Science.gov

Sample records for based password hardened

  1. Secure password-based authenticated key exchange for web services

    SciTech Connect

    Liang, Fang; Meder, Samuel; Chevassut, Olivier; Siebenlist, Frank

    2004-11-22

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options in the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.

  2. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  3. Provably Secure Password-based Authentication in TLS

    SciTech Connect

    Abdalla, Michel; Emmanuel, Bresson; Chevassut, Olivier; Moeller,Bodo; Pointcheval, David

    2005-12-20

    In this paper, we show how to design an efficient, provably secure password-based authenticated key exchange mechanism specifically for the TLS (Transport Layer Security) protocol. The goal is to provide a technique that allows users to employ (short) passwords to securely identify themselves to servers. As our main contribution, we describe a new password-based technique for user authentication in TLS, called Simple Open Key Exchange (SOKE). Loosely speaking, the SOKE ciphersuites are unauthenticated Diffie-Hellman ciphersuites in which the client's Diffie-Hellman ephemeral public value is encrypted using a simple mask generation function. The mask is simply a constant value raised to the power of (a hash of) the password.The SOKE ciphersuites, in advantage over previous pass-word-based authentication ciphersuites for TLS, combine the following features. First, SOKE has formal security arguments; the proof of security based on the computational Diffie-Hellman assumption is in the random oracle model, and holds for concurrent executions and for arbitrarily large password dictionaries. Second, SOKE is computationally efficient; in particular, it only needs operations in a sufficiently large prime-order subgroup for its Diffie-Hellman computations (no safe primes). Third, SOKE provides good protocol flexibility because the user identity and password are only required once a SOKE ciphersuite has actually been negotiated, and after the server has sent a server identity.

  4. Password-based authenticated key exchange scheme using smart card

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Zhong, Shaojun

    2013-03-01

    A protocol that allows any two entities to negotiate a shared session key is commonly called a key exchange protocol. If the protocol provides a function to authenticate each other, we call the protocol authenticated key exchange protocol (AKE). Password authentication key exchange (PAKE) is the AKE protocol in which the two entities share a humanmemorable password. Most of current PAKE relies on the existence of a public key infrastructure, which sometime is impossible for a certain environments such as low computational device due to the computation overhead. In this paper, we propose password-based authenticated key exchange using smart card. Compared to previous PAKE, our protocol is more efficient because our protocol is based on ECC. Thereby, the proposed protocol can be well applied to low computation device.

  5. Optical image encryption using password key based on phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  6. Improved chaotic maps-based password-authenticated key agreement using smart cards

    NASA Astrophysics Data System (ADS)

    Lin, Han-Yu

    2015-02-01

    Elaborating on the security of password-based authenticated key agreement, in this paper, the author cryptanalyzes a chaotic maps-based password-authenticated key agreement proposed by Guo and Chang recently. Specifically, their protocol could not achieve strong user anonymity due to a fixed parameter and a malicious adversary is able to derive the shared session key by manipulating the property of Chebyshev chaotic maps. Additionally, the author also presents an improved scheme to eliminate the above weaknesses and still maintain the efficiency.

  7. An efficient three-party password-based key agreement protocol using extended chaotic maps

    NASA Astrophysics Data System (ADS)

    Shu, Jian

    2015-06-01

    Three-party password-based key agreement protocols allow two users to authenticate each other via a public channel and establish a session key with the aid of a trusted server. Recently, Farash et al. [Farash M S, Attari M A 2014 “An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps”, Nonlinear Dynamics 77(7): 399-411] proposed a three-party key agreement protocol by using the extended chaotic maps. They claimed that their protocol could achieve strong security. In the present paper, we analyze Farash et al.’s protocol and point out that this protocol is vulnerable to off-line password guessing attack and suffers communication burden. To handle the issue, we propose an efficient three-party password-based key agreement protocol using extended chaotic maps, which uses neither symmetric cryptosystems nor the server’s public key. Compared with the relevant schemes, our protocol provides better performance in terms of computation and communication. Therefore, it is suitable for practical applications. Project supported by the National Natural Science Foundation of China (Grant No. 61462033).

  8. Simple group password-based authenticated key agreements for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Wang, Ching-Cheng

    2013-04-01

    The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential. That is, to ensure the information during transmission through by the Internet is secure and private. The group password-based authenticated key agreement (GPAKE) allows a group of users like doctors, nurses and patients to establish a common session key by using password authentication. Then the group of users can securely communicate by using this session key. Many approaches about GAPKE employ the public key infrastructure (PKI) in order to have higher security. However, it not only increases users' overheads and requires keeping an extra equipment for storing long-term secret keys, but also requires maintaining the public key system. This investigation presents a simple group password-based authenticated key agreement (SGPAKE) protocol for the integrated EPR information system. The proposed SGPAKE protocol does not require using the server or users' public keys. Each user only remembers his weak password shared with a trusted server, and then can obtain a common session key. Then all users can securely communicate by using this session key. The proposed SGPAKE protocol not only provides users with convince, but also has higher security.

  9. Security Proof for Password Authentication in TLS-Verifier-based Three-Party Group Diffie-Hellman

    SciTech Connect

    Chevassut, Olivier; Milner, Joseph; Pointcheval, David

    2008-04-21

    The internet has grown greatly in the past decade, by some numbers exceeding 47 million active web sites and a total aggregate exceeding100 million web sites. What is common practice today on the Internet is that servers have public keys, but clients are largely authenticated via short passwords. Protecting these passwords by not storing them in the clear on institutions's servers has become a priority. This paper develops password-based ciphersuites for the Transport Layer Security (TLS) protocol that are: (1) resistant to server compromise; (2) provably secure; (3) believed to be free from patent and licensing restrictions based on an analysis of relevant patents in the area.

  10. Chaotic maps-based password-authenticated key agreement using smart cards

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Chang, Chin-Chen

    2013-06-01

    Password-based authenticated key agreement using smart cards has been widely and intensively researched. Inspired by the semi-group property of Chebyshev maps and key agreement protocols based on chaotic maps, we proposed a novel chaotic maps-based password-authenticated key agreement protocol with smart cards. In our protocol, we avoid modular exponential computing or scalar multiplication on elliptic curve used in traditional authenticated key agreement protocols using smart cards. Our analysis shows that our protocol has comprehensive characteristics and can withstand attacks, including the insider attack, replay attack, and others, satisfying essential security requirements. Performance analysis shows that our protocol can refrain from consuming modular exponential computing and scalar multiplication on an elliptic curve. The computational cost of our protocol compared with related protocols is acceptable.

  11. On the security flaws in ID-based password authentication schemes for telecare medical information systems.

    PubMed

    Mishra, Dheerendra

    2015-01-01

    Telecare medical information systems (TMIS) enable healthcare delivery services. However, access of these services via public channel raises security and privacy issues. In recent years, several smart card based authentication schemes have been introduced to ensure secure and authorized communication between remote entities over the public channel for the (TMIS). We analyze the security of some of the recently proposed authentication schemes of Lin, Xie et al., Cao and Zhai, and Wu and Xu's for TMIS. Unfortunately, we identify that these schemes failed to satisfy desirable security attributes. In this article we briefly discuss four dynamic ID-based authentication schemes and demonstrate their failure to satisfy desirable security attributes. The study is aimed to demonstrate how inefficient password change phase can lead to denial of server scenario for an authorized user, and how an inefficient login phase causes the communication and computational overhead and decrease the performance of the system. Moreover, we show the vulnerability of Cao and Zhai's scheme to known session specific temporary information attack, vulnerability of Wu and Xu's scheme to off-line password guessing attack, and vulnerability of Xie et al.'s scheme to untraceable on-line password guessing attack.

  12. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks

    PubMed Central

    Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research. PMID:28135288

  13. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks.

    PubMed

    Liu, Xin; Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research.

  14. Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords

    NASA Astrophysics Data System (ADS)

    Xie, Qi; Hu, Bin; Chen, Ke-Fei; Liu, Wen-Hao; Tan, Xiao

    2015-11-01

    In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).

  15. [Beam hardening correction method for X-ray computed tomography based on subsection beam hardening curves].

    PubMed

    Huang, Kui-dong; Zhang, Ding-hua

    2009-09-01

    After researching the forming principle of X-ray beam hardening and analyzing the usual methods of beam hardening correction, a beam hardening correction model was established, in which the independent variable was the projection gray, and so the computing difficulties in beam hardening correction can be reduced. By considering the advantage and disadvantage of fitting beam hardening curve to polynomial, a new expression method of the subsection beam hardening curves based on polynomial was proposed. In the method, the beam hardening data were fitted firstly to a polynomial curve which traverses the coordinate origin, then whether the got polynomial curve surged in the fore-part or back-part of the fitting range was judged based on the polynomial curvature change. If the polynomial fitting curve surged, the power function curve was applied to replace the surging parts of the polynomial curve, and the C1 continuity was ensured at the joints of the segment curves. The experimental results of computed tomography (CT) simulation show that the method is well stable in the beam hardening correction for the ideal CT images and CT images with added noises, and can mostly remove the beam hardening artifact at the same time.

  16. Password Authenticated Key Exchange Based on RSA in the Three-Party Settings

    NASA Astrophysics Data System (ADS)

    Dongna, E.; Cheng, Qingfeng; Ma, Chuangui

    A great deal of password authenticated key exchange (PAKE) protocols have been proposed in recent years. Most of them were based on Diffie-Hellman key exchange. While the approach of designing PAKE protocols with RSA is far from maturity and perfection. In fact, the existing PAKE protocols using RSA or other public-key cryptographic techniques provide an authenticated key exchange only between a client and a server. This paper presents a new efficient PAKE protocol using RSA in the three-party settings (3PAKE-RSA). The novel protocol can be resistant to e-residue attack and provably secure under the RSA assumption in the random oracle model.

  17. Enhancing of a Password-Based Authentication Scheme Using Smart Cards

    NASA Astrophysics Data System (ADS)

    Lee, Youngsook; Won, Dongho

    A password based remote user authentication scheme is a two-party protocol whereby an authentication server in a distributed system confirms the identity of a remote individual logging on to the server over an untrusted, open network. This paper discusses the security of Chen et al.'s remote user authentication scheme making use of smart cards. They have recently presented an improved version of Lin, Shen, and Hwang's scheme. But, unlike their claims, in Chen et al.'s scheme, if an attacker gains access to some user's smart card and extracts the information stored in the smart card, he/she can easily find out the user's password. We show this by mounting a dictionary attack on the scheme. In addition, Chen et al.'s scheme does not support its main security goal of authenticating between a remote individual and the server. This is shown via a sever impersonation attack on the scheme. Motivated by these security flaws, we propose a more secure remote user authentication scheme that achieves both two-factor security and mutual authentication.

  18. A password-based user authentication scheme for the integrated EPR information system.

    PubMed

    Wu, Zhen-Yu; Chung, Yufang; Lai, Feipei; Chen, Tzer-Shyong

    2012-04-01

    With the rapid development of the Internet, digitization and electronic orientation are required in various applications of our daily life. For e-medicine, establishing Electronic patient records (EPRs) for all the patients has become the top issue during the last decade. Simultaneously, constructing an integrated EPR information system of all the patients is beneficial because it can provide medical institutions and the academia with most of the patients' information in details for them to make correct decisions and clinical decisions, to maintain and analyze patients' health. Also beneficial to doctors and scholars, the EPR system can give them record linkage for researches, payment audits, or other services bound to be developed and integrated into medicine. To tackle the illegal access and to prevent the information from theft during transmission over the insecure Internet, we propose a password-based user authentication scheme suitable for information integration.

  19. Strong Password-Based Authentication in TLS Using the Three-PartyGroup Diffie-Hellman Protocol

    SciTech Connect

    Abdalla, Michel; Bresson, Emmanuel; Chevassut, Olivier; Moeller,Bodo; Pointcheval, David

    2006-08-26

    The Internet has evolved into a very hostile ecosystem where"phishing'' attacks are common practice. This paper shows that thethree-party group Diffie-Hellman key exchange can help protect againstthese attacks. We have developed a suite of password-based cipher suitesfor the Transport Layer Security (TLS) protocol that are not onlyprovably secure but also assumed to be free from patent and licensingrestrictions based on an analysis of relevant patents in thearea.

  20. An Improvement of Robust and Efficient Biometrics Based Password Authentication Scheme for Telecare Medicine Information Systems Using Extended Chaotic Maps.

    PubMed

    Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho

    2016-03-01

    Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.

  1. Porosity and mechanically optimized PLGA based in situ hardening systems.

    PubMed

    Schloegl, W; Marschall, V; Witting, M Y; Volkmer, E; Drosse, I; Leicht, U; Schieker, M; Wiggenhorn, M; Schaubhut, F; Zahler, S; Friess, W

    2012-11-01

    Goal of the present study was to develop and to characterize in situ-hardening, porous PLGA-based systems for their future application as bone grafting materials. Therefore, we investigated the precipitation behavior of formulations containing PLGA and a water-miscible solvent, DMSO, PEG 400, and NMP. To increase porosity, a pore forming agent (NaCMC) was added and to enhance mechanical properties of the system, an inorganic filler (α-TCP) was incorporated. The behavior upon contact with water and the influence of the prior addition of aqueous media on the morphology of the corresponding hardened implants were investigated. We proved cell-compatibility by live/dead assays for the hardened porous polymer/ceramic-composite scaffolds. The IsHS formulations can therefore be used to manufacture hardened scaffolds ex vivo by using molds with the desired shape and size. Cells were further successfully incorporated into the IsHS by precultivating the cells on the α-TCP-powder prior to their admixing to the formulation. However, cell viability could not be maintained due to toxicity of the tested solvents. But, the results demonstrate that in vivo cells should well penetrate, adhere, and proliferate in the hardened scaffolds. Consequently, we consider the in situ hardening system being an excellent candidate as a filling material for non-weight-bearing orthopedic indications, as the resulting properties of the hardened implant fulfill indication-specific needs like mechanical stability, elasticity, and porosity.

  2. A proactive password checker

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1990-01-01

    Password selection has long been a difficult issue; traditionally, passwords are either assigned by the computer or chosen by the user. When the computer does the assignment, the passwords are often hard to remember; when the user makes the selection, the passwords are often easy to guess. This paper describes a technique, and a mechanism, to allow users to select passwords which to them are easy to remember but to others would be very difficult to guess. The technique is site, user, and group compatible, and allows rapid changing of constraints imposed upon the password. Although experience with this technique is limited, it appears to have much promise.

  3. A secure and robust password-based remote user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Das, Ashok Kumar

    2015-03-01

    An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.

  4. An Extended Chaotic Maps-Based Three-Party Password-Authenticated Key Agreement with User Anonymity.

    PubMed

    Lu, Yanrong; Li, Lixiang; Zhang, Hao; Yang, Yixian

    2016-01-01

    User anonymity is one of the key security features of an authenticated key agreement especially for communicating messages via an insecure network. Owing to the better properties and higher performance of chaotic theory, the chaotic maps have been introduced into the security schemes, and hence numerous key agreement schemes have been put forward under chaotic-maps. Recently, Xie et al. released an enhanced scheme under Farash et al.'s scheme and claimed their improvements could withstand the security loopholes pointed out in the scheme of Farash et al., i.e., resistance to the off-line password guessing and user impersonation attacks. Nevertheless, through our careful analysis, the improvements were released by Xie et al. still could not solve the problems troubled in Farash et al‥ Besides, Xie et al.'s improvements failed to achieve the user anonymity and the session key security. With the purpose of eliminating the security risks of the scheme of Xie et al., we design an anonymous password-based three-party authenticated key agreement under chaotic maps. Both the formal analysis and the formal security verification using AVISPA are presented. Also, BAN logic is used to show the correctness of the enhancements. Furthermore, we also demonstrate that the design thwarts most of the common attacks. We also make a comparison between the recent chaotic-maps based schemes and our enhancements in terms of performance.

  5. An Extended Chaotic Maps-Based Three-Party Password-Authenticated Key Agreement with User Anonymity

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Zhang, Hao; Yang, Yixian

    2016-01-01

    User anonymity is one of the key security features of an authenticated key agreement especially for communicating messages via an insecure network. Owing to the better properties and higher performance of chaotic theory, the chaotic maps have been introduced into the security schemes, and hence numerous key agreement schemes have been put forward under chaotic-maps. Recently, Xie et al. released an enhanced scheme under Farash et al.’s scheme and claimed their improvements could withstand the security loopholes pointed out in the scheme of Farash et al., i.e., resistance to the off-line password guessing and user impersonation attacks. Nevertheless, through our careful analysis, the improvements were released by Xie et al. still could not solve the problems troubled in Farash et al‥ Besides, Xie et al.’s improvements failed to achieve the user anonymity and the session key security. With the purpose of eliminating the security risks of the scheme of Xie et al., we design an anonymous password-based three-party authenticated key agreement under chaotic maps. Both the formal analysis and the formal security verification using AVISPA are presented. Also, BAN logic is used to show the correctness of the enhancements. Furthermore, we also demonstrate that the design thwarts most of the common attacks. We also make a comparison between the recent chaotic-maps based schemes and our enhancements in terms of performance. PMID:27101305

  6. Distributed Password Cracking

    DTIC Science & Technology

    2009-12-01

    conduit to this significant source of processing power and John the Ripper is the key. BOINC is a distributed data processing system that...processed without changing significant portions of the structure. John the Ripper is a password cracking program that takes a password file and...strength of their password security policy. This thesis goes into detail on the inner workings of BOINC, John the Ripper , and the merger of the two

  7. Simple quantum password checking

    NASA Astrophysics Data System (ADS)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2015-06-01

    We present a quantum password checking protocol where secrecy is protected by the laws of quantum mechanics. The passwords are encoded in quantum systems that can be compared but have a dimension too small to allow reading the encoded bits. We study the protocol under different replay attacks and show it is robust even for poorly chosen passwords. We also describe a possible implementation with conventional optical elements.

  8. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.

  9. An energy-based beam hardening model in tomography.

    PubMed

    Van de Casteele, E; Van Dyck, D; Sijbers, J; Raman, E

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (microCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  10. The Password Problem

    SciTech Connect

    Walkup, Elizabeth

    2016-06-01

    Passwords are an ubiquitous, established part of the Internet today, but they are also a huge security headache. Single sign-on, OAuth, and password managers are some of the solutions to this problem. OAuth is a new, popular method that allows people to use large, common authentication providers for many web applications. However, it comes at the expense of some privacy: OAuth makes users easy to track across websites, applications, and devices. Password managers put the power in the hands of the users, but this vulnerability survey reveals that you have to be extremely careful which program you choose. All in all, password managers are the solution of choice for home users and small organizations, but large companies will probably want to invest in their own SSO solutions.

  11. Enhanced visual secret sharing for graphical password authentication

    NASA Astrophysics Data System (ADS)

    Rajendra, A. B.; Sheshadri, H. S.

