions.

    PubMed

    Sato, Tomoya; England, Matt W; Wang, Liming; Urata, Chihiro; Kakiuchida, Hiroshi; Hozumi, Atsushi

    2018-01-01

    Polyurethane (PU)-based transparent and flexible ionogels, showing unusual thermo-responsive optical properties, were successfully prepared by mixing PU-precursor and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI). Although the initial ionogels were transparent at room temperature, significant increases in opacity were observed with increasing temperature up to 120°C, because of macroscopic phase separation of the PU-matrix and hydrophobic EMIM-TFSI. In addition, the optical transition temperature could be arbitrarily controlled simply by varying the mixing ratio of EMIM-TFSI within the PU-matrix. As confirmed by UV-Vis spectra acquired at different temperatures, this thermo-responsive optical behavior was found to be reversible, repeatable and durable even after 30 cycles of a thermal-stress testing between 30 and 100°C.

  11. Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications.

    PubMed

    Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J

    2018-05-22

    Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.

  12. Tunable plasmon-induced transparency based on graphene nanoring coupling with graphene nanostrips

    NASA Astrophysics Data System (ADS)

    Liao, Chang-Long; Fu, Guang-Lai; Xia, Sheng-Xuan; Li, Hong-Ju; Zhai, Xiang; Wang, Ling-Ling

    2018-02-01

    We numerically and theoretically demonstrate a plasmon-induced transparency (PIT) at the mid-infrared region with finite-difference time-domain method. The system consists of an optically bright dipole mode and a dark quadrupole mode, which are supported by the graphene nanoring and graphene nanostrips, respectively. The coupling between the two modes introduces transparency window and large group delays. The pronounced PIT resonance can be easily modified by adjusting the geometric parameters and the Fermi level of graphene nanostructure. Our results suggest that the demonstrated PIT effect may be applicated in the slow-light device, active plasmonic switching, and optical sensing.

  13. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    PubMed

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  14. Fabrication and Characterization of Flexible Organic Light Emitting Diodes Based on Transparent Flexible Clay Substrates

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi

    2013-03-01

    In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.

  15. Optically transparent, superhydrophobic, biocompatible thin film coatings and methods for producing same

    DOEpatents

    Armstrong, Beth L.; Aytug, Tolga; Paranthaman, Mariappan Parans; Simpson, John T.; Hillesheim, Daniel A.; Trammell, Neil E.

    2017-09-05

    An optically transparent, hydrophobic coating, exhibiting an average contact angle of at least 100 degrees with a drop of water. The coating can be produced using low-cost, environmentally friendly components. Methods of preparing and using the optically transparent, hydrophobic coating.

  16. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    PubMed Central

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-01-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895

  17. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    NASA Astrophysics Data System (ADS)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  18. Development and applications of transparent conductive nanocellulose paper

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; Lee, Pooi See

    2017-12-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  19. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film

    PubMed Central

    Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M.

    2017-01-01

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity. PMID:28681842

  20. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film.

    PubMed

    Yang, C; Souchay, D; Kneiß, M; Bogner, M; Wei, H M; Lorenz, M; Oeckler, O; Benstetter, G; Fu, Y Q; Grundmann, M

    2017-07-06

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity.

  1. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    PubMed

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  2. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    PubMed

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  3. Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets.

    PubMed

    Krishnan, Manu; Tiwari, Brijesh; Seema, Saraswathy; Kalra, Namitha; Biswas, Papiya; Rajeswari, Kotikalapudi; Suresh, Madireddy Buchi; Johnson, Roy; Gokhale, Nitin M; Iyer, Satish R; Londhe, Sanjay; Arora, Vimal; Tripathi, Rajendra P

    2014-11-01

    Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.

  4. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    NASA Astrophysics Data System (ADS)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  5. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  6. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes.

    PubMed

    Chen, Tao; Xue, Yuhua; Roy, Ajit K; Dai, Liming

    2014-01-28

    Transparent and/or stretchable energy storage devices have attracted intense attention due to their unique optical and/or mechanical properties as well as their intrinsic energy storage function. However, it remains a great challenge to integrate transparent and stretchable properties into an energy storage device because the currently developed electrodes are either transparent or stretchable, but not both. Herein, we report a simple method to fabricate wrinkled graphene with high stretchability and transparency. The resultant wrinkled graphene sheets were used as both current collector and electrode materials to develop transparent and stretchable supercapacitors, which showed a high transparency (57% at 550 nm) and can be stretched up to 40% strain without obvious performance change over hundreds of stretching cycles.

  7. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers

    PubMed Central

    Deng, Ruixiang; Li, Meiling; Muneer, Badar; Zhu, Qi; Shi, Zaiying; Song, Lixin; Zhang, Tao

    2018-01-01

    Optically Transparent Microwave Metamaterial Absorber (OTMMA) is of significant use in both civil and military field. In this paper, equivalent circuit model is adopted as springboard to navigate the design of OTMMA. The physical model and absorption mechanisms of ideal lightweight ultrathin OTMMA are comprehensively researched. Both the theoretical value of equivalent resistance and the quantitative relation between the equivalent inductance and equivalent capacitance are derived for design. Frequency-dependent characteristics of theoretical equivalent resistance are also investigated. Based on these theoretical works, an effective and controllable design approach is proposed. To validate the approach, a wideband OTMMA is designed, fabricated, analyzed and tested. The results reveal that high absorption more than 90% can be achieved in the whole 6~18 GHz band. The fabricated OTMMA also has an optical transparency up to 78% at 600 nm and is much thinner and lighter than its counterparts. PMID:29324686

  8. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  9. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.

    PubMed

    Deng, Ruixiang; Li, Meiling; Muneer, Badar; Zhu, Qi; Shi, Zaiying; Song, Lixin; Zhang, Tao

    2018-01-11

    Optically Transparent Microwave Metamaterial Absorber (OTMMA) is of significant use in both civil and military field. In this paper, equivalent circuit model is adopted as springboard to navigate the design of OTMMA. The physical model and absorption mechanisms of ideal lightweight ultrathin OTMMA are comprehensively researched. Both the theoretical value of equivalent resistance and the quantitative relation between the equivalent inductance and equivalent capacitance are derived for design. Frequency-dependent characteristics of theoretical equivalent resistance are also investigated. Based on these theoretical works, an effective and controllable design approach is proposed. To validate the approach, a wideband OTMMA is designed, fabricated, analyzed and tested. The results reveal that high absorption more than 90% can be achieved in the whole 6~18 GHz band. The fabricated OTMMA also has an optical transparency up to 78% at 600 nm and is much thinner and lighter than its counterparts.

  10. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou

    2014-03-17

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  11. Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A.

    2013-02-01

    A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.

  12. Coherent optical memory with high storage efficiency and large fractional delay.

    PubMed

    Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A

    2013-02-22

    A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.

  13. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  14. Development and applications of transparent conductive nanocellulose paper

    PubMed Central

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870

  15. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO 2 nanoparticles

    DOE PAGES

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; ...

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  16. Transparent wood for functional and structural applications

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Fu, Qiliang; Yang, Xuan; Berglund, Lars

    2017-12-01

    Optically transparent wood combines mechanical performance with optical functionalities is an emerging candidate for applications in smart buildings and structural optics and photonics. The present review summarizes transparent wood preparation methods, optical and mechanical performance, and functionalization routes, and discusses potential applications. The various challenges are discussed for the purpose of improved performance, scaled-up production and realization of advanced applications. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  17. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    PubMed Central

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-01-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470

  18. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, K.; Haigh, R.; Armstrong, G.

    1996-06-01

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km ofmore » Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.« less

  19. Testing Of An Ultraviolet (UV)-Transparent Polymer-Based Passive Sampler for Rapid, Ultra-Low-Cost EDC Screening Applications

    EPA Science Inventory

    A new passive sampling method with rapid low-cost spectral detection has recently been developed. The method makes use of an ultraviolet (UV)-transparent polymer which serves as both a concentrator for dissolved compounds, and an optical cell for UV spectral detection. Because ...

  20. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.

  1. Convolution Operation of Optical Information via Quantum Storage

    NASA Astrophysics Data System (ADS)

    Li, Zhixiang; Liu, Jianji; Fan, Hongming; Zhang, Guoquan

    2017-06-01

    We proposed a novel method to achieve optical convolution of two input images via quantum storage based on electromagnetically induced transparency (EIT) effect. By placing an EIT media in the confocal Fourier plane of the 4f-imaging system, the optical convolution of the two input images can be achieved in the image plane.

  2. Transparency Film for Demonstration of Biaxial Optics.

    ERIC Educational Resources Information Center

    Camp, Paul R.

    1994-01-01

    Explains why transparency film demonstrates biaxial optical properties. Provides detailed descriptions of the procedure and equipment needed for large-scale optics demonstrations of the polarization interference pattern produced by biaxial crystals. (DDR)

  3. Optical quantum memory based on electromagnetically induced transparency

    PubMed Central

    Ma, Lijun; Slattery, Oliver

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems. PMID:28828172

  4. Optical quantum memory based on electromagnetically induced transparency.

    PubMed

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2017-04-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.

  5. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

  6. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g-1 or 552 μF cm-2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  7. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo

    2018-01-01

    Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.

  8. Effect of purity on the electro-optical properties of single wall nanotube-based transparent conductive electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Matthew P; Ivanov, Ilia N; Geohegan, David B

    2013-01-01

    We present a detailed assessment of centrifugation technique for purification of single wall carbon nanotubes (SWCNTs) for application as transparent conductive electrodes. As- grown and highly-purified SWCNTs were dispersed in surfactants by ultrasonication, and then centrifuged to selectively remove carbonaceous and metal impurities. The centrifuged supernatant suspensions were made into thin films by transferring filtrated nanotube coat- ings onto glass slides. The absorbance and resistance of nanotube coatings were measured, and their optical purity level estimated from a comparison of the area of the near-infrared S22 SWCNT optical absorption band relative to the area of the background. The single-step centrifugationmore » process is shown to purify laser-vaporization grown SWCNTs from an initial optical purity of 0.10 to an averaged purity of 0.23, with an 8.8% yield, which is comparable to other purification techniques. The quality of transparent conductive electrodes esti- mated as a ratio of visible-spectrum absorbance to sheet conductivity is improved by a fac- tor of 12 upon purification.« less

  9. Generation and control of optical frequency combs using cavity electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying

    2018-02-01

    We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.

  10. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics

    NASA Astrophysics Data System (ADS)

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  11. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.

    PubMed

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  12. Pore size and concentration effect of mesoporous silica nanoparticles on the coefficient of thermal expansion and optical transparency of poly(ether sulfone) films.

    PubMed

    Vo, Nhat Tri; Patra, Astam K; Kim, Dukjoon

    2017-01-18

    Mesoporous silica nanoparticles (MSNs) with uniform size (<50 nm) yet with different pore diameters were synthesized, and used as fillers in poly(ether sulfone) (PES) films in order to decrease their coefficient of thermal expansion (CTE) without sacrificing optical transparency. Here, both CTE and optical transparency of the MSN/PES nanocomposite films gradually decreased with increasing MSN concentration. The PES films containing MSNs with larger pores showed the best performance in CTE and optical transparency. While the CTE decreased by 32.3% with increasing MSN content up to 0.5 wt%, the optical transparency decreased by only less than 6.9% because of the small and uniform particle size of less than 50 nm, which minimizes light scattering. This pore size effect is more clearly observed via an annealing process, which enables the polymer chains to slowly move and fill in the free volume in the pores of the MSN, and thus restricts the thermal motion. The effect of the silica nanoparticles was investigated not only on the thermal stability but also on the mechanical stability. We expect the MSNs synthesized in this study to be used as a promising filler to enhance the thermal and mechanical stability of the PES substrate without sacrificing its optical transparency.

  13. On optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemes

    NASA Astrophysics Data System (ADS)

    Dao, Thanh Hai

    2018-01-01

    Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.

  14. Smart window using a thermally and optically switchable liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon

    2018-02-01

    Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.

  15. Optical properties of transparent glass–ceramics containing lithium–mica nanocrystals: Crystallization effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, V.; Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir; Shakeri, M.S.

    2013-09-01

    Graphical abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals are studied and crystallization condition has been evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used for morphological variations and UV–vis absorption spectroscopy for comparative analysis of transparency. In order to investigate the optical properties of transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy are calculated. The results of the investigation illustrate that band gap is reduced with increases in crystallizationmore » time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes. - Highlights: • The optimum temperature and time of crystallization were determined. • Li–mica nanocrystals with size of <30 nm were formed using a two-step heat-treatment. • Optical band gap and Fermi energy of nanocrystalline materials decreased with increasing of crystallization temperature and time. • Urbach band tailing was decreased with increasing of crystallization condition. - Abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals were studied. The crystallization condition of these glasses was evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used to detect morphological changes and UV–vis absorption spectroscopy was used for comparative analysis of transparency. In order to investigate the optical properties of the transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy were calculated. The results of the investigation illustrate that the band gap is reduced with increases in crystallization time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes.« less

  16. Ultraviolet-visible optical isolators based on CeF{sub 3} Faraday rotator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Víllora, Encarnación G., E-mail: VILLORA.Garcia@nims.go.jp; Shimamura, Kiyoshi; Plaza, Gustavo R.

    2015-06-21

    The first ultraviolet (UV) and visible optical isolators based on CeF{sub 3} are demonstrated. CeF{sub 3} possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF{sub 3} rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulationsmore » have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF{sub 3} as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available.« less

  17. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  18. Transparent anti-stain coatings with good thermal and mechanical properties based on polyimide-silica nanohybrids.

    PubMed

    Choi, Myeon-Cheon; Sung, Giju; Nagappan, Saravanan; Han, Mi-Jeong; Ha, Chang-Sik

    2012-07-01

    In this work, we synthesized polyimide/silica hybrid materials via sol-gel method using a fluorinated poly(amic acid) silane precursor and a variety of perfluorosilane contents. We studied the influence of a hybrid coating film with the following characteristics; hydrophobicity, oleophobicity, optical transparency, and surface hardness of the coating films. The hybrid coatings with the fluorosilane contents up to 10 wt% are optically transparent and present good thermal stability with a degradation temperature of > 500 degrees C as well as a glass transition of > 300 degrees C. Both water contact angle and oil contact angle increase rapidly with introducing small amount of the fluorosilane in the hybrids and reaches the maximum of 115 degrees and 61 degrees, respectively. The hardness of the hybrid coatings increases up to 5H with an increase of the FTES content in the hybrids. These colorless, transparent, and thermally stable hybrid materials could be suitable for applications as anti-stain coatings.

  19. Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zimin; Zhuo, Yi; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Chengxin; Wang, Gang

    2017-06-01

    Various kinds of materials have been developed as transparent conductors for applications in semiconductor optoelectronic devices. However, there is a bottleneck that transparent conductive materials lose their transparency at ultraviolet (UV) wavelengths and could not meet the demands for commercial UV device applications. In this work, textured indium tin oxide (ITO) is grown and its potential to be used at UV wavelengths is explored. It is observed that the pronounced Burstein-Moss effect could widen the optical bandgap of the textured ITO to 4.7 eV. The average transmittance in UVA (315 nm-400 nm) and UVB (280 nm-315 nm) ranges is as high as 94% and 74%, respectively. The excellent optical property of textured ITO is attributed to its unique structural property. The compatibility of textured ITO thin films to the device fabrication is demonstrated on 368-nm nitride-based light emitting diodes, and the enhancement of light output power by 14.8% is observed compared to sputtered ITO.

  20. Programmable on-chip and off-chip network architecture on demand for flexible optical intra-datacenters.

    PubMed

    Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra

    2013-03-11

    The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.

  1. Improved transparency--nonlinearity trade-off with boroxine-based octupolar molecules.

    PubMed

    Alcaraz, Gilles; Euzenat, Lisenn; Mongin, Olivier; Katan, Claudine; Ledoux, Isabelle; Zyss, Joseph; Blanchard-Desce, Mireille; Vaultier, Michel

    2003-11-21

    A series of octupolar molecules derived from the boroxine framework were designed and their optical nonlinearities were investigated by performing harmonic light scattering experiments in solution; the molecules were found to combine excellent transparency in the near UV-visible region (lambdamax < or = 280 nm) and significant first-order hyperpolarisabilities (up to beta(0) = 56 x 10(-30) esu).

  2. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates

    PubMed Central

    Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki

    2017-01-01

    We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests. PMID:28436426

  3. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars

    2016-04-11

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

  4. Two-dimensional materials based transparent flexible electronics

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas

    2015-03-01

    Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.

  5. Self-visualization of transparent microscopic objects in optical glasses under the conditions of the thermal self-action of an illuminating laser beam

    NASA Astrophysics Data System (ADS)

    Bubis, E. L.; Palashov, O. V.; Kuz'min, I. V.; Snetkov, I. L.; Gusev, S. A.

    2017-03-01

    We demonstrate the process of adaptive self-visualization of small-scale transparent objects and structures in weakly absorbing optical glasses (a glass plate made of K8 and an NS-1 neutral density filter) placed in the Fourier plane of the optical system under the conditions of thermal self-action of the illuminating laser beam. The process is based on the ideology of the classical Zernike phase contrast method. The process is implemented at the level of power of radiation of the illuminated object varying from several milliwatts to tens of watts in the visible and IR spectral ranges. The conducted experiments indicate that the visualization takes place in all glasses and optical elements fabricated from them at an appropriate level of the radiation power.

  6. Optically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance

    PubMed Central

    Kobayashi, Nobukiyo; Masumoto, Hiroshi; Takahashi, Saburo; Maekawa, Sadamichi

    2016-01-01

    Developing optically transparent magnets at room temperature is an important challenge. They would bring many innovations to various industries, not only for electronic and magnetic devices but also for optical applications. Here we introduce FeCo-(Al-fluoride) nanogranular films exhibiting ferromagnetic properties with high optical transparency in the visible light region. These films have a nanocomposite structure, in which nanometer-sized FeCo ferromagnetic granules are dispersed in an Al-fluoride crystallized matrix. The optical transmittance of these films is controlled by changing the magnetization. This is a new type of magneto-optical effect and is explained by spin-dependent charge oscillation between ferromagnetic granules due to quantum-mechanical tunneling. PMID:27677710

  7. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  8. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  9. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  10. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows

    PubMed Central

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-01-01

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672

  11. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows.

    PubMed

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-08-22

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.

  12. Fully transparent conformal organic thin-film transistor array and its application as LED front driving.

    PubMed

    Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun

    2018-02-22

    A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.

  13. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  14. Optical transparency of paper as a function of moisture content with applications to moisture measurement.

    PubMed

    Forughi, A F; Green, S I; Stoeber, B

    2016-02-01

    Accurate measurement of the moisture content of paper is essential in papermaking and is also important in some paper-based microfluidic devices. Traditional measurement techniques provide very limited spatiotemporal resolution and working range. This article presents a novel method for moisture content measurement whose operating principle is the strong correlation between the optical transparency of paper and its moisture content. Spectrographic and microscopic measurement techniques were employed to characterize the relation of moisture content and relative transparency of four types of paper: hardwood chemi-thermomechanical pulp paper, Northern bleached softwood kraft paper, unbleached softwood kraft paper, and General Electric(®) Whatman™ grade 1 chromatography paper. It was found that for all paper types, the paper transparency increased monotonically with the moisture content (as the ratio of the mass-of-water to the mass-of-dry-paper increased from 0% to 120%). This significant increase in relative transparency occurred due to the refractive index matching role of water in wet paper. It is further shown that mechanical loading of the paper has little impact on the relative transparency, for loadings that would be typical on a paper machine. The results of two transient water absorption experiments are presented that show the utility and accuracy of the technique.

  15. Electrical properties of transparent conductive ATO coatings obtained by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Zinchenko, T. O.; Kondrashin, V. I.; Pecherskaya, E. A.; Kozlyakov, A. S.; Nikolaev, K. O.; Shepeleva, J. V.

    2017-08-01

    Transparent conductive coatings based on thin films of metal oxides have been widely spread in various optoelectronic devices and appliances. It is necessary to determine the influence of preparation conditions on coatings properties for their use in the solution of certain tasks. Thin films of tin dioxide were obtained by the method of spray pyrolysis on glass substrates. Surface resistance and resistivity, concentration and mobility of charge carriers, the conductivity were measured, and the dependences showing the effect of preparation conditions on electrical properties of optically transparent coatings.

  16. Optical characterization of pure and Al-doped ZnO prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna

    2016-09-01

    In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.

  17. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    NASA Astrophysics Data System (ADS)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  18. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs <30 Ω/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  19. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  20. Nonimaging light concentrator with uniform irradiance

    DOEpatents

    Winston, Roland; Gee, Randy C.

    2003-04-01

    A nonimaging light concentrator system including a primary collector of light, an optical mixer disposed near the focal zone for collecting light from the primary collector, the optical mixer having a transparent entrance aperture, an internally reflective housing for substantially total internal reflection of light, a transparent exit aperture and an array of photovoltaic cells disposed near the transparent exit aperture.