    2013-03-01

    Password is a very common and widely used authentication method to provide security to valuable data. It is desirable to make password more memorable and easier for people to use. Traditionally passwords are alphanumeric, numbers & symbols. Some problems of normal password appear like stolen the password, forgetting the password, week password. Study shows that text-based passwords suffer with both security and authentication problems. To overcome these problems, Graphical passwords have been developed. Visual secret sharing (VSS) scheme is a secret sharing scheme in which an image is converted into shares. No information can be revealed by observing any share (Dotted image). The information about the original image will be revealed only after stacking sufficient number of shares (Dotted images). In this paper, we have used XNOR operation instead of OR operation and contrast of the decrypted image is clearer than existing Enhanced Visual Secret Sharing (EVSS) scheme. Also, we are presenting new approach to authenticate graphical password image using 2-out-of-2 EVSS scheme. Which can be used to protect machines with additional security.

  12. Robust and efficient biometrics based password authentication scheme for telecare medicine information systems using extended chaotic maps.

    PubMed

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian

    2015-06-01

    The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.

  13. Bulk-hardened magnets based on Y2Co17

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Zhang, Y.; Hadjipanayis, G. C.

    2001-07-01

    Bulk magnetic hardening of cast Y2Co17-based alloys was systematically studied for different compositions and heat treatments. Additions of Cu and Zr, Hf, or Ti to the Y-Co were found to be essential for developing coercivity. The performance of Y-Co-Cu-Zr magnets can be significantly improved by partial Pr and Fe substitutions for Y and Co, respectively. Anisotropic (Y0.8Pr0.2)11.5Zr2.75Co56.75Fe14Cu15 powders with intrinsic coercivity of 7.8 kOe and energy product of 14.4 MG Oe were obtained after annealing at 900 °C for 15 min and cooling to 200 °C at the rate of 4 °C/min. We also explored the effects of some other rare earths (La, Nd, Gd) and transition metals (Mn, Ni) on the magnetic properties of the Y-Co-Cu-Zr magnets. The phases present and the microstructure were analyzed with x-ray diffraction, thermomagnetic analysis, and transmission electron microscopy. The cellular/lamellar microstructure of the bulk-hardened alloys is similar to that of Sm-Co-Cu-Zr magnets. Among the most noticeable distinctions in the Y-Co-Cu-Zr alloys are a smaller average size of 2:17 cells and a variety of Zr-rich phases, like Zr2Co11 and Zr6Co23. Although the Y2Co17 phase is known to have an "easy-plane" anisotropy, the x-ray diffraction experiments with magnetically oriented powders suggest that in the bulk-hardened Y-Co-Cu-Zr and Y-Co-Cu-Fe-Zr magnets the 2:17 phase has uniaxial anisotropy.

  14. What is the password? Female bark beetles (Scolytinae) grant males access to their galleries based on courtship song.

    PubMed

    Lindeman, Amanda A; Yack, Jayne E

    2015-06-01

    Acoustic signals are commonly used by insects in the context of mating, and signals can vary depending on the stage of interaction between a male and female. While calling songs have been studied extensively, particularly in the Orthoptera, much less is known about courtship songs. One outstanding question is how potential mates are differentiated by their courtship signal characteristics. We examined acoustic courtship signals in a new system, bark beetles (Scolytinae). In the red turpentine beetle (Dendroctonus valens) males produce chirp trains upon approaching the entrance of a female's gallery. We tested the hypotheses that acoustic signals are honest indicators of male condition and that females choose males based on signal characteristics. Males generated two distinct chirp types (simple and interrupted), and variability in their prevalence correlated with an indicator of male quality, body size, with larger males producing significantly more interrupted chirps. Females showed a significant preference for males who produced interrupted chirps, suggesting that females distinguish between males on the basis of their chirp performances. We suggest that interrupted chirps during courtship advertise a male's size and/or motor skills, and function as the proverbial 'passwords' that allow him entry to a female's gallery.

  15. Gamma prime hardened nickel-iron based superalloy

    DOEpatents

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  16. Preventing shoulder-surfing attack with the concept of concealing the password objects' information.

    PubMed

    Ho, Peng Foong; Kam, Yvonne Hwei-Syn; Wee, Mee Chin; Chong, Yu Nam; Por, Lip Yee

    2014-01-01

    Traditionally, picture-based password systems employ password objects (pictures/icons/symbols) as input during an authentication session, thus making them vulnerable to "shoulder-surfing" attack because the visual interface by function is easily observed by others. Recent software-based approaches attempt to minimize this threat by requiring users to enter their passwords indirectly by performing certain mental tasks to derive the indirect password, thus concealing the user's actual password. However, weaknesses in the positioning of distracter and password objects introduce usability and security issues. In this paper, a new method, which conceals information about the password objects as much as possible, is proposed. Besides concealing the password objects and the number of password objects, the proposed method allows both password and distracter objects to be used as the challenge set's input. The correctly entered password appears to be random and can only be derived with the knowledge of the full set of password objects. Therefore, it would be difficult for a shoulder-surfing adversary to identify the user's actual password. Simulation results indicate that the correct input object and its location are random for each challenge set, thus preventing frequency of occurrence analysis attack. User study results show that the proposed method is able to prevent shoulder-surfing attack.

  17. Preventing Shoulder-Surfing Attack with the Concept of Concealing the Password Objects' Information

    PubMed Central

    Ho, Peng Foong; Kam, Yvonne Hwei-Syn; Wee, Mee Chin

    2014-01-01

    Traditionally, picture-based password systems employ password objects (pictures/icons/symbols) as input during an authentication session, thus making them vulnerable to “shoulder-surfing” attack because the visual interface by function is easily observed by others. Recent software-based approaches attempt to minimize this threat by requiring users to enter their passwords indirectly by performing certain mental tasks to derive the indirect password, thus concealing the user's actual password. However, weaknesses in the positioning of distracter and password objects introduce usability and security issues. In this paper, a new method, which conceals information about the password objects as much as possible, is proposed. Besides concealing the password objects and the number of password objects, the proposed method allows both password and distracter objects to be used as the challenge set's input. The correctly entered password appears to be random and can only be derived with the knowledge of the full set of password objects. Therefore, it would be difficult for a shoulder-surfing adversary to identify the user's actual password. Simulation results indicate that the correct input object and its location are random for each challenge set, thus preventing frequency of occurrence analysis attack. User study results show that the proposed method is able to prevent shoulder-surfing attack. PMID:24991649

  18. Implications of What Children Know about Computer Passwords

    ERIC Educational Resources Information Center

    Coggins, Porter E.

    2013-01-01

    The purpose of this article is to present several implications and recommendations regarding what elementary school children, aged 9-12 years, know about computer passwords and what they know about why computer passwords are important. Student knowledge can then be used to make relevant curriculum decisions based in conjunction with applicable…

  19. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp–Davis–Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  20. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm.

    PubMed

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-07

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp-Davis-Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  1. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset

  2. 21 CFR 11.300 - Controls for identification codes/passwords.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Controls for identification codes/passwords. 11... identification codes/passwords. Persons who use electronic signatures based upon use of identification codes in combination with passwords shall employ controls to ensure their security and integrity. Such controls...

  3. 21 CFR 11.300 - Controls for identification codes/passwords.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Controls for identification codes/passwords. 11... identification codes/passwords. Persons who use electronic signatures based upon use of identification codes in combination with passwords shall employ controls to ensure their security and integrity. Such controls...

  4. 27 CFR 73.12 - What security controls must I use for identification codes and passwords?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... must I use for identification codes and passwords? 73.12 Section 73.12 Alcohol, Tobacco Products and... controls must I use for identification codes and passwords? If you use electronic signatures based upon use of identification codes in combination with passwords, you must employ controls to ensure...

  5. 27 CFR 73.12 - What security controls must I use for identification codes and passwords?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... I use for identification codes and passwords? 73.12 Section 73.12 Alcohol, Tobacco Products and... controls must I use for identification codes and passwords? If you use electronic signatures based upon use of identification codes in combination with passwords, you must employ controls to ensure...

  6. 27 CFR 73.12 - What security controls must I use for identification codes and passwords?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... must I use for identification codes and passwords? 73.12 Section 73.12 Alcohol, Tobacco Products and... controls must I use for identification codes and passwords? If you use electronic signatures based upon use of identification codes in combination with passwords, you must employ controls to ensure...

  7. 21 CFR 11.300 - Controls for identification codes/passwords.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Controls for identification codes/passwords. 11... identification codes/passwords. Persons who use electronic signatures based upon use of identification codes in combination with passwords shall employ controls to ensure their security and integrity. Such controls...

  8. 21 CFR 11.300 - Controls for identification codes/passwords.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Controls for identification codes/passwords. 11... identification codes/passwords. Persons who use electronic signatures based upon use of identification codes in combination with passwords shall employ controls to ensure their security and integrity. Such controls...

  9. 27 CFR 73.12 - What security controls must I use for identification codes and passwords?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... must I use for identification codes and passwords? 73.12 Section 73.12 Alcohol, Tobacco Products and... controls must I use for identification codes and passwords? If you use electronic signatures based upon use of identification codes in combination with passwords, you must employ controls to ensure...

  10. 27 CFR 73.12 - What security controls must I use for identification codes and passwords?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... must I use for identification codes and passwords? 73.12 Section 73.12 Alcohol, Tobacco Products and... controls must I use for identification codes and passwords? If you use electronic signatures based upon use of identification codes in combination with passwords, you must employ controls to ensure...

  11. A radiation-hardened SOI-based FPGA

    NASA Astrophysics Data System (ADS)

    Xiaowei, Han; Lihua, Wu; Yan, Zhao; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Chen, Stanley L.; Zhongli, Liu; Fang, Yu; Kai, Zhao

    2011-07-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 × 1011 rad(Si)/s and a neutron fluence immunity of 1 × 1014 n/cm2.

  12. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule.

    PubMed

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-20

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  13. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule

    PubMed Central

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-01-01

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication. PMID:28216657

  14. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule

    NASA Astrophysics Data System (ADS)

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-01

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  15. Advanced Password Tips and Tricks

    MedlinePlus

    ... computer security . Tagged with: computer security , data breach , identity theft , online , online safety , password Blog Topics: Privacy, Identity & Online Security Comments MELVIN COVIL | July 30, 2015 | ...

  16. A remote password authentication scheme for multiserver architecture using neural networks.

    PubMed

    Li, L H; Lin, L C; Hwang, M S

    2001-01-01

    Conventional remote password authentication schemes allow a serviceable server to authenticate the legitimacy of a remote login user. However, these schemes are not used for multiserver architecture environments. We present a remote password authentication scheme for multiserver environments. The password authentication system is a pattern classification system based on an artificial neural network. In this scheme, the users only remember user identity and password numbers to log in to various servers. Users can freely choose their password. Furthermore, the system is not required to maintain a verification table and can withstand the replay attack.

  17. An improved and effective secure password-based authentication and key agreement scheme using smart cards for the telecare medicine information system.

    PubMed

    Das, Ashok Kumar; Bruhadeshwar, Bezawada

    2013-10-01

    Recently Lee and Liu proposed an efficient password based authentication and key agreement scheme using smart card for the telecare medicine information system [J. Med. Syst. (2013) 37:9933]. In this paper, we show that though their scheme is efficient, their scheme still has two security weaknesses such as (1) it has design flaws in authentication phase and (2) it has design flaws in password change phase. In order to withstand these flaws found in Lee-Liu's scheme, we propose an improvement of their scheme. Our improved scheme keeps also the original merits of Lee-Liu's scheme. We show that our scheme is efficient as compared to Lee-Liu's scheme. Further, through the security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our scheme is secure against passive and active attacks.

  18. nPAKE + : A Hierarchical Group Password-Authenticated Key Exchange Protocol Using Different Passwords

    NASA Astrophysics Data System (ADS)

    Wan, Zhiguo; Deng, Robert H.; Bao, Feng; Preneel, Bart

    Although two-party password-authenticated key exchange (PAKE) protocols have been intensively studied in recent years, group PAKE protocols have received little attention. In this paper, we propose a hierarchical group PAKE protocol nPAKE + protocol under the setting where each party shares an independent password with a trusted server. The nPAKE + protocol is a novel combination of the hierarchical key tree structure and the password-based Diffie-Hellman exchange, and hence it achieves substantial gain in computation efficiency. In particular, the computation cost for each client in our protocol is only O(logn). Additionally, the hierarchical feature of nPAKE + enables every subgroup obtains their own subgroup key in the end. We also prove the security of our protocol under the random oracle model and the ideal cipher model.

  19. Analysis of the regimes in the scanner-based laser hardening process

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Lamikiz, A.; Ukar, E.; Calleja, A.; Arrizubieta, J. A.; Lopez de Lacalle, L. N.

    2017-03-01

    Laser hardening is becoming a consolidated process in different industrial sectors such as the automotive industry or in the die and mold industry. The key to ensure the success in this process is to control the surface temperature and the hardened layer thickness. Furthermore, the development of reliable scanners, based on moving optics for guiding high power lasers at extremely fast speeds allows the rapid motion of laser spots, resulting on tailored shapes of swept areas by the laser. If a scanner is used to sweep a determined area, the laser energy density distribution can be adapted by varying parameters such us the scanning speed or laser power inside this area. Despite its advantages in terms of versatility, the use of scanners for the laser hardening process has not yet been introduced in the thermal hardening industry because of the difficulty of the temperature control and possible non-homogeneous hardness thickness layers. In the present work the laser hardening process with scanning optics applied to AISI 1045 steel has been studied, with special emphasis on the influence of the scanning speed and the results derived from its variation, the evolution of the hardened layer thickness and different strategies for the control of the process temperature. For this purpose, the hardened material has been studied by measuring microhardness at different points and the shape of the hardened layer has also been evaluated. All tests have been performed using an experimental setup designed to keep a nominal temperature value using a closed-loop control. The tests results show two different regimes depending on the scanning speed and feed rate values. The experimental results conclusions have been validated by means of thermal simulations at different conditions.

  20. The Effect of Password Management Procedures on the Entropy of User Selected Passwords

    ERIC Educational Resources Information Center

    Enamait, John D.

    2012-01-01

    Maintaining the security of information contained within computer systems poses challenges for users and administrators. Attacks on information systems continue to rise. Specifically, attacks that target user authentication are increasingly popular. These attacks are based on the common perception that traditional alphanumeric passwords are weak…

  1. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  2. A study on user authentication methodology using numeric password and fingerprint biometric information.

    PubMed

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol; Kwak, Jin

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.

  3. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz

    2011-03-15

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  4. Beam hardening correction using iterative total variation (ITV)-based algorithm in CBCT reconstruction

    SciTech Connect

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-07-01

    Recently, beam hardening reduction is required to produce high-quality reconstructions of X-ray cone-beam computed tomography (CBCT) system for medical applications. This paper introduces the iterative total variation (ITV) for filtered-backprojection suffering from the serious beam hardening problems. Feldkamp, Davis, and Kress (FDK) reconstruction algorithm for CBCT system is widely used reconstruction technique. FDK reconstruction algorithm could be realized by generating the weighted projection data, filtering the projection images, and back-projecting the filtered projection data into the volume. However, FDK algorithm suffers from the beam hardening artifacts by X-ray attenuation coefficients. Recently, total variation (TV) method for compressed sensing (CS) has been particularly useful in exploiting the prior knowledge of minimal variation in the X-ray attenuation characteristics across object or human body. But a practical implementation of this method still remains a challenge. The main problem is the iterative nature of solving the TV-based CS formulation, which generally requires multiple iterations of forward and backward projections of a large dataset in clinically or industrially feasible time frame. In this paper, we propose ITV method after FDK reconstruction for reducing the beam hardening artifacts. The beam hardening problems are reduced by the ITV method to promote sparsity inherent in the X-ray attenuation characteristics. (authors)

  5. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  6. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    PubMed Central

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  7. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths.

    PubMed

    Jiao, Z B; Luan, J H; Miller, M K; Yu, C Y; Liu, C T

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  8. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; ...

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  9. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    SciTech Connect

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  10. One-Time Password Generation and Two-Factor Authentication Using Molecules and Light.

    PubMed

    Naren, Gaowa; Li, Shiming; Andréasson, Joakim

    2017-03-02

    Herein, we report the first example of one-time password (OTP) generation and two-factor authentication (2FA) using a molecular approach. OTPs are passwords that are valid for one entry only. For the next login session, a new, different password is generated. This brings the advantage that any undesired recording of a password will not risk the security of the authentication process. Our molecular realization of the OTP generator is based on a photochromic molecular triad where the optical input required to set the triad to the fluorescent form differs depending on the initial isomeric state.

  11. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    SciTech Connect

    Martinez, S.; Ukar, E.; Lamikiz, A.

    2011-01-17

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink.The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part.The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  12. Hall coefficient measurement for residual stress assessment in precipitation hardened IN718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2017-02-01

    We investigated the feasibility of residual stress assessment based on Hall coefficient measurements in precipitation hardened IN718 nickel-base superalloy. As a first step, we studied the influence of microstructural variations on the galvanomagnetic properties of IN718 nickel-base superalloy. We found that the Hall coefficient of IN718 increases from ≈ 8.0×10-11 m3/C in its fully annealed state of 15 HRC Rockwell hardness to ≈ 9.4×10-11 m3/C in its fully hardened state of 45 HRC. We also studied the influence of cold work, i.e., plastic deformation, at room temperature and found that cold work had negligible effect on the Hall coefficient of fully annealed IN718, but significantly reduced it in hardened states of the material. For example, measurements conducted on fully hardened IN718 specimens showed that the Hall coefficient decreased more or less linearly with cold work from its peak value of ≈ 9.4×10-11 m3/C in its intact state to ≈ 9.0×10-11 m3/C in its most deformed state of 22% plastic strain. We also studied the influence of applied stress and found that elastic strain significantly increases the Hall coefficient of IN718 regardless of the state of hardening. The relative sensitivity of the Hall coefficient to elastic strain was measured as a unitless gauge factor K that is defined as the ratio of the relative change of the Hall coefficient ΔRH/RH divided by the axial strain ɛ = σ/E, where σ is the applied uniaxial stress and E is the Young's modulus of the material. We determined that the galvanomagnetic gauge factor of IN718 is κ ≈ 2.6 - 2.9 depending on the hardness level. Besides the fairly high value of the gauge factor, it is important that it is positive, which means that compressive stress in surface-treated components decreases the Hall coefficient in a similar way as plastic deformation does, therefore the unfortunate cancellation that occurs in fully hardened IN718 in the case of electric conductivity measurements will not

  13. Influence of silica-based hybrid material on the gas permeability of hardened cement paste

    NASA Astrophysics Data System (ADS)

    Li, R.; Hou, P.; Xie, N.; Zhou, Z.; Cheng, X.

    2017-03-01

    Surface treatment is one of the most effective ways to elongate the service life of concrete. The surface treatment agents, including organic and inorganic types, have been intensively studied. In this paper, the silica-based hybrid nanocomposite, which take advantages of both organic and inorganic treatment agents, was synthesized and used for surface treatment of hardened cement-based material. The effectiveness of organic and inorganic hybrid nanocomposite was evaluated through investigations on the gas permeability of cement-based materials. The results showed that SiO2/PMHS hybrid nanocomposite can greatly decrease the gas transport properties of hardened cement-based materials and has a great potential for surface treatment of cementitious materials.

  14. The console password feature for DEC workstations

    SciTech Connect

    Van Lehn, A.L.

    1993-10-01

    New VAXstations and all DECstations offer a ``hardware`` password feature that, when enabled, restricts unauthorized access to your system console terminal when turned on or restarted. VAXstation 3100s shipped after July, 1989 offer this feature. A description of this feature should be part of the Hardware User Guide for your workstation; however, some of the early systems did not document this security enhancement. This document is based on the author`s investigation as well as information provided by the Digital Equipment Corporation.

  15. Final report on LDRD project 52722 : radiation hardened optoelectronic components for space-based applications.

    SciTech Connect

    Hargett, Terry W.; Serkland, Darwin Keith; Blansett, Ethan L.; Geib, Kent Martin; Sullivan, Charles Thomas; Hawkins, Samuel D.; Wrobel, Theodore Frank; Keeler, Gordon Arthur; Klem, John Frederick; Medrano, Melissa R.; Peake, Gregory Merwin; Karpen, Gary D.; Montano, Victoria A.

    2003-12-01

    This report describes the research accomplishments achieved under the LDRD Project 'Radiation Hardened Optoelectronic Components for Space-Based Applications.' The aim of this LDRD has been to investigate the radiation hardness of vertical-cavity surface-emitting lasers (VCSELs) and photodiodes by looking at both the effects of total dose and of single-event upsets on the electrical and optical characteristics of VCSELs and photodiodes. These investigations were intended to provide guidance for the eventual integration of radiation hardened VCSELs and photodiodes with rad-hard driver and receiver electronics from an external vendor for space applications. During this one-year project, we have fabricated GaAs-based VCSELs and photodiodes, investigated ionization-induced transient effects due to high-energy protons, and measured the degradation of performance from both high-energy protons and neutrons.

  16. Weaknesses and drawbacks of a password authentication scheme using neural networks for multiserver architecture.

    PubMed

    Ku, Wei-Chi

    2005-07-01

    In 2001, Li et al. proposed a password authentication scheme for the multiserver architecture by using a pattern classification system based on neural networks. Herein, we demonstrate that Li et al's scheme is vulnerable to an offline password guessing attack and a privileged insider's attack, and is not reparable. Additionally, we show that Li et al.'s scheme has several drawbacks in practice.

  17. Numerical simulation of induction hardening of a cylindrical part based on multi-physics coupling

    NASA Astrophysics Data System (ADS)

    Tong, Daming; Gu, Jianfeng; Totten, George Edward

    2017-04-01

    An induction hardening process was simulated based on an electromagnetic-thermal-transformation coupled numerical model. Calculation of the microstructure fraction was introduced using a coupled electromagnetic-thermal field during heating and the temperature field of the subsequent cooling process. The isoconversional method was used to formulate the austenitization process during heating, model parameters were determined by continuous heating dilatometric curves, and JMAK and K–M equations were adopted to calculate the fraction of new phases formed during cooling. The temperature and microstructure evolution in a cylindrical part of JIS-SCM440 steel were simulated during the induction hardening process and the simulated temperature and final microstructure distribution fit well with experimental data. Simulation results also showed that the free cooling prior to spray quenching could be optimized to decrease the temperature gradient in the surface layer to avoid decomposition of austenite into non-martensite microstructure.

  18. Modeling of Directional Hardening Based on Non-Associated Flow for Sheet Forming

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong Whan; Stoughton, Thomas B.

    2010-06-01

    This work describes a material model for sheet metal forming that takes into account anisotropic hardening under conditions of proportional loading. Conventional isotropic and kinematic hardening models constrain the shape of the yield function to remain fixed throughout plastic deformation, which is not consistent with most test data from aluminum alloys obtained under proportional loading. Conventional hardening models are shown to introduce systemic errors in stresses in different loading conditions at low and high levels of strain that tend to amplify the effect of stress miscalculation on the prediction of springback. A new model is described in which four stress-strain functions are explicitly integrated into the yield criterion in closed form solution. The model is based on non-associated flow so that this integration does not affect the accuracy of the plastic strain components. The model is expected to lead to a significant improvement in stress prediction under conditions dominated by proportional loading, and this is expected to directly improve the accuracy of springback prediction for these processes.

  19. A Generalized Anisotropic Hardening Rule Based on the Mroz Multi-Yield-Surface Model for Pressure Insensitive and Sensitive Materials

    SciTech Connect

    Choi, Kyoo Sil; Pan, Jwo

    2009-07-27

    In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model is derived. The evolution equation for the active yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function. As a special case, detailed incremental constitutive relations are derived for the Mises yield function. The closed-form solutions for one-dimensional stress-plastic strain curves are also derived and plotted for the Mises materials under cyclic loading conditions. The stress-plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. A user material subroutine based on the Mises yield function, the anisotropic hardening rule and the constitutive relations was then written and implemented into ABAQUS. Computations were conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule and the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress-strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress-strain data for the nonlinear kinematic hardening rule.

  20. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    PubMed

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  1. A new approach for beam hardening correction based on the local spectrum distributions

    NASA Astrophysics Data System (ADS)

    Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza

    2015-09-01

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called "beam hardening". The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile.

  2. PASSWORD: Organizing Exits from the Resource Room.

    ERIC Educational Resources Information Center

    Johnson, Linda K.

    1990-01-01

    The article offers a classroom management technique, PASSWORD, that facilitates the smooth transition of handicapped students from the resource room to the regular class. Students are each asked a "code question," usually a review question, the answer to which is the password for leaving the resource room. (DB)

  3. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  4. Novel masked mercaptans based on thiolacetic acid/diallyl bisphenol a adducts as hardeners for epoxy adhesive systems

    SciTech Connect

    Lehmann, H.; Zahir, S.A.

    1995-12-01

    Epoxy resin formulations based on these masked mercaptans show adhesive properties equivalent to epoxy resin formulations cured with classical hardeners such as dicyandiamide. In addition the use of the masked mercaptans as an epoxy resin hardener leads to adhesive joints which show outstanding resistance to moisture. Thus Al/Al joints cured with a clinical epoxy formulation based on dicyandiamide as hardener (AV 8) failed in 30 days after exposure to water at (90{degrees}C) for 90 days. We believe that chemi-adsorption at the interface between metal/adhesive/metal plays an important role in giving this outstanding hot water resistance. This paper discusses the synthesis, the mechanism of cure with epoxide resins and the adhesive properties of these novel masked mercaptans.

  5. Low beryllium content Zr-based bulk metallic glass composite with plasticity and work hardenability

    SciTech Connect

    Zheng, Q. E-mail: dujuan@nimte.ac.cn; Du, J. E-mail: dujuan@nimte.ac.cn

    2014-01-28

    A modified Zr-based bulk metallic glass matrix composite Zr{sub 47.67}Cu{sub 40}Ti{sub 3.66}Ni{sub 2.66}Be{sub 6} has been produced by increasing the contents of elements of Zr and Cu with higher Poisson ratio and reducing the contents of Ti, Ni, and Be elements with lower Poisson ratio based on famous metallic glass former Vitreloy 1. A compressive yielding strength of 1804 MPa, fracture strength of 1938 MPa and 3.5% plastic strain was obtained for obtained metallic glass composite. Also, work-hardening behavior was observed during compressive experiment which was ascribed to the interaction of the in situ precipitated CuZr phase and shear bands.

  6. Guess Again (and Again and Again): Measuring Password Strength by Simulating Password-Cracking Algorithms

    DTIC Science & Technology

    2011-08-31

    1996-2010. [15] DOWNS, J. S., HOLBROOK, M. B., SHENG, S., AND CRANOR, L. F. Are your participants gaming the system ?: screening mechanical turk...in computer systems , despite significant advancement in attackers? capabilities to perform password cracking. In response to this threat, password...dominant authentication method in computer systems , despite significant ad- vancement in attackers’ capabilities to perform password cracking. In response to

  7. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  8. A voice password system for access security

    SciTech Connect

    Birnbaum, M.; Cohen, L.A.; Welsh, F.X.

    1986-09-01

    A voice password system for access security using speaker verification technology has been designed for use over dial-up telephone lines. The voice password system (VPS) can provide secure access to telephone networks, computers, rooms, and buildings. It also has application in office automation systems, electric funds transfer, and ''smart cards'' (interactive computers embedded in credit-card-sized packages). As increasing attention is focused on access security in the public, private, and government sectors, the voice password system can provide a timely solution to the security dilemma. The VPS uses modes of communication available to almost everyone (the human voice and the telephone). A user calls the VPS, enters his or her identification number (ID) by touch-tone telephone, and then speaks a password. This is usually a phrase or a sentence of about seven syllables. On initial calls, the VPS creates a model of the user's voice, called a reference template, and labels it with the caller's unique user ID. To gain access later, the user calls the system, enters the proper user ID, and speaks the password phrase. The VPS compares the user's stored reference template with the spoken password and produces a distance score.

  9. An IO block array in a radiation-hardened SOI SRAM-based FPGA

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Lihua, Wu; Xiaowei, Han; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Kai, Zhao; Chen, Stanley L.; Fang, Yu; Zhongli, Liu

    2012-01-01

    We present an input/output block (IOB) array used in the radiation-hardened SRAM-based field-programmable gate array (FPGA) VS1000, which is designed and fabricated with a 0.5 μm partially depleted silicon-on-insulator (SOI) logic process at the CETC 58th Institute. Corresponding with the characteristics of the FPGA, each IOB includes a local routing pool and two IO cells composed of a signal path circuit, configurable input/output buffers and an ESD protection network. A boundary-scan path circuit can be used between the programmable buffers and the input/output circuit or as a transparent circuit when the IOB is applied in different modes. Programmable IO buffers can be used at TTL/CMOS standard levels. The local routing pool enhances the flexibility and routability of the connection between the IOB array and the core logic. Radiation-hardened designs, including A-type and H-type body-tied transistors and special D-type registers, improve the anti-radiation performance. The ESD protection network, which provides a high-impulse discharge path on a pad, prevents the breakdown of the core logic caused by the immense current. These design strategies facilitate the design of FPGAs with different capacities or architectures to form a series of FPGAs. The functionality and performance of the IOB array is proved after a functional test. The radiation test indicates that the proposed VS1000 chip with an IOB array has a total dose tolerance of 100 krad(Si), a dose survivability rate of 1.5 × 1011 rad(Si)/s, and a neutron fluence immunity of 1 × 1014 n/cm2.

  10. Non-radiation hardened microprocessors in space-based remote sensing systems

    NASA Astrophysics Data System (ADS)

    DeCoursey, R.; Melton, Ryan; Estes, Robert R., Jr.

    2006-09-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. Figure 1 shows the ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean (see figure 1) the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than

  11. An efficient biometric and password-based remote user authentication using smart card for Telecare Medical Information Systems in multi-server environment.

    PubMed

    Maitra, Tanmoy; Giri, Debasis

    2014-12-01

    The medical organizations have introduced Telecare Medical Information System (TMIS) to provide a reliable facility by which a patient who is unable to go to a doctor in critical or urgent period, can communicate to a doctor through a medical server via internet from home. An authentication mechanism is needed in TMIS to hide the secret information of both parties, namely a server and a patient. Recent research includes patient's biometric information as well as password to design a remote user authentication scheme that enhances the security level. In a single server environment, one server is responsible for providing services to all the authorized remote patients. However, the problem arises if a patient wishes to access several branch servers, he/she needs to register to the branch servers individually. In 2014, Chuang and Chen proposed an remote user authentication scheme for multi-server environment. In this paper, we have shown that in their scheme, an non-register adversary can successfully logged-in into the system as a valid patient. To resist the weaknesses, we have proposed an authentication scheme for TMIS in multi-server environment where the patients can register to a root telecare server called registration center (RC) in one time to get services from all the telecare branch servers through their registered smart card. Security analysis and comparison shows that our proposed scheme provides better security with low computational and communication cost.

  12. A Modeling Investigation of Thermal and Strain Induced Recovery and Nonlinear Hardening in Potential Based Viscoplasticity

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.

    1993-01-01

    Specific forms for both the Gibb's and the complementary dissipation potentials were chosen such that a complete potential based multiaxial, isothermal, viscoplastic model was obtained. This model in general possesses three internal state variables (two scalars associated with dislocation density and one tensor associated with dislocation motion) both thermal and dynamic recovery mechanisms, and nonlinear kinematic hardening. This general model, although possessing associated flow and evolutionary laws, is shown to emulate three distinct classes of theories found in the literature, by modification of the driving threshold function F. A parametric study was performed on a specialized nondimensional multiaxial form containing only a single tensorial internal state variable (i.e., internal stress). The study was conducted with the idea of examining the impact of including a strain-induced recovery mechanism and the compliance operator, derived from the Gibb's potential, on the uniaxial and multiaxial response. One important finding was that inclusion of strain recovery provided the needed flexibility in modeling stress-strain and creep response of metals at low homologous temperatures, without adversely affecting the high temperature response. Furthermore, for nonproportional loading paths, the inclusion of the compliance operator had a significant influence on the multiaxial response, but had no influence on either uniaxial or proportional load histories.

  13. Simpler and Safer: One Password Opens Many Online Doors

    ERIC Educational Resources Information Center

    Carnevale, Dan

    2007-01-01

    Going online nowadays often requires more log-ins and passwords than most people can remember. Faculty and staff members will sometimes write their various passwords on yellow sticky notes and post them on their computer monitors--leaving confidential data wide open to any passer-by. What if there were just one password? A single log-on for e-mail…

  14. Hardness-based plasticity and fracture model for quench-hardenable boron steel (22MnB5)

    SciTech Connect

    Greve, L. Medricky, M. Andres, M.; Eller, T. K.

    2013-12-16

    A comprehensive strain hardening and fracture characterization of different grades of boron steel blanks has been performed, providing the foundation for the implementation into the modular material model (MMM) framework developed by Volkswagen Group Research for an explicit crash code. Due to the introduction of hardness-based interpolation rules for the characterized main grades, the hardening and fracture behavior is solely described by the underlying Vickers hardness. In other words, knowledge of the hardness distribution within a hot-formed component is enough to set up the newly developed computational model. The hardness distribution can be easily introduced via an experimentally measured hardness curve or via hardness mapping from a corresponding hot-forming simulation. For industrial application using rather coarse and computationally inexpensive shell element meshes, the user material model has been extended by a necking/post-necking model with reduced mesh-dependency as an additional failure mode. The present paper mainly addresses the necking/post-necking model.

  15. Cyclic uniaxial and biaxial hardening of type 304 stainless steel modeled by the viscoplasticity theory based on overstress

    NASA Technical Reports Server (NTRS)

    Yao, David; Krempl, Erhard

    1988-01-01

    The isotropic theory of viscoplasticity based on overstress does not use a yield surface or a loading and unloading criterion. The inelastic strain rate depends on overstress, the difference between the stress and the equilibrium stress, and is assumed to be rate dependent. Special attention is paid to the modeling of elastic regions. For the modeling of cyclic hardening, such as observed in annealed Type 304 stainless steel, and additional growth law for a scalar quantity which represents the rate independent asymptotic value of the equilibrium stress is added. It is made to increase with inelastic deformation using a new scalar measure which differentiates between nonproportional and proportional loading. The theory is applied to correlate uniaxial data under two step amplitude loading including the effect of further hardening at the high amplitude and proportional and nonproportional cyclic loadings. Results are compared with corresponding experiments.

  16. Computation-Based Analysis of the Methods of Hardening of Gears from Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Semenov, M. Yu.; Gavrilin, I. N.; Ryzhova, M. Yu.

    2014-05-01

    A mathematical model is developed for estimating the contact fatigue of gears subjected to various kinds of thermochemical treatment. The model includes design of the contact stress state and of the loading capacity of the diffusion layer. The ranges of application of vacuum carburizing, vacuum carbonitriding, and ion nitriding for hardening gears with various geometrical parameters are determined.

  17. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.

    PubMed

    Park, Hyoung Suk; Hwang, Dosik; Seo, Jin Keun

    2016-02-01

    This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts.

  18. Goal Structured Notation in a Radiation Hardening Safety Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, Arthur; Austin, Rebekah; Reed, Robert; Karsai, Gabor; Mahadevan, Nag; Sierawski, Brian; Evans, John; LaBel, Ken

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structured Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  19. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    PubMed

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus.

  20. [Application of password manager software in health care].

    PubMed

    Ködmön, József

    2016-12-01

    When using multiple IT systems, handling of passwords in a secure manner means a potential source of problem. The most frequent issues are choosing the appropriate length and complexity, and then remembering the strong passwords. Password manager software provides a good solution for this problem, while greatly increasing the security of sensitive medical data. This article introduces a password manager software and provides basic information of the application. It also discusses how to select a really secure password manager software and suggests a practical application to efficient, safe and comfortable use for health care. Orv. Hetil., 2016, 157(52), 2066-2073.

  1. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  2. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Memon, Fareed Ahmed; Nuruddin, Muhd Fadhil; Shafiq, Nasir

    2013-02-01

    The effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete (SCGC) was investigated in this paper. The work focused on the concrete mixes with a fixed water-to-geopolymer solid (W/Gs) ratio of 0.33 by mass and a constant total binder content of 400 kg/m3. The mass fractions of silica fume that replaced fly ash in this research were 0wt%, 5wt%, 10wt%, and 15wt%. The workability-related fresh properties of SCGC were assessed through slump flow, V-funnel, and L-box test methods. Hardened concrete tests were limited to compressive, splitting tensile and flexural strengths, all of which were measured at the age of 1, 7, and 28 d after 48-h oven curing. The results indicate that the addition of silica fume as a partial replacement of fly ash results in the loss of workability; nevertheless, the mechanical properties of hardened SCGC are significantly improved by incorporating silica fume, especially up to 10wt%. Applying this percentage of silica fume results in 4.3% reduction in the slump flow; however, it increases the compressive strength by 6.9%, tensile strength by 12.8% and flexural strength by 11.5%.

  3. Specific Hardening Function Definition and Characterization of a Multimechanism Generalized Potential-based Viscoelastoplasticity Model

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.

    2003-01-01

    Given the previous complete-potential structure framework together with the notion of strain- and stress-partitioning in terms of separate contributions of several submechanisms (viscoelastic and viscoplastic) to the thermodynamic functions (stored energy and dissipation) a detailed viscoelastoplastic multimechanism characterization of a specific hardening functional form of the model is presented and discussed. TIMETAL 21S is the material of choice as a comprehensive test matrix, including creep, relaxation, constant strain-rate tension tests, etc. are available at various temperatures. Discussion of these correlations tests, together with comparisons to several other experimental results, are given to assess the performance and predictive capabilities of the present model particularly with regard to the notion of hardening saturation as well as the interaction of multiplicity of dissipative (reversible/irreversible) mechanisms.