  1. Research Studies on Electromagnetically Induced Transparency

    DTIC Science & Technology

    2010-01-20

    allowing the same simple equations to be used to simulate nonlinear and quantum optics with the N-photon states generated in this regime. One...induced transparency, photon interactions with atoms, nonclassical states of the electromagnetic field, including entangled photon states , quantum ...them. This is important because optical nonlinearities when produced using electromagnetically induced transparency continue to increase in the

  2. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  3. Crystal clear transparent lipstick formulation based on solidified oils.

    PubMed

    De Clermont-Gallerande, H; Chavardes, V; Zastrow, L

    1999-12-01

    We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.

  4. Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability.

    PubMed

    Lee, Habeom; Hong, Sukjoon; Lee, Jinhwan; Suh, Young Duk; Kwon, Jinhyeong; Moon, Hyunjin; Kim, Hyeonseok; Yeo, Junyeob; Ko, Seung Hwan

    2016-06-22

    Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode. We developed a simple solution process to synthesize the Ag-Au core-shell nanowire with excellent electrical conductivity as well as greatly enhanced chemical and electrochemical stabilities compared to pristine Ag nanowire. The proposed core-shell nanowire-based supercapacitor still possesses fine optical transmittance and outstanding mechanical stability up to 60% strain. The Ag-Au core-shell nanowire can be a strong candidate for future wearable electrochemical energy devices.

  5. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.

  6. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    ERIC Educational Resources Information Center

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  7. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring

    NASA Astrophysics Data System (ADS)

    Cho, Ji Hwan; Ha, Sung-Hun; Kim, Jong-Man

    2018-04-01

    Optical transparency is increasingly considered as one of the most important characteristics required in advanced stretchable strain sensors for application in body-attachable systems. In this paper, we present an entirely solution-processed fabrication route to highly transparent and stretchable resistive strain sensors based on silver nanowire microgrids (AgNW-MGs). The AgNW-MG strain sensors are readily prepared by patterning the AgNWs on a stretchable substrate into a MG geometry via a mesh-template-assisted contact-transfer printing. The MG has a unique architecture comprising the AgNWs and can be stretched to ɛ = 35%, with high gauge factors of ˜6.9 for ɛ = 0%-30% and ˜41.1 for ɛ = 30%-35%. The sensor also shows a high optical transmittance of 77.1% ± 1.5% (at 550 nm) and stably maintains the remarkable optical performance even at high strains. In addition, the sensor responses are found to be highly reversible with negligible hysteresis and are reliable even under repetitive stretching-releasing cycles (1000 cycles at ɛ = 10%). The practicality of the AgNW-MG strain sensor is confirmed by successfully monitoring a wide range of human motions in real time after firmly laminating the device onto various body parts.

  8. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  9. Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes

    PubMed Central

    Toytziaridis, Andreas; Dicko, Cedric

    2016-01-01

    The fabrication of silk-based membranes that are stable, optically transparent and reusable is yet to be achieved. To address this bottleneck we have developed a method to produce transparent chromogenic silk patches that are optically responsive to pH. The patches were produced by blending regenerated silk fibroin (RSF), Laponite RD (nano clay) and the organic dyes neutral red and Thionine acetate. The Laponite RD played a central role in the patch mechanical integrity and prevention of dye leaching. The process was optimized using a factorial design to maximize the patch response to pH by UV absorbance and fluorescence emission. New patches of the optimized protocol, made from solutions containing 125 μM neutral red or 250 μM of Thionine and 15 mg/mL silk, were further tested for operational stability over several cycles of pH altering. Stability, performance, and reusability were achieved over the tested cycles. The approach could be extended to other reporting molecules or enzymes able to bind to Laponite. PMID:27854303

  10. Analysis of localized fringes in the holographic optical Schlieren system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1980-01-01

    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  11. Objectively discriminating the optical analogy of electromagnetically induced transparency from Autler-Townes splitting in a side coupled graphene-based waveguide system

    NASA Astrophysics Data System (ADS)

    Wei, Buzheng; Jian, Shuisheng

    2017-11-01

    A mid-infrared side coupled graphene nanotube waveguide system is proposed to investigate the origin discerning from electromagnetically induced transparency (EIT) to Autler-Townes splitting (ATS). The analytic transmission analysis seeks an evolution tendency of transmission spectrum from ATS to EIT, which is numerically verified by the simulation results. The origin of transparency is mainly attributed to ATS effect in the strong coupling regime while EIT is favored in the weak coupling condition. We plot the field distribution to help understand the underlying physics of the interference process. The high group index of 5000 indicates that a slow light effect is successfully observed and Fano resonance is presented by varying the Fermi energy of the dark mode. These ideas may provide potential views in filters, optical buffers, light storage and on chip metamaterials.

  12. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.

    PubMed

    Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J

    2017-01-20

    Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electronic and optical properties of pristine and oxidized borophene

    NASA Astrophysics Data System (ADS)

    Lherbier, Aurélien; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe

    2016-12-01

    Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.

  14. Time-dependent phase shift of a retrieved pulse in off-resonant electromagnetically-induced-transparency-based light storage

    NASA Astrophysics Data System (ADS)

    Maynard, M.-A.; Bouchez, R.; Lugani, J.; Bretenaker, F.; Goldfarb, F.; Brion, E.

    2015-11-01

    We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in electromagnetically-induced-transparency storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.

  15. Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Saghir, Kholoud; Chenu, Sébastien; Veron, Emmanuel

    2015-01-27

    Transparent polycrystalline ceramics present signi fi cant eco- nomical and functional advantages over single crystal materials for optical, communication, and laser technologies. To date, transparency in these ceramics is ensured either by an optical isotropy (i.e., cubic symmetry) or a nanometric crystallite size, and the main challenge remains to eliminate porosity through complex high pressure - high temperature synthesis. Here we introduce a new concept to achieve ultimate transparency reaching the theoretical limit. We use a controlled degree of chemical disorder in the structure to obtain optical isotropy at the micrometer length scale. This approach can be applied in themore » case of anisotropic structures and micrometer scale crystal size ceramics. We thus report Sr 1+ x /2 Al 2+ x Si 2 - x O 8 (0 < x ≤ 0.4) readily scalable polycrystalline ceramics elaborated by full and congruent crystallization from glass. These materials reach 90% transmittance. This innovative method should drive the development of new highly transparent materials with technologically relevant applications.« less

  16. Optically transparent thin-film transistors based on 2D multilayer MoS₂ and indium zinc oxide electrodes.

    PubMed

    Kwon, Junyeon; Hong, Young Ki; Kwon, Hyuk-Jun; Park, Yu Jin; Yoo, Byungwook; Kim, Jiwan; Grigoropoulos, Costas P; Oh, Min Suk; Kim, Sunkook

    2015-01-21

    We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μ(eff)) of 1.4 cm(2) V(-1) s(-1) was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μ(eff) increased to 4.5 cm(2) V(-1) s(-1), and the on-off current ratio (I(on)/I(off)) increased to 10(4), which were attributed to the reduction of the contact resistance between MoS2 and IZO.

  17. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems

    PubMed Central

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further exacerbated by cold temperatures in this location, together with episodes of ozone depletion. Overall, the results emphasize the marked spatial (horizontal and vertical) and temporal heterogeneity of optical characteristics, and challenges that these imply for estimations of underwater optics. PMID:27144454

  18. Characterization of transparent dentin in attrited teeth using optical coherence tomography.

    PubMed

    Mandurah, Mona M; Sadr, Alireza; Bakhsh, Turki A; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-05-01

    Attrition and wear of tooth surface occur with aging and result in loss of enamel, with exposure and histological changes in dentin. Dealing with attrited teeth and restoration of the lost tissue are clinically challenging. The main objective of this study is to characterize the exposed transparent dentin in the occlusal surface of attrited teeth by optical coherence tomography (OCT). Naturally attrited, extracted human teeth with occlusal-transparent dentin were investigated in comparison to sound and carious teeth. The teeth were subjected to OCT imaging and then cross-sectioned and polished. OCT B-scans were compared to light microscopy images of the same cross section. In OCT images, some changes were evident at the transparent dentin in attrited teeth. An OCT attenuation coefficient parameter (μ t) was derived based on the Beer-Lambert law as a function of backscatter signal slope. The mean values of μ t were 1.05 ± 0.3, 2.23 ± 0.4, and 0.61 ± 0.27 mm(-1) for sound, carious, and transparent dentins, respectively. One-way ANOVA with Tukey's post-hoc showed a significant difference between groups (p < 0.05). Physiological changes in transparent dentin that involve deposition of mineral casts in the dentinal tubules lead to lower attenuation of OCT signal. OCT has a potential role to detect transparent dentin on the surface of attrited teeth and can be used in the future as a clinical adjunct tool.

  19. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    PubMed

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  20. Optical properties of photodetectors based on single GaN nanowires with a transparent graphene contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, A. V., E-mail: A.Babichev@mail.ioffe.ru; Zhang, H.; Guan, N.

    2016-08-15

    We report the fabrication and optical and electrical characterization of photodetectors for the UV spectral range based on single p–n junction nanowires with a transparent contact of a new type. The contact is based on CVD-grown (chemical-vapor deposition) graphene. The active region of the nitride nanowires contains a set of 30 radial In{sub 0.18}Ga{sub 0.82}N/GaN quantum wells. The structure is grown by metal-organic vaporphase epitaxy. The photodetectors are fabricated using electron-beam lithography. The current–voltage characteristics exhibit a rectifying behavior. The spectral sensitivity of the photodetector is recorded starting from 3 eV and extending far in the UV range. The maximalmore » photoresponse is observed at a wavelength of 367 nm (sensitivity 1.9 mA/W). The response switching time of the photodetector is less than 0.1 s.« less

  1. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  2. Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode

    NASA Astrophysics Data System (ADS)

    Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-01

    A novel UV transparent conducting films based on Sb2O3/Ag/Sb2O3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq-1). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm-2. These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics.

  3. Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode.

    PubMed

    Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-25

    A novel UV transparent conducting films based on Sb 2 O 3 /Ag/Sb 2 O 3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq -1 ). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm -2 . These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics.

  4. Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode

    PubMed Central

    Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-01

    A novel UV transparent conducting films based on Sb2O3/Ag/Sb2O3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq−1). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm−2. These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics. PMID:28120888

  5. Understanding transparency perception in architecture: presentation of the simplified perforated model.

    PubMed

    Brzezicki, Marcin

    2013-01-01

    Issues of transparency perception are addressed from an architectural perspective, pointing out previously neglected factors that greatly influence this phenomenon in the scale of a building. The simplified perforated model of a transparent surface presented in the paper has been based on previously developed theories and involves the balance of light reflected versus light transmitted. Its aim is to facilitate an understanding of non-intuitive phenomena related to transparency (eg dynamically changing reflectance) for readers without advanced knowledge of molecular physics. A verification of the presented model has been based on the comparison of optical performance of the model with the results of Fresnel's equations for light-transmitting materials. The presented methodology is intended to be used both in the design and explanatory stages of architectural practice and vision research. Incorporation of architectural issues could enrich the perspective of scientists representing other disciplines.

  6. A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

    DOE PAGES

    Zha, Kan; Busch, Stephen; Park, Cheolwoong; ...

    2016-06-24

    In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. Here, to ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortionmore » quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches.« less

  7. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  8. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj

    2018-02-01

    Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.

  9. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  10. Optically transparent FTO-free cathode for dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav; Liska, Paul; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-12-24

    The woven fabric containing electrochemically platinized tungsten wire is an affordable flexible cathode for liquid-junction dye-sensitized solar cells with the I3(-)/I(-) redox mediator and electrolyte solution consisting of ionic liquids and propionitrile. The fabric-based electrode outperforms the thermally platinized FTO in serial ohmic resistance and charge-transfer resistance for triiodide reduction, and it offers comparable or better optical transparency in the visible and particularly in the near-IR spectral region. The electrode exhibits good stability during electrochemical loading and storage at open circuit. The dye-sensitized solar cells with a C101-sensitized titania photoanode and either Pt-W/PEN or Pt-FTO cathodes show a comparable performance.

  11. High Fidelity Additive Manufacturing of Optically Transparent Glass Structures

    NASA Astrophysics Data System (ADS)

    Inamura, Chikara

    Glass has been an integral part of human civilization with expressions across scales and disciplines: from the microscope to the telescope, from fiber optics to mobile interface, and from the petri dish to a building envelope. Such a diverse range of applications is enabled by the inherent material properties including mechanical strength, optical transparency and chemical inertness. Additive manufacturing provides opportunities for integrating the unique properties of glass to engineer novel structures that are functionary graded through precise spatiotemporal deposition of molten glass. This talk presents the Mediated Matter Group's latest development of a novel additive manufacturing platform, and related processes, for 3D Printing optically transparent glass for architectural scale applications.

  12. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  13. Local modulation of double optomechanically induced transparency and amplification.

    PubMed

    Yang, Q; Hou, B P; Lai, D G

    2017-05-01

    We consider the probe absorption properties in a mechanically coupled optomechanical system in which the two coupled nanomechanical oscillators are driven by the time-dependent forces, respectively. It is found that the mechanical interaction splits the transparency window for a usual single-mode optomechanical system into two parts and then leads to appearance of the double optomechanically induced transparency. The distance between the two transparency positions (the frequency for the maximal transparency) is determined by the mechanical interaction amplitude. This can be explained by using optomechanical dressed-mode picture which is analogue to the interacting dark resonances in coherent atoms. When the mechanical resonators are driven by the external forces, the transparencies in the double-transparency spectrum can be increased into amplifications or be suppressed by tuning the amplitude of the forces. Additionally, it is shown that the double transparencies or the amplifications oscillate with the initial phases of the forces with a period of 2π. These investigations will be useful for more flexible controllability of multi-channel optical communication based on the optomechanical systems.

  14. A new optically transparent silicon containing polyimide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, D.; Gupta, A.D.

    1995-12-31

    A new optically transparent, heat-resistant, flexible silicon containing polyimide (PI)(SIDA-BAPB) film has been developed. It was characterized by UV-Visible, FT-IR, differential scanning calorimetery (DSC), thermomechanical analysis (TMA) and thermogravimetric (TGA) analysis. The developed film showed high optical transparency in the 350-600 nm range of electromagnetic spectrum. The DSC analysis of the film showed glass transition temperature (T{sub g}) at 200{degrees}C. The dynamic thermogravimetric analysis (TGA) demonstrated its polymer decomposition temperature at 425{degrees}C. The char yield of the amorphous film in nitrogen at 800{degrees}C was 61%.

  15. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.

    PubMed

    Ju, Sanghyun; Li, Jianfeng; Liu, Jun; Chen, Po-Chiang; Ha, Young-Geun; Ishikawa, Fumiaki; Chang, Hsiaokang; Zhou, Chongwu; Facchetti, Antonio; Janes, David B; Marks, Tobin J

    2008-04-01

    Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.

  16. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-31

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  17. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels.more » Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.« less

  18. Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Wang, Jianxing; Yang, Guowei

    2017-07-01

    There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.

  19. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.

    PubMed

    Peng, Bo; Özdemir, Sahin Kaya; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-10-24

    There has been an increasing interest in all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting. Despite the differences in their underlying physics, both electromagnetically induced transparency and Autler-Townes splitting are quantified by a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While the transparency window in electromagnetically induced transparency is a result of Fano interference among different transition pathways, in Autler-Townes splitting it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether an observed transparency window is because of electromagnetically induced transparency or Autler-Townes splitting is crucial for applications and for clarifying the physics involved. Here we demonstrate the pathways leading to electromagnetically induced transparency, Fano resonances and Autler-Townes splitting in coupled whispering-gallery-mode resonators. Moreover, we report the application of the Akaike Information Criterion discerning between all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting and clarifying the transition between them.

  20. Optical Characterization of Window Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  1. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOEpatents

    Page, Ralph H.; Beach, Raymond J.

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  2. Optical and electrical properties of CuMO2 transparent p-type conductors

    NASA Astrophysics Data System (ADS)

    Draeseke, A. D.; Jayaraj, M. K.; Ulbrich, T.; Kroupp, M.; Tate, J.; Nagarajan, R.; Oblezov, A.; Sleight, A. W.

    2001-03-01

    Wide band gap oxides of the type CuMO2 with the delafossite structure are p-type conductors and many of them are transparent. Films of these p-type oxides have been grown by sputtering and thermal evaporation, and characterized electrically and optically. We present transport and optical transmission measurements for CuY_1-xCa_xO_2, CuScO_2+x and other similar materials. Conductivities are in the range 1 200 S/cm and depend on details of film preparation. The carriers are p-type as determined by thermopower measurements, and typical Seebeck coefficients are several hundred µV/K. Optical transparency varies considerably, but is about 40% at 550 nm for the highest conductivity films. Excellent transparency can be achieved at the expense of conductivity, and optimization is being studied. Band gaps derived from optical transmission are larger than 3.1 eV. Prototype all-oxide pn diodes have been fabricated. This work was partially supported by the NSF under DMR-0071727 and by the Research Corporation under RA0291.

  3. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  4. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    NASA Astrophysics Data System (ADS)

    Das, Suprem R.; Sadeque, Sajia; Jeong, Changwook; Chen, Ruiyi; Alam, Muhammad A.; Janes, David B.

    2016-06-01

    Although transparent conductive oxides such as indium tin oxide (ITO) are widely employed as transparent conducting electrodes (TCEs) for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs), copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide) have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  5. THE BALLISTICS OF A RIBBON COMPOSITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larcombe, J.; Morley, M.; Earp, S.

    2009-12-28

    The impact behaviour of composites is of great importance in the field of aerospace and vehicle protection. The combination of formability, lightness and strength make composite systems attractive compared to equivalent monolithic systems. However, their use as optical components has been hampered by their lack of transparency. Transparency is strongly affected by refractive index differences in the materials that form the composite. In this study a number of ribbon-based composites were produced. The impact velocity, sample deformation during the impact process and residual impactor velocity were measured. This allowed comparison between the materials ballistic efficiency. The materials are then comparedmore » to other transparent systems.« less

  6. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets

    PubMed Central

    Chen, Tao; Peng, Huisheng; Durstock, Michael; Dai, Liming

    2014-01-01

    By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g−1 and can be biaxially stretched up to 30% strain without any obvious change in electrochemical performance even over hundreds stretching cycles. PMID:24402400

  7. Morphological and electro optic studies of polymer dispersed liquid crystal in reverse mode

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj; Chinky, Malik, Praveen; Raina, K. K.

    2018-05-01

    Present work deals with reverse mode polymer dispersed liquid crystals (PDLCs) sensitive to electric field. Contrary to the conventional PDLCs operate from opaque (OFF state) to transparent state (ON state) with the application of field, reverse mode PDLCs work in transparent to opaque state. Reverse mode PDLC composed of nematic LC and UV curable optical adhesive polymer were prepared by the polymerization induced phase separation. The polarizing optical microscope study shows the vertical alignment of LCs within droplets with initial dark state under cross polarizers and confirms preliminary natural transparent state. The electro optic (EO) results show that the reverse mode PDLC lowered the threshold and operating voltages significantly compared with reported values. The contrast ratio of the film was also studied.

  8. Composition for forming an optically transparent, superhydrophobic coating

    DOEpatents

    Simpson, John T.; Lewis, Linda A.

    2015-12-29

    A composition for producing an optically clear, well bonded superhydrophobic coating includes a plurality of hydrophobic particles comprising an average particle size of about 200 nm or less, a binder at a binder concentration of from about 0.1 wt. % to about 0.5 wt. %, and a solvent. The hydrophobic particles may be present in the composition at a particle concentration of from about 0.1 wt. % to about 1 wt. %. An optically transparent, superhydrophobic surface includes a substrate, a plurality of hydrophobic particles having an average particle size of about 200 nm or less dispersed over the substrate, and a discontinuous binder layer bonding the hydrophobic particles to the substrate, where the hydrophobic particles and the binder layer form an optically transparent, superhydrophobic coating.

  9. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles.

    PubMed

    Lee, Donghwa; Lee, Hyungjin; Jeong, Youngjun; Ahn, Yumi; Nam, Geonik; Lee, Youngu

    2016-11-01

    Highly sensitive, transparent, and durable pressure sensors are fabricated using sea-urchin-shaped metal nanoparticles and insulating polyurethane elastomer. The pressure sensors exhibit outstanding sensitivity (2.46 kPa -1 ), superior optical transmittance (84.8% at 550 nm), fast response/relaxation time (30 ms), and excellent operational durability. In addition, the pressure sensors successfully detect minute movements of human muscles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    PubMed Central

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  11. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq-1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq-1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  12. Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou

    2004-05-01

    Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.

  13. High-power electro-optic switch technology based on novel transparent ceramic

    NASA Astrophysics Data System (ADS)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  14. Magnetic assembly of transparent and conducting graphene-based functional composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-06-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.

  15. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  16. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  17. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-01-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  18. An optoelectronic framework enabled by low-dimensional phase-change films.