  4. Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, Arthur; Austin, Rebekah; Evans, John; Mahadevan, Nag; Karsai, Gabor; Sierawski, Brian; LaBel, Ken; Reed, Robert; Schrimpf, Ron

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structuring Notation (GSN) for spacecraft containing commercial-off-the-shelf (COTS) parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  5. Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, A.; Austin, R.; Evans, J.; Mahadevan, N.; Karsai, G.; Sierawski, B.; LaBel, K.; Reed, R.; Schrimpf, R.

    2016-01-01

    A systematic approach is presented to constructing a radiation assurance case using Goal Structuring Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat in January 2017. A custom software language for development of a GSN assurance case is under development at Vanderbilt. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.

  6. Cooling Capacity Optimization: Calculation of Hardening Power of Aqueous Solution Based on Poly(N-Vinyl-2-Pyrrolidone)

    NASA Astrophysics Data System (ADS)

    Koudil, Z.; Ikkene, R.; Mouzali, M.

    2013-11-01

    Polymer quenchants are becoming increasingly popular as substitutes for traditional quenching media in hardening metallic alloys. Water-soluble organic polymer offers a number of environmental, economic, and technical advantages, as well as eliminating the quench-oil fire hazard. The close control of polymer quenchant solutions is essential for their successful applications, in order to avoid the defects of structure of steels, such as shrinkage cracks and deformations. The aim of the present paper is to evaluate and optimize the experimental parameters of polymer quenching bath which gives the best behavior quenching process and homogeneous microstructure of the final work-piece. This study has been carried out on water-soluble polymer based on poly(N-vinyl-2-pyrrolidone) PVP K30, which does not exhibit inverse solubility phenomena in water. The studied parameters include polymer concentration, bath temperature, and agitation speed. Evaluation of cooling power and hardening performance has been measured with IVF SmartQuench apparatus, using standard ISO Inconel-600 alloy. The original numerical evaluation method has been introduced in the computation software called SQ Integra. The heat transfer coefficients were used as input data for calculation of microstructural constituents and the hardness profile of cylindrical sample.

  7. In-situ hardening hydroxyapatite-based scaffold for bone repair.

    PubMed

    Zhang, Yu; Xu, Hockin H K; Takagi, Shozo; Chow, Laurence C

    2006-05-01

    Musculoskeletal conditions are becoming a major health concern because of an aging population and sports- and traffic-related injuries. While sintered hydroxyapatite implants require machining, calcium phosphate cement (CPC) bone repair material is moldable, self-hardens in situ, and has excellent osteoconductivity. In the present work, new approaches for developing strong and macroporous scaffolds of CPC were tested. Relationships were determined between scaffold porosity and strength, elastic modulus and fracture toughness. A biocompatible and biodegradable polymer (chitosan) and a water-soluble porogen (mannitol) were incorporated into CPC: Chitosan to make the material stronger, fast-setting and anti-washout; and mannitol to create macropores. Flexural strength, elastic modulus, and fracture toughness were measured as functions of mannitol mass fraction in CPC from 0% to 75%. After mannitol dissolution in a physiological solution, macropores were formed in CPC in the shapes of the original entrapped mannitol crystals, with diameters of 50 microm to 200 microm for cell infiltration and bone ingrowth. The resulting porosity in CPC ranged from 34.4% to 83.3% volume fraction. At 70.2% porosity, the hydroxyapatite scaffold possessed flexural strength (mean +/- sd; n = 6) of (2.5 +/- 0.2) MPa and elastic modulus of (0.71 +/- 0.10) GPa. These values were within the range for sintered porous hydroxyapatite and cancellous bone. Predictive equations were established by regression power-law fitting to the measured data (R(2) > 0.98) that described the relationships between scaffold porosity and strength, elastic modulus and fracture toughness. In conclusion, a new graft composition was developed that could be delivered during surgery in the form of a paste to harden in situ in the bone site to form macroporous hydroxyapatite. Compared to conventional CPC without macropores, the increased macroporosity of the new apatite scaffold may help facilitate implant fixation and

  8. Password-only authenticated three-party key exchange with provable security in the standard model.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon; Won, Dongho

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.

  9. Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model

    PubMed Central

    Nam, Junghyun; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks. PMID:24977229

  10. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  11. Industrial Hardening Demonstration.

    DTIC Science & Technology

    1980-09-01

    less severe conditions than thermal cracking (850’ - 950°F and 10 to 20 psi). Zeolitic or molecular sieve- base catalysts are used. Catalytic reforming...with Potential Industrial Hardening A-1 Participants B Post-Attack Petroleum Refining (and Production) B-1 from Crude Oil V List of Figures Number Page...the Key Worker Shelter 116 viii B-1 Proportions of the Products Obtained by Distillation B-2 of Six Crude Oils B-2 Generalized Flow Chart of the

  12. A secure chaotic maps and smart cards based password authentication and key agreement scheme with user anonymity for telecare medicine information systems.

    PubMed

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao

    2014-09-01

    Telecare medicine information system (TMIS) is widely used for providing a convenient and efficient communicating platform between patients at home and physicians at medical centers or home health care (HHC) organizations. To ensure patient privacy, in 2013, Hao et al. proposed a chaotic map based authentication scheme with user anonymity for TMIS. Later, Lee showed that Hao et al.'s scheme is in no provision for providing fairness in session key establishment and gave an efficient user authentication and key agreement scheme using smart cards, in which only few hashing and Chebyshev chaotic map operations are required. In addition, Jiang et al. discussed that Hao et al.'s scheme can not resist stolen smart card attack and they further presented an improved scheme which attempts to repair the security pitfalls found in Hao et al.'s scheme. In this paper, we found that both Lee's and Jiang et al.'s authentication schemes have a serious security problem in that a registered user's secret parameters may be intentionally exposed to many non-registered users and this problem causing the service misuse attack. Therefore, we propose a slight modification on Lee's scheme to prevent the shortcomings. Compared with previous schemes, our improved scheme not only inherits the advantages of Lee's and Jiang et al.'s authentication schemes for TMIS but also remedies the serious security weakness of not being able to withstand service misuse attack.

  13. The Use of Passwords for Controlled Access to Computer Resources. Computer Science & Technology.

    ERIC Educational Resources Information Center

    Wood, Helen M.

    This paper considers the generation of passwords and their effective application to the problem of controlling access to computer resources. After describing the need for and uses of passwords, password schemes are categorized according to selection technique, lifetime, physical characteristics, and information content. Password protection, both…

  14. Group Management Method of RFID Passwords for Privacy Protection

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Kuwana, Toshiyuki; Taniguchi, Yoji; Komoda, Norihisa

    When RFID tag is used in the whole item lifecycle including a consumer scene or a recycle scene, we have to protect consumer privacy in the state that RFID tag is stuck on an item. We use the low cost RFID tag that has the access control function using a password, and we propose a method which manages RFID tags by passwords identical to each group of RFID tags. This proposal improves safety of RFID system because the proposal method is able to reduce the traceability for a RFID tag, and hold down the influence for disclosure of RFID passwords in the both scenes.

  15. Cryptanalysis of Password Protection of Oracle Database Management System (DBMS)

    NASA Astrophysics Data System (ADS)

    Koishibayev, Timur; Umarova, Zhanat

    2016-04-01

    This article discusses the currently available encryption algorithms in the Oracle database, also the proposed upgraded encryption algorithm, which consists of 4 steps. In conclusion we make an analysis of password encryption of Oracle Database.

  16. Extended Password Recovery Attacks against APOP, SIP, and Digest Authentication

    NASA Astrophysics Data System (ADS)

    Sasaki, Yu; Wang, Lei; Ohta, Kazuo; Kunihiro, Noboru

    In this paper, we propose password recovery attacks against challenge-response authentication protocols. Our attacks use a message difference for a MD5 collision attack proposed in IEICE 2008. First, we show how to efficiently find a message pair that collides with the above message difference. Second, we show that a password used in authenticated post office protocol (APOP) can be recovered practically. We also show that the password recovery attack can be applied to a session initiation protocol (SIP) and digest authentication. Our attack can recover up to the first 31 password characters in a short time and up to the first 60 characters faster than the naive search method. We have implemented our attack and confirmed that 31 characters can be successfully recovered.

  17. Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA

    NASA Astrophysics Data System (ADS)

    Vijayan, D.; Rao, V. S.

    2014-04-01

    Age-hardenable aluminum alloys, primarily used in the aerospace, automobile and marine industries (2×××, 6××× and 7×××), can be welded using solid-state welding techniques. Friction stir welding is an emerging solid-state welding technique used to join both similar and dissimilar materials. The strength of a friction stir welded joint depends on the joining process parameters. Therefore, a combination of the statistical techniques of a response surface methodology based on a grey relational analysis coupled to a principal component analysis was proposed to select the process parameters suitable for joining AA 2024 and AA 6061 aluminum alloys via friction stir welding. The significant process parameters, such as rotational speed, welding speed, axial load and pin shapes (PS) were considered during the statistical experiment. The results indicate that the square PS plays a vital role and yields an ultimate tensile strength of 141 MPa for an elongation of 12 % versus cylinder and taper pin profiles. The root cause for joint strength loss and fracture mode was analyzed using scanning electron microscopy. Severe material flow during macro defects, such as pin holes and porosity, degrades the joint strength by approximately 44 % for AA 2024 and 51 % for AA 6061 fabricated FS-welded aluminum alloys relative to the base material. The results of this approach are useful for accurately controlling the response and optimize the process parameters.

  18. Hardening of the arteries

    MedlinePlus

    Atherosclerosis; Arteriosclerosis; Plaque buildup - arteries; Hyperlipidemia - atherosclerosis; Cholesterol - atherosclerosis ... cause of heart attack and stroke. High blood cholesterol levels can cause hardening of the arteries at ...

  19. A combined parametric quadratic programming and precise integration method based dynamic analysis of elastic-plastic hardening/softening problems

    NASA Astrophysics Data System (ADS)

    Hongwu, Zhang; Xinwei, Zhang

    2002-12-01

    The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.

  20. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra.

    PubMed

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-03-09

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra.

  1. Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft

    NASA Technical Reports Server (NTRS)

    Witulski, A.; Austin, R.; Evans, J.; Mahadevan, N.; Karsai, G.; Sierawski, B.; LaBel, K.; Reed, R.

    2016-01-01

    The attached presentation is a summary of how mission assurance is supported by model-based representations of spacecraft systems that can define sub-system functionality and interfacing, reliability parameters, as well as detailing a new paradigm for assurance, a model-centric and not document-centric process.

  2. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  3. A Secure Construction for Threshold Anonymous Password-Authenticated Key Exchange

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    At Indocrypt 2005, Viet et al., [21] have proposed an anonymous password-authenticated key exchange (PAKE) protocol and its threshold construction both of which are designed for client's password-based authentication and anonymity against a passive server, who does not deviate the protocol. In this paper, we first point out that their threshold construction is completely insecure against off-line dictionary attacks. For the threshold t > 1, we propose a secure threshold anonymous PAKE (for short, TAP) protocol with the number of clients n upper-bounded, such that n\\leq 2 \\sqrt{N-1} -1, where N is a dictionary size of passwords. We rigorously prove that the TAP protocol has semantic security of session keys in the random oracle model by showing the reduction to the computational Diffie-Hellman problem. In addition, the TAP protocol provides unconditional anonymity against a passive server. For the threshold t=1, we propose an efficient anonymous PAKE protocol that significantly improves efficiency in terms of computation costs and communication bandwidth compared to the original (not threshold) anonymous PAKE protocol [21].

  4. Study of solid-solution hardening in binary aluminium-based alloys

    NASA Astrophysics Data System (ADS)

    Draissia, Mohamed; Debili, Mohamed-Yacine

    2005-09-01

    Solid-solution formation in binary aluminium-based alloys is due essentially to the combined effects of the size and valence of solvent and solute atoms, as expected by the four Hume-Rothery rules. The lattice parameter of aluminium in the solid solution of the sputtered Al-Fe films is [Al-a (Å)=4.052-6.6×10-3Y]. The increasing and decreasing evolution of the lattice parameter of copper [Cu-a (Å)=3.612+1.8×10-3Z] and aluminium [Al-a (Å)=4.048-1.6×10-3X] in the sputtered Al-1.8 to 92.5 at. % Cu films is a result of the difference in size between the aluminium and copper atoms. The low solubility of copper in aluminium (<1.8 at % Cu) is due to the valences of solvent and solute atoms in contrast with other sputtered films prepared under similar conditions, such as Al-Mg (20 at. % Mg), Al-Ti (27 at. % Ti), Al-Cr (5at. % Cr) and Al-Fe (5.5 at. % Fe) where the solubility is due to the difference in size.

  5. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  6. An Efficient Password Authenticated Key Exchange Protocol with Bilinear Parings

    NASA Astrophysics Data System (ADS)

    Ding, Xiaofei; Wei, Fushan; Ma, Chuangui; Chen, Shumin

    In recent years, many password authenticated key exchange (PAKE) protocols have been proposed. However, many of them have been broken or have no security proof. In this paper, we propose an efficient password authenticated key exchange protocol using bilinear pairings. Compared with previous PAKE protocol using bilinear pairings, our protocol is quite efficient both in communication cost and computational cost. Moreover, this paper proves that the novel protocol is forward secrecy under the Bilinear Diffie-Hellman (BDH) assumption in the random oracle model.

  7. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  8. Hardening: Australian for Transformation

    DTIC Science & Technology

    2004-01-01

    ADF towards homeland defense. For further details, see Jeffrey Grey. A Military History of Australia. Melbourne, Australia, Cambridge University...is a simplified explanation of the hardene d force structure proposed by FLW. The hardened concept encompasses other aspects that enhance Army...standardized with three rifle companies. A 196 Leahy “ A Land Force for the Future: The Australian Army in the Early 21st Century.” 2003: 19. 197 See Monk, Paul

  9. The secondary hardening phenomenon in strain-hardened MP35N alloy

    SciTech Connect

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-10-09

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work.

  10. How secure is your information system? An investigation into actual healthcare worker password practices.

    PubMed

    Cazier, Joseph A; Medlin, B Dawn

    2006-09-27

    For most healthcare information systems, passwords are the first line of defense in keeping patient and administrative records private and secure. However, this defense is only as strong as the passwords employees chose to use. A weak or easily guessed password is like an open door to the medical records room, allowing unauthorized access to sensitive information. In this paper, we present the results of a study of actual healthcare workers' password practices. In general, the vast majority of these passwords have significant security problems on several dimensions. Implications for healthcare professionals are discussed.

  11. How Secure Is Your Information System? An Investigation into Actual Healthcare Worker Password Practices

    PubMed Central

    Cazier, Joseph A; Medlin, B. Dawn

    2006-01-01

    For most healthcare information systems, passwords are the first line of defense in keeping patient and administrative records private and secure. However, this defense is only as strong as the passwords employees chose to use. A weak or easily guessed password is like an open door to the medical records room, allowing unauthorized access to sensitive information. In this paper, we present the results of a study of actual healthcare workers' password practices. In general, the vast majority of these passwords have significant security problems on several dimensions. Implications for healthcare professionals are discussed. PMID:18066366

  12. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  13. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    DOE PAGES

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less

  14. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    SciTech Connect

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is more than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.

  15. The Emperor’s New Password Manager: Security Analysis of Web-based Password Managers

    DTIC Science & Technology

    2014-07-07

    web. For exam- ple, browsers share authentication tokens such as cook- ies across applications (including across applications and extensions), leading...LastPass bookmarklet to log in to dropbox.com. At the Dropbox entry point, Alice clicks on her LastPass bookmarklet, which includes the token ...8: LastPass OTP Creation. Note the absence of any CSRF token in the request in Step 1. 1 h|rand_encrypted_key lastpass.com/otp.php LastPass save

  16. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  17. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  18. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  19. Implementing a mandatory password change policy at an academic medical institution.

    PubMed

    Brogan, Michael W; Lin, Ching-Ping; Pai, Rakesh; Kalet, Ira J

    2007-10-11

    UW Medicine implemented a new policy requiring users to change passwords at least once every 120 days. In the first two password change cycles, many users did not take action upon notification, and their passwords expired, causing high help desk loads. Compliance and support loads improved in subsequent cycles. We conclude that policy changes requiring user behavior modification should be seen as a cultural change, and the implementation strategy should consider socio-technical factors.

  20. Nuclear effects hardened shelters

    NASA Astrophysics Data System (ADS)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  1. On Analytical Solutions to Beam-Hardening

    NASA Astrophysics Data System (ADS)

    Rigaud, G.

    2017-01-01

    When polychromatic X-rays propagate through a material, for instance in computerized tomography (CT), low energy photons are more attenuated resulting in a "harder" beam. The beam-hardening phenomenon breaks the monochromatic radiation model based on the Radon transform giving rise to artifacts in CT reconstructions to the detriment of visual inspection and automated segmentation algorithms. We propose first a simplified analytic representation for the beam-hardening. Besides providing a general understanding of the phenomenon, this model proposes to invert the beam-hardening effect for homogeneous objects leading to classical monochromatic data. For heterogeneous objects, no analytical reconstruction of the density can be derived without more prior information. However, the beam-hardening is shown to be a smooth operation on the data and thus to preserve the encoding of the singularities of the attenuation map within the data. A microlocal analysis encourages the use of contour extraction methods to solve partially the beam-hardening effect even for heterogeneous objects. The application of both methods, exact analytical solution for homogeneous objects and feature extraction for heterogeneous ones, on real data demonstrates their relevancy and efficiency.

  2. Improving computer security for authentication of users: influence of proactive password restrictions.

    PubMed

    Proctor, Robert W; Lien, Mei-Ching; Vu, Kim-Phuong L; Schultz, E Eugene; Salvendy, Gavriel

    2002-05-01

    Entering a username-password combination is a widely used procedure for identification and authentication in computer systems. However, it is a notoriously weak method, in that the passwords adopted by many users are easy to crack. In an attempt to improve security, proactive password checking may be used, in which passwords must meet several criteria to be more resistant to cracking. In two experiments, we examined the influence of proactive password restrictions on the time that it took to generate an acceptable password and to use it subsequently to long in. The required length was a minimum of five characters in Experiment 1 and eight characters in Experiment 2. In both experiments, one condition had only the length restriction, and the other had additional restrictions. The additional restrictions greatly increased the time it took to generate the password but had only a small effect on the time it took to use it subsequently to long in. For the five-character passwords, 75% were cracked when no other restrictions were imposed, and this was reduced to 33% with the additional restrictions. For the eight-character passwords, 17% were cracked with no other restrictions, and 12.5% with restrictions. The results indicate that increasing the minimum character length reduces crackability and increases security, regardless of whether additional restrictions are imposed.

  3. Individual differences in cyber security behaviors: an examination of who is sharing passwords.

    PubMed

    Whitty, Monica; Doodson, James; Creese, Sadie; Hodges, Duncan

    2015-01-01

    In spite of the number of public advice campaigns, researchers have found that individuals still engage in risky password practices. There is a dearth of research available on individual differences in cyber security behaviors. This study focused on the risky practice of sharing passwords. As predicted, we found that individuals who scored high on a lack of perseverance were more likely to share passwords. Contrary to our hypotheses, we found younger [corrected] people and individuals who score high on self-monitoring were more likely to share passwords. We speculate on the reasons behind these findings, and examine how they might be considered in future cyber security educational campaigns.

  4. Security enhanced optical one-time password authentication method by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jeong, Jong Rae

    2015-03-01

    We propose a new optical one-time password(OTP) authentication method by using digital holography, which enhances security strength in the cryptosystem compared to the conventional electronic OTP method. In this paper, a challenge-response optical OTP authentication based on two-factor authentication is presented by 2-step quadrature phase-shifting digital holography using orthogonal polarization, and two-way authentication is also performed using the challenge-response handshake in both directions. The ID (identification), PW (password) and OTP information are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted information are verified each other by the shared key. Because the encrypted digital holograms which are transmitted to the other party are expressed as random distribution, it guards against a replay attack and results in higher security level. Optically, encrypted digital hologram in our method is Fourier transform hologram and is recorded on CCD with 256 gray-level quantized intensities. The proposed method has an advantage that it does not need a time-synchronized OTP and can be applied to various security services. Computer experiments show that the proposed method is suitable for high secure OTP authentication.

  5. Radiation-hardened 16K-bit MNOS EAROM

    SciTech Connect

    Knoll, M.G.; Dellin, T.A.; Jones, R.V.

    1983-01-01

    A radiation-hardened silicon-gate CMOS/NMNOS 16K-bit EAROM has been designed, fabricated, and evaluated. This memory has been designed to be used as a ROM replacement in radiation-hardened microprocessor-based systems.

  6. Precipitation, strength and work hardening of age hardened aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ryen, Ø.; Holmedal, B.; Marthinsen, K.; Furu, T.

    2015-08-01

    The strength and work hardening of age hardened AA6063 and AA6082 alloys have been investigated in terms of a detailed characterization of precipitate and dislocation structures obtained by TEM and SEM. Tensile and compression tests were performed at as quenched, peak aged and severely aged conditions. A strong work hardening in the as quenched condition was found, similar to AlMg alloys with twice as much alloying elements in solid solution. It was found that the initial work hardening rate and the critical failure strain are both smallest at the peak aged condition. During large deformations the needle-shaped precipitates are sheared uniformly by dislocations altering their <001> orientations, which indicates extensive cross slip. In the overaged condition the early initial work hardening is larger than at the peak aged condition, but followed by a weak linear work hardening, apparently directly entering stage IV at a low strain. Cracked, needle-shaped precipitates were seen at larger strains.

  7. The Characteristics of User-Generated Passwords

    DTIC Science & Technology

    1990-03-01

    increased level of computer literacy, these concerns have grown considerably. A dilemma in designing computer-based information systems that provide a...monitors are examples of tools used for physical security. 10 3. Hardware Security Closely related to the design of hardware is the design of the hardware...operating system must be executed. An operating system acts as the mediator between competing processes and allocates resources based on demands

  8. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  9. Practical aspects of systems hardening

    SciTech Connect

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system.

  10. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images.

  11. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Wittmann, F. H.; Zhao, T. J.; Lehmann, E. H.; Tian, L.; Vontobel, P.

    2010-08-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  12. Anonymous three-party password-authenticated key exchange scheme for Telecare Medical Information Systems.

    PubMed

    Xie, Qi; Hu, Bin; Dong, Na; Wong, Duncan S

    2014-01-01

    Telecare Medical Information Systems (TMIS) provide an effective way to enhance the medical process between doctors, nurses and patients. For enhancing the security and privacy of TMIS, it is important while challenging to enhance the TMIS so that a patient and a doctor can perform mutual authentication and session key establishment using a third-party medical server while the privacy of the patient can be ensured. In this paper, we propose an anonymous three-party password-authenticated key exchange (3PAKE) protocol for TMIS. The protocol is based on the efficient elliptic curve cryptosystem. For security, we apply the pi calculus based formal verification tool ProVerif to show that our 3PAKE protocol for TMIS can provide anonymity for patient and doctor while at the same time achieves mutual authentication and session key security. The proposed scheme is secure and efficient, and can be used in TMIS.

  13. Anonymous Three-Party Password-Authenticated Key Exchange Scheme for Telecare Medical Information Systems

    PubMed Central

    Xie, Qi; Hu, Bin; Dong, Na; Wong, Duncan S.

    2014-01-01

    Telecare Medical Information Systems (TMIS) provide an effective way to enhance the medical process between doctors, nurses and patients. For enhancing the security and privacy of TMIS, it is important while challenging to enhance the TMIS so that a patient and a doctor can perform mutual authentication and session key establishment using a third-party medical server while the privacy of the patient can be ensured. In this paper, we propose an anonymous three-party password-authenticated key exchange (3PAKE) protocol for TMIS. The protocol is based on the efficient elliptic curve cryptosystem. For security, we apply the pi calculus based formal verification tool ProVerif to show that our 3PAKE protocol for TMIS can provide anonymity for patient and doctor while at the same time achieves mutual authentication and session key security. The proposed scheme is secure and efficient, and can be used in TMIS. PMID:25047235

  14. An extended crystal plasticity model for latent hardening in polycrystals

    NASA Astrophysics Data System (ADS)

    Bargmann, Swantje; Svendsen, Bob; Ekh, Magnus

    2011-12-01

    In this contribution, a computational approach to modeling size-dependent self- and latent hardening in polycrystals is presented. Latent hardening is the hardening of inactive slip systems due to active slip systems. We focus attention on the investigation of glide system interaction, latent hardening and excess dislocation development. In particular, latent hardening results in a transition to patchy slip as a first indication and expression of the development of dislocation microstructures. To this end, following Nye (Acta Metall 1:153-162, 1953), Kondo (in Proceedings of the second Japan national congress for applied mechanics. Science Council of Japan, Tokyo, pp. 41-47, 1953), and many others, local deformation incompatibility in the material is adopted as a measure of the density of geometrically necessary dislocations. Their development results in additional energy being stored in the material, leading to additional kinematic-like hardening effects. A large-deformation model for latent hardening is introduced. This approach is based on direct exploitation of the dissipation principle to derive all field relations and (sufficient) forms of the constitutive relations as based on the free energy density and dissipation potential. The numerical implementation is done via a dual-mixed finite element method. A numerical example for polycrystals is presented.

  15. Feasibility of Underwater Friction Stir Welding of Hardenable Alloy Steel

    DTIC Science & Technology

    2010-12-01

    bead-on-plate FSW traverses, approximately 64 inches (1.6 m) in total length, on 0.25 inch (6.4 mm) thick plates of a hardenable alloy steel . The...base plate. Based on preliminary findings, FSW of hardenable alloy steel is a feasible process and should be further researched and refined. 15...v ABSTRACT The objective of this thesis is to determine whether friction stir welding ( FSW ) is a feasible welding process for steels in an

  16. Gradient single-crystal plasticity within a Mises-Hill framework based on a new formulation of self- and latent-hardening

    NASA Astrophysics Data System (ADS)

    Gurtin, Morton E.; Reddy, B. Daya

    2014-08-01

    This paper develops a theory of rate-independent single-crystal plasticity at small length scales. The theory is thermodynamically consistent, and makes provision for power expenditures resulting from vector and scalar microscopic stresses respectively conjugate to slip rates and their tangential gradients on the individual slip systems. Scalar generalized accumulated slips form the basis for a new hardening relation, which takes account of self- and latent-hardening. The resulting initial-boundary value problem is placed in a variational setting in the form of a global variational inequality.

  17. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  18. Case hardenability at high carbon levels

    SciTech Connect

    Walton, H.W.

    1995-02-01

    Loss of hardenability in the case was thought to be responsible for a lower than specified hardness found on a large carburized bushing. Pseudo Jominy testing on several high hardenability carburizing grades confirmed that hardenability fade was present at carbon levels above 0.65% and particularly for those steels containing molybdenum. Analysis of previous work provided a formula for calculating Jominy hardenability at various carbon levels. Again the results confirmed that the loss of hardenability was more severe in steels containing molybdenum.

  19. The weak-password problem: Chaos, criticality, and encrypted p-CAPTCHAs

    NASA Astrophysics Data System (ADS)

    Laptyeva, T. V.; Flach, S.; Kladko, K.

    2011-09-01

    Vulnerabilities related to weak passwords are a pressing global economic and security issue. We report a novel, simple, and effective approach to address the weak-password problem. Building upon chaotic dynamics, criticality at phase transitions, CAPTCHA recognition, and computational round-off errors, we design an algorithm that strengthens the security of passwords. The core idea of our simple method is to split a long and secure password into two components. The first component is memorized by the user. The second component is transformed into a CAPTCHA image and then protected using the evolution of a two-dimensional dynamical system close to a phase transition, in such a way that standard brute-force attacks become ineffective. We expect our approach to have wide applications for authentication and encryption technologies.

  20. What Is the PE Password? Incorporating Vocabulary in Your Elementary PE Program

    ERIC Educational Resources Information Center

    Robelee, Margaret E.

    2016-01-01

    This article describes a novel program for third through fifth grade called "What is the PE Password?" that teaches vocabulary words and concepts without sacrificing activity time in order to support Common Core learning.

  1. A study of the particularities of an authentication system with a method of an asymmetric holographic encryption based on the DRPE to protect the passwords of the technical devices

    NASA Astrophysics Data System (ADS)

    Nalegaev, S. S.; Krasnov, V. V.

    2016-08-01

    The present work is devoted to research the peculiarities of an authentication system of the technical devices with the use of an optical asymmetric holographic encryption on the basis of the Double Random Phase Encoding (DRPE). The series of the numerical experiments was performed to implement the encryption and the decryption of the initial image. The angular spectrum approach was used as a tool for the simulation of the propagation of the light in the free space forward and backward along the whole optical scheme of the DRPE. In the present work the particularities of the authentication system based on an asymmetric approach of the holographic encryption method DRPE were studied.

  2. Plasma hardening of railway wheel surface

    NASA Astrophysics Data System (ADS)

    Isakaev, E. Kh.; Ivanov, P. P.; Tyuftyaev, A. S.; Paristyi, I. L.; Troitsky, A. A.; Yablonsky, A. E.; Filippov, G. A.

    1998-10-01

    A computer-controlled plasma technology was developed for the treatment of rolling stock wheels, providing the thermal hardening of tread and flange working surfaces. As a result of the plasma treatment the surface hardness of the wheel grows from 255 up to 420-450 HB. Herewith, the wear capability of the wheel metal grows 2-3 times and its resistance to the weariness-driven destruction grows 1.5 times due to the pecularities of the structural state of the steel, arising out of the thermal impact and of the alloying of the steel with nitrogen during the plasma treatment. Installation of several plants based on this technology in engine houses allowed to carry out a full scale experiment in order to assess the running characteristics of treated wheel sets in comparison with plain ones. Wheel life between mounting and truing or dismounting doubles due to plasma hardening.

  3. Stage IV work hardening in cubic metals

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  4. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    SciTech Connect

    Mostaed, A.; Saghafian, H.; Mostaed, E.; Shokuhfar, A.; Rezaie, H.R.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.

  5. Analytical considerations of beam hardening in medical accelerator photon spectra.

    PubMed

    Kleinschmidt, C

    1999-09-01

    Beam hardening is a well-known phenomenon for therapeutic accelerator beams passing through matter in narrow beam geometry. This study assesses quantitatively the magnitude of beam hardening of therapeutic beams in water. A formal concept of beam hardening is proposed which is based on the decrease of the mean attenuation coefficient with depth. On the basis of this concept calculations of beam hardening effects are easily performed by means of a commercial spreadsheet program. Published accelerator spectra and the tabulated values of attenuation coefficients serve as input for these calculations. It is shown that the mean attenuation coefficient starts at depth zero with an almost linear decrease and then slowly levels off to a limit value. A similar behavior is found for the beam hardening coefficient. A physically reasonable, semianalytical model is given which fits the data better than previously published functions. The energy dependence of the initial attenuation coefficient is evaluated and shown. It fits well to published experimental data. The initial beam hardening coefficient, however, shows no energy dependence. Its mean value (eta0) approximately 0.006 cm(-1)) is also in close agreement to the measured data.

  6. A study of latent hardening behavior in aluminum single crystals

    SciTech Connect

    Wang Mingzhang; Lin Shi; Li Chenghua; Xiao Jimei; Wang Zhongguang

    1996-11-15

    In order to obtain a better understanding or a complete description of plastic properties of polycrystals, especially in polycrystal modelling viewpoint, investigations on latent hardening behavior of single crystals have been performed in a great number. Recently, however, Wu et al. have pointed out that the definition of the yield stress of latent system using the conventional back extrapolation is ambiguous in terms of determining the latent hardening moduli because the initial rapid work-hardening of the transient zone is neglected. They proposed a more precise measure of the yield stress of latent system based on the decrease of the tangent modulus from the linear elastic modulus, and showed that the latent hardening, which would not plus the initial work-hardening of the transient zone, is actually lower than that obtained from the backward extrapolation. Thus, in their opinion, it is considered that the hardening behavior of latent system (such as the directionality, the effects of relative orientation and prestrain) need be newly or further studied in detail. Single crystals of aluminum have been grown with high purity to investigate this behavior.

  7. HARDENING FROG POINTS BY EXPLOSIVE ENERGY,

    DTIC Science & Technology

    Experiments were made to determine the most efficient method of strain hardening railroad frog points in order to increase their fatigue resistance...Mechanical strain hardening with rolls 40 mm in diameter under a load of 8 tons produced in standard frogs cast from G13L high-manganese steel (AISI...Hadfield steel) a work-hardened surface layer 3-5 mm thick with a hardness of 340 HB. In other experiments, the frogs were hardened by exploding a

  8. Precipitation hardening in aluminum alloy 6022

    SciTech Connect

    Miao, W.F.; Laughlin, D.E.

    1999-03-05

    Although the precipitation process in Al-Mg-Si alloys has been extensively studied, the understanding of the hardening process is still incomplete, since any change in composition, processing and aging practices, etc., could affect the precipitation hardening behavior. In this paper, hardness measurements, differential scanning calorimetry and transmission electron microscopy have been utilized to study the precipitation hardening behavior in aluminum alloy 6022.

  9. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing

    PubMed Central

    Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.

    2016-01-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km). PMID:27363566

  10. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing.

    PubMed

    Fujiwara, M; Waseda, A; Nojima, R; Moriai, S; Ogata, W; Sasaki, M

    2016-07-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir's (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).

  11. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.

    2016-07-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).

  12. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  13. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  14. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.

    PubMed

    Loeschcke, Volker; Hoffmann, Ary A

    2007-02-01

    Heat hardening increases thermal resistance to more extreme temperatures in the laboratory. However, heat hardening also has negative consequences, and the net benefit of hardening has not been evaluated in the field. We tested short-term heat hardening effects on the likelihood of Drosophila melanogaster to be caught at different temperatures at baits in field sites without natural resources. We predicted that hardened flies should be more frequently caught at the baits at high but not low temperatures. Under cool conditions, flies hardened at 36 degrees C, and to a lesser extent at 34 degrees C, were less frequently caught at baits than nonhardened flies a few hours after release, indicating a negative effect of hardening. In later captures, negative effects tended to disappear, particularly in males. Under warm conditions, there was an overall balance of negative and positive effects, though with a different temporal resolution. Under very hot conditions, when capture rates were low, there was a large benefit of hardening at 36 degrees C and 34 degrees C but not 33 degrees C. Finally, based on climatic records, the overall benefit of hardening in D. melanogaster is discussed as an evolved response to high temperatures occasionally experienced by organisms at some locations.

  15. 31 CFR 363.17 - Who is liable if someone else accesses my TreasuryDirect ® account using my password?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accesses my TreasuryDirect ® account using my password? 363.17 Section 363.17 Money and Finance: Treasury... using my password? You are solely responsible for the confidentiality and use of your account number, password, and any other form(s) of authentication we may require. We will treat any transactions...

  16. 31 CFR 363.19 - What should I do if I become aware that my password or other form of authentication has become...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that my password or other form of authentication has become compromised? 363.19 Section 363.19 Money... that my password or other form of authentication has become compromised? If you become aware that your password has become compromised, that any other form of authentication has been compromised, lost,...

  17. 31 CFR 363.17 - Who is liable if someone else accesses my TreasuryDirect ® account using my password?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... my TreasuryDirect ® account using my password? 363.17 Section 363.17 Money and Finance: Treasury... using my password? You are solely responsible for the confidentiality and use of your account number, password, and any other form(s) of authentication we may require. We will treat any transactions...

  18. 31 CFR 363.19 - What should I do if I become aware that my password or other form of authentication has become...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that my password or other form of authentication has become compromised? 363.19 Section 363.19 Money... that my password or other form of authentication has become compromised? If you become aware that your password has become compromised, that any other form of authentication has been compromised, lost,...

  19. 31 CFR 363.19 - What should I do if I become aware that my password or other form of authentication has become...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that my password or other form of authentication has become compromised? 363.19 Section 363.19 Money... that my password or other form of authentication has become compromised? If you become aware that your password has become compromised, that any other form of authentication has been compromised, lost,...

  20. 31 CFR 363.17 - Who is liable if someone else accesses my TreasuryDirect ® account using my password?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accesses my TreasuryDirect ® account using my password? 363.17 Section 363.17 Money and Finance: Treasury... using my password? You are solely responsible for the confidentiality and use of your account number, password, and any other form(s) of authentication we may require. We will treat any transactions...

  1. 31 CFR 363.17 - Who is liable if someone else accesses my TreasuryDirect ® account using my password?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... my TreasuryDirect ® account using my password? 363.17 Section 363.17 Money and Finance: Treasury... using my password? You are solely responsible for the confidentiality and use of your account number, password, and any other form(s) of authentication we may require. We will treat any transactions...

  2. 31 CFR 363.17 - Who is liable if someone else accesses my TreasuryDirect ® account using my password?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... my TreasuryDirect ® account using my password? 363.17 Section 363.17 Money and Finance: Treasury... using my password? You are solely responsible for the confidentiality and use of your account number, password, and any other form(s) of authentication we may require. We will treat any transactions...

  3. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  4. Effects of alloying elements on radiation hardening based on loop formation of electron-irradiated light water reactor pressure vessel model steels

    NASA Astrophysics Data System (ADS)

    Nishi, Takakuni; Hashimoto, N.; Ohnuki, S.; Yamamoto, T.; Odette, G. R.

    2011-10-01

    Electron irradiations using a high voltage electron microscope were conducted on several reactor pressure vessel model alloys in order to investigate the effects of alloying elements on the formation and development of defect clusters. In addition, the effects of alloying elements on yield stress change after irradiation were considered, comparing the mean size and number density of dislocation loops with the irradiation-induced hardening. High Cu alloys formed Cu and Mn-Ni-Si rich clusters, and these are important in determining the yield stress increase. High Ni alloys formed a high density of small dislocation loops and probably Mn-Ni-Si rich cluster, which have the effect of increasing the yield stress. High P enhanced radiation-induced segregation on grain boundary, helping prevent dislocation movement.