    PubMed

    Hosseini, Peiman; Wright, C David; Bhaskaran, Harish

    2014-07-10

    The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.

  19. Refractive index measurement based on confocal method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  20. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system.

    PubMed

    Shi, Peng; Zhou, Guangya; Deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-09-29

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 10(5).

  1. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  2. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng

    2018-07-01

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  3. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.

    PubMed

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng

    2018-07-27

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  4. Some Early Optics: Classical and Medieval. Experiment No. 6.

    ERIC Educational Resources Information Center

    Devons, Samuel

    Information related to the history of optics with emphasis on the classical and medieval periods is presented. Notes are included on experiments dealing with refraction at a plane interface between two media; refraction by transparent spheres; light, color, and reflection by transparent spheres. (Author/SA)

  5. Tunable high-channel-count bandstop graphene plasmonic filters based on plasmon induced transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengren; Long, Yang; Ma, Pengyu; Li, Hongqiang

    2017-11-01

    A high-channel-count bandstop graphene plasmonic filter based on ultracompact plasmonic structure is proposed in this paper. It consists of graphene waveguide side-coupled with a series of graphene filtering units. The study shows that the waveguide-resonator system performs a multiple plasmon induced transparency (PIT) phenomenon. By carefully adjusting the Fermi level of the filtering units, any two adjacent transmitted dips which belong to different PIT units can produce coherent coupling superposition enhancement. This property prevents the attenuation of the high-frequency transmission dips of multiple PIT and leads to an excellent bandstop filter with multiple channels. Specifically, the bandwidth and modulation depth of the filters can be flexibly adjusted by tuning the Fermi energy of the graphene waveguide. This ultracompact plasmonic structure contributes to the achievement of frequency division multiplexing systems for optical computing and communications in highly integrated optical circuits.

  6. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  7. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.

    PubMed

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V

    2016-12-09

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q  < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  8. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    PubMed Central

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-01-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916

  9. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-12-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  10. Dual-drive Mach-Zehnder modulator-based reconfigurable and transparent spectral conversion for dense wavelength division multiplexing transmissions

    NASA Astrophysics Data System (ADS)

    Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min

    2017-09-01

    A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.

  11. Electron beam irradiated ITO films as highly transparent p-type electrodes for GaN-based LEDs.

    PubMed

    Hong, C H; Wie, S M; Park, M J; Kwak, J S

    2013-08-01

    We have investigated the effect of electron beam irradiation on the electrical and optical properties of ITO film prepared by magnetron sputtering method at room temperature. Electron beam irradiation to the ITO films resulted in a significant decrease in sheet resistance from 1.28 x 10(-3) omega cm to 2.55 x 10(-4) omega cm and in a great increase in optical band gap from 3.72 eV to 4.16 eV, followed by improved crystallization and high transparency of 97.1% at a wavelength of 485 nm. The overall change in electrical, optical and structural properties of ITO films is related to annealing effect and energy transfer of electron by electron beam irradiation. We also fabricated GaN-based light-emitting diodes (LEDs) by using the ITO p-type electrode with/without electron beam irradiation. The results show that the LEDs having ITO p-electrode with electron beam irradiation produced higher output power due to the low absorption of light in the p-type electrode.

  12. Three-dimensional radiation dosimetry based on optically-stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Sadel, M.; Høye, E. M.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2017-05-01

    A new approach to three-dimensional (3D) dosimetry based on optically-stimulated luminescence (OSL) is presented. By embedding OSL-active particles into a transparent silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes in combination with small test samples for OSL readers, it is shown that a sufficient transparency of the 3D-OSL material can be combined with an OSL response giving an estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically without the need for subsequent reconstruction by computational inversion algorithms. The dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose distribution following irradiation can be stored with minimal fading for extended periods of time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.

  13. A Modeling Approach for Plastic-Metal Laser Direct Joining

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  14. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    PubMed

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  15. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  16. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes.

    PubMed

    Zacharatos, Filimon; Karvounis, Panagiotis; Theodorakos, Ioannis; Hatziapostolou, Antonios; Zergioti, Ioanna

    2018-06-19

    Ag nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates. This process relies on the selective laser heating of the Ag NWs induced by the laser pulse energy and the subsequent localized melting of the polymeric substrate. We demonstrate that a single laser pulse can induce both transfer and curing of the Ag NW network. The feasibility of the process is confirmed experimentally and validated by Finite Element Analysis simulations, which indicate that selective heating is carried out within a submicron-sized heat affected zone. The resulting structures can be utilized as fully functional flexible transparent electrodes with figures of merit even higher than 100. Low sheet resistance (<50 Ohm/sq) and high visible light transparency (>90%) make the reported process highly desirable for a variety of applications, including selective heating or annealing of nanocomposite materials and laser processing of nanostructured materials on a large variety of optically transparent substrates, such as Polydimethylsiloxane (PDMS).

  17. Visually Imperceptible Liquid-Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing.

    PubMed

    Pan, Chengfeng; Kumar, Kitty; Li, Jianzhao; Markvicka, Eric J; Herman, Peter R; Majidi, Carmel

    2018-03-01

    A material architecture and laser-based microfabrication technique is introduced to produce electrically conductive films (sheet resistance = 2.95 Ω sq -1 ; resistivity = 1.77 × 10 -6 Ω m) that are soft, elastic (strain limit >100%), and optically transparent. The films are composed of a grid-like array of visually imperceptible liquid-metal (LM) lines on a clear elastomer. Unlike previous efforts in transparent LM circuitry, the current approach enables fully imperceptible electronics that have not only high optical transmittance (>85% at 550 nm) but are also invisible under typical lighting conditions and reading distances. This unique combination of properties is enabled with a laser writing technique that results in LM grid patterns with a line width and pitch as small as 4.5 and 100 µm, respectively-yielding grid-like wiring that has adequate conductivity for digital functionality but is also well below the threshold for visual perception. The electrical, mechanical, electromechanical, and optomechanical properties of the films are characterized and it is found that high conductivity and transparency are preserved at tensile strains of ≈100%. To demonstrate their effectiveness for emerging applications in transparent displays and sensing electronics, the material architecture is incorporated into a couple of illustrative use cases related to chemical hazard warning. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.

  19. A Solution-Processed Transparent NiO Hole-Extraction Layer for High-Performance Inverted Perovskite Solar Cells.

    PubMed

    Tang, Li Juan; Chen, Xiao; Wen, Tian Yu; Yang, Shuang; Zhao, Jun Jie; Qiao, Hong Wei; Hou, Yu; Yang, Hua Gui

    2018-02-26

    A highly transparent NiO layer was prepared by a solution processing method with nickel(II) 2-ethylhexanoate in non-polar solvent and utilized as HTM in perovskite solar cells. Excellent optical transmittance and the matched energy level lead to the enhanced power conversion efficiency (PCE, 18.15 %) than that of conventional sol-gel-processed NiO-based device (12.98 %). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  1. Synthesis of optically transparent ceramic of CaF2 doped with Mn and Ce for thermoluminescent dosimetry

    NASA Astrophysics Data System (ADS)

    Sen, Shashwati; Singh, S. G.; Patra, G. D.; Shinde, S.; Bhattacharya, S.; Gadkari, S. C.

    2012-06-01

    Nano-particles of CaF2: Mn were synthesized by a co-precipitation method. Optically transparent ceramics were obtained by vacuum hot-pressing at 1000°C under 20 MPa pressure for 2 h. The duration of pressure and dehydration of the initial powder was found important to achieve the transparency. 50% transparency was observed for a polished disc of 1 mm thickness. SEM micrographs revealed the absence of voids in hot pressed samples. These samples were found to be highly sensitive and linear for TLD and can measure doses from mGy to kGy.

  2. Plastic scintillators with high loading of one or more metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine; Sanner, Robert Dean

    According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.

  3. Scalability study of solid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  4. Ion Sensitive Transparent-Gate Transistor for Visible Cell Sensing.

    PubMed

    Sakata, Toshiya; Nishimura, Kotaro; Miyazawa, Yuuya; Saito, Akiko; Abe, Hiroyuki; Kajisa, Taira

    2017-04-04

    In this study, we developed an ion-sensitive transparent-gate transistor (IS-TGT) for visible cell sensing. The gate sensing surface of the IS-TGT is transparent in a solution because a transparent amorphous oxide semiconductor composed of amorphous In-Ga-Zn-oxide (a-IGZO) with a thin SiO 2 film gate that includes an indium tin oxide (ITO) film as the source and drain electrodes is utilized. The pH response of the IS-TGT was found to be about 56 mV/pH, indicating approximately Nernstian response. Moreover, the potential signals of the IS-TGT for sodium and potassium ions, which are usually included in biological environments, were evaluated. The optical and electrical properties of the IS-TGT enable cell functions to be monitored simultaneously with microscopic observation and electrical measurement. A platform based on the IS-TGT can be used as a simple and cost-effective plate-cell-sensing system based on thin-film fabrication technology in the research field of life science.

  5. Integrated-optical directional coupler biosensor

    NASA Astrophysics Data System (ADS)

    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J.

    1996-04-01

    We present measurements of biomolecular binding reactions, using a new type of integrated-optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+ - Na+ ion exchange in glass, and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered.

  6. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1992-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Flexible optical media offers many benefits in terms of manufacture; for a given capital investment, continuous, web-coating techniques produce more square meters of media than batch coating. The coated layers consist of a backcoat on the non-active side; on the active side there is a subbing layer, then reflector, dye/polymer, and transparent protective overcoat. All these layers have been tailored for ease of manufacture and specific functional characteristics.

  7. Seasonal control skylight glazing panel with passive solar energy switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.V.

    1983-10-25

    A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.

  8. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition.

    PubMed

    Khan, Afzal; Nguyen, Viet Huong; Muñoz-Rojas, David; Aghazadehchors, Sara; Jiménez, Carmen; Nguyen, Ngoc Duy; Bellet, Daniel

    2018-06-06

    Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.

  9. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  10. Applying Fused Silica and Other Transparent Window Materials in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2017-01-01

    A variety of transparent ceramics, such as AlONs and spinels, that were developed for military applications hold promise as spacecraft windows. Window materials in spacecraft such as the Space Shuttle must meet many requirements such as maintaining cabin pressure, sustaining thermal shock, and tolerating damage from hyper-velocity impact while providing superior optical characteristics. The workhorse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low density, low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits lower fracture toughness and impact resistance as compared to newer materials. Can these newer transparent ceramics lighten spacecraft window systems and might they be useful for applications such as phone screens? This presentation will compare recent optical ceramics to fused silica and demonstrate how weight can be saved.

  11. Transparent graphene microstrip filters for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  12. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    NASA Astrophysics Data System (ADS)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  13. Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum

    NASA Technical Reports Server (NTRS)

    Shiri, Ron Shahram; Wasylkiwskyj, Wasyl

    2013-01-01

    The presence of the Poisson Spot, also known as the spot of Arago, has been known since the 18th century. This spot is the consequence of constructive interference of light diffracted by the edge of the obstacle where the central position can be determined by symmetry of the object. More recently, many NASA missions require the suppression of this spot in the visible range. For instance, the exoplanetary missions involving space telescopes require telescopes to image the planetary bodies orbiting central stars. For this purpose, the starlight needs to be suppressed by several orders of magnitude in order to image the reflected light from the orbiting planet. For the Earth-like planets, this suppression needs to be at least ten orders of magnitude. One of the common methods of suppression involves sharp binary petaled occulters envisioned to be placed many thousands of miles away from the telescope blocking the starlight. The suppression of the Poisson Spot by binary sharp petal tips can be problematic when the thickness of the tips becomes smaller than the wavelength of the incident beam. First they are difficult to manufacture and also it invalidates the laws of physical optics. The proposed partially transparent petaled masks/occulters compensate for this sharpness with transparency along the surface of the petals. Depending on the geometry of the problem, this transparency can be customized such that only a small region of the petal is transparent and the remaining of the surface is opaque. This feature allows easy fabrication of this type of occultation device either as a mask or occulter. A partially transparent petaled mask/ occulter has been designed for the visible spectrum range. The mask/occulter can suppress the intensity along the optical axis up to ten orders of magnitude. The design process can tailor the mask shape, number of petals, and transparency level to the near-field and farfield diffraction region. The mask/occulter can be used in space astronomy, ground-based telescope, and high-energy laser systems, and optical lithography to eliminate the Poisson Spot.

  14. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    NASA Astrophysics Data System (ADS)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  15. REACTOR VIEWING APPARATUS

    DOEpatents

    Monk, G.S.

    1959-01-13

    An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.

  16. Second-order nonlinearity induced transparency.

    PubMed

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  17. Optical switch based on electrowetting liquid lens

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Peng, Hua-Rong; Wang, Qiong-Hua

    2012-05-01

    In this paper, we propose an optical switch based on an electrowetting liquid lens. The device consists of an electrowetting liquid lens and a non-transparent cap with a pin hole. When the lens is actuated to be positive, the incident light can be converged on the pin hole and pass through the hole with less attenuation. When the lens is deformed to be negative, the incident light is diverged and most of light is blocked by the cap. Our results show that the system can provide high contrast ratio (˜800:1) and reasonable response time (˜88 ms). The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.

  18. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  19. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  20. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.

    PubMed

    You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2016-10-20

    Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures.

    PubMed

    Hecht, David S; Hu, Liangbing; Irvin, Glen

    2011-04-05

    Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory.

    PubMed

    Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See

    2016-10-05

    Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.

  3. Optical absorbances of Gd3Ga5O12 single crystals under shock compression to 211 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zhou, X. M.; Luo, S. N.

    2017-04-01

    Shock-induced opacity in Gd3Ga5O12 (GGG) single crystals is investigated by transmission/emission measurements at 16 wavelengths (400-800 nm), as well as complementary particle velocity measurements at 1550 nm, in the pressure range of 47-211 GPa. Optical transmission spectra through the shocked samples are measured with a in-situ, shock-generated light source, and the resultant extinction coefficients of different wavelengths and shock pressures obtained. As shock strength increases, the optical opacity of the shocked GGG increases and peaks at 75 GPa (the transparent-opaque transition), drops at 75-100 GPa (the opaque-transparent transition), and then increases again. The transparency recovery coincides with a solid-solid phase transition. The microstructure changes associated with the solid-solid phase transition and plastic deformation most likely cause the loss and recovery of transparency. GGG can be useful as a high pressure window for laser velocimetry (1550 nm) or optical pyrometry (400-800 nm) in the ranges of 100-140 GPa and 80-120 GPa, respectively.

  4. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode

    PubMed Central

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-01-01

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248

  5. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    PubMed

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-04-25

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.

  6. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Ping

    2011-01-01

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R s = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowiremore » and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.« less

  7. A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability.

    PubMed

    Xie, Shuyao; Li, Teng; Xu, Zijie; Wang, Yanan; Liu, Xiangyang; Guo, Wenxi

    2018-04-05

    Transparent heaters are widely used in technologies such as window defrosting/defogging, displays, gas sensing, and medical equipment. Apart from mechanical robustness and electrical and optical reliabilities, outstanding chemical stability is also critical to the application of transparent heaters. In this regard, we first present a highly flexible and large-area CuS transparent heater fabricated by a colloidal crackle pattern method with an optimized sheet resistance (Rs) as low as 21.5 Ω sq-1 at a ∼80% transmittance. The CuS transparent heater exhibits remarkable mechanical robustness during bending tests as well as high chemical stability against acid and alkali environments. In the application as a transparent heater, the CuS heater demonstrates a high thermal resistance of 197 °C W-1 cm2 with a fast switching time (<30 s), requiring low input voltages (<4.5 V) to achieve uniform temperatures of ∼110 °C across large areas. The temperature of the wearable CuS heater, which is stuck on the skin, can be real-time controlled through a Bluetooth device in a cell phone wirelessly. Based on the wireless control system, we demonstrated an application of the CuS heater in snow removal for solar panels. These CuS network TCEs with high flexibility, transparency, conductivity, and chemical stability could be widely used in wearable electronic products.

  8. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  9. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jeon, Young Pyo; Woo, Sung Jun; Kim, Tae Whan

    2018-03-01

    Transparent and flexible photodetectors (PDs) based on CH3NH3PbI3 perovskite nanoparticles (NPs) were fabricated by using co-evaporation of methyl ammonium iodide and lead iodide. X-ray diffraction patterns and high-resolution transmission electron microscopy images demonstrated the formation of perovskite NPs. The optical transmittance of the perovskite NPs/glass was above 80% over the entire range of visible wavelengths, indicative of high transparency. The PDs based on CH3NH3PbI3 perovskite NPs were sensitive to a broad range of visible light from 450 to 650 nm. The currents in the PDs under exposure to red, green, and blue light-emitting diodes were enhanced to 5, 10, and 20 times that of the PD in the dark, respectively. The rise and the decay times of the PDs were 50 and 120 μs. The current in the perovskite NP PD on a polyethylene terephthalate substrate was enhanced by approximately 69% when the NP PD was exposed to a blue LED emitting at a wavelength of 459 nm. Despite multiple bending, the transparent and flexible PDs based on methyl ammonium iodide and lead iodide NPs showed reproducibility and high stability in performance.

  10. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  11. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  12. Origin of and tuning the optical and fundamental band gaps in transparent conducting oxides: The case of M2O3(M =Al ,Ga ,In )

    NASA Astrophysics Data System (ADS)

    Sabino, Fernando P.; Besse, Rafael; Oliveira, Luiz Nunes; Wei, Su-Huai; Da Silva, Juarez L. F.

    2015-11-01

    Good transparent conducting oxides (TCOs), such as In2O3 :Sn (ITO), usually combine large optical band gaps, essential for high transparency, with relatively small fundamental band gaps due to low conduction-band minima, which favor n -type doping and enhance the electrical conductivity. It has been understood that the optical band gaps are wider than the fundamental band gaps because optical transitions between the band-edge states are forbidden. The mechanism blocking such transitions, which can play a crucial role in the designing of alternative TCOs, nonetheless remains obscure. Here, based on first-principles density functional theory calculations and symmetry analysis of three oxides, M2O3 (M =Al ,Ga ,In ), we identify the physical origin of the gap disparities. Three conditions are necessary: (1) the crystal structure must have global inversion symmetry; (2) in order to belong to the Ag or A1 g irreducible representations, the states at the conduction-band minimum must have cation and oxygen s character; (3) in order to have g parity, the oxygen p orbitals constituting the states near the valence-band maximum must be strongly coupled to the cation d orbitals. Under these conditions, optical excitations across the fundamental gap will be forbidden. The three criteria explain the trends in the M2O3 (M =Al,Ga,In) sequence, in particular, explaining why In2O3 in the bixbyite structure yields the highest figure of merit. Our study provides guidelines expected to be instrumental in the search for new TCO materials.

  13. Casimir switch: steering optical transparency with vacuum forces.

    PubMed

    Liu, Xi-Fang; Li, Yong; Jing, H

    2016-06-03

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  14. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  15. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  16. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes.

    PubMed

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-02

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  17. Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Qingde; Nie, Qiuhua; Zhu, Minming; Zhang, Peiquan; Dai, Shixun; Shen, Xiang; Xu, Tiefeng; Cheng, Ci; Liao, Fangxing; Liu, Zijun; Zhang, Xianghua

    2015-11-01

    Decreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge-Sb-Se-based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at.%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge-Sb-Se-I glasses can reach up to 80% with an effective transmission window between 0.94 μm and 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers.

  18. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  19. Patterning of organic photovoltaic on R2R processed thin film barriers using IR laser sources

    NASA Astrophysics Data System (ADS)

    Fledderus, H.; Akkerman, H. B.; Salem, A.; Friedrich Schilling, N.; Klotzbach, U.

    2017-02-01

    We present the development of laser processes for flexible OPV on roll-to-roll (RR2R) produced thin film barrier with indium tin oxide (ITO) as transparent conductive (TC) bottom electrode. Direct laser structuring of ITO on such barrier films (so-called P1 process) is very challenging since the layers are all transparent, a complete electrical isolation is required, and the laser process should not influence the barrier performance underneath the scribes. Based on the optical properties off the SiN and ITTO, ultra-short pulse lasers inn picosecond and femtosecond regime with standard infrared (IR) wavelength as well as lasers with new a wavelength (22 μm regime) are tested for this purpose. To determine a process window for a specific laser a fixed methodology is adopted. Single pulse ablation tests were followed by scribing experiments where the pulse overlap was tuned by varying laser pulse fluence, writing speed and frequency. To verify that the laser scribing does not result inn barrier damage underneath, a new test method was developed based on the optical Ca-test. This method shows a clear improvement in damage analysis underneath laser scribes over normal optical inspection methods (e.g. microscope, optical profiler, SEM). This way clear process windows can be obtained for IR TC patterning.

  20. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    NASA Astrophysics Data System (ADS)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  1. Ultrahigh refractive index chalcogenide based copolymers for infrared optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Anderson, Laura E.; Namnabat, Soha; Char, Kookheon; Glass, Richard; Norwood, Robert A.; Pyun, Jeffrey

    2016-09-01

    Current trends in technology development demand increased miniaturization and higher level integration of electronic and photonic components. Such needs arise in emerging imaging systems, optoelectronic devices, optical interconnects and photonic integrated circuits. Compact, integrated photonics requires high refractive index materials, which primarily comprise crystalline and amorphous semiconductors, as well as chalcogenide glasses, which can possess refractive indices higher than 4 and good infrared transparency. There is currently no high refractive index (n 2 or above) that has the low cost production and ease of processing available in optical polymers. Such polymers would potentially cover applications that are not convenient or possible with crystalline and vitreous semiconductors. Examples of such applications include micro lens arrays for image sensors, optical adhesives for bonding and antireflection coatings, and high contrast optical waveguides. While much of the focus has been in the telecommunications transparency regions, significant new opportunities exist for a polymer which is capable of transmitting efficiently in the MWIR region. While there are polymers that have been synthesized with refractive indices as high as 1.75, these polymers are generally conjugated and incorporate heteroatoms such as sulfur or metals, and generally have complex and expensive syntheses. Here we report on new chalcogenide based copolymers with very high refractive index (n 2) that also have good optical transmission properties in the near-, short- and mid-wave infrared up to 5µm. These polymers are rich in sulfur, have low hydrogen content and were made using inverse vulcanization.

  2. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers.

    PubMed

    Roh, Eun; Hwang, Byeong-Ung; Kim, Doil; Kim, Bo-Yeong; Lee, Nae-Eung

    2015-06-23

    Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human-machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally.

  3. Two-dimensional metamaterial transparent metal electrodes for infrared optoelectronics.

    PubMed

    Clark, Samuel M; Han, Sang Eon

    2014-06-15

    We examine the optical properties of two-dimensionally nanostructured metals in the metamaterial regime for infrared applications. Compared with straight nanowires and nanogrids, serpentine structures exhibit much lower optical losses of less than 7% even at a large metal area fraction of 0.3. The low loss is primarily due to a small effective conductivity of the meandering structures, and self-inductance plays a modest role in reducing losses in these structures. The high transparency at a large metal area coverage would be useful for transparent electrodes in optoelectronic devices.

  4. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  5. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  6. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  7. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  8. Magnetic assembly of transparent and conducting graphene-based functional composites

    PubMed Central

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  9. Nickel nanowires mesh fabricated by ion beam irradiation-induced nanoscale welding for transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Honey, S.; Ahmad, I.; Madhuku, M.; Naseem, S.; Maaza, M.; Kennedy, J. V.

    2017-07-01

    In this report, random nickel nanowires (Ni-NWs) meshes are fabricated by ions beam irradiation-induced nanoscale welding of NWs on intersecting positions. Ni-NWs are exposed to beam of 50 KeV Argon (Ar+) ions at various fluencies in the range ~1015 ions cm-2 to 1016 ions cm-2 at room temperature. Ni-NWs are welded due to accumulation of Ar+ ions beam irradiation-induced sputtered atoms on crossing positions. Ar+ ions irradiated Ni-NWs meshes are optically transparent and optical transparency is enhanced with increase in beam fluence of Ar+ ions. Ar+ ions beam irradiation-induced welded and optically transparent mesh is then exposed to 2.75 MeV hydrogen (H+) ions at fluencies 1  ×  1015 ions cm-2, 3  ×  1015 ions cm-2 and 1  ×  1016 ions cm-2 at room temperature. MeV H+ ions irradiation-induced local heat cause melting and fusion of NWs on intersecting points and eventually lead to reduce contact resistance between Ni-NWs. Electrical conductivity is enhanced with increase in beam fluence of H+ ions. These welded highly transparent and electrically conductive Ni-NWs meshes can be employed as transparent conducting electrodes in optoelectronic devices.

  10. Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics.

    PubMed

    Xu, Long; Zhao, Hua; Xu, Caixia; Zhang, Siqi; Zou, Yingyin K; Zhang, Jingwen

    2014-02-01

    A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.

  11. Tuning optical properties of transparent conducting barium stannate by dimensional reduction

    DOE PAGES

    Li, Yuwei; Zhang, Lijun; Ma, Yanming; ...

    2015-01-30

    We report calculations of the electronic structure and optical properties of doped n-type perovskite BaSnO 3 and layered perovskites. While doped BaSnO 3 retains its transparency for energies below the valence to conduction band onset, the doped layered compounds exhibit below band edge optical conductivity due to transitions from the lowest conduction band. This gives absorption in the visible for Ba 2SnO 4. It is important to minimize this phase in transparent conducting oxide (TCO) films. Ba 3Sn 2O 7 and Ba 4Sn 3O 10 have strong transitions only in the red and infrared, respectively. Thus, there may be opportunitiesmore » for using these as wavelength filtering TCO.« less

  12. Double dark resonance in inverted Y system and its application in attenuating the optical switching action

    NASA Astrophysics Data System (ADS)

    Ali, Sabir; Ray, Ayan; Chakrabarti, Alok

    2016-02-01

    Electromagnetically Induced Transparency as a novel type optical memory has gained enough attention in the field of research related to optical communication. This kind of transparency is an artificially created spectral window used to slow and spatially compress light pulses. Hence controlling and manipulation of such transparency window in a multilevel atom-photon system will, in turn, help in opening newer avenues of applications. In the present work an inverted Y linkage (established in the 5S1/2 → 5P3/2 → 5D5/2 hyperfine levels of 87Rb atom) is used for this purpose. The formation of matched double dark resonance in the system has been studied in details. On the application front we have demonstrated using the system as an attenuator of optical switch. This type of necessity may arise for futuristic optical communication system. Overall the system response resembles the performance of a combination logic gate.

  13. Plasmonic hole arrays for combined photon and electron management

    DOE PAGES

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-11-14

    Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. In this paper, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate onmore » their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Finally, prototypical photovoltaic devices constructed with perforated metal contacts convert ~18% of the incident photons, compared to <1% for identical devices having contacts without the hole array.« less

  14. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    NASA Astrophysics Data System (ADS)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  15. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  16. Transparent silicon strip sensors for the optical alignment of particle detector systems

    NASA Astrophysics Data System (ADS)

    Blum, W.; Kroha, H.; Widmann, P.

    1996-02-01

    Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimized for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics.

  17. Transparent Conveyor of Dielectric Liquids or Particles

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, James G.

    2009-01-01

    The concept of a transparent conveyor of small loose dielectric parti cles or small amounts of dielectric liquids has emerged as an outgro wth of an effort to develop efficient, reliable means of automated re moval of dust from solar cells and from windows of optical instrumen ts. This concept is based on the previously reported concept of an e lectrodynamic screen, according to which a grid-like electric field is established on and near a surface and is moved along the surface p erpendicularly to the grid lines. The resulting electrodynamic force s on loose dielectric particles or dielectric liquid drops in the vic inity would move the particles or drops along the surface. In the or iginal dust-removal application, dust particles would thus be swept out of the affected window area. Other potential applications may occ ur in nanotechnology -- for example, involving mixing of two or more fluids and/or nanoscale particles under optical illumination and/or optical observation.

  18. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  19. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    PubMed

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  20. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  1. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  2. Lignin-Retaining Transparent Wood.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK -1 , and work-tofracture of 1.2 MJ m -3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Lignin‐Retaining Transparent Wood

    PubMed Central

    Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin

    2017-01-01

    Abstract Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light‐transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high‐lignin‐content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK−1, and work‐tofracture of 1.2 MJ m−3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy‐saving buildings. PMID:28719095

  4. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    PubMed

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.

  5. Preparation and properties of CVD-graphene/AgNWs hybrid transparent electrodes for the application of flexible optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing

    2017-10-01

    The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.

  6. Transparent, Flexible, Low Noise Graphene Electrodes for Simultaneous Electrophysiology and Neuroimaging

    PubMed Central

    Kuzum, Duygu; Takano, Hajime; Shim, Euijae; Reed, Jason C; Juul, Halvor; Richardson, Andrew G.; de Vries, Julius; Bink, Hank; Dichter, Marc A.; Lucas, Timothy H.; Coulter, Douglas A.; Cubukcu, Ertugrul; Litt, Brian

    2014-01-01

    Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, due to the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide new insights into functions of neural circuits. Here, we report a transparent, flexible neural electrode technology based on graphene, which enables simultaneous optical imaging and electrophysiological recording. We demonstrate that hippocampal slices can be imaged through transparent graphene electrodes by both confocal and two-photon microscopy without causing any light-induced artifacts in the electrical recordings. Graphene electrodes record high frequency bursting activity and slow synaptic potentials that are hard to resolve by multi-cellular calcium imaging. This transparent electrode technology may pave the way for high spatio-temporal resolution electrooptic mapping of the dynamic neuronal activity. PMID:25327632

  7. Toward transparent and self-activated graphene harmonic transponder sensors

    NASA Astrophysics Data System (ADS)

    Huang, Haiyu Harry; Sakhdari, Maryam; Hajizadegan, Mehdi; Shahini, Ali; Akinwande, Deji; Chen, Pai-Yen

    2016-04-01

    We propose the concept and design of a transparent, flexible, and self-powered wireless sensor comprising a graphene-based sensor/frequency-modulator circuitry and a graphene antenna. In this all-graphene device, the multilayered-graphene antenna receives the fundamental tone at C band and retransmits the frequency-modulated sensed signal (harmonic tone) at X band. The frequency orthogonality between the received/re-transmitted signals may enable high-performance sensing in severe interference/clutter background. Here, a fully passive, quad-ring frequency multiplier is proposed using graphene field-effect transistors, of which the unique ambipolar charge transports render a frequency doubling effect with conversion gain being chemically sensitive to exposed gas/molecular/chemical/infectious agents. This transparent, light-weight, and self-powered system may potentially benefit a number of wireless sensing and diagnosis applications, particularly for smart contact lenses/glasses and microscope slides that require high optical transparency.

  8. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  9. Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Xiao, Xiudi; Cao, Ziyi; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2017-12-01

    The monoclinic phase vanadium dioxide VO2 (M) based transparent thermochromic smart films were firstly fabricated through heat treatment of opaque VO2-based composite nanofibrous mats, which were deposited on the glass substrate via electrospinning technique. Noteworthily, the anti-oxidation property of VO2 smart film was improved due to inner distribution of VO2 in the polymethylmethacrylate (PMMA) nanofibers, and the composite mats having water contact angle of 165° determined itself good superhydrophobic property. Besides, PMMA nanofibrous mats with different polymer concentrations demonstrated changeable morphology and fiber diameter. The VO2 nanoparticles having diameter of 30-50 nm gathered and exhibited ellipse-like or belt-like structure. Additionally, the solar modulation ability of PMMA-VO2 composite smart film was 6.88% according to UV-Vis-NIR spectra. The research offered a new notion for fabricating transparent VO2 thermochromic material.

  10. Optical speedup at transparency of the gain recovery in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Hessler, T. P.; Dupertuis, M.-A.; Deveaud, B.; Emery, J.-Y.; Dagens, B.

    2002-10-01

    Experimental demonstration of optical speedup at transparency (OSAT) has been performed on a 1 mm long semiconductor optical amplifiers (SOA). OSAT is a recently proposed scheme that decreases the recovery time of an SOA while maintaining the available gain. It is achieved by externally injecting into the SOA the beam of a separate high power laser at energies around the transparency point. Even though the experimental conditions were not optimal, a beam of 100 mW decreases the recovery time by a third when it is injected in the vicinity of the material transparency point of the device. This acceleration of the device response without detrimental reduction of the gain is found to be effective over a broad wavelength window of about 20 nm around transparency. The injection of the accelerating beam into the gain region is a less efficient solution not only because the gain is then strongly diminished but also because speeding is reduced. This originates from the reduction of the amplified spontaneous emission power in the device, which counterbalances the speeding capabilities of the external laser beam. Another advantage of the OSAT scheme is realized in relatively long SOAs, which suffer from gain overshoot under strong current injection. Simulations show that OSAT decreases the gain overshoot, which should enable us to use OSAT to further speedup the response of long SOAs.

  11. Research of detection depth for graphene-based optical sensor

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong

    2018-03-01

    Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.

  12. Emerging materials for transparent conductive electrodes and their applications in photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao

    Clean and affordable energy, especially solar energy, is becoming more and more important as our annual total energy consumption keeps rising. However, to make solar energy more affordable and accessible, the cost for fabrication, transportation and assembly of all components need to be reduced. As a crucial component for solar cells, transparent conductive electrode (TCE) can determine the cost and performance. A light weight, easy-to-fabricate and cost-effective new generation TCE is thus needed. While indium-doped tin oxide (ITO) has been the most widely used material for commercial applications as TCEs, its cost has gone up due to the limited global supply of indium. This is not only due to the scarcity of the element itself, but also the massive production of various opto-electronic devices such as TVs, smartphones and tablets. In order to reduce the cost for fabricating large area solar cells, substitute materials for ITO should be developed. These materials should have similar optical transmittance in the visible wavelength range, as well as similar electrical conductivity (sheet resistance) to ITO. This work starts with synthesizing ITO-replacing nano-materials, such as copper nanowires (CuNWs), derivative zinc oxide (ZnO) thin films, reduced graphene oxide (rGO) and so on. Further, we applied various deposition techniques, including spin-coating, spray-coating, Mayer-rod coating, filtration and transferring, to coat transparent substrates with these materials in order to fabricate TCEs. We characterize these materials and analyze their electrical/optical properties as TCEs. Additionally, these fabricated single-material-based TCEs were tested in various lab conditions, and their shortcomings (instability, rigidity, etc.) were highlighted. In order to address these issues, we hybridized the different materials to combine their strengths and compared the properties to single-material based TCEs. The multiple hybridized TCEs have comparable optical/electrical metrics to ITO. The doped-ZnO TCEs exhibit high optical transmittance over 90% in the visible range and low sheet resistance under 200 O/sq. For CuNW-based composite electrodes, ˜ 85% optical transmittance and ˜ 25 O/sq were observed. Meanwhile, the hybridization of materials adds additional features such as flexibility or resistance to corrosion. Finally, as a proof of concept, the CuNW-based composite TCEs were tested in dye-sensitized solar cells (DSSCs), showing similar performance to ITO based samples.

  13. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.

    PubMed

    Zhu, Hongli; Fang, Zhiqiang; Wang, Zhu; Dai, Jiaqi; Yao, Yonggang; Shen, Fei; Preston, Colin; Wu, Wenxin; Peng, Peng; Jang, Nathaniel; Yu, Qingkai; Yu, Zongfu; Hu, Liangbing

    2016-01-26

    Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics.

  14. Study of light scattering and transparency in human edematous corneas and application to corneal grafts

    NASA Astrophysics Data System (ADS)

    Marciano, Tal; Peyrot, Donald; Crotti, Caroline; Alahyane, Fatima; Kowalczuk, Laura; Plamann, Karsten

    2011-07-01

    The optical properties of the cornea have been a research subject of great interest for many years. Several early theories have been put forward to explain with more or less success the optical transparency of this tissue, but it was not until Maurice demonstrated in a very elegant way during the 50s that this optical transparency could be explained by the regular ultrastructure of the cornea. When becoming edematous, the cornea's ultrastructure is perturbed and the tissue becomes a strongly scattering medium. With the emergence of ophthalmologic surgery by ultrashort pulse lasers in recent years, a regain of interest in the subject of corneal transparency arose. However, relatively little and no recent data of transparency spectra measurements covering a large wavelength range is available in the literature. The purpose of this study is to provide quantitative values for light scattering and its relation to the degree of edema by measuring the spectrum of transmitted light through corneas presenting different degrees of edema. This paper focus on the comparison of laboratory measurements published earlier with a new simple method we propose We also for eye banks to quantitatively measure the degree of transparency of corneal grafts by measuring the modulation transfer function of a Siemens star viewed through a corneal graft. Indeed, there is no current method to determine the transparency of corneal graft but the subjectivity of the laboratory technician or the ophthalmic surgeon.

  15. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.

    PubMed

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y

    2016-06-16

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.

  16. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  17. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  18. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  19. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  20. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, E.

    1988-02-22

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electrolyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polarographically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods. 6 figs.

  1. Transparent conductive coatings

    NASA Technical Reports Server (NTRS)

    Ashok, S.

    1983-01-01

    Thin film transparent conductors are discussed. Materials with electrical conductivity and optical transparency are highly desirable in many optoelectronic applications including photovoltaics. Certain binary oxide semiconductors such as tin oxide (SnO2) and indium oxide (In2O3) offer much better performance tradeoff in optoelectronics as well as better mechanical and chemical stability than thin semitransparent films. These thin-film transparent conductors (TC) are essentially wide-bandgap degenerate semiconductors - invariably n-type - and hence are transparent to sub-bandgap (visible) radiation while affording high electrical conductivity due to the large free electron concentration. The principal performance characteristics of TC's are, of course, electrical conductivity and optical transmission. The TC's have a refractive index of around 2.0 and hence act as very efficient antireflection coatings. For using TC's in surface barrier solar cells, the photovoltaic barrier is of utmost importance and so the work function or electron affinity of the TC is also a very important material parameter. Fabrication processes are discussed.

  2. Transparent conductive graphene textile fibers

    PubMed Central

    Neves, A. I. S.; Bointon, T. H.; Melo, L. V.; Russo, S.; de Schrijver, I.; Craciun, M. F.; Alves, H.

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  3. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, Elias

    1988-01-01

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electroyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polargraphically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods.

  4. Nanocellulose reinforcement of Transparent Composites

    Treesearch

    Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...

  5. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    PubMed Central

    Li, Ji-Guang; Sakka, Yoshio

    2015-01-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out. PMID:27877750

  6. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    NASA Astrophysics Data System (ADS)

    Li, Ji-Guang; Sakka, Yoshio

    2015-02-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out.

  7. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  8. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    NASA Astrophysics Data System (ADS)

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  9. Parity-time-symmetry enhanced optomechanically-induced-transparency

    PubMed Central

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-01-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193

  10. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration

    PubMed Central

    Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P.; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy

    2017-01-01

    The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks. PMID:28772931

  11. A flexible telecom satellite repeater based on microwave photonic technologies

    NASA Astrophysics Data System (ADS)

    Sotom, Michel; Benazet, Benoît; Maignan, Michel

    2017-11-01

    Future telecom satellite based on geo-stationary Earth orbit (GEO) will require advanced payloads in Kaband so as to receive, route and re-transmit hundreds of microwave channels over multiple antenna beams. We report on the proof-of-concept demonstration of a analogue repeater making use of microwave photonic technologies for supporting broadband, transparent, and flexible cross-connectivity. It has microwave input and output sections, and features a photonic core for LO distribution, frequency down-conversion, and cross-connection of RF channels. With benefits such as transparency to RF frequency, infinite RF isolation, mass and volume savings, such a microwave photonic cross-connect would compare favourably with microwave implementations, and based on optical MEMS switches could grow up to large port counts.

  12. Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Peng

    Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application. For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites. To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities, the grafted PGMA brushes effectively screen the van der Waals attraction between the particles, and homogenous nanoparticle dispersions of grafted nanoparticles were obtained. Transparent high refractive index TiO2/epoxy thin film and bulk nancomposites were obtained by dispersing PGMA brushes-grafted TiO2 nanoparticles into a commercial epoxy matrix. The refractive index of the nanocomposites showed a linear dependence on the volume fraction of TiO2 nanoparticles and the optical transparency could be generally described by the Rayleigh scattering model. This powerful dispersing technique was further employed to make visibly transparent, UV/IR blocking ITO/epoxy nanocomposites which can be easily applied onto glass and plastic substrates as energy saving optical coating materials. To produce transparent silicone nanocomposites, we directly coupled phosphate-terminated PDMS chains onto the optical nanoparticle surface. It was observed that the mono-modal PDMS-grafted particles usually formed agglomerates within silicone matrices, whereas the bimodal PDMS-grafted particles were able to be individually dispersed even within high molecular weight matrices. Transparent high refractive index bulk TiO2/silicone nanocomposites were successfully prepared by filling with bimodal PDMS-grafted TiO2 nanoparticles. Furthermore, we used the PDMS-grafted TiO2/silicone nanocomposite as a model system to create a methodology to predict and control the dispersion behavior of grafted nanoparticles. The good agreement between experimental observation of dispersion of mono-modal and bimodal grafted particles and theoretical prediction would better guide future experiments and lead to predictability in polymer composite design. Finally, the bimodal grafted chain design was implemented in the preparation of transparent and luminescent CdSe/silicone nanocomposites with potential application as non-scattering light conversion materials for LEDs. The homogeneous dispersion of bimodal PDMS-grafted CdSe quantum dots not only minimizes the transparency loss due to scattering, but also benefits the uniformity and long-term stability of photoluminescence of the nanocomposites.

  13. High-throughput and low-latency 60GHz small-cell network architectures over radio-over-fiber technologies

    NASA Astrophysics Data System (ADS)

    Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.

    2017-01-01

    Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.

  14. High transmittance hetero junctions based on n-ITO/p-CuO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Jaya, T. P.; Pradyumnan, P. P.