  5. Atomistic mechanisms of cyclic hardening in metallic glass

    NASA Astrophysics Data System (ADS)

    Deng, Chuang; Schuh, Christopher A.

    2012-06-01

    Molecular dynamics with an embedded-atom method potential is used to simulate the nanoindentation of Cu63.5Zr36.5 metallic glasses. In particular, the effects of cyclic loading within the nominal elastic range on the overall strength and plasticity of metallic glass are studied. The simulated results are in line with the characteristics of experimentally observed hardening effects. In addition, analysis based on local von Mises strain suggests that the hardening is induced by confined microplasticity and stiffening in regions of the originally preferred yielding path, requiring a higher applied load to trigger a secondary one.

  6. Statistical thermodynamics of strain hardening in polycrystalline solids.

    PubMed

    Langer, J S

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  7. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGES

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  8. Cryptanalysis and Improvement of "A Secure Password Authentication Mechanism for Seamless Handover in Proxy Mobile IPv6 Networks"

    PubMed Central

    Alizadeh, Mojtaba; Zamani, Mazdak; Baharun, Sabariah; Abdul Manaf, Azizah; Sakurai, Kouichi; Anada, Hiroki; Keshavarz, Hassan; Ashraf Chaudhry, Shehzad; Khurram Khan, Muhammad

    2015-01-01

    Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes’ participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.’s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.’s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic. PMID:26580963

  9. Cryptanalysis and Improvement of "A Secure Password Authentication Mechanism for Seamless Handover in Proxy Mobile IPv6 Networks".

    PubMed

    Alizadeh, Mojtaba; Zamani, Mazdak; Baharun, Sabariah; Abdul Manaf, Azizah; Sakurai, Kouichi; Anada, Hiroaki; Anada, Hiroki; Keshavarz, Hassan; Ashraf Chaudhry, Shehzad; Khurram Khan, Muhammad

    2015-01-01

    Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes' participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.'s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.'s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.

  10. 21 CFR 11.300 - Controls for identification codes/passwords.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Controls for identification codes/passwords. 11.300 Section 11.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.300 Controls...

  11. The Classroom Password: A Class-Wide Intervention to Increase Academic Engagement

    ERIC Educational Resources Information Center

    Dart, Evan H.; Radley, Keith C.; Battaglia, Allison A.; Dadakhodjaeva, Komila; Bates, Kayla E.; Wright, Sarah J.

    2016-01-01

    The present study investigated the effectiveness of a novel class-wide intervention, the Classroom Password, for increasing the academic engaged behavior of middle school students. The effectiveness of an independent group contingency was evaluated using a concurrent multiple baseline design across three seventh- and eighth-grade classrooms.…

  12. A password for species recognition in a brood-parasitic bird.

    PubMed

    Hauber, M E; Russo, S A; Sherman, P W

    2001-05-22

    Recognition of conspecifics is an essential precursor of sexual reproduction. Most mammals and birds learn salient features of their parents or siblings early in ontogeny and later recognize individuals whose phenotypes match the mental image (template) of relatives closely enough as conspecifics. However, the young of brood parasites are reared among heterospecifics, so social learning will yield inappropriate species recognition templates. Initially, it was inferred that conspecific recognition in brood parasites depended on genetically determined templates. More recently it was demonstrated that learning plays a critical role in the development of parasites' social preferences. Here we propose a mechanism that accommodates the interaction of learned and genetic components of recognition. We suggest that conspecific recognition is initiated when a young parasite encounters some unique species-specific signal or "password" (e.g. a vocalization, behaviour or other characteristic) that triggers learning of additional aspects of the password-giver's phenotype. We examined the possibility that nestlings of the obligately brood-parasitic brown-headed cowbird (Molothrus ater) could use a species-specific vocalization, the "chatter", as a password. We found that six-day-old nestlings responded (begged) significantly more frequently to playbacks of chatters than to other avian sounds and that two-month-old fledglings approached playbacks of chatters more quickly than vocalizations of heterospecifics. Free-living cowbird fledglings and adults also approached playbacks of chatters more often than control sounds. Passwords may be involved in the ontogeny of species recognition in brood parasites generally.

  13. CID25: radiation hardened color video camera

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.; Bhaskaran, S. K.; Czebiniak, S. W.

    2006-02-01

    The charge injection device, CID25, is presented. The CID25 is a color video imager. The imager is compliant with the NTSC interlaced TV standard. It has 484 by 710 displayable pixels and is capable of producing 30 frames-per-second color video. The CID25 is equipped with the preamplifier-per-pixel technology combined with parallel row processing to achieve high conversion gain and low noise bandwidth. The on-chip correlated double sampling circuitry serves to reduce the low frequency noise components. The CID25 is operated by a camera system consisting of two parts, the head assembly and the camera control unit (CCU). The head assembly and the CCU can be separated by up to 150 meter long cable. The CID25 imager and the head portion of the camera are radiation hardened. They can produce color video with insignificant SNR degradation out to at least 2.85 Mrad of total dose of Co 60 γ-radiation. This represents the first in industry radiation hardened color video system, based on a semiconductor photo-detector that has an adequate sensitivity for room light operation.

  14. Hardened Client Platforms for Secure Internet Banking

    NASA Astrophysics Data System (ADS)

    Ronchi, C.; Zakhidov, S.

    We review the security of e-banking platforms with particular attention to the exploitable attack vectors of three main attack categories: Man-in-the-Middle, Man-in-the-PC and Man-in-the-Browser. It will be shown that the most serious threats come from combination attacks capable of hacking any transaction without the need to control the authentication process. Using this approach, the security of any authentication system can be bypassed, including those using SecureID Tokens, OTP Tokens, Biometric Sensors and Smart Cards. We will describe and compare two recently proposed e-banking platforms, the ZTIC and the USPD, both of which are based on the use of dedicated client devices, but with diverging approaches with respect to the need of hardening the Web client application. It will be shown that the use of a Hardened Browser (or H-Browser) component is critical to force attackers to employ complex and expensive techniques and to reduce the strength and variety of social engineering attacks down to physiological fraud levels.

  15. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    SciTech Connect

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.

    2007-05-17

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior.

  16. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  17. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  18. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  19. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  20. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  1. Strain hardening of polymer glasses: entanglements, energetics, and plasticity.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2008-03-01

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic network models, many other results are fundamentally inconsistent with the physical picture underlying these models. Stresses are too large to be entropic and have the wrong trend with temperature. The most dramatic hardening at large strains reflects increases in energy as chains are pulled taut between entanglements rather than a change in entropy. A weak entropic stress is only observed in shape recovery of deformed samples when heated above the glass transition. While short chains do not form an entangled network, they exhibit partial shape recovery, orientation, and strain hardening. Stresses for all chain lengths collapse when plotted against a microscopic measure of chain stretching rather than the macroscopic stretch. The thermal contribution to the stress is directly proportional to the rate of plasticity as measured by breaking and reforming of interchain bonds. These observations suggest that the correct microscopic theory of strain hardening should be based on glassy state physics rather than rubber elasticity.

  2. Beam hardening correction for sparse-view CT reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2015-03-01

    Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.

  3. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida.

    PubMed

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-11-07

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side.

  4. Method of Hardening Glass-Reinforced Plastics,

    DTIC Science & Technology

    1988-02-09

    373 NETHOD OF HARDENING GLASS -REINFORCED PLASTICS (U) 1/i FOREIGN TECHNOLOGY DIV idRIGHT-PATTERSON NFS ON V F DOLGIKH ET AL 89 FEB 88 FTD-ID(RS)T-M49...FTD-ID(RS)T-0049-88 9 February 1988 MICROFICHE NR: FTD-tES-C-00219 METHOD OF HARDENING GLASS -REINFORCED PLASTICS By: V.F. Dolgikh, S.L. Roginskiy, et...translation were extracted from the best quality copy available. If 1 11i METHOD OF HARDENING GLASS -REINFORCED PLASTICS V. F. Dolgikh, S. L. Roginskiy, E. L

  5. Investigation on microstructural evolution and hardening mechanism in dilute Zrsbnd Nb binary alloys

    NASA Astrophysics Data System (ADS)

    Yang, H. L.; Matsukawa, Y.; Kano, S.; Duan, Z. G.; Murakami, K.; Abe, H.

    2016-12-01

    In this study, the microstructural changes induced by doping of Nb in Zr were investigated by the combined utilization of electron backscatter diffraction and electron transmission microscopy techniques, followed by the correlated hardening mechanism being elucidated based on the obtained microstructural parameters. Microstructural characterization results revealed that microstructural changes caused by doping of Nb in Zr were mainly embodied via two aspects: reducing the matrix α-Zr grain size and increasing the amount of β-Nb particles. β-phase stabilizing effect, dragging effect and pinning effect introduced and enhanced by Nb addition, worked together to significantly reduce the grain size in Zr-Nb alloys. β-Nb particles were firstly observed in Zr0.5Nb specimen with the fairly low number density of ∼2.0 × 1018/m3, then this value explosively increased to ∼3.3 × 1020/m3 for Zr2Nb specimen. In addition, hardness was increased with an increase in the Nb content. The hardening contributions from solid solution hardening, grain boundary hardening and precipitation hardening were quantitatively estimated as per the obtained microstructural parameters. Results inferred that solid solution hardening contributed the majority when the Nb atoms were solid dissolved (≤0.5 wt%), whereas the precipitation hardening surpassed any other factors when the β-Nb particles were steadily precipitated (≥1 wt%).

  6. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels

    NASA Astrophysics Data System (ADS)

    Fujii, Katsuhiko; Ohkubo, Tadakatsu; Fukuya, Koji

    2011-10-01

    The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.

  7. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  8. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  9. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  10. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  11. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  12. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  13. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  14. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  15. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  16. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  17. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  18. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  19. A pedagogical example of second-order arithmetic sequences applied to the construction of computer passwords by upper elementary grade students

    NASA Astrophysics Data System (ADS)

    Coggins, Porter E.

    2015-04-01

    The purpose of this paper is (1) to present how general education elementary school age students constructed computer passwords using digital root sums and second-order arithmetic sequences, (2) argue that computer password construction can be used as an engaging introduction to generate interest in elementary school students to study mathematics related to computer science, and (3) share additional mathematical ideas accessible to elementary school students that can be used to create computer passwords. This paper serves to fill a current gap in the literature regarding the integration of mathematical content accessible to upper elementary school students and aspects of computer science in general, and computer password construction in particular. In addition, the protocols presented here can serve as a hook to generate further interest in mathematics and computer science. Students learned to create a random-looking computer password by using biometric measurements of their shoe size, height, and age in months and to create a second-order arithmetic sequence, then converted the resulting numbers into characters that become their computer passwords. This password protocol can be used to introduce students to good computer password habits that can serve a foundation for a life-long awareness of data security. A refinement of the password protocol is also presented.

  20. Properties and Commercial Application of Manual Plasma Hardening

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  1. A Security Solution for IEEE 802.11's Ad-hoc Mode:Password-Authentication and Group Diffie-Hellman Key Exchange

    SciTech Connect

    Emmanuel, Bresson; Olivier, Chevassut; David, Pointcheval

    2005-10-01

    The IEEE 802 standards ease the deployment of networkinginfrastructures and enable employers to accesscorporate networks whiletraveling. These standards provide two modes of communication calledinfrastructure and ad-hoc modes. A security solution for the IEEE802.11's infrastructure mode took several years to reach maturity andfirmware are still been upgraded, yet a solution for the ad-hoc modeneeds to be specified. The present paper is a first attempt in thisdirection. It leverages the latest developments in the area ofpassword-based authentication and (group) Diffie-Hellman key exchange todevelop a provably-secure key-exchange protocol for IEEE 802.11's ad-hocmode. The protocol allows users to securely join and leave the wirelessgroup at time, accommodates either a single-shared password orpairwise-shared passwords among the group members, or at least with acentral server; achieves security against dictionary attacks in theideal-hash model (i.e. random-oracles). This is, to the best of ourknowledge, the first such protocol to appear in the cryptographicliterature.

  2. On shakedown analysis in hardening plasticity

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Son

    2003-01-01

    The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.

  3. Radiation-induced segregation, hardening, and IASCC

    SciTech Connect

    Eason, E.D.; Nelson, E.E.

    1995-12-31

    Intergranular cracking has been discovered after extended radiation exposure in several boiling water reactor (BWR) internal components made of austenitic stainless steel and nickel-based alloys. There are fewer field observations of intergranular cracking in pressurized water reactors (PWR), but failures have occurred in bolts, springs, and fuel cladding. There is concern for other PWR components, some of which will receive greater radiation doses than BWR components during the plant lifetime. This paper presents the results of an investigation on the connection between radiation induced segregation, hardening and irradiation-assisted stress corrosion cracking (IASCC). A data base was developed containing the available data on austenitic stainless steel where the grain boundary composition was measured by Field Emission Gun-Scanning Transmission Election Microscopy (FEG-STEM), the stress corrosion susceptibility was measured by constant extension rate tests (CERT) in light water reactor environments, some estimate of irradiated strength was available and the irradiation was conducted in a power reactor. The data base was analyzed using advanced data analysis techniques, including tree-structured pattern recognition and transformation analysis codes. The most sensitive variables and optimal modeling forms were identified using these techniques, then preliminary models were calibrated using nonlinear least squares. The results suggest that more than one mechanism causes IASCC.

  4. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  5. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface Hardened Stainless Steel

    DTIC Science & Technology

    2013-05-10

    deep circumferential notches, created with a thread cutting tool , were machined to expose the base metal during SSRT tests conducted in air and...interstitial carbon atoms into stainless steel surfaces without the formation of carbides . Surface hardening of machine elements such as impellors or...developed to introduce interstitial carbon atoms into stainless steel surfaces without the formation of carbides . Surface hardening of machine elements

  6. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I. )

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities.

  7. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions.

  8. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  9. Design concepts for hardened communications structures

    NASA Astrophysics Data System (ADS)

    Flathau, William J.; Smith, William G.

    1990-03-01

    An important component of any hardened command and control structure is the antenna system that provides communication with the outside world. Two types of antennae were considered; i.e., the whip type and the directional. The whip type is for short range communication and the directional is for use primarily with satellites. In the super high frequency range, the use of directional antennae having parabolic dishes greater than 8 feet in diameter are common. In the very extra high frequency range, dishes that are 2 to 3 feet in diameter are used. The whip type antenna should extend up to, say, 60 feet in the air. Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from a 1-MT device for ground surface overpressure ranging from 15,000 to 500 psi. As the antennae, transmitters, receivers, power supplies, and lifting mechanisms will be located within such structures, appropriate shock spectra plots were developed to determine if the fragility level of pertinent equipment will be exceeded and for use in designing shock isolation systems. Button up periods of 1 and 4 weeks were considered.

  10. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  11. Control technology for surface treatment of materials using induction hardening

    SciTech Connect

    Kelley, J.B.; Skocypec, R.D.

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  12. Multi-material linearization beam hardening correction for computed tomography.

    PubMed

    Lifton, J J

    2017-03-03

    Since beam hardening causes cupping and streaking artifacts in computed tomographic images, the presence of such artifacts can impair both qualitative and quantitative analysis of the reconstructed data. When the scanned object is composed of a single material, it is possible to correct beam hardening artifacts using the linearization method. However, for multi-material objects, an iterative segmentation-based correction algorithm is needed, which is not only computationally expensive, but may also fail if the initial segmentation result is poor. In this study, a new multi-material linearization beam hardening correction method was proposed and evaluated. The new method is fast and implemented in the same manner as a mono-material linearization. The correction takes approximately 0.02 seconds per projection. Although facing a potential disadvantage of requiring attenuation measurements of one of the object's constituent materials, applying the new method has demonstrated its capability for a multi-material workpiece with substantial reduction in both cupping and streaking artifacts. For example, the study showed that the absolute cupping artefacts in steel, titanium and aluminum spheres were reduced from 22%, 20% and 20% to 5%, 1% and 0%, respectively.

  13. Description of full-range strain hardening behavior of steels.

    PubMed

    Li, Tao; Zheng, Jinyang; Chen, Zhiwei

    2016-01-01

    Mathematical expression describing plastic behavior of steels allows the execution of parametric studies for many purposes. Various formulas have been developed to characterize stress strain curves of steels. However, most of those formulas failed to describe accurately the strain hardening behavior of steels in the full range which shows various distinct stages. For this purpose, a new formula is developed based on the well-known Ramberg-Osgood formula to describe the full range strain hardening behavior of steels. Test results of all the six types of steels show a three-stage strain hardening behavior. The proposed formula can describe such behavior accurately in the full range using a single expression. The parameters of the formula can be obtained directly and easily through linear regression analysis. Excellent agreements with the test data are observed for all the steels tested. Furthermore, other formulas such as Ludwigson formula, Gardner formula, UGent formula are also applied for comparison. Finally, the proposed formula is considered to have wide suitability and high accuracy for all the steels tested.

  14. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  15. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  16. An Anisotropic Hardening Model for Springback Prediction

    SciTech Connect

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-05

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  17. A molecular keypad lock: a photochemical device capable of authorizing password entries.

    PubMed

    Margulies, David; Felder, Clifford E; Melman, Galina; Shanzer, Abraham

    2007-01-17

    This paper describes a new concept in the way information can be protected at the molecular scale. By harnessing the principles of molecular Boolean logic, we have designed a molecular device that mimics the operation of an electronic keypad lock, e.g., a common security circuit used for numerous applications, in which access to an object or data is to be restricted to a limited number of persons. What distinguishes this lock from a simple molecular logic gate is the fact that its output signals are dependent not only on the proper combination of the inputs but also on the correct order by which these inputs are introduced. In other words, one needs to know the exact passwords that open this lock. The different password entries are coded by a combination of two chemical and one optical input signals, which can activate, separately, blue or green fluorescence output channels from pyrene or fluorescein fluorophores. The information in each channel is a single-bit light output signal that can be used to authorize a user, to verify authentication of a product, or to initiate a higher process. This development not only opens the way for a new class of molecular decision-making devices but also adds a new dimension of protection to existing defense technologies, such as cryptography and steganography, previously achieved with molecules.

  18. Password-only authenticated three-party key exchange proven secure against insider dictionary attacks.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Paik, Juryon; Won, Dongho

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol.

  19. Anonymous Password-Authenticated Key Exchange: New Construction and Its Extensions

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    An anonymous password-authenticated key exchange (anonymous PAKE) protocol is designed to provide both password-only authentication and user anonymity against a semi-honest server, who follows the protocol honestly. Very recently, Yang and Zhang [25] have proposed a new anonymous PAKE (NAPAKE) protocol that is claimed efficient compared to the previous constructions. In this paper, we propose a very-efficient anonymous PAKE (called, VEAP) protocol that provides the most efficiency among their kinds in terms of computation and communication costs. The VEAP protocol guarantees semantic security of session keys in the random oracle model under the chosen target CDH problem, and unconditional user anonymity against a semi-honest server. If the pre-computation is allowed, both the user and the server are required to compute only one modular exponentiation, respectively. Surprisingly, this is the same computation cost of the well-known Diffie-Hellman protocol that does not provide authentication at all. In addition, we extend the VEAP protocol in two ways: the first is designed to reduce the communication costs of the VEAP protocol and the second shows that stripping off anonymity parts from the VEAP protocol results in a new PAKE protocol.