    2016-12-01

    Oxide based bilayered n-ITO/p-CuO crystalline diodes were fabricated by plasma vapor deposition using radio frequency magnetron sputtering. The p-n hetero junction diodes were highly transparent in the visible region and exhibits rectifying I-V characteristics. The substrate temperature during fabrication of p-layer CuO was found to have a profound influence on I-V characteristics. The films deposited at substrate temperature of 150 °C and 230 °C exhibited diode ideality factors of (η value) 1.731 and 1.862 respectively. This high ideality factor, combined with an optical transparency of above 70% suggests the potential use of these bi-layers in optoelectronic applications.

  15. All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line.

    PubMed

    Choi, Eunseo; Na, Jihoon; Ryu, Seon; Mudhana, Gopinath; Lee, Byeong

    2005-02-21

    We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 mum and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.

  16. InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles

    NASA Astrophysics Data System (ADS)

    Magnusson, R.; Birch, J.; Hsiao, C.-L.; Sandström, P.; Arwin, H.; Järrendahl, K.

    2015-03-01

    The scarab beetle Cetonia aurata is known to reflect light with brilliant colors and a high degree of circular polarization. Both color and polarization effects originate from the beetles exoskeleton and have been attributed to a Bragg reflection of the incident light due to a twisted laminar structure. Our strategy for mimicking the optical properties of the Cetonia aurata was therefore to design and fabricate transparent, chiral films. A series of films with tailored transparent structures of helicoidal InxAl1-xN nanorods were grown on sapphire substrates using UHV magnetron sputtering. The value of x is tailored to gradually decrease from one side to the other in each nanorod normal to its growth direction. This introduces an in-plane anisotropy with different refractive indices in the direction of the gradient and perpendicular to it. By rotating the sample during film growth the in-plane optical axis will be rotated from bottom to top and thereby creating a chiral film. Based on Muellermatrix ellipsometry, optical modeling has been done suggesting that both the exoskeleton of Cetonia aurata and our artificial material can be modeled by an anisotropic film made up of a stack of thin layers, each one with its in-plane optical axis slightly rotated with respect to the previous layer. Simulations based on the optical modeling were used to investigate how pitch and thickness of the film together with the optical properties of the constitutive materials affects the width and spectral position of the Bragg reflection band.

  17. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of investigation of optical breakdown statistics using multifrequency lasers

    NASA Astrophysics Data System (ADS)

    Ulanov, S. F.

    1990-06-01

    A method proposed for investigating the statistics of bulk optical breakdown relies on multifrequency lasers, which eliminates the influence of the laser radiation intensity statistics. The method is based on preliminary recording of the peak intensity statistics of multifrequency laser radiation pulses at the caustic using the optical breakdown threshold of K8 glass. The probability density distribution function was obtained at the focus for the peak intensities of the radiation pulses of a multifrequency laser. This method may be used to study the self-interaction under conditions of bulk optical breakdown of transparent dielectrics.

  18. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling.

    PubMed

    Wang, Peng; Zhang, Dun; Sun, Shimei; Li, Tianping; Sun, Yan

    2017-01-11

    Marine optical instruments are bearing serious biofouling problem, which affects the accuracy of data collected. To solve the biofouling problem of marine optical instruments, a novel instance of slippery lubricant-infused porous surface (SLIPS) with high underwater-transparency was designed over glass substrate via infusing lubricant into its porous microstructure fabricated with hydrothermal method. The advantage of SLIPS as antibiofouling strategy to marine optical instruments was proven by comparing its underwater optical and antibiofouling performances with three kinds of samples (hydrophilic glass sample, textured hydrophilic glass sample, and superhydrophobic glass sample). The modification of SLIPS enhances the underwater-transparency of glass sample within the wavelength of 500-800 nm, for the infusion of lubricant with lower refractive index than glass substrate. In contrast with hydrophilic surface, textured hydrophilic surface and superhydrophobic surface, SLIPS can significantly inhibit bacterial and algal settlements, thereby maintaining high underwater-transparency in both dynamic and static seawater. The inhibition of bacterial and algal settlements over SLIPS results from its liquid-like property. The contact angle hysteresis of water over SLIPS increases with immersion time in seawater under different conditions (static, dynamic, and vibration conditions). Both dynamic and vibration conditions accelerate the failure of SLIPS exposed in seawater. This research provides valuable information for solving biofouling problem of marine optical instruments with SLIPS.

  19. Transparent photocatalytic coatings on the surface of the tips of medical fibre-optic bundles

    NASA Astrophysics Data System (ADS)

    Evstropiev, S. K.; Volynkin, V. M.; Kiselev, V. M.; Dukelskii, K. V.; Evstropyev, K. S.; Demidov, V. V.; Gatchin, Yu. A.

    2017-12-01

    We report the results of the development of the sol - gel method for obtaining thin, transparent (in the visible part of the spectrum) TiO2/MgO coatings on the surfaces of the tips of medical fibre-optic bundles. Such coatings are capable of generating singlet oxygen under the action of UV radiation and are characterised by high antibacterial activity.

  20. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    PubMed

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-05-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  1. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  2. Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Jeong, Sunho; Moon, Jooho

    2017-04-26

    Efficient sunlight-driven water-splitting devices can be achieved by using an optically and energetically well-matched pair of photoelectrodes in a tandem configuration. The key for maximizing the photoelectrochemical efficiency is the use of a highly transparent front photoelectrode with a band gap below 2.0 eV. Herein, we propose two-dimensional (2D) photonic crystal (PC) structures consisting of a CuFeO 2 -decorated microsphere monolayer, which serve as self-light-harvesting architectures allowing for amplified light absorption and high transparency. The photocurrent densities are evaluated for three CuFeO 2 2D PC-based photoelectrodes with microspheres of different sizes. The optical analysis confirmed the presence of a photonic stop band that generates slow light and at the same time amplifies the absorption of light. The 410 nm sized CuFeO 2 -decorated microsphere 2D PC photocathode shows an exceptionally high visible light transmittance of 76.4% and a relatively high photocurrent of 0.2 mA cm -2 at 0.6 V vs a reversible hydrogen electrode. The effect of the microsphere size on the carrier collection efficiency was analyzed by in situ conductive atomic force microscopy observation under illumination. Our novel synthetic method to produce self-light-harvesting nanostructures provides a promising approach for the effective use of solar energy by highly transparent photocathodes.

  3. Characterization of W-Ti-O thin films for application in photovoltaics

    NASA Astrophysics Data System (ADS)

    Christmas, Amanda P.

    Photovoltaic (PV) devices consist of the conversion of light energy into electricity. Nearly all PV technologies employ transparent conducting oxides (TCO) as an integral part of the de-vice structure so that the light can reach the semiconductor. The predominant transparent conducting oxide (TCO) that is currently being used in industry is indium tin oxide (ITO). However, Indium (In) is high in cost and becoming scarce in the world. This work is focused towards Titanium doped Tungsten oxide (WO3) for TCO application. The ultimate goal is making novel, cheaper, and efficient TCOs based on W-Ti-O films. Titanium will enhance the conductivity of the film. In addition, Ti is more abundant than In thus leading to low-cost TCO. Ti-doped WO3 (W-Ti-O) films were grown by co-sputter deposition onto silicon, Si (100), and optical grade quartz wafers. Co-sputtering of Ti and W metal targets was per-formed in a wide growth temperature range (room temperature (RT)-500 °C). The Ti sputter-ing power varied from 50 watts-100 watts in order to gain an understanding of the Ti effect. The structure and optical properties were characterized by the X-ray diffraction (XRD), scan-ning electron microscopy (SEM) and the spectrophotometry measurements. The films are op-tically transparent and a correlation between the growth conditions and optical properties is derived. The XRD results show W-Ti-O films grown at RT are amorphous and the films crys-tallize at 200°C. A decrease in the peak intensity implies that the crystallinity decreases with an increase in titanium (Ti) along with a phase change at higher substrate growth tempera-tures. The optical results show the transparency of the films is well above 80%. The energy band gap decreases from 4.0 eV to 3.9 eV with an increase in substrate temperature and in-creases from 3.85 eV to 3.95 eV with an increase of Ti. These results meet the criteria of two essential TCO parameters.

  4. Effect of sintering on transparent TiO2 18NR-T type thin films as the working electrode for transparent solar cells

    NASA Astrophysics Data System (ADS)

    Supriyanto, A.; Nandani; Wahyuningsih, S.; Ramelan, A. H.

    2018-03-01

    The working electrode based on semiconductor transparent TiO2 type 18NR-T for transparent solar cells have been grown by screen printing method. This study aim is to determine the effect of sintering on TiO2 thin films transparent as the working electrode of transparent solar cells. TiO2 films will be sintered at temperature 450°C, 500°C, 550°C and 600°C. TiO2 films optical properties were characterized using UV-Vis spectrophotometer, electrical properties were characterized using 4 point probemethods and the crystallization was characterized by X-Ray Diffraction (XRD). The lowest transmittance due to the treatment of annealing temperature variations is 550°C because the 550°C TiO2 layer is more absorbing. The peaks resulted from the annealing temperature treatment show that the high temperature the more anatase peaks. Characterization using four-point probe showed that the highest conductivity of TiO2 18NR-T thin film was 2.42 x 102 Ω-1m-1 at annealing temperature 550°C.

  5. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  6. Transparent nanotubular capacitors based on transplanted anodic aluminum oxide templates.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Wu, Wenhui; Yue, Jin; Liu, Chang

    2015-03-11

    Transparent AlZnO/Al2O3/AlZnO nanocapacitor arrays have been fabricated by atomic layer deposition in anodic aluminum oxide templates transplanted on the AlZnO/glass substrates. A high capacitance density of 37 fF/μm(2) is obtained, which is nearly 5.8 times bigger than that of planar capacitors. The capacitance density almost remains the same in a broad frequency range from 1 kHz to 200 kHz. Moreover, a low leakage current density of 1.7 × 10(-7) A/cm(2) at 1 V has been achieved. The nanocapacitors exhibit an average optical transmittance of more than 80% in the visible range, and thus open the door to practical applications in transparent integrated circuits.

  7. Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xia, Sheng-Xuan; Luo, Xin; Zhai, Xiang; Yu, Ya-Bin; Wang, Ling-Ling

    2018-07-01

    We propose a simple plasmonic waveguide system based on two-detuned resonators, which demonstrates multiple detuned-resonator induced transparencies at visible and near-infrared region. The performance of electromagnetic responses can be agile manipulated by tuning the asymmetry degree of the structure and the width of the split gap. Three transmission dips exist with the symmetrical design while three peaks emerge between the dip-position of the transmission spectra with two detuned resonators. The physical mechanism behind the plasmon-induced transparency (PIT) resonance is revealed as being attributed to the constructive interference between the confined modes in the detuned resonators. The former tend to the role of two coupled radiative oscillators. The work may open up avenues for the control of light in highly integrated optical circuits.

  8. Fabrication and characterization of lithographically patterned and optically transparent anodic aluminum Oxide (AAO) nanostructure thin film.

    PubMed

    He, Yuan; Li, Xiang; Que, Long

    2012-10-01

    Optically transparent anodic aluminum oxide (AAO) nanostructure thin film has been successfully fabricated from lithographically patterned aluminum on indium tin oxide (ITO) glass substrates for the first time, indicating the feasibility to integrate the AAO nanostructures with microdevices or microfluidics for a variety of applications. Both one-step and two-step anodization processes using sulfuric acid and oxalic acid have been utilized for fabricating the AAO nanostructure thin film. The optical properties of the fabricated AAO nanostructure thin film have been evaluated and analyzed.

  9. Optical clearing of the eye using the See Deep Brain technique.

    PubMed

    Hohberger, B; Baumgart, C; Bergua, A

    2017-10-01

    PurposeTissue clearing has been used in anatomy for the first time in Germany over a century ago. Neuronal tissue, like cortex, was investigated in mice using a water-based optical clearing method termed See Deep Brain (SeeDB). However, although the eye belongs to the central nervous system, this histological technique was not applied in the eye up to date. We applied SeeDB for the visualization of intraocular structures.Patients and methodsFour eyes of cornea donors (two male, two female: 73-84 years) obtained from the Cornea Bank of the Department of Ophthalmology Erlangen, four chicken eyes and two mices' optic nerve were used. Bulbi were fixed in 4% paraformaldehyde in phosphate-buffered saline and treated with increasing concentrations of aqueous fructose solution with 0.5% α-thioglycerol. After SeeDB, transscleral macrophotographs of the choroid were performed.ResultsComplete transparency of the sclera was obtained in enucleated human and chicken eyes after SeeDB treatment. Macroscopical anatomy of the choroid (partially transparent due to the remaining retinal pigment epithelium and melanocytes) showing vessels and other related structures was possible without preparing slides. Mice optic nerves were also transparent after SeeDB treatment.ConclusionThe SeeDB method allows visualization of intraocular structures through a completely translucent sclera. This innovative processing technique could facilitate comprehensive qualitative and quantitative topographical anatomical studies of human and animal eyes, preserving their 3D architecture. Supra- and intrachoroidal ganglionic plexus could potentially be visualized transsclerally. Finally, clinical-pathological correlations of intraocular diseases-for example, retinal tumors-will be possible in non-dissected eyes.

  10. The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: Modeling and experiments on ruby (Cr:Al2O3)

    NASA Astrophysics Data System (ADS)

    Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Basun, S. A.; Evans, D. R.; Garay, J. E.

    2016-01-01

    Light scattering due to birefringence has prevented the use of polycrystalline ceramics with anisotropic optical properties in applications such as laser gain media. However, continued development of processing technology has allowed for very low porosity and fine grains, significantly improving transparency and is paving the way for polycrystalline ceramics to be used in demanding optical applications. We present a method for producing highly transparent Cr3+ doped Al2O3 (ruby) using current activated pressure assisted densification. The one-step doping/densification process produces fine grained ceramics with well integrated (doped) Cr, resulting in good absorption and emission. In order to explain the light transmission properties, we extend the analytical model based on the Rayleigh-Gans-Debye approximation that has been previously used for undoped alumina to include absorption. The model presented captures reflection, scattering, and absorption phenomena in the ceramics. Comparison with measured transmission confirms that the model adequately describes the properties of polycrystalline ruby. In addition the measured emission spectra and emission lifetime are found to be similar to single crystals, confirming the high optical quality of the ceramics.

  11. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces.

    PubMed

    Christofi, Aristi; Kawaguchi, Yuma; Alù, Andrea; Khanikaev, Alexander B

    2018-04-15

    In this Letter we introduce a new class of Fano-resonant all-dielectric metasurfaces for enhanced, high figure of merit magneto-optical response. The metasurfaces are formed by an array of magneto-optical bismuth-substituted yttrium iron garnet nano-disks embedded into a low-index matrix. The strong field enhancement in the magneto-optical disks, which results in over an order of magnitude enhancement of Faraday rotation, is achieved by engineering two (electric and magnetic) resonances. It is shown that while enhancement of rotation also takes place for spectrally detuned resonances, the resonant excitation inevitably results in stronger reflection and low figure of merit of the device. We demonstrate that this can be circumvented by overlapping electric and magnetic resonances of the nanodisks, yielding a sharp electromagnetically induced transparency peak in the transmission spectrum, which is accompanied by gigantic Faraday rotation. Our results show that one can simultaneously obtain a large Faraday rotation enhancement along with almost 100% transmittance in an all-dielectric metasurface as thin as 300 nm. A simple analytical model based on coupled-mode theory is introduced to explain the effects observed in first-principle finite element method simulations.

  12. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crystal Growth of New Functional Materials for Electro-Optical Applications

    DTIC Science & Technology

    2001-01-01

    Ga2O3 single crystals have been grown by the floating zone technique as promising transparent conductive oxides. 1. INTRODUCTION The important role of...through the addition of dopants while preserving the transparency of the pure B- Ga2O3 makes of this material a substitutive candidate for transparent

  14. Development of Targeted Nanobubbles for Ultrasound Imaging and Ablation of Metastatic Prostate Cancer Lesions

    DTIC Science & Technology

    2014-08-01

    AD_________________ Award Number: W81XWH-12-1-0284 TITLE: Development of Targeted Nanobubbles for...matrix, optically transparent fibrin-based gel phantom embedded with a layer of PC-3 and C4-2B of human prostate cancer, and MDA-MB-231 of breast

  15. Luminescent Processes Elucidated by Simple Experiments on ZnS.

    ERIC Educational Resources Information Center

    Schwankner, R.; And Others

    1981-01-01

    Describes some impurity-related optical properties of semiconductors, with special emphasis on the luminescence of zinc sulfide (ZnS). Presents and interprets five experiments using a ZnS screen, ultraviolet lamp, transparent Dewar liquid nitrogen, and a helium/neon gas base. Includes application of luminescence measurements to archaeology. (SK)

  16. Impact of optical and structural aging in As₂S₃ microstructured optical fibers on mid-infrared supercontinuum generation.

    PubMed

    Mouawad, O; Amrani, F; Kibler, B; Picot-Clémente, J; Strutynski, C; Fatome, J; Désévédavy, F; Gadret, G; Jules, J-C; Heintz, O; Lesniewska, E; Smektala, F

    2014-10-06

    We analyze optical and structural aging in As₂S₃ microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As₂S₃ MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process is well confirmed by the good matching between previous experimental results and the reported numerical simulations based on the generalized nonlinear Schrödinger equation.

  17. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    NASA Astrophysics Data System (ADS)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  18. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  19. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  20. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.

    PubMed

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-07-25

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.

  1. Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa

    2017-10-01

    This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.

  2. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    PubMed

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  3. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    PubMed Central

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-01-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water. PMID:28145412

  4. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; ...

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm 2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for usemore » as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  5. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water.

    PubMed

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  6. Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.

    PubMed

    Wei, D; Bortolozzo, U; Huignard, J P; Residori, S

    2013-08-26

    Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.

  7. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu; Takaffoli, Mahdi; Fang, Nicolas X.; Zhao, Xuanhe

    2017-02-01

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owing to the anti-fatigue property of the hydrogel under moderate stresses. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and even catching a live fish in water.

  8. Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

    DTIC Science & Technology

    2001-11-01

    methacrylate] [PMMA] and Montmorillonite DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Society V6.4 Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite Elena Vasiliul, Chyi-Shan Wang"’ 2...exchanged with 1.40 meq/g of dimethyl dehydrogenated tallow ammonium from a sodium montmorillonite , Cloisite Na+ (CNa). Since the cation-exchange

  9. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  10. Measurements of optical properties of some molten oxides

    NASA Astrophysics Data System (ADS)

    Nason, D. O.; Yen, C. T.; Tiller, W. A.

    1990-11-01

    A method based on a fine-focussed optical laser has been developed to measure the spectral reflectance and the transmittance of small ( ∽ 1 mm) liquid or single crystal materials. The measured normal spectral emittance for 633 nm light is about 0.9 for several molten refractory oxides, 0.8 for lithium niobate and 0.7 for molten sapphire. Sapphire and YAG experience a several-fold increase in emittance on melting. The absorption coefficient and the thickness for opaqueness are calculated and some consequences of the partial transparency of small hot materials, when their temperatures are measured by optical pyrometry, are discussed.

  11. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene

    NASA Astrophysics Data System (ADS)

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, Gyeongho; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-01

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area.Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01468b

  12. Spatial height directed microfluidic synthesis of transparent inorganic upconversion nano film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Zhu, Cheng; Liao, Wei; Jin, Junyang; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    A microfluidic-based synthesis of an inorganic upconversion nano film has been developed with a large area of dense-distributed NaYF4 crystal grains in a silica glass micro-reactor and the film exhibits high transparence, strong upconversion luminescence and robust adhesion with the substrate. The spatial heights of micro-reactors are tuned between 31 and 227 mm, which can regulate flow regimes. The synergistic effect of spatial height and fluid regime is put forward, which influences diffusion paths and assembly ways of different precursor molecules and consequently directs final distributions and morphologies of crystal grains, as well as optical properties due to diversity of surface and thickness of films. The spatial height of 110 mm is advantageous for high transmittance of upconversion film due to the flat surface and appropriate film thickness of 67 nm. The height of 150 mm is in favor of uniform distribution of upconversion fluorescence and achieving the strongest fluorescence due to minimized optical loss. Such a transparent upconversion film with a large area of uniform distribution is promising to promote the application of upconversion materials and spatial height directed microfluidic regime have a certain significance on many microfluidic synthesis.

  13. Lake transparency: a window into decadal variations in dissolved organic carbon concentrations in Lakes of Acadia National Park, Maine

    USGS Publications Warehouse

    Roesler, Collin S.; Culbertson, Charles W.