  20. Password-Only Authenticated Three-Party Key Exchange Proven Secure against Insider Dictionary Attacks

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol. PMID:25309956

  1. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  2. Password Usage

    DTIC Science & Technology

    2007-11-02

    ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Department of Commerce , Technology Administration, NIST 9. SPONSORING / MONITORING AGENCY NAME(S...5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 U.S. DEPARTMENT OF COMMERCE , Malcolm Baldrige, Secretary NATIONAL BUREAU OF

  3. Strain hardening in bent copper foils

    NASA Astrophysics Data System (ADS)

    Hayashi, Ichiro; Sato, Masumi; Kuroda, Mitsutoshi

    2011-09-01

    A series of systematic tensile and microbend tests were conducted on copper foil specimens with different thicknesses. The specimens were made of a copper foil having almost unidirectional crystal orientations that was considered to be nearly single-crystal. In order to investigate the effects of slip system interactions, two different crystal orientations relative to the tensile direction were considered in the tests: one is close to coplanar double-slip orientation, and the other is close to the ideal cube orientation (the tensile direction nearly coincides to [0 0 1]) that yields multi-planar multi-slip deformation. We extended the microbend test method to include the reversal of bending, and we attempted to divide the total amount of strain-hardening into isotropic and kinematic hardening components. In the tensile tests, no systematic tendency of size dependence was observed. In the microbend tests, size-dependent kinematic hardening behavior was observed for both the crystal orientations, while size dependence of isotropic hardening was observed only for the multi-planar multi-slip case. We introduce an extended crystal plasticity model that accounts for the effects of the geometrically necessary dislocations (GNDs), which correspond to the spatial gradients of crystallographic slips. Through numerical simulations performed using the model, the origin of the size-dependent behavior observed in the microbend tests is discussed.

  4. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  5. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    PubMed

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  6. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose.

  7. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  8. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  9. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  10. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  11. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  12. When Sharing Is a Bad Idea: The Effects of Online Social Network Engagement and Sharing Passwords with Friends on Cyberbullying Involvement.

    PubMed

    Meter, Diana J; Bauman, Sheri

    2015-08-01

    Every day, children and adolescents communicate online via social networking sites (SNSs). They also report sharing passwords with peers and friends, a potentially risky behavior in regard to cyber safety. This longitudinal study tested the hypotheses that social network engagement in multiple settings would predict more cyberbullying involvement over time, and that youth who reported sharing passwords would also experience an increase in cyberbullying involvement. Data were collected at two time points one year apart from 1,272 third through eighth grade students. In line with the first study hypothesis, participating in more online SNSs was associated with increased cyberbullying involvement over time, as well as sharing passwords over time. Cyberbullying involvement at T1 predicted decreases in sharing passwords over time, suggesting that youth become aware of the dangers of sharing passwords as a result of their experience. Sharing passwords at T1 was unrelated to cyberbullying involvement at T2. Although it seems that youth may be learning from their previous mistakes, due to the widespread use of social media and normality of sharing passwords among young people, it is important to continue to educate youth about cyber safety and risky online behavior.

  13. Approximating the dynamic response of strain-hardening structures

    SciTech Connect

    Youngdahl, C.K.

    1991-01-01

    A mode approximation method is being developed to predict the dynamic plastic deformation of strain-hardening structures. A mode shape having time-dependent coefficients is based on quasi-static deformation profiles. Two stress fields are associated with the modal shape, one satisfying the dynamic relations and the other satisfying the constitutive equations. The application of suitable matching conditions results in a set of simultaneous differential and algebraic equations for the amplitude coefficients and plastic region size. Using the example of a simply supported beam, the effect of varying the number of matching conditions on the accuracy of the solution is presented. 5 refs., 7 figs.

  14. Radiation Hardened Silica-Based Optical Fibers

    DTIC Science & Technology

    1988-12-01

    Induced absorption occurs when existing defects in the glass form color centers by trapping electrons and holes generated by ionizing radiation. The...drawn fiber from capturing charge carriers and thereby forming color centers is to transform them into benign defects. The latter are defined as defects...which do not form color centers or which form centers that absorb out- side the wavelength range of interest. The passivation process is performed on

  15. Radiation Hardened Silica-Based Optical Fibers.

    DTIC Science & Technology

    1986-10-01

    Induced absorption occurs when existing defects in the glass form color centers by trapping electrons and holes generated by ionizing radiation. Three...I. Defect Passivation One method to prevent defects in as-drawn fiber from capturing carriers and forming color centers is to transform them into...benign defects. The lat- ter are defined as either defects which form color centers that absorb out- side the wavelength range of interest, or

  16. Embryonic learning of vocal passwords in superb fairy-wrens reveals intruder cuckoo nestlings.

    PubMed

    Colombelli-Négrel, Diane; Hauber, Mark E; Robertson, Jeremy; Sulloway, Frank J; Hoi, Herbert; Griggio, Matteo; Kleindorfer, Sonia

    2012-11-20

    How do parents recognize their offspring when the cost of making a recognition error is high? Avian brood parasite-host systems have been used to address this question because of the high cost of parasitism to host fitness. We discovered that superb fairy-wren (Malurus cyaneus) females call to their eggs, and upon hatching, nestlings produce begging calls with key elements from their mother's "incubation call." Cross-fostering experiments showed highest similarity between foster mother and nestling calls, intermediate similarity with genetic mothers, and least similarity with parasitic Horsfield's bronze-cuckoo (Chalcites basalis) nestlings. Playback experiments showed that adults respond to the begging calls of offspring hatched in their own nest and respond less to calls of other wren or cuckoo nestlings. We conclude that wrens use a parent-specific password learned embryonically to shape call similarity with their own young and thereby detect foreign cuckoo nestlings.

  17. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    SciTech Connect

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera electronics will

  18. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-02-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  19. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  20. Structural heredity influence upon principles of strain wave hardening

    NASA Astrophysics Data System (ADS)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  1. Recovery of AlMg alloys: Flow stress and strain-hardening properties

    SciTech Connect

    Verdier, M.; Brechet, Y.; Guyot, P.

    1998-12-11

    The recovery of Al-2.5wt% Mg alloys cold-rolled to several strains between 0.1 and 3 has been studied essentially using tensile tests. The yield stress and strain-hardening properties are studied as a function of the initial prestrain, and of the temperature and the duration of annealing treatments. A theoretical model based on the dislocation structure is proposed. The kinetic evolution of the yield stress is related to the variation of the total dislocation density as a single structural parameter. The pseudo-logarithmic time decay is explained on the basis of a relaxation of the internal stresses by thermally activated dislocation motion. A strain-hardening model is proposed based on Kocks` constitutive law of plasticity, where the dislocation storage and dislocation annihilation parameters are adapted to a heterogeneous cell/subgrain dislocation structure. The adjustment of the model to the work-hardening behavior is in agreement with TEM observations.

  2. Densification and strain hardening of a metallic glass under tension at room temperature.

    PubMed

    Wang, Z T; Pan, J; Li, Y; Schuh, C A

    2013-09-27

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  3. Cyclic hardening in bundled actin networks.

    PubMed

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  4. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  5. Case depth verification of hardened samples with Barkhausen noise sweeps

    NASA Astrophysics Data System (ADS)

    Santa-aho, Suvi; Hakanen, Merja; Sorsa, Aki; Vippola, Minnamari; Leiviskä, Kauko; Lepistö, Toivo

    2014-02-01

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  6. Organoapatites: materials for artificial bone. II. Hardening reactions and properties.

    PubMed

    Stupp, S I; Mejicano, G C; Hanson, J A

    1993-03-01

    This article reports on chemical reactions and the properties they generated in artificial bone materials termed "organoapatites." These materials are synthesized using methodology we reported in the previous article of this series. Two different processes were studied here for the transition from organoapatite particles to implants suitable for the restoration of the skeletal system. One process involved the hardening of powder compacts by beams of blue light derived from a lamp or a laser and the other involved pressure-induced interdiffusion of polymers. In both cases, the hardening reaction involved the formation of a polyion complex between two polyelectrolytes. In the photo-induced reaction an anionic electrolyte polymerizes to form the coulombic network and in the pressure-induced one, pressure forms the complex by interdiffusion of two polyions. Model reactions were studied using various polycations. Based on these results the organoapatite selected for the study was that containing dispersed poly(L-lysine) and sodium acrylate as the anionic monomer. The organomineral particles can be pressed at room temperature into objects of great physical integrity and hydrolytic stability relative to anorganic controls. The remarkable fact about these objects is that intimate molecular dispersion of only 2-3% by weight organic material provides integrity to the mineral network in an aqueous medium and also doubles its tensile strength. This integrity is essentially nonexistent in "anorganic" samples prepared by the same methodology used in organoapatite synthesis. The improvement in properties was most effectively produced by molecular bridges formed by photopolymerization. The photopolymerization leads to the "hardening" of pellets prepared by pressing of organoapatite powders. The reaction was found to be more facile in the microstructure of the organomineral, and it is potentially useful in the surgical application of organoapatites as artificial bone.

  7. Case depth verification of hardened samples with Barkhausen noise sweeps

    SciTech Connect

    Santa-aho, Suvi; Vippola, Minnamari; Lepistö, Toivo; Hakanen, Merja; Sorsa, Aki; Leiviskä, Kauko

    2014-02-18

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  8. Hologram formation in hardened dichromated gelatin films.

    PubMed

    Lin, L H

    1969-05-01

    Hardened gelatin films sensitized with ammonium dichromate can be utilized to record high quality holograms. The maximum diffraction efficiency of the hologram approaches 90%. The light scattering from the hologram is so low that under ordinary light the hologram plate appears almost indistinguishable from a clear glass plate. Either a transmission or a reflection hologram can be recorded. Linear recording range of light amplitude is large. A practical method of preparing and processing the film is described, and the exposure characteristics are presented.

  9. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  10. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  11. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  12. Strain Hardening in Bidisperse Polymer Glasses

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Hoy, Robert S.

    2009-03-01

    The connections between glassy and rubbery strain hardening have been a matter of great controversy in recent years. Recent experiments and our earlier simulations have suggested that the hardening modulus GR is proportional to the entanglement density in glasses, as it is to the crosslink density in rubbers. In this work we present more extensive studies of strain hardening in bidisperse glasses and its relation to microscopic conformational changes. The mixtures contain chains of very different lengths but equivalent chemistry. GR does not scale simply with the entanglement density. Instead it obeys a simple mixing rule, with GR equal to the volume fraction weighted average of the moduli of the two pure components. As in recent studies of monodisperse systems (R. S. Hoy and M. O. Robbins, Phys. Rev. Lett. 99, 117801 (2007)), the stress is directly correlated to the degree of chain orientation. Chains of a given length undergo almost the same degree of alignment in pure systems and mixtures, explaining why the simple mixing rule applies. The connection to recent analytic theories by K. Chen and K. S. Schweizer (PRL, in press) will be discussed.

  13. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  14. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  15. Cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2013-01-01

    Mental health claims in the workplace are rising, particularly those due to depression. Associated with this is an increase in disability costs for the employer and the disability insurer, but even more important is the human suffering that results. While treatments are available for the depression there is a gap in interventions that specifically target return-to-work preparation. This paper presents cognitive work hardening, a treatment intervention that can bridge this gap by addressing the unique functional issues inherent in depression with a view to increasing return-to-work success. Cognitive work hardening applies the proven principles of classical work hardening (which has typically been applied to people with physical injuries) to the mental health domain. This paper explains how the occupational therapy principle of occupation and the core competency, enablement, are utilized and applied in cognitive work hardening. Key skills of the occupational therapist are also discussed. In addition, the paper considers the relationship of cognitive work hardening to recovery and mental illness, and the role it plays among workplace-based return-to-work interventions in the current movement toward non-clinical return-to-work interventions.

  16. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.

    PubMed

    Arias, Leticia N; Sambucetti, Pablo; Scannapieco, Alejandra C; Loeschcke, Volker; Norry, Fabian M

    2012-07-01

    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E-16F6; 30A3-34C2; 49C-50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.

  17. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  18. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    SciTech Connect

    Steshenko, Aleksei Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-15

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  19. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  20. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    SciTech Connect

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; Schultz, Bradley M.; Unocic, Raymond R.; Kennedy, Marian S.

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  1. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  2. An Efficient and Provably Secure Cross-Realm Client-to-Client Password-Authenticated Key Agreement Protocol with Smart Cards

    NASA Astrophysics Data System (ADS)

    Jin, Wenting; Xu, Jing

    Cross-realm client-to-client password-authenticated key agreement (C2C-PAKA) protocols provide an authenticated key exchange between two clients of different realms, who only share their passwords with their own servers. Recently, several such cross-realm C2C-PAKA protocols have been suggested in the private-key (symmetric) setting, but all of these protocols are found to be vulnerable to password-compromise impersonation attacks. In this paper, we propose our innovative C2C- PAKA-SC protocol in which smart cards are first utilized in the cross-realm setting so that it can resist all types of common attacks including password-compromise impersonation attacks and provide improved efficiency. Moveover, we modify the original formal security model to adapt our proposed protocol and present a corresponding security proof.

  3. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  4. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  5. Radiation-hardened microwave system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.

    1990-01-01

    In order to develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe RF multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced MSTS configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high band-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures. 3 refs., 4 figs.

  6. Laser beam hardening of cast carbon steels, plain cast irons, and high-speed steels

    NASA Astrophysics Data System (ADS)

    Bylica, Andrzej; Adamiak, Stanislaw; Bochnowski, Wojciech; Dziedzic, Andrzej

    2000-11-01

    The examinations of the structure, hardness and abrasion resistance of surface layer of Fe-C alloys having the contents of carbon up to 4% and high-speed steel: 6-5-2, 4- 4-2-5+C after laser hardening are presented in the paper. They are compared with the properties obtained after conventional hardening. Laser of impulse operation - YAG:Nd and of continuous operation - CO2 were used. Analysis of structure was carried out based on metallographic and fractographic examinations as well as on X-ray properties, parameters of laser and conventional heat treatment of steels were defined.

  7. The coupled effect of grain size and solute on work hardening of Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shadkam, A.; Sinclair, C. W.

    2015-12-01

    A modified grain size-dependent model developed to capture the combined effects of solute and grain size on the work hardening behaviour of fine-grained Cu-Ni alloys is provided. This work builds on a recent model that attributes the grain size-dependent work hardening of fine-grained Cu to backstresses. In the case of Cu-Ni alloys, unlike commercially pure Cu, a grain size-dependent separation between the Kocks-Mecking curves develops, this being explained here based on an extra contribution from geometrically necessary dislocations in the solid solution alloy. This is corroborated by strain-rate sensitivity experiments.

  8. Phase development in the hardening process of two calcium phosphate bone cements: an energy dispersive X-ray diffraction study

    SciTech Connect

    Generosi, A.; Smirnov, V.V.; Rau, J.V.; Albertini, V. Rossi; Ferro, D.; Barinov, S.M.

    2008-03-04

    This work was aimed at the application of an energy dispersive X-ray diffraction technique to study the kinetics of phase development during the setting and hardening reactions in two calcium phosphate bone cements. The cements under study are based on either tricalcium phosphate or tetracalcium phosphate initial solid phase, and a magnesium carbonate-phosphoric acid liquid phase as the hardening liquid. The application of the energy dispersive X-ray diffraction method allowed to collect the diffraction patterns from the cement pastes in situ starting from 1 min of the setting and hardening process. The only crystallized phase in both cements was apatite-like phase, the primary crystallization process proceeds during a few seconds of the setting reaction. Both the compressive strength and the pH value changes during the hardening period can be attributed to the transformations occurring in the intergranular X-ray amorphous phase.

  9. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies

    SciTech Connect

    Ringer, S.P.; Hono, K.

    2000-02-01

    This paper examines the microstructural evolution in selected aluminum alloys based on commercial age hardenable 2000, 6000, and 7000 series alloys. Atom probe field-ion microscopy and transmission electron microscopy have been used to examine the effects of microalloying and the origins of hardening. The combined application of these techniques is particularly important in the study of nanoscale precipitation processes. It is shown that the nature and kinetics of the precipitation process depend on the solute-solute interactions that produce solute clusters. The solute clusters precede the formation of GP zones or precipitation, and have a defining role on the nature and kinetics of the subsequent precipitation processes. Moreover, interactions between solute clustering and dislocations can have a significant hardening effect, the origins of which seem to be distinctly different from the conventional notion of precipitation hardening.

  10. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  11. Encryption characteristics of two USB-based personal health record devices.

    PubMed

    Wright, Adam; Sittig, Dean F

    2007-01-01

    Personal health records (PHRs) hold great promise for empowering patients and increasing the accuracy and completeness of health information. We reviewed two small USB-based PHR devices that allow a patient to easily store and transport their personal health information. Both devices offer password protection and encryption features. Analysis of the devices shows that they store their data in a Microsoft Access database. Due to a flaw in the encryption of this database, recovering the user's password can be accomplished with minimal effort. Our analysis also showed that, rather than encrypting health information with the password chosen by the user, the devices stored the user's password as a string in the database and then encrypted that database with a common password set by the manufacturer. This is another serious vulnerability. This article describes the weaknesses we discovered, outlines three critical flaws with the security model used by the devices, and recommends four guidelines for improving the security of similar devices.

  12. Physical processes and modeling of plasma deposition and hardening of coatings-switched electrical parameters

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Sharifullin, S. N.

    2016-11-01

    This paper presents the results of simulation of plasma deposition and hardening of coatings in modulating the electrical parameters. Mathematical models are based on physical models of gas-dynamic mechanisms more dynamic and thermal processes of the plasma jet. As an example the modeling of dynamic processes of heterogeneous plasma jet, modulated current pulses indirect arc plasma torch.

  13. Radiation-hardened nonvolatile MNOS RAM

    SciTech Connect

    Wrobel, T.F.; Dodson, W.H.; Hash, G.L.; Jones, R.V.; Nasby, R.D.; Olson, R.J.

    1983-01-01

    A radiation hardened nonvolatile MNOS RAM is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s.

  14. A radiation hardened nonvolatile MNOS RAM

    NASA Astrophysics Data System (ADS)

    Wrobel, T. F.; Dodson, W. H.; Hash, G. L.; Jones, R. V.; Nasby, R. D.; Olson, R. J.

    1983-12-01

    A radiation hardened nonvolatile MNOS RAM (SA2998) is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The device requires +10 V and +25 V for operation. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s.

  15. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  16. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  17. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  18. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  19. Using a Personal Device to Strengthen Password Authentication from an Untrusted Computer

    NASA Astrophysics Data System (ADS)

    Mannan, Mohammad; van Oorschot, P. C.