    2016-01-01

    A forty year time series of Secchi depth observations from approximately 25 lakes in Acadia National Park, Maine, USA, evidences large variations in transparency between lakes but relatively little seasonal cycle within lakes. However, there are coherent patterns over the time series, suggesting large scale processes are responsible. It has been suggested that variations in colored dissolved organic matter (CDOM) are primarily responsible for the variations in transparency, both between lakes and over time and further that CDOM is a robust optical proxy for dissolved organic carbon (DOC). Here we present a forward model of Secchi depth as a function of DOC based upon first principles and bio-optical relationships. Inverting the model to estimate DOC concentration from Secchi depth observations compared well with the measured DOC concentrations collected since 1995 (RMS error < 1.3 mg C l-1). This inverse model allows the time series of DOC to be extended back to the mid 1970s when only Secchi depth observations were collected, and thus provides a means for investigating lake response to climate forcing, changing atmospheric chemistry and watershed characteristics, including land cover and land use.

  14. Radar Evaluation of Optical Cloud Constraints to Space Launch Operations

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Short, David A.; Ward, Jennifer G.

    2005-01-01

    Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.

  15. Optical and electronic properties of doped p -type CuI: Explanation of transparent conductivity from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less

  16. Optical and electronic properties of doped p -type CuI: Explanation of transparent conductivity from first principles

    DOE PAGES

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2018-03-26

    In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less

  17. Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers.

    PubMed

    Wang, Zongyu; Lu, Zhao; Mahoney, Clare; Yan, Jiajun; Ferebee, Rachel; Luo, Danli; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2017-03-01

    Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.

  18. Bilayered Oxide thin films for transparent electrode application

    NASA Astrophysics Data System (ADS)

    Dutta, Titas; Narayan, Jagdish

    2008-10-01

    Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.

  19. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1)

    PubMed Central

    Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio

    2016-01-01

    Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq−1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved. PMID:27991517

  20. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1).

    PubMed

    Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio

    2016-12-19

    Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO 2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq -1 ), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved.

  1. Development of a statistical method to help evaluating the transparency/opacity of decorative thin films

    NASA Astrophysics Data System (ADS)

    da Silva Oliveira, C. I.; Martinez-Martinez, D.; Al-Rjoub, A.; Rebouta, L.; Menezes, R.; Cunha, L.

    2018-04-01

    In this paper, we present a statistical method that allows evaluating the degree of a transparency of a thin film. To do so, the color coordinates are measured on different substrates, and the standard deviation is evaluated. In case of low values, the color depends on the film and not on the substrate, and intrinsic colors are obtained. In contrast, transparent films lead to high values of standard deviation, since the value of the color coordinates depends on the substrate. Between both extremes, colored films with a certain degree of transparency can be found. This method allows an objective and simple evaluation of the transparency of any film, improving the subjective visual inspection and avoiding the thickness problems related to optical spectroscopy evaluation. Zirconium oxynitride films deposited on three different substrates (Si, steel and glass) are used for testing the validity of this method, whose results have been validated with optical spectroscopy, and agree with the visual impression of the samples.

  2. Bimetallic clustered thin films with variable electro-optical properties

    NASA Astrophysics Data System (ADS)

    Antipov, A.; Bukharov, D.; Arakelyan, S.; Osipov, A.; Lelekova, A.

    2018-01-01

    The drop deposition of colloidal nanoparticles was performed from water-based colloidal solutions. The proposed procedure is based on the agglomeration of colloidal particles in laser-assisted evaporation processes. The evaporation process was resulted in the formation of clustered thin films on a glass substrate. In the experiments with bimetallic Au:Ag solutions, the clustered films are grown, the formation of the clustered films with the average height of 100 nm was achieved. Optical properties of the deposited structures were investigated experimentally. It is shown that the obtained films may become transparent and its properties are defined by its morphology.

  3. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  4. Respiration rate detection based on intensity modulation using plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Anwar, Zawawi Mohd; Ziran Nurul Sufia, Nor; Hadi, Manap

    2017-11-01

    This paper presents the implementation of respiration rate measurement via a simple intensity-based optical fiber sensor using optical fiber technology. The breathing rate is measured based on the light intensity variation due to the longitudinal gap changes between two separated fibers. In order to monitor the breathing rate continuously, the output from the photodetector conditioning circuit is connected to a low-cost Arduino kit. At the sensing point, two optical fiber cables are positioned in series with a small gap and fitted inside a transparent plastic tube. To ensure smooth movement of the fiber during inhale and exhale processes as well as to maintain the gap of the fiber during idle condition, the fiber is attached firmly to a stretchable bandage. This study shows that this simple fiber arrangement can be applied to detect respiration activity which might be critical for patient monitoring.

  5. Al nanogrid electrode for ultraviolet detectors.

    PubMed

    Ding, G; Deng, J; Zhou, L; Gan, Q; Hwang, J C M; Dierolf, V; Bartoli, F J; Mazuir, C; Schoenfeld, W V

    2011-09-15

    Optical properties of Al nanogrids of different pitches and gaps were investigated both theoretically and experimentally. Three-dimensional finite-difference time-domain simulation predicted that surface plasmons at the air/Al interface would enhance ultraviolet transmission through the subwavelength gaps of the nanogrid, making it an effective electrode on GaN-based photodetectors to compensate for the lack of transparent electrode and high p-type doping. The predicted transmission enhancement was verified by confocal scanning optical microscopy performed at 365 nm. The quality of the nanogrids fabricated by electron-beam lithography was verified by near-field scanning optical microscopy and scanning electron microscopy. Based on the results, the pitch and gap of the nanogrids can be optimized for the best trade-off between electrical conductivity and optical transmission at different wavelengths. Based on different cutoff wavelengths, the nanogrids can also double as a filter to render photodetectors solar-blind.

  6. Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques

    PubMed Central

    González, Gabriela B.

    2012-01-01

    Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010

  7. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    PubMed Central

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; Olvera, María De La Luz

    2014-01-01

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered. PMID:28788118

  8. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride.

    PubMed

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; De La Luz Olvera, María

    2014-07-04

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10 -3 Ω·cm and high optical transmittance, in the visible range, of 50%-70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  9. Plasmon induced transparency and refractive index sensing in a new type of graphene-based plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Di; Tian, Jinping; Li, Lu; Yang, Rongcao

    2018-04-01

    The plasmon induced transparency (PIT) effect is investigated in a graphene-based waveguide, which is composed of a graphene bus waveguide side-coupled with a graphene strip directly and a graphene ring indirectly. Conventional numerical simulations based on finite element method (FEM) are used to study the transmission properties through optimizing the relevant parameters, and it is proved that the simulation results agree well with the analytical results. Then as one of the potential application branches of the PIT-like effect, the property of refractive index sensing with a higher sensitivity of 4160 nm/RIU is further studied. The result can help to deepen the understanding of PIT-like effect and nano sensor, and it would be also beneficial for the studies and applications of nanoscale graphene-based optical devices.

  10. Piezo-optic and elasto-optic properties of monoclinic triglycine sulfate crystals.

    PubMed

    Mytsyk, Bogdan; Demyanyshyn, Natalya; Erba, Alessandro; Shut, Viktor; Mozzharov, Sergey; Kost, Yaroslav; Mys, Oksana; Vlokh, Rostyslav

    2017-12-01

    For the first time, to the best of our knowledge, we have experimentally determined all of the components of the piezo-optic tensor for monoclinic crystals. This has been implemented on a specific example of triglycine sulfate crystals. Based on the results obtained, the complete elasto-optic tensor has been calculated. Acousto-optic figures of merit (AOFMs) have been estimated for the case of acousto-optic interaction occurring in the principal planes of the optical indicatrix ellipsoid and for geometries in which the highest elasto-optic coefficients are involved as effective parameters. It has been found that the highest AOFM value is equal to 6.8×10 -15   s 3 /kg for the case of isotropic acousto-optic interaction with quasi-longitudinal acoustic waves in the principal planes. This AOFM is higher than the corresponding values typical for canonic acousto-optic materials, which are transparent in the deep ultraviolet spectral range.

  11. All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient ( d n / d T ) measurements

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.

    2016-05-01

    This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.

  12. Optical And Environmental Properties Of NCAP Glazing Products

    NASA Astrophysics Data System (ADS)

    van Konynenburg, Peter; Wipfler, Richard T.; Smith, Jerry L.

    1989-07-01

    The first large area, commercially available, electrically-controllable glazing products sold under the tradename VARILITETM are based on a new liquid crystal film technology called NCAP. The glazing products can be switched in milliseconds between a highly translucent state (for privacy and glare control) to a transparent state (for high visibility) with the application of an AC voltage. The optical and environmental properties are demonstrated to meet the general requirements for architectural glazing use. The first qualified indoor product is described in detail.

  13. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    NASA Astrophysics Data System (ADS)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  15. Graphene-Based Flexible and Transparent Tunable Capacitors.

    PubMed

    Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen

    2015-12-01

    We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.

  16. Novel stable hard transparent conductors in TiO2-TiC system: Design materials from scratch

    PubMed Central

    Meng, Xiangying; Liu, Dongyan; Dai, Xuefeng; Pan, Haijun; Wen, Xiaohong; Zuo, Liang; Qin, Gaowu

    2014-01-01

    Two new ternary compounds in the TiO2-TiC system, Ti5C2O6 and Ti3C2O2, are reported for the first time based on ab initio evolutionary algorithm. Ti5C2O6 has a tube-structure in which sp1 hybridized carbon chains run through the lattice along the b-axis; while in the Ti3C2O2 lattice, double TiO6 polyhedral are separated by the non-coplanar sp2 hybridized hexagon graphite layers along the c-axis, forming a sandwich-like structure. At ambient conditions, the two compounds are found to be mechanically and dynamically stable and intrinsic transparent conductors with high hardness (about twice harder than the conventional transparent conducting oxides). These mechanical, electronic, and optical properties make Ti5C2O6 and Ti3C2O2 ternary compounds be promising robust, hard, transparent, and conductive materials. PMID:25511583

  17. Transparent Cu4O3/ZnO heterojunction photoelectric devices

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan

    2017-12-01

    The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.

  18. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency shifter that was designed based on the culmination my research effort.

  19. EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing.

    PubMed

    Lee, Meng-Jung; Chen, Yi-Hsin; Wang, I-Chung; Yu, Ite A

    2012-05-07

    All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.

  20. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  1. Light field creating and imaging with different order intensity derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Huan

    2014-10-01

    Microscopic image restoration and reconstruction is a challenging topic in the image processing and computer vision, which can be widely applied to life science, biology and medicine etc. A microscopic light field creating and three dimensional (3D) reconstruction method is proposed for transparent or partially transparent microscopic samples, which is based on the Taylor expansion theorem and polynomial fitting. Firstly the image stack of the specimen is divided into several groups in an overlapping or non-overlapping way along the optical axis, and the first image of every group is regarded as reference image. Then different order intensity derivatives are calculated using all the images of every group and polynomial fitting method based on the assumption that the structure of the specimen contained by the image stack in a small range along the optical axis are possessed of smooth and linear property. Subsequently, new images located any position from which to reference image the distance is Δz along the optical axis can be generated by means of Taylor expansion theorem and the calculated different order intensity derivatives. Finally, the microscopic specimen can be reconstructed in 3D form using deconvolution technology and all the images including both the observed images and the generated images. The experimental results show the effectiveness and feasibility of our method.

  2. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  3. Light propagation in phosphor-filled matrices for photovoltaic PL down-shifting

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.

    2014-09-01

    Efficient transparent light converters have received lately a growing interest from optical device industries (LEDs, PV, etc.). While organic luminescent dyes were tested in PV light-converting application, such restrictions as small Stokes shifts, short lifetimes, and relatively high costs must yet be overcome. Alternatively, use of phosphors in transparent matrix materials would mean a major breakthrough for this technology, as phosphors exhibit long-term stability and are widely available. For the fabrication of phosphor-filled layers tailored specifically for the desired application, it is of great importance to gain deep understanding of light propagation through the layers, including the detailed optical interplay between the phosphor particles and the matrix material. Our measurements show that absorption and luminescent behavior of the phosphors and especially the scattering of light by the phosphor particles play an important role. In this contribution we have investigated refractive index difference between transparent binder and phosphors. Commercially available highly luminescent UV and near-UV absorbing μm-sized powder is chosen for the fabrication of phosphor-filled layers with varied refractive index of transparent polymer matrix, and well-defined particle size distributions. Solution-processed thick layers on glass substrates are optically analyzed and compared with simulation results acquired from CROWM, a combined wave optics/ray optics home-built software. The results demonstrate the inter-dependence of the layer parameters, prove the importance of careful optimization steps required for fabrication of efficient light converting layers, and, thus, show a path into the future of this promising approach.

  4. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    PubMed

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-03

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  5. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    NASA Astrophysics Data System (ADS)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  6. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    PubMed

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  7. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.

  8. Influence of sputtering power on the optical properties of ITO thin films

    NASA Astrophysics Data System (ADS)

    K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju

    2014-10-01

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  9. OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    van Elsbergen, V.; Boerner, H.; Löbl, H.-P.; Goldmann, C.; Grabowski, S. P.; Young, E.; Gaertner, G.; Greiner, H.

    2008-08-01

    Organic light emitting diodes (OLEDs) provide potential for power-efficient large area light sources that combine revolutionary properties. They are thin and flat and in addition they can be transparent, colour-tuneable, or flexible. We review the state of the art in white OLEDs and present performance data for three-colour hybrid white OLEDs on indexmatched substrates. With improved optical outcoupling 45 lm/W are achieved. Using a half-sphere to collect all the light that is in the substrate results in 80 lm/W. Optical modelling supports the experimental work. For decorative applications features like transparency and colour tuning are very appealing. We show results on transparent white OLEDs and two ways to come to a colour-variable OLED. These are lateral separation of different colours in a striped design and direct vertical stacking of the different emitting layers. For a striped colour tuneable OLED 36 lm/W are achieved in white with improved optical outcoupling.

  10. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  11. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  12. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  13. Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals

    NASA Astrophysics Data System (ADS)

    Albert, Magnus; Dantan, Aurélien; Drewsen, Michael

    2018-03-01

    We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.

  14. Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3 - A new optically transparent magnetic material

    NASA Astrophysics Data System (ADS)

    Ziolo, Ronald F.; Giannelis, Emmanuel P.; Weinstein, Bernard A.; O'Horo, Michael P.; Ganguly, Bishwanath N.; Mehrotra, Vivek; Russell, Michael W.; Huffman, Donald R.

    1992-07-01

    A magnetic material with appreciable optical transmission in the visible region at room temperature is isolated as a gamma-Fe2O3/polymer nanocomposite. The synthesis is carried out in an ion-exchange resin at 60 C. Magnetization and susceptibility data demonstrate loading-dependent saturation moments as high as 46 electromagnetic units per gram and superparamagnetism for lower loadings where particle sizes are less than 100 angstroms. Optical absorption studies show that the small-particle form of gamma-Fe2O3 is considerably more transparent to visible light than the single-crystal form. The difference in absorption ranges from nearly an order of magnitude in the 'red' spectral region to a factor of 3 at 5400 angstroms. The magnetization of the nanocomposite is greater by more than an order of magnitude than those of the strongest room-temperature transparent magnets, FeBO3 and FeF3.

  15. Portable light transmission measuring system for preserved corneas.

    PubMed

    Ventura, Liliane; Jesus, Gabriel Torres de; Oliveira, Gunter Camilo Dablas de; Sousa, Sidney J F

    2005-12-22

    The authors have developed a small portable device for the objective measurement of the transparency of corneas stored in preservative medium, for use by eye banks in evaluation prior to transplantation. The optical system consists of a white light, lenses, and pinholes that collimate the white light beams and illuminate the cornea in its preservative medium, and an optical filter (400-700 nm) that selects the range of the wavelength of interest. A sensor detects the light that passes through the cornea, and the average corneal transparency is displayed. In order to obtain only the tissue transparency, an electronic circuit was built to detect a baseline input of the preservative medium prior to the measurement of corneal transparency. The operation of the system involves three steps: adjusting the "0 %" transmittance of the instrument, determining the "100 %" transmittance of the system, and finally measuring the transparency of the preserved cornea inside the storage medium. Fifty selected corneas were evaluated. Each cornea was submitted to three evaluation methods: subjective classification of transparency through a slit lamp, quantification of the transmittance of light using a corneal spectrophotometer previously developed, and measurement of transparency with the portable device. By comparing the three methods and using the expertise of eye bank trained personnel, a table for quantifying corneal transparency with the new device has been developed. The correlation factor between the corneal spectrophotometer and the new device is 0,99813, leading to a system that is able to standardize transparency measurements of preserved corneas, which is currently done subjectively.

  16. Optical and sensing properties of sol-gel derived vanadium pentoxide thin films with porous and dense structures

    NASA Astrophysics Data System (ADS)

    Babeva, T.; Awala, H.; Grand, J.; Lazarova, K.; Vasileva, M.; Mintova, S.

    2018-03-01

    The sol-gel and spin-coating methods were used for deposition of thin transparent V2O5 films on optical glass substrates and silicon wafers. Different synthesis and deposition conditions, including synthesis temperatures and post-deposition annealing, were used aiming at obtaining transparent films with high refractive index and good optical quality. The surface morphology and structure of the films were studied by SEM and XRD. The optical properties (refractive index, extinction coefficient and optical band gap) and thickness of the V2O5 films were determined from their transmittance and reflectance spectra. The potential application of the films as building blocks of optical sensors was demonstrated by preparation of multilayered structures comprising both V2O5 and BEA-type zeolite films and testing their response towards acetone vapors.

  17. Transition from an optical precursor in coupled-resonator-induced transparency to coherent energy exchange in Autler-Townes splitting

    NASA Astrophysics Data System (ADS)

    Oishi, Tohru; Suzuki, Ryuta; Talukder, Aminul I.; Tomita, Makoto

    2013-08-01

    We investigated the transient responses of coupled optical resonators, after they were injected with square modulated temporal pulses. A sharp spike, attributed to the optical precursor in coupled-resonator-induced transparency, appeared when the coupling between the resonators was weak. As the coupling strength increased, the resonance spectrum developed clearly separated double dips of Autler-Townes splitting, and the precursor spike transformed into an oscillatory structure. These temporal oscillations were attributed to the coherent energy exchange between two resonators. Theoretical calculations were in good agreement with the experimental observations.

  18. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  19. Design and fabrication of semi-transparent screen based on micro-patterns for direct-view type head-up display in automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yong; Kim, Hyo-Jun; Kim, Young-Joo

    2016-02-01

    A semi-transparent screen with hemisphere micro-patterns was proposed and designed to enhance the brightness uniformity of the display image toward the driver for a direct-view type head-up display. The hemisphere micro-patterns were designed to consider the inclined angle of the windshield for efficient reflection and scattering toward to the driver. The density and radius of the hemisphere micro-patterns were adjusted as a function of position on the screen based on the geometrical calculation and analyzed by the commercial optical simulation tool based on a ray-tracing method. The designed hemisphere micro-patterns was fabricated by the thermal reflow method and evaluated to confirm the uniform illumination. From the results, the semi-transparent screen with variable micro-patterns shows the 91.9 % of brightness uniformity with the enhanced luminance compare to a screen without micro-patterns. A luminance of fabricated screen also shows good agreement with the simulation result to reflect the clear and bright driving information to the driver.

  20. Macrophysical and optical properties of midlatitude high-altitude clouds from 4 ground-based lidars and collocated CALIOP observations

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03

  1. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  2. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  3. MnO2 ultrathin films deposited by means of magnetron sputtering: Relationships between process conditions, structural properties and performance in transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek

    2016-12-01

    This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.

  4. Self-induced transparency and electromagnetic pulse compression in a plasma or an electron beam under cyclotron resonance conditions.

    PubMed

    Ginzburg, N S; Zotova, I V; Sergeev, A S

    2010-12-31

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  5. Ion-exchange synthesis and magneto-optical spectra of colored magnetic thin films composed of metal(II) hexacyanochromate(III).

    PubMed

    Tozawa, Masanori; Ohkoshi, Shin-ichi; Kojima, Norimichi; Hashimoto, Kazuhito

    2003-05-21

    Magnetic thin films composed of hexacyanochromate-based magnets, MII1.5[CrIII(CN)6].ZH2O (M = Co, Ni, Cu), were prepared on a transparent Nafion membrane by an ion-exchange process and their Faraday spectra were observed in the visible region.

  6. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.

    PubMed

    Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud

    2005-06-01

    We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).

  7. Improved optoelectronics properties of ITO-based transparent conductive electrodes with the insertion of Ag/Ni under-layer

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah

    2014-10-01

    ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.

  8. Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Youn; Yeo, Myoung; Shin, Eun-Jae; Park, Won-Hyeong; Jang, Jong-Seok; Nam, Byeong-Uk; Bae, Jin Woo

    2015-11-01

    In this paper, we propose a variable focus microlens module based on a transparent, electroactive, and non-ionic PVC/DBA gel. A non-ionic PVC/DBA (nPVC) gel on an ITO glass was confined beneath a rigid annular electrode, and applied pressure squeezed a bulge of the nPVC gel into the annular electrode, resulting in a hemispherical plano-convex nPVC gel microlens. The proposed nPVC gel microlens was analyzed and optimized. When voltage is applied to the circular perimeter (the annular electrode) of this fabricated microlens, electrically induced creep deformation of the nPVC gel occurs, changing its optical focal length. The focal length remarkably increases from 3.8 mm up to 14.3 mm with increasing applied voltages from 300 V to 800 V. Due to its compact, transparent, and electroactive characteristics, the proposed nPVC gel microlens can be easily inserted into small consumer electronic devices, such as digital cameras, camcorders, cell phones, and other portable optical devices.

  9. Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.

    PubMed

    Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe

    2017-11-27

    The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.

  10. Novel transparent conductor with enhanced conductivity: hybrid of silver nanowires and dual-doped graphene

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang; Woo, Yun Sung; Shin, Weonho; Yun, Dong-Jin; Lee, Taek; Kim, Felix Sunjoo; Hwang, Jinyoung

    2017-10-01

    We present hybrid transparent conducting films based on silver nanowires (Ag NWs) and doped graphene through novel dual co-doping method by applying various dopants (HNO3 or Au for p-doping and N2H4 for n-doping) on top and bottom sides of graphene. We systematically investigated the effect of dual-doping on their surface as well as electrical and optical properties of graphene and Ag NW/graphene hybrid films through the combination study with various dopant types (p/p, p/n, n/p, and n/n). We found that the p/p-type dual-doped (p-type dopant: HNO3) graphene and its hybrid formation with Ag NWs appeared to be the most effective in enhancing the electrical properties of conductor (doped graphene with ΔR/R0 = 84% and Ag NW/doped graphene hybrid with ΔR/R0 = 62%), demonstrating doped monolayer graphene with high optical transmittance (TT = 97.4%), and sheet resistance (Rs = 188 Ω/sq.). We also note that dual-doping improved such electrical properties without any significant debilitation of optical transparency of conductors (doped graphene with ΔTT = 0.1% and Ag NW/doped graphene hybrid with ΔTT = 0.4%). In addition, the enhanced conductivity of p-type dual-doped graphene allows a hybrid system to form co-percolating network in which Ag NWs can form a secondary conductive path at grain boundaries of polycrystalline graphene.

  11. Improvement of light penetration based silkworm gender identification with confined regions of interest

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Sa-ngiamsak, Chiranut

    2013-06-01

    Based on our previous work on light penetration-based silkworm gender identification, we find that unwanted optical noises scattering from the surrounding area near the silkworm pupa and the transparent support are sometimes analyzed and misinterpreted leading to incorrect silkworm gender identification. To alleviate this issue, we place a small rectangular hole on a transparent support so that it not only helps the user precisely place the silkworm pupa but also functions as a region of interest (ROI) for blocking unwanted optical noises and for roughly locating the abdomen region in the image for ease of image processing. Apart from the external ROI, we also assign a smaller ROI inside the image in order to remove strong scattering light from all edges of the external ROI and at the same time speed up our image processing operations. With only the external ROI in function, our experiment shows a measured 86% total accuracy in identifying gender of 120 silkworm pupae with a measured average processing time of 38 ms. Combining the external ROI and the image ROI together revamps the total accuracy in identifying the silkworm gender to 95% with a measured faster 18 ms processing time.

  12. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  13. Dynamically tunable electromagnetically-induced-transparency-like resonances in graphene nanoring and nanodisk hybrid metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, De-Chao; Li, Hong-Ju; Xia, Sheng-Xuan; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling

    2017-08-01

    A tunable electromagnetically-induced-transparency-like (EIT-like) device is proposed numerically and theoretically in the mid-infrared region, which is composed of periodically patterned ring and disk graphene. Distinguished from the commonly used three-level system, the hybridization of the plasmon mode is applied to describing and explaining the EIT-like phenomenon in the proposed systems. What is more, further researches have revealed that the spectral position of the transparency window can be tuned not only by geometrically changing the couple distance in graphene nanostructures, but also by dynamically altering the radius of the graphene nanodisk and the chemical potential of the graphene. At the transparency window, there exist large optical delays, which can slow down the speed of light in vacuum. This work may pave the way to the development of applications including tunable sensors, slow-light devices, and optical switches.

  14. Room temperature ammonia vapor sensing properties of transparent single walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Shobin, L. R.; Manivannan, S.

    2014-10-01

    Carbon nanotube (CNT) networks are identified as potential substitute and surpass the conventional indium doped tin oxide (ITO) in transparent conducting electrodes, thin-film transistors, solar cells, and chemical sensors. Among them, CNT based gas sensors gained more interest because of its need in environmental monitoring, industrial control, and detection of gases in warfare or for averting security threats. The unique properties of CNT networks such as high surface area, low density, high thermal conductivity and chemical sensitivity making them as a potential candidate for gas sensing applications. Commercial unsorted single walled carbon nanotubes (SWCNT) were purified by thermal oxidation and acid treatment processes and dispersed in organic solvent N-methyl pyrolidone using sonication process in the absence of polymer or surfactant. Optically transparent SWCNT networks are realized on glass substrate by coating the dispersed SWCNT with the help of dynamic spray coating process at 200ºC. The SWCNT random network was characterized by scanning electron microscopy and UV-vis-NIR spectroscopy. Gas sensing property of transparent film towards ammonia vapor is studied at room temperature by measuring the resistance change with respect to the concentration in the range 0-1000 ppm. The sensor response is increased logarithmically in the concentration range 0 to 1000 ppm with the detection limit 0.007 ppm. The random networks are able to detect ammonia vapor selectively because of the high electron donating nature of ammonia molecule to the SWCNT. The sensor is reversible and selective to ammonia vapor with response time 70 seconds and recovery time 423 seconds for 62.5 ppm with 90% optical transparency at 550 nm.

  15. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  16. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    PubMed

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  17. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    NASA Astrophysics Data System (ADS)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  18. Highly Transparent, Nanofiller-Reinforced Scratch-Resistant Polymeric Composite Films Capable of Healing Scratches.

    PubMed

    Li, Yang; Chen, Shanshan; Li, Xiang; Wu, Mengchun; Sun, Junqi

    2015-10-27

    Integration of healability and mechanical robustness is challenging in the fabrication of highly transparent films for applications as protectors in optical and displaying devices. Here we report the fabrication of healable, highly transparent and scratch-resistant polymeric composite films that can conveniently and repeatedly heal severe damage such as cuts of several tens of micrometers wide and deep. The film fabrication process involves layer-by-layer (LbL) assembly of a poly(acrylic acid) (PAA) blend and branched poly(ethylenimine) (bPEI) blend, where each blend contains the same polyelectrolytes of low and high molecular weights, followed by annealing the resulting PAA/bPEI films with aqueous salt solution and incorporation of CaCO3 nanoparticles as nanofillers. The rearrangement of low-molecular-weight PAA and bPEI under aqueous salt annealing plays a critical role in eliminating film defects to produce optically highly transparent polyelectrolyte films. The in situ formation of tiny and well-dispersed CaCO3 nanoparticles gives the resulting composite films enhanced scratch-resistance and also retains the healing ability of the PAA/bPEI matrix films. The reversibility of noncovalent interactions among the PAA, bPEI, and CaCO3 nanoparticles and the facilitated migration of PAA and bPEI triggered by water enable healing of the structural damage and restoration of optical transparency of the PAA/bPEI films reinforced with CaCO3 nanoparticles.

  19. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    NASA Astrophysics Data System (ADS)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  20. The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment

    NASA Astrophysics Data System (ADS)

    Tomida, Takayuki; Tsuyuguchi, Yusuke; Arai, Takahito; Benno, Takuya; Chikawa, Michiyuki; Doura, Koji; Fukushima, Masaki; Hiyama, Kazunori; Honda, Ken; Ikeda, Daisuke; Matthews, John N.; Nakamura, Toru; Oku, Daisuke; Sagawa, Hiroyuki; Tokuno, Hisao; Tameda, Yuichiro; Thomson, Gordon B.; Tsunesada, Yoshiki; Udo, Shigeharu; Ukai, Hisashi

    2011-10-01

    An atmospheric transparency was measured using a LIDAR with a pulsed UV laser (355 nm) at the observation site of Telescope Array in Utah, USA. The measurement at night for two years in 2007-2009 revealed that the extinction coefficient by aerosol at the ground level is 0.033-0.012+0.016km-1 and the vertical aerosol optical depth at 5 km above the ground is 0.035-0.013+0.019. A model of the altitudinal aerosol distribution was built based on these measurements for the analysis of atmospheric attenuation of the fluorescence light generated by ultra high energy cosmic rays.

  1. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene.

    PubMed

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, GyeongHo; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-19

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the 'Internet of Things' area.

  2. Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices

    PubMed Central

    Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.

    2013-01-01

    Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953

  3. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator

    PubMed Central

    2017-01-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor. PMID:28791167

  4. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    PubMed

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  5. On a Road to "Soft" Optical MEMS

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Mach, Peter; Krupenkin, Tom

    2003-03-01

    A phenomenon of electrowetting has been applied to the actuation of micro-optical devices. The devices use small droplets of transparent conductive liquids to manipulate light in a useful way. The form and position of these droplets is controlled by the applied voltage. Both fiber based and open space optical devices are demonstrated. As an example of an open space optical device, a tunable liquid microlens capable of adjusting its focal length and lateral position is discussed. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with underlying electrodes. By varying the voltage applied to the structure, both the position and curvature of microlens can be reversibly changed. Similarly, electrowetting actuation of fluids in micro channels is employed to provide dynamic and reversible tuning of the optical fiber structures. When combined with in-fiber gratings or etched fibers this approach yields tunable broadband and narrowband filters with a large dynamic range. Both the surface and bulk properties of the materials are found important to control the device performance. Fundamental problems, such as stick-slip behavior and contact angle hysteresis associated with the surface roughness and surface contamination, are studied to optimize the choice of dielectric materials and their coatings. Some of the possible ways to control these phenomena are outlined. Several potential applications of the proposed approach are also discussed.

  6. Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals

    NASA Astrophysics Data System (ADS)

    Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng

    2015-05-01

    An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.

  7. Transparent thin films of indium tin oxide: Morphology-optical investigations, inter dependence analyzes

    NASA Astrophysics Data System (ADS)

    Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D.

    2017-12-01

    Using a fast and eco-friendly deposition method, ITO thin films with different thicknesses (0.5 μm-0.7 μm) were deposited on glass substrates by radio frequency magnetron sputtering technique. A comparative analysis of these oxide films was then carried out. AFM investigations showed that the deposited films were smooth, uniform and having a surface roughness smaller than 10 nm. X-ray diffraction investigations showed that all samples were polycrystalline and the grain sizes of the films, corresponding to (222) cubic reflection, were found to increase with the increasing film thickness. The optical properties, evaluated by UV-VIS-NIR (190-3000 nm) spectrophotometer, evidenced that the obtained thin films were highly transparent, with a transmission coefficient between 90 and 96%, depending on the film thickness. Various methods (Swanepoel and Drude) were employed to appreciate the optimal behaviour of transparent oxide films, in determining the dielectric optical parameters and refractive index dispersion for ITO films exhibiting interference patterns in the optical transmission spectra. The electrical conductivity also increased as the film thickness increased.

  8. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    PubMed

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  9. Measurement of 3D refractive index distribution by optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan

    2018-01-01

    Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.

  10. Embedded spectroscopic fiber sensor for on-line arc-welding analysis.

    PubMed

    Mirapeix, Jesús; Cobo, Adolfo; Quintela, Antonio; López-Higuera, José-Miguel

    2007-06-01

    A new fiber sensor system designed for spectroscopic analysis and on-line quality assurance of arc-welding processes is presented here. Although several different approaches have been considered for the optical capture of plasma emission in arc-welding processes, they tend to be invasive and make use of optical devices such as collimators or photodiodes. The solution proposed here is based on the arrangement of an optical fiber, which is used at the same time as the optical capturing device and also to deliver the optical information to a spectrometer, embedded within an arc-welding torch. It will be demonstrated that, by using the shielding gas as a protection for the fiber end, the plasma light emission is efficiently collected, forming a sensor system completely transparent and noninvasive for the welding operator. The feasibility of the proposed sensor designed to be used as the input optics of a welding quality-assurance system based on plasma spectroscopy will be demonstrated by means of several welding tests.

  11. Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roodenko, K., E-mail: kroodenko@intelliepi.com; Liao, P.-K.; Lan, D.

    2016-04-07

    Control over the Te doping concentration is especially challenging in the mass-production of optically transparent, high-resistivity Te-doped GaSb crystals. Driven by the necessity to perform fast, robust, and non-destructive quality control of the Te doping homogeneity of the optically transparent large-diameter GaSb wafers, we correlated electronic and optical infrared properties of Te-doped GaSb crystals. The study was based on the experimental Hall and Fourier-Transform Infrared (FTIR) data collected from over 50 samples of the low-doped n-type material (carrier concentration of 6 × 10{sup 16} cm{sup −3} to 7 × 10{sup 17} cm{sup −3}) and the Te-doped p-type GaSb (4.6 ×more » 10{sup 15} cm{sup −3} to 1 × 10{sup 16} cm{sup −3}). For the n-type GaSb, the analysis of the FTIR data was performed using free carrier absorption model, while for the p-type material, the absorption was modeled using inter-valence band absorption mechanism. Using the correlation between the Hall and the IR data, FTIR maps across the wafers allow a fast and reliable way to estimate carrier concentration profile within the wafer.« less

  12. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  13. Optical isolation based on space-time engineered asymmetric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe

    2017-10-01

    Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.

  14. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  15. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  16. Transparent, conformable, active multielectrode array using organic electrochemical transistors.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G; Yokota, Tomoyuki; Someya, Takao

    2017-10-03

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.

  17. The Effects of Zr Doping on the Optical, Electrical and Microstructural Properties of Thin ZnO Films Deposited by Atomic Layer Deposition

    PubMed Central

    Herodotou, Stephania; Treharne, Robert E.; Durose, Ken; Tatlock, Gordon J.; Potter, Richard J.

    2015-01-01

    Transparent conducting oxides (TCOs), with high optical transparency (≥85%) and low electrical resistivity (10−4 Ω·cm) are used in a wide variety of commercial devices. There is growing interest in replacing conventional TCOs such as indium tin oxide with lower cost, earth abundant materials. In the current study, we dope Zr into thin ZnO films grown by atomic layer deposition (ALD) to target properties of an efficient TCO. The effects of doping (0–10 at.% Zr) were investigated for ~100 nm thick films and the effect of thickness on the properties was investigated for 50–250 nm thick films. The addition of Zr4+ ions acting as electron donors showed reduced resistivity (1.44 × 10−3 Ω·cm), increased carrier density (3.81 × 1020 cm−3), and increased optical gap (3.5 eV) with 4.8 at.% doping. The increase of film thickness to 250 nm reduced the electron carrier/photon scattering leading to a further reduction of resistivity to 7.5 × 10−4 Ω·cm and an average optical transparency in the visible/near infrared (IR) range up to 91%. The improved n-type properties of ZnO: Zr films are promising for TCO applications after reaching the targets for high carrier density (>1020 cm−3), low resistivity in the order of 10−4 Ω·cm and high optical transparency (≥85%). PMID:28793633

  18. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  19. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    NASA Astrophysics Data System (ADS)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  20. Development of optical laser balloon and drainage from radiation vulcanized natural rubber latex

    NASA Astrophysics Data System (ADS)

    Shimamura, Yoshiyuki

    Rubber film made of radiation vulcanized natural rubber latex (RVNRL) has better transparency and lower toxicity compared with sulfur-vulcanized latex film. Optical laser balloon (optical endoscopical balloon) and drainage were developed by using RVNRL. An endoscope was equipped with a saline-filled latex rubber balloon at its tip to displace contaminating blood, bile, or gastric contents during operative portoscopy, biliary endoscopy, or upper gastrointestinal endoscopy. The transmission of Nd-Yag laser through the balloon is 98%, higher than the sulfur-vulcanized latex rubber (75%). High transparency of the drainage bag facilitated easy observation of discharged fluids without detaching the bag from the tube.

  1. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    NASA Astrophysics Data System (ADS)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  2. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  3. Digital optical feeder links system for broadband geostationary satellite

    NASA Astrophysics Data System (ADS)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  4. Image Contrast Immersion Method for Measuring Refractive Index Applied to Spider Silks

    DTIC Science & Technology

    2011-09-26

    12.880665. 8. A. J. Werner, “Methods in high precision refractometry of optical glasses,” Appl. Opt. 7(5), 837–843 (1968). 9. Y. S. Liu, “Direct...transparent, low visibility orb web. Refractometry is the most widely used technique for accurately measuring n for transparent media. It has been...in use for more than a century. There are several standard refractometry methods [8]. Most require a bulk sample with surfaces polished to optical

  5. Spectroelectrochemistry: The Combination of Optical and Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Heineman, William R.

    1983-01-01

    Two different techniques, electrochemistry and spectroscopy, can be combined for studying the redox chemistry of inorganic, organic, and biological molecules. Several commonly used spectroelectrochemical methods and their applications are described. Includes discussions of optically transparent electrodes, optical absorption/fluorescence…

  6. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  7. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  8. High Resistivity Transparent/Conductive Coatings for Space Applications: Problems and Possible Improvements

    NASA Technical Reports Server (NTRS)

    Cashman, Thomas; Demko, Rikako; Uppala, Nischala; Vemulapalli, Jyothi; Welch, Bryan; Hambourger, Paul D.

    2003-01-01

    We have prepared transparent films with a sheet relativity of 10(exp 1) to 10(exp 12) ohm/square by co-depositing a transparent conducting oxide (TCO) with magnesium fluoride, using two independently controlled RF magnetron sputter guns to facilitate adjustment of the film composition, Co-deposited indium tin oxide (ITO) and MgF2 on quartz and flexible polymeric substrate exhibited reasonably stable sheet resistivity over several months' time, with substantially lower optical reflectance than that of pure ITO. However, exposure to low-intensity blue light reduces sheet resistivity by as much as two orders of magnitude. Our results suggest this photoconductivity effect may be present in all InO(x)-based materials. We find that sheet resistivity can by "tuned" by admitting a small amount of high-purity air during deposition offering the possibility of closed loop process control.

  9. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    NASA Astrophysics Data System (ADS)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  10. Phase-shifted Solc-type filter based on thin periodically poled lithium niobate in a reflective geometry.

    PubMed

    Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng

    2018-04-30

    Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.

  11. Variable-focus liquid lens for miniature cameras

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.

    2004-08-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centered lens with a high optical quality. The motion of the lens during a focusing action was studied by observation through the transparent tube wall. Finally, a miniature achromatic camera module was designed and constructed based on this adjustable lens, showing that it is excellently suited for use in portable applications.

  12. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  13. Embedding objects during 3D printing to add new functionalities.

    PubMed

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These 3D printed glass bottom casting molds would result in PDMS replicas with a flat smooth bottom surface for better bonding and adhesion.

  14. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  15. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  16. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  17. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  18. Specific innovative semi-transparent solar cell for indoor and outdoor LiFi applications.

    PubMed

    Bialic, Emilie; Maret, Luc; Kténas, Dimitri

    2015-09-20

    Research in light-fidelity (LiFi), also called visible light communication (VLC), has gained huge interest. In such a communication system, an optical sensor translates the received luminous modulation flux into an electrical signal which is decoded. To consider LiFi as an alternative solution for wireless communication, the receiver must be operational in indoor and outdoor configurations. Photovoltaic modules could appear as a solution to this issue. In this paper, we present signal-to-noise ratio (SNR) response in the frequency of two different kinds of photovoltaic modules. We characterize in detail the SNR by using an experimental setup which connects a software-based direct current optical (DCO)-orthogonal frequency division multiiplexing emitter and receiver to hardware optical front ends. We analyze LiFi performances under different lighting conditions. We prove that the available bandwidth depends drastically on ambient lighting configurations. Under specific lighting conditions, a bandwidth around 4 MHz corresponding a data rate around 8 Mbit/s could be achieved. We present the lighting saturation effects and we prove that the semi-transparent solar cell under study improves their performances (both bandwidth and data rate) in high ambient lighting environments.

  19. Pulse laser-induced particle separation from polymethyl methacrylate: a mechanistic study

    NASA Astrophysics Data System (ADS)

    Arif, S.; Armbruster, O.; Kautek, W.

    2013-04-01

    The separation mechanism of opaque and transparent model micro-particles, graphite and polystyrene copolymer spheres, respectively, from polymethyl methacrylate (PMMA) substrates were investigated employing a ns-pulse laser radiating at 532 nm. The particles transparent in the visible wavelength range could be removed from PMMA efficiently in a very narrow fluence range between 1 and 2 J/cm2 according to a simple 1D thermal expansion model. Above this fluence region, with single pulses, the transparent microspheres caused local ablation of the PMMA substrate in the optical microlens nearfield. This process led to removal of the particles themselves due to the expansion of the ablation plasma. The irregularly shaped graphite particles shaded the underlying substrate from the incoming radiation so that no optical nearfield damage mechanism could be observed. Therefore, a substantial cleaning window between 0.5 and more than 16 J/cm2 was provided. The graphite data suggest an ablation mechanism of the particulates themselves due to a high optical absorption coefficient.

  20. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  1. Carbon Nanotube Networks Reinforced by Silver Nanowires with Improved Optical Transparency and Conductivity

    NASA Astrophysics Data System (ADS)

    Martine, Patricia; Fakhimi, Azin; Lin, Ling; Jurewicz, Izabela; Dalton, Alan; Zakhidov, Anvar A.; Baughman, Ray H.

    2015-03-01

    We have fabricated highly transparent and conductive free-standing nanocomposite thin film electrodes by adding silver nanowires (AgNWs) to dry-spun Multiwall Carbon Nanotube (MWNT) aerogels. This nanocomposite exhibits desirable properties such as high optical transmittance, excellent flexibility and enhanced electrical conductivity. The incorporation of the AgNWs to the MWNT aerogels was accomplished by using a spray coating method. The optical transparency and sheet resistance of the nanocomposite was tuned by adjusting the concentration of AgNWs, back pressure and nozzle distance of the spray gun to the MWNT aerogel during deposition. As the solvent evaporated, the aerogel MWNT bundles densified via surface tension which caused the MWNT bundles to collapse. This adjustable process was responsible in forming well defined apertures that increased the nanocomposite's transmittance up to 90 percent. Via AgNWs percolation and random interconnections between separate MWNT bundles in the aerogel matrix, the sheet resistance decreased from 1 K ohm/sq to less than 100 ohm/sq. Alan G. MacDiarmid NanoTech Institute

  2. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  3. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less

  4. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    DOE PAGES

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-30

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less

  5. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    NASA Astrophysics Data System (ADS)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  6. Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system

    NASA Astrophysics Data System (ADS)

    Wang, Boyun; Zeng, Qingdong; Xiao, Shuyuan; Xu, Chen; Xiong, Liangbin; Lv, Hao; Du, Jun; Yu, Huaqing

    2017-11-01

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency (PIT) in two stub resonators side-coupled with a metal-dielectric-metal (MDM) plasmonic waveguide system. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons (SPPs) and the plasmonic waveguide based on graphene-Ag composite material structures with large effective Kerr nonlinear coefficient. An ultrafast response time of the order of 1 ps is reached because of ultrafast carrier relaxation dynamics of graphene. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the PIT system is achieved under excitation of a pump light with an intensity as low as 5.8 MW cm-2. The group delay is controlled between 0.14 and 0.67 ps. Moreover, the tunable bandwidth of about 42 nm is obtained. For the indirect coupling between two stub cavities or the phase coupling scheme, the phase shift multiplication effect of the PIT effect is found. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. This work not only paves the way towards the realization of on-chip integrated nanophotonic devices but also opens the possibility of the construction of ultrahigh-speed information processing chips based on plasmonic circuits.

  7. Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices.

    PubMed

    Tugba Camic, B; Oytun, Faruk; Hasan Aslan, M; Jeong Shin, Hee; Choi, Hyosung; Basarir, Fevzihan

    2017-11-01

    A solution-processed transparent conducting electrode was fabricated via layer-by-layer (LBL) deposition of graphene oxide (GO) and silver nanowires (Ag NWs). First, graphite was oxidized with a modified Hummer's method to obtain negatively-charged GO sheets, and Ag NWs were functionalized with cysteamine hydrochloride to acquire positively-charged silver nanowires. Oppositely-charged GO and Ag NWs were then sequentially coated on a 3-aminopropyltriethoxysilane modified glass substrate via LBL deposition, which provided highly controllable thin films in terms of optical transmittance and sheet resistance. Next, the reduction of GO sheets was performed to improve the electrical conductivity of the multilayer films. The resulting GO/Ag NWs multilayer was characterized by a UV-Vis spectrometer, field emission scanning electron microscope (FE-SEM), optical microscope (OM) and sheet resistance using a four-point probe method. The best result was achieved with a 2-bilayer film, resulting in a sheet resistance of 6.5Ω sq -1 with an optical transmittance of 78.2% at 550nm, which values are comparable to those of commercial ITO electrodes. The device based on a 2-bilayer hybrid film exhibited the highest device efficiency of 1.30% among the devices with different number of graphene/Ag NW LBL depositions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  9. Optical properties of mouse brain tissue after optical clearing with FocusClear™

    NASA Astrophysics Data System (ADS)

    Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard

    2015-09-01

    Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (<200 μm) regions. Optical clearing, which involves incubation of the tissue in a chemical bath, reduces the optical scattering in tissue, resulting in increased tissue transparency and optical imaging depth. The goal of this study was to determine the time- and wavelength-resolved dynamics of the optical scattering properties of rodent brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.

  10. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    PubMed

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  11. Transparent, conformable, active multielectrode array using organic electrochemical transistors

    PubMed Central

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G.; Yokota, Tomoyuki; Someya, Takao

    2017-01-01

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation. PMID:28923928

  12. Fabrication of submicron-scale rectangular bar of transparent In-Ga-Zn-O: A study of the possible application of transparent In-Ga-Zn-O optical waveguide

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Kuwahara, Masashi

    2014-05-01

    We studied the optical properties of In-Ga-Zn-O (IGZO) films and found a very low extinction coefficient of the films. For the potential application of the films, we propose an optical waveguide device made of IGZO. We have succeeded in producing a submicron-scale rectangular-bar structure of IGZO using our newly developed dry etching process. Simulation results showed an ˜5 dB/cm propagation loss of a 400 × 400 nm2 square optical waveguide device of amorphous IGZO at a wavelength of 1.55 µm, when a standard deviation of ˜4 nm and a correlation length of ˜100 nm of sidewall roughness were achieved.

  13. 3D printing of optical materials: an investigation of the microscopic properties

    NASA Astrophysics Data System (ADS)

    Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea

    2018-02-01

    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.

  14. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  15. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    PubMed

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  16. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    PubMed

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  17. BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy

    BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.

  18. Conformal self-assembled thin films for optical pH sensors

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung

    2016-04-01

    Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.

  19. High-throughput Screening and Statistical Learning for the Design of Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Sutton, Christopher; Ghiringhelli, Luca; Scheffler, Matthias

    Transparent conducting oxides (TCOs) represent a class of well-developed and commercialized wide-bandgap semiconductors that are crucial for many electronic devices. Al, Ga, and In-based sesquioxides are investigated as new TCOs motivated by very intriguing recent experimental work that has demonstrated bandgap engineering in ternary (AlxGayIn1-x-y)2O3 ranging from 3.8 eV to 7.5 eV by adjusting the ratio of In/Ga and Ga/Al. We employed DFT-based cluster expansion (CE) models combined with fast stochastic optimization techniques (e.g., Wang-Landau and diffusive nested sampling) in order to efficiently search for stable and metastable configurations of (AlxGayIn1-x-y)2O3 at various lattice structures. The approach also allows for a consideration of the effect of entropy on the relative stability of ternary TCOs. Statistical learning/compressed sensing is being used to efficiently identify a structure-property relationship between the targeted properties (e.g., mobilities and optical transparency) and the fundamental chemical and physical parameters that control these properties. ∖

  20. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE PAGES

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.; ...

    2017-09-29

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  1. Transparent conducting oxides: A δ-doped superlattice approach

    PubMed Central

    Cooper, Valentino R.; Seo, Sung S. Ambrose; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-01-01

    Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides. PMID:25109668

  2. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  3. A coherent light scanner for optical processing of large format transparencies

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.; Shackelford, R. G.; Walsh, J. R.

    1975-01-01

    A laser scanner is discussed in which the scanning beam is random-access addressable and perpendicular to the image input plane and the irradiance of the scanned beam is controlled so that a constant average irradiance is maintained after passage through the image plane. The scanner's optical system and design are described, and its performance is evaluated. It is noted that with this scanner, data in the form of large-format transparencies can be processed without the expense, space, maintenance, and precautions attendant to the operation of a high-power laser with large-aperture collimating optics. It is shown that the scanned format as well as the diameter of the scanning beam may be increased by simple design modifications and that higher scan rates can be achieved at the expense of resolution by employing acousto-optic deflectors with different relay optics.

  4. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.

  5. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  6. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang

    2016-06-01

    A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

  7. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes

    PubMed Central

    2012-01-01

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs. PMID:22587669

  8. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes.

    PubMed

    Jeon, Kangmin; Youn, Hongseok; Kim, Seongbeom; Shin, Seongbeom; Yang, Minyang

    2012-05-15

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.

  9. In vivo feasibility test using transparent carbon nanotube-coated polydimethylsiloxane sheet at brain tissue and sciatic nerve.

    PubMed

    Wang, Caifeng; Oh, Sangjin; Lee, Hyun Ah; Kang, Jieun; Jeong, Ki-Jae; Kang, Seon Woo; Hwang, Dae Youn; Lee, Jaebeom

    2017-06-01

    Carbon nanotubes, with their unique and outstanding properties, such as strong mechanical strength and high electrical conductivity, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Polydimethylsiloxane (PDMS)-based elastomers have been used in a wide range of biomedical applications because of their optical transparency, physiological inertness, blood compatibility, non-toxicity, and gas permeability. In present study, most of artificial nerve guidance conduits (ANGCs) are not transparent. It is hard to confirm the position of two stumps of damaged nerve during nerve surgery and the conduits must be cut open again to observe regenerative nerves after surgery. Thus, a novel preparation method was utilized to produce a transparent sheet using PDMS and multiwalled carbon nanotubes (MWNTs) via printing transfer method. Characterization of the PDMS/MWNT (PM) sheets revealed their unique physicochemical properties, such as superior mechanical strength, a certain degree of electrical conductivity, and high transparency. Characterization of the in vitro and in vivo usability was evaluated. PM sheets showed high biocompatibility and adhesive ability. In vivo feasibility tests of rat brain tissue and sciatic nerve revealed the high transparency of PM sheets, suggesting that it can be used in the further development of ANGCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1736-1745, 2017. © 2017 Wiley Periodicals, Inc.

  10. Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode.

    PubMed

    Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M

    2016-10-26

    The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

  11. New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: improved optical transparency and enhanced NLO effects.

    PubMed

    Wu, Wenbo; Ye, Cheng; Yu, Gui; Liu, Yunqi; Qin, Jingui; Li, Zhen

    2012-04-02

    By modifying a synthetic procedure, two new hyperbranched polytriazoles (HP1 and HP2) containing isolation chromophores were synthesized successfully through click chemistry reactions under copper(I) catalysis. For the first time, these two polymers were derived from an AB(4)-type monomer, although they contain different end-capping chromophores. They are soluble in normal polar organic solvents and are well characterized. Thanks to the presence of the isolation chromophore, the two polymers demonstrate good nonlinear optical (NLO) properties and optical transparency, making them promising candidates for practical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana

    2018-04-01

    In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.

  13. Mass production of holographic transparent components for augmented and virtual reality applications

    NASA Astrophysics Data System (ADS)

    Russo, Juan Manuel; Dimov, Fedor; Padiyar, Joy; Coe-Sullivan, Seth

    2017-06-01

    Diffractive optics such as holographic optical elements (HOEs) can provide transparent and narrow band components with arbitrary incident and diffracted angles for near-to-eye commercial electronic products for augmented reality (AR), virtual reality (VR), and smart glass applications. In this paper, we will summarize the operational parameters and general optical geometries relevant for near-to-eye displays, the holographic substrates available for these applications, and their performance characteristics and ease of manufacture. We will compare the holographic substrates available in terms of fabrication, manufacturability, and end-user performance characteristics. Luminit is currently emplacing the manufacturing capacity to serve this market, and this paper will discuss the capabilities and limitations of this unique facility.

  14. Enhancement of graphene visibility on transparent substrates by refractive index optimization.

    PubMed

    Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter

    2013-05-20

    Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.

  15. Glass and glass-ceramic photonic systems

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  16. Ultra-fast transient plasmonics using transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Ferrera, Marcello; Carnemolla, Enrico G.

    2018-02-01

    During the last decade, plasmonic- and metamaterial-based applications have revolutionized the field of integrated photonics by allowing for deep subwavelength confinement and full control over the effective permittivity and permeability of the optical environment. However, despite the numerous remarkable proofs of principle that have been experimentally demonstrated, few key issues remain preventing a widespread of nanophotonic technologies. Among these fundamental limitations, we remind the large ohmic losses, incompatibility with semiconductor industry standards, and largely reduced dynamic tunability of the optical properties. In this article, in the larger context of the new emerging field of all-dielectric nanophotonics, we present our recent progresses towards the study of large optical nonlinearities in transparent conducting oxides (TCOs) also giving a general overview of the most relevant and recent experimental attainments using TCO-based technology. However, it is important to underline that the present article does not represent a review paper but rather an original work with a broad introduction. Our work lays in a sort of ‘hybrid’ zone in the middle between high index contrast systems, whose behaviour is well described by applying Mie scattering theory, and standard plasmonic elements where optical modes originate from the electromagnetic coupling with the electronic plasma at the metal-to-dielectric interface. Beside remaining in the context of plasmonic technologies and retaining all the fundamental peculiarities that promoted the success of plasmonics in the first place, our strategy has the additional advantage to allow for large and ultra-fast tunability of the effective complex refractive index by accessing the index-near-zero regime in bulk materials at telecom wavelength.

  17. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    PubMed

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  18. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    NASA Astrophysics Data System (ADS)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  19. Evaluation of optically transparent polyetherimide films for applications in space

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K.; Slemp, Wayne S.

    1991-01-01

    Several series of aromatic polyetherimide films have been synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Incorporation of phenoxy groups into aromatic polyimides has resulted in a reduction in the color intensity of these films compared to commercial polyimide film by reducing electronic interactions between polymer chains. The resulting lightly colored to colorless polyetherimide films have been characterized by UV-visible and infrared spectroscopy before and after exposure to varying doses of UV and electron irradiation designed to simulate use as second-surface mirror thermal control coatings. After exposure to 300 equivalent solar hours UV irradiation and 1 MeV electron irradiation, the polyetherimides were 2.2 to 2.6 times more transparent than commercial polyimide film of the same thickness.

  20. Evaluation of colorless polyimide film for thermal control coating applications

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.

    1985-01-01

    A series of essentially colorless aromatic polyimide films was synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films were characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness.

  1. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    NASA Astrophysics Data System (ADS)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k

  2. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    PubMed

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

  3. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  4. Rapid ILs-polishing Processes Toward Flexible Nanostructured Paper with Dually High Transparency and Haze.

    PubMed

    Ou, Yanghao; Chen, Jinbo; Lu, Pengbo; Cheng, Fan; Lin, Meiyan; Su, Lingfeng; Li, Jun; Liu, Detao

    2017-07-31

    Biodegradable highly nanostructured paper has received great interest in past years due to its excellent optical properties which facilitate its wide applications in green flexible electronics and devices. However, energy and/or time-consuming procedure during the process of fabricating most nanostructured transparent paper are presently the main obstacle to their scalable production. In this work, we demonstrated a novel nanostructured paper with dually high transparency (∼91%) and high haze (∼89%) that was directly fabricated from original paper with rapid ILs-polishing processes. The whole fabricating time only requires 10 min. Compared to the previously reported nanopaper made of the isolated cellulose nanofibers by pure mechanical and/or chemical approaches, this work presented herein is devoted to use green ILs to polish directly the micrometer-sized fibrous paper into the nanostructured paper. This new method brings a rapid fabrication of transparent nanostructured paper while also retaining dual intriguing properties both in optical transmittance and haze. This work is capable of fabricating next-generation flexible and highly transparent and haze paper by a high-speed roll-to-roll manufacturing process with a much lower cost.

  5. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    PubMed

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.

  6. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    PubMed

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ferroelectric optical image comparator

    DOEpatents

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  8. Ferroelectric optical image comparator

    DOEpatents

    Butler, Michael A.; Land, Cecil E.; Martin, Stephen J.; Pfeifer, Kent B.

    1993-01-01

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image.

  9. Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth

    NASA Astrophysics Data System (ADS)

    Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-06-01

    We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.

  10. Rapid and low-cost hot-embossing of polycaprolactone microfluidic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yiqiang; Liu, Shicheng; He, Jianyun; Gao, Kexin; Zhang, Yajun

    2018-01-01

    Polycaprolactone (PCL) is a low-cost biocompatible and biodegradable material which is highly suitable for the short-live applications like microfluidics in the biological and medical field. In this study, a rapid and low-cost microfabrication technique for PCL-based microfluidic devices is proposed, the SU-8 mold fabricated on the silicon substrate was used for the hot-embossing of microstructures on PCL. Since PCL after the molding process is optically non-transparent, to improve the visibility of the fluid in the microfluidic device and enclosing the microchannel, a transparency adhesive film which originally used for the sealing of PCR well-plate is used for the sealing of the microchannels embossed on PCL substrate. The profile of the fabricated microchannels was carefully characterized, the bonding strength is tested and several PCL-based microfluidic devices were also fabricated and tested for demonstration.

  11. Fast, Dense Low Cost Scintillator for Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, Craig

    2009-07-31

    We have studied the morphology, transparency, and optical properties of SrHfO{sub 3}:Ce ceramics. Ceramics can be made transparent by carefully controlling the stoichiometry of the precursor powders. When fully dense, transparent samples can be obtained. Ceramics with a composition close to stoichiometry (Sr:Hf ~ 1) appear to show good transparency and a reasonable light yield several times that of BGO. The contact and distance transparency of ceramics hot-pressed at about 1450ºC is very good, but deteriorates at increasingly higher hot-press temperatures. If these ceramics can be produced in large quantities and sizes, at low cost, they may be of considerablemore » interest for PET and CT.« less

  12. Metro-access integrated network based on optical OFDMA with dynamic sub-carrier allocation and power distribution.

    PubMed

    Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian

    2013-01-28

    We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

  13. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  14. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  15. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  16. Demonstration of optically controlled data routing with the use of multiple-quantum-well bistable and electro-optical devices.

    PubMed

    Koppa, P; Chavel, P; Oudar, J L; Kuszelewicz, R; Schnell, J P; Pocholle, J P

    1997-08-10

    We present experimental results on a 1-to-64-channel free-space photonic switching demonstration system based on GaAs/GaAlAs multiple-quantum-well active device arrays. Two control schemes are demonstrated: data transparent optical self-routing usable in a packet-switching environment and direct optical control with potential signal amplification for circuit switching. The self-routing operation relies on the optical recognition of the binary destination address coded in each packet header. Address decoding is implemented with elementary optical bistable devices and modulator pixels as all-optical latches and electro-optical and gates, respectively. All 60 defect-free channels of the system could be operated one by one, but the simultaneous operation of only three channels could be achieved mainly because of the spatial nonhomogeneities of the devices. Direct-control operation is based on directly setting the bistable device reflectivity with a variable-control beam power. This working mode turned out to be much more tolerant of spatial noises: 37 channels of the system could be operated simultaneously. Further development of the system to a crossbar of N inputs and M outputs and system miniaturization are also considered.

  17. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications owing to the sensitivity of this resonant tunneling effect, such as optical filters, optical power limiters, antireflection coatings, electrochromic devices, to name a few. Our second approach to realizing an alternative flexible TC is based on random networks of Ag-NWs and their composites with various polymers that are electrically conducting or insulating. While considered a highly promising material system with a potential to replace commercially used TCOs like ITO, the high variability in films of Ag-NWs fabricated from solutions is however a major issue for scalability and reproducibility. This variability can in turn be attributed partly to NW dispersion instability, which can be addressed by the use of polymer additives and modified solution chemistries. In preparing such composites, considerable attention has been given to the use of conducting polymers like PEDOT:PSS which can contribute to charge transport as well. We present here a systematic approach to obtaining quantifiably uniform, highly transparent and conducting films in a reproducible manner, with composites of Ag-NWs with both conducting (PEDOT:PSS) and nonconducting polymers (like PSS and PVA), demonstrating the effectiveness of such an approach. While Ag-NW films spun cast from solution show good electrical conductivity (˜2-50 = O/□) and high transparency (˜ 70-90%), they also show high variability (˜15-20% in RSheet and NW coverage) and poor reproducibility. Ag- NW/polymer composites, on the other hand, show similar electrical and optical properties with high figures of merit but with lower variability and greater uniformity (<5% variation in R Sheet and NW coverage). The composite films also show remarkable retention of electrical conductivity even after several cycles of mechanical flexing, further justifying the use of polymer-stabilized networks and paving the way for greater control and ease in processing transparent, conducting and flexible films for novel devices. The Ag-NWs based TCs were also incorporated in organic solar cell devices to test for their efficacy in an application and their performances were compared to that of control cell devices having ITO as the TC electrode. We found that performances of Ag-NW/polymer composites, particularly those of PEDOT:PSS were comparable to ITO-based solar cells, with power conversion efficiencies ˜ 3%, thus demonstrating the effectiveness in using these TCs in potential commercial applications such as solar cells, OLEDs, displays, etc.

  18. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  19. Surface microstructure evolution of highly transparent and conductive Al-doped ZnO thin films and its application in CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang

    2017-07-01

    Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.

  20. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    PubMed

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

Top