    Keylogging and phishing attacks can extract user identity and sensitive account information for unauthorized access to users' financial accounts. Most existing or proposed solutions are vulnerable to session hijacking attacks. We propose a simple approach to counter these attacks, which cryptographically separates a user's long-term secret input from (typically untrusted) client PCs; a client PC performs most computations but has access only to temporary secrets. The user's long-term secret (typically short and low-entropy) is input through an independent personal trusted device such as a cellphone. The personal device provides a user's long-term secrets to a client PC only after encrypting the secrets using a pre-installed, "correct" public key of a remote service (the intended recipient of the secrets). The proposed protocol (MP-Auth) realizes such an approach, and is intended to safeguard passwords from keyloggers, other malware (including rootkits), phishing attacks and pharming, as well as to provide transaction security to foil session hijacking. We report on a prototype implementation of MP-Auth, and provide a comparison of web authentication techniques that use an additional factor of authentication (e.g. a cellphone, PDA or hardware token).

  20. Beam hardening and partial beam hardening of the bowtie filter: Effects on dosimetric applications in CT

    NASA Astrophysics Data System (ADS)

    Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.

    2014-03-01

    Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.

  1. Roles of texture and latent hardening on plastic anisotropy of face-centered-cubic materials during multi-axial loading

    NASA Astrophysics Data System (ADS)

    Pham, M. S.; Creuziger, A.; Iadicola, M.; Rollett, A. D.

    2017-02-01

    This study investigates the joint impact of preferred texture and latent hardening on the plastic anisotropy of face centered cubic (FCC) materials. The main result is that both aspects have significant impact on the anisotropy, but the two can either counteract each other or synergistically reinforce each other to maximize anisotropy. Preferred texture results in significant anisotropy in plastic yielding. However, the latent hardening significantly alters the texture-induced anisotropy. In addition, one latent hardening type can cancel out the anisotropy of another type. Consequently, if all dislocation-based latent hardening types are included at the same level as the self-hardening, the result might not reveal the complexity of plastic anisotropy. The present study of the synergistic influence of detailed latent hardening and texture presented helps provide new insights into the complex anisotropic behavior of FCC materials during multi-axial forming. the stress at which the material initially yields is not a function of material orientation with respect to the frame of the test (i.e., isotropic yielding); there exists a multi-axial yield locus that is described by a single value of stress that corresponds to yield in uniaxial tension (i.e., stress equivalency); on hardening, the multi-axial yield locus expands by the same amount in every direction in the π-plane, which is the plane that has its normal parallel to [111] in the deviatoric stress space (i.e., isotropic hardening); there is an associated flow rule, i.e., the strain increment is normal to the yield locus.

  2. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 °C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 °C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  3. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  4. Certification of hardened surface layers by magnetic and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Mitropol'skaya, S. Yu.

    2013-07-01

    The possibilities of certification of hardened surface layers by measurement of coercive force, eddy current inspection and analysis of the field dependence of differential magnetic permeability μ d ( H) are considered. The advantages of analysis of the pattern of peaks on the μ d ( H) dependence for estimating the state of surface-hardened steels subjected to subsequent force loading are shown.

  5. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  6. Theoretical Study of the Oxidation Behavior of Precipitation Hardening Steel

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Chrissafis, K.; Psyllaki, P.

    2010-01-21

    The oxidation of precipitation hardening (PH) steels is a rather unexplored area. In the present work an attempt is made is made to estimate the kinetics of a PH steel. For this purpose specimens of the material under examination were isothermally heated at 850, 900 and 950 deg. C for 15 hr. Kinetics was based on TGA results. During heating a thick scale is formed on the substrate surface, which is composed by different oxides. The layer close to the substrate is compact and as a result it impedes corrosion. The mathematical analysis of the collected data shows that the change of the mass of the substrate per unit area versus time is described by a parabolic law.

  7. Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems

    SciTech Connect

    Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat

    2016-09-15

    We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.

  8. Protection performance evaluation regarding imaging sensors hardened against laser dazzling

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd

    2015-05-01

    Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.

  9. Effective mineral coatings for hardening the surface of metallic materials

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2015-07-01

    The structural changes that occur in the surface and surface layers of steel 20Kh13 and titanium alloy PT-3V (Russian designation) samples after each stage of hardening due to a formed mineral surface layer are studied by optical microscopy, transmission electron microscopy, and scanning electron microscopy. Electric spark alloying, pressing, and ultrasonic processing are used to reach the effect of volume compression of the base metal and the mineral in the plastic deformation zone. As a result, applied mineral particles concentrate in preliminarily created microvoids in a thin surface layer. The surface layer thus modified acquires a high hardness and wear resistance. Durometry shows that the hardness of the processed sample surfaces increases more than twofold. Therefore, the developed technology of creating a mineral coating can be used to increase the tribological properties of the surfaces of the parts, units, and mechanisms of turbine, pump, and mining equipment, which undergo intense wear during operation.

  10. Characterization and hardening of concrete with ultrasonic testing.

    PubMed

    del Río, L M; Jiménez, A; López, F; Rosa, F J; Rufo, M M; Paniagua, J M

    2004-04-01

    In this study, we describe a technique which can be used to characterize some relevant properties of 26 cylindrical samples (15 x 30 cm2) of concrete. The characterization has been performed, according to Spanish regulations in force, by some destructive and ultrasound-based techniques using frequencies of 40 kHz. Samples were manufactured using different water/cement ratios (w/c), ranging from 0.48 to 0.80, in order to simulate different values of compressive strength at each sample. We have correlated the propagation velocity v of ultrasonic waves through the samples to compressive strength R values. As some other authors remark, there exists an exponential relationship between the two above parameters. We have found that a highly linear relationship is present between R and w/c concentration at the samples. Nevertheless, when the same linear model is adopted to describe the relationship between v and w/c, the value of r decreases significantly. Thus, we have performed a multiple regression analysis which takes into account the impact of different concrete constituents (water, cement, sand, etc.) on ultrasound propagation speed. One of the most relevant practical issues addressed in our study is the estimation of the hardening curve of concrete, which can be used to quantify the viability of applying the proposed method in a real scenario. Subsequently, we also show a detailed analysis of the temporal evolution of v and R through 61 days, beginning at the date where the samples were manufactured. After analyzing both parameters separately, a double reciprocal relationship is deduced. Using the above parameters, we develop an NDE-based model which can be used to estimate hardening time of concrete samples.

  11. The hardening phenomenon in irritant contact dermatitis: an interpretative update.

    PubMed

    Watkins, Shannon A; Maibach, Howard I

    2009-03-01

    Irritant contact dermatitis (ICD) is common and poses a significant problem in high-risk populations. In most cases, ICD resolves despite continued exposure in a process known as 'hardening', allowing individuals to continue with their work. Those who cannot clear ICD develop chronic ICD, which is a significant source of emotional, physical, and financial distress for affected individuals. While hardening is well known among labourers and clinicians, its mechanism remains to be elucidated. Much can be learned from the study of self-healing processes like the hardening phenomenon. This overview briefly documents the pathogenesis of ICD, focuses on the latest advances pertaining to the hardening phenomenon in ICD, and then highlights potential avenues of productive research. A better understanding of the 'hardening' process in the skin will hopefully lead to advances for the treatment of ICD.

  12. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial

  13. Update on radiation-hardened microcomputers for robotics and teleoperated systems

    SciTech Connect

    Sias, F.R. Jr.; Tulenko, J.S.

    1993-12-31

    Since many programs sponsored by the Department of Defense are being canceled, it is important to select carefully radiation-hardened microprocessors for projects that will mature (or will require continued support) several years in the future. At the present time there are seven candidate 32-bit processors that should be considered for long-range planning for high-performance radiation-hardened computer systems. For Department of Energy applications it is also important to consider efforts at standardization that require the use of the VxWorks operating system and hardware based on the VMEbus. Of the seven processors, one has been delivered and is operating and other systems are scheduled to be delivered late in 1993 or early in 1994. At the present time the Honeywell-developed RH32, the Harris RH-3000 and the Harris RHC-3000 are leading contenders for meeting DOE requirements for a radiation-hardened advanced 32-bit microprocessor. These are all either compatible with or are derivatives of the MIPS R3000 Reduced Instruction Set Computer. It is anticipated that as few as two of the seven radiation-hardened processors will be supported by the space program in the long run.

  14. Precipitation hardening in 350 grade maraging steel

    SciTech Connect

    Viswanathan, U.K. . Radiometallurgy Div.); Dey, G.K. . Metallurgy Division); Asundi, M.K. )

    1993-11-01

    Evolution of microstructure in 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni[sub 3] (Ti, Mo) and Fe[sub 2]Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  15. Jerky loads on surface-hardened gears

    NASA Technical Reports Server (NTRS)

    Rettig, H.; Wirth, X.

    1978-01-01

    Damage occurs again and again in practice in the form of transmissions with surface hardened gears which break after a very long operating time (explained by seldom occurring jerky loads). Gear drives are frequently exposed to jerky stresses which are greater than their fatigue limit. These stresses are considered in gear calculations, first, by shock factors when the transmission is to be designed as high endurance with regard to overloads and, second, in the form of operating ratios when the design is to be time enduring with regard to overloads. The size of the operating ratio depends not only on torque characteristics, drive and processing machine, but also on the material and heat treatment.

  16. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2016-11-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  17. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2017-02-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  18. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  19. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine.

    PubMed

    De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P

    2015-09-01

    Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes.

  20. Press-hardening of zinc coated steel - characterization of a new material for a new process

    NASA Astrophysics Data System (ADS)

    Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.

    2016-11-01

    Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.

  1. Deformation behavior in reactor pressure vessel steels as a clue to understanding irradiation hardening.

    SciTech Connect

    DiMelfi, R. J.; Alexander, D. E.; Rehn, L. E.

    1999-10-25

    In this paper, we examine the post-yield true stress vs true strain behavior of irradiated pressure vessel steels and iron-based alloys to reveal differences in strain-hardening behavior associated with different irradiating particles (neutrons and electrons) and different alloy chernky. It is important to understand the effects on mechanical properties caused by displacement producing radiation of nuclear reactor pressure steels. Critical embrittling effects, e.g. increases in the ductile-to-brittle-transition-temperature, are associated with irradiation-induced increases in yield strength. In addition, fatigue-life and loading-rate effects on fracture can be related to the post-irradiation strain-hardening behavior of the steels. All of these properties affect the expected service life of nuclear reactor pressure vessels. We address the characteristics of two general strengthening effects that we believe are relevant to the differing defect cluster characters produced by neutrons and electrons in four different alloys: two pressure vessel steels, A212B and A350, and two binary alloys, Fe-0.28 wt%Cu and Fe-0.74 wt%Ni. Our results show that there are differences in the post-irradiation mechanical behavior for the two kinds of irradiation and that the differences are related both to differences in damage produced and alloy chemistry. We find that while electron and neutron irradiations (at T {le} 60 C) of pressure vessel steels and binary iron-based model alloys produce similar increases in yield strength for the same dose level, they do not result in the same post-yield hardening behavior. For neutron irradiation, the true stress flow curves of the irradiated material can be made to superimpose on that of the unirradiated material, when the former are shifted appropriately along the strain axis. This behavior suggests that neutron irradiation hardening has the same effect as strain hardening for all of the materials analyzed. For electron irradiated steels, the

  2. Cylindrical shell buckling through strain hardening

    SciTech Connect

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Gupta, D.

    1995-04-01

    Recently, the authors published results of plastic buckling analysis of cylindrical shells. Ideal elastic-plastic material behavior was used for the analysis. Subsequently, the buckling analysis program was continued with the realistic stress-strain relationship of a stainless steel alloy which does not exhibit a clear yield point. The plastic buckling analysis was carried out through the initial stages of strain hardening for various internal pressure values. The computer program BOSOR5 was used for this purpose. Results were compared with those obtained from the idealized elastic-plastic relationship using the offset stress level at 0.2% strain as the yield stress. For moderate hoop stress values, the realistic stress-grain case shows a slight reduction of the buckling strength. But, a substantial gain in the buckling strength is observed as the hoop stress approaches the yield strength. Most importantly, the shell retains a residual strength to carry a small amount of axial compressive load even when the hoop stress has exceeded the offset yield strength.

  3. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  4. Open Source Radiation Hardened by Design Technology

    NASA Technical Reports Server (NTRS)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  5. Work hardening and work conditioning interventions: do they affect disability?

    PubMed

    Lechner, D E

    1994-05-01

    The purpose of this article is to review the research on the effectiveness of work hardening and work conditioning programs. Twelve studies of work hardening and work conditioning programs in the United States and abroad were reviewed. One study produced convincing evidence in a randomized study that a work conditioning program was useful in producing a higher percentage of return to work and an earlier return to work in a group of patients off work for at least 2 months. Another study demonstrated that a work hardening program increased the rate of return to work by 52% in patients off work for greater than 4 months. Most of the other studies reviewed suggested positive results, but more carefully documented, randomized, and controlled studies are needed to support the efficacy of these programs and to determine the optimum and most cost-effective work hardening and work conditioning interventions.

  6. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  7. Microscopic Origin of Strain Hardening in Methane Hydrate.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-03-24

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon.

  8. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  9. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis.

  10. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  11. NINJA: a noninvasive framework for internal computer security hardening

    NASA Astrophysics Data System (ADS)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive

  12. Design and characterisation of a new duplex surface system based on S-phase hardening and carbon-based coating for ASTM F1537 Co-Cr-Mo alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xia; Li, Xiaoying

    2014-02-01

    Co-Cr-Mo alloys are one of the most widely used metallic biomaterials for metal-on-metal joint prostheses. However, concerns over increased revision rates mainly due to nano-sized wear debris have been raised. This study was aimed at enhancing the friction, wear and load-bearing properties of Co-Cr-Mo alloys by developing a new duplex surface system combining super hard and wear-resistant S-phase layer with self-lubricating, low-friction carbon-based coating. To this end, ASTM

  13. Tailoring of mechanical properties of a side sill part made of martensitic stainless steel by press hardening

    NASA Astrophysics Data System (ADS)

    Meza-García, Enrique; Rautenstrauch, Anja; Kräusel, Verena; Landgrebe, Dirk

    2016-10-01

    The present work deals with a technological study to integrate the 1.4034 martensitic stainless steel sheet alloy in the conventional press hardening process. Based on preliminary work, side sill demonstrators with tailored mechanical properties were manufactured by press hardening under conventional process parameters. The resulting microstructure and mechanical properties of the produced parts were characterized. The tailoring of the mechanical properties consists of the development of two sections with completely different mechanical properties in a single part. To achieve this, a half of the blank was insulated with a refractory during austenitization treatment. This avoided the heating of the insulated side until the austenitization temperature. Therefore, only the non-insulated side was hardened by quenching. Moreover, depending on the austenitization temperature the resulting mechanical properties can be adjusted.

  14. Efficient simulation of press hardening process through integrated structural and CFD analyses

    SciTech Connect

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek; Roy, Subir

    2013-12-16

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integrated commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.

  15. Zinc coated sheet steel for press hardening

    NASA Astrophysics Data System (ADS)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  16. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  17. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  18. Epoxy adhesive formulations for engineered wood manufacturing: Design of Experiment (DOE) and hardener modification

    NASA Astrophysics Data System (ADS)

    Wangkheeree, W.; Meekum, U.

    2016-03-01

    The effect of IPDA, DDS, BPA and DICY, as main ingredient of TETA based hardener were examined. The 2k design of experiment(DOE) with k=3 were preliminary explored. The designed parameters A(IPDA), B(DDS) and C(BPA) were assigned as low(-) and high(+) levels, respectively. The Design Expert™ was hired as the analyzing tool at α=0.05. The mixed epoxy resin was based on the commercial one. The designed responds including tcure, t50, impact strengths, flexural properties and HDT were measured, respectively. Regarding to ANOVA conclusion, it was found that, there were no significant effects on the assigned parameters on the interested responds, except for the HDT where BPA(C) was negative effect was found. The lower in the crosslink density of cured epoxy, inferior in HDT, the higher in BPA addition was hypothesized. It was found that impact strength of cured epoxy derived from all formula were unacceptable low and tcure and t50, were too short. Thus, the further investigation by adding DICY into hardener was explored. The results showed that no significant change by mechanical means of cured epoxy by resolving 5-30 phr of DICY into the hardener. However, it was observed that the DICY added formula showed the obvious long cure times and behave as prepreg formula. The room temperature cured epoxy was incompletely crosslinked. The degrees of linear chain fragment were evidence, by weight, when higher DICY loading was engaged. Complete crosslink was achieved at 150°C post curing. The hardener comprised of TETA/aliphatic Epoxy(RD108) adduct was studied for enhancing the toughness of epoxy resin. It was observed that longer cure time at 150°C but lower toughness was experienced, on both prepreg and engineered wood made from the resins, at high TETA/RD108 ratio. Incomplete cure was explained for the mechanical inferior at high RD108 loading.

  19. Radiation effects in power converters: Design of a radiation hardened integrated switching DC/DC converter

    NASA Astrophysics Data System (ADS)

    Adell, Philippe

    When electronic devices are used in space and military systems, they may be exposed to various types of radiation, including photons, electrons, protons, neutrons, and heavy ions. The effects of radiation on the semiconductor devices within the systems range from gradual degradation to catastrophic failure. In order to design and produce reliable systems for space or military applications, it is necessary to understand the device-level effects of radiation and develop appropriate strategies for reducing system susceptibility. This research focuses on understanding radiation effects in power converters for space and military applications. We show that power converters are very sensitive to radiation (total-dose, single event effects and displacement damage) and that their radiation response is dependent on input bias conditions and load conditions. We compared the radiation hardness of various power converter topologies using experiments and simulations. Evaluation of these designs under different modes of operation is demonstrated to be critical for determining radiation hardness. We emphasize the correlation between radiation effects and the role of the dynamic response of these topologies. For instance, total dose exposure has been found to degrade loop gain and affect regulation in some converters. We propose several radiation-hardening solutions to improve the radiation response of these designs. For instance, we demonstrate the design of a digitally controlled boost converter suitable for space applications based on an SRAM FPGA. A design hardening solution has been developed and successfully applied through VHDL simulations and experiments to assure the continuous operation of the converter in the presence of SEES (more precisely SEFIs). This research led to the design of a digitally controlled radiation hardened integrated switching buck converter. The proposed design is suitable for micro-satellite applications and is based on a high-voltage/CMOS process

  20. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  1. Modifications on A-F hardening rule to assess ratcheting response of materials and its interaction with fatigue damage under uniaxial stress cycles

    NASA Astrophysics Data System (ADS)

    Ahmadzadehrishehri, Gholamreza

    Ratcheting deformation is accumulated progressively over three distinct stages in materials undergoing asymmetrical cyclic stresses. The present thesis evaluates the triphasic ratcheting response of materials from two stand points: (i) Mechanistic approach at which stages of ratcheting progress over stress cycles was related to mechanistic parameters such as stress level, lifespan, mechanical properties and the softening/hardening response of materials. Mechanistic approach formulated in this thesis was employed to assess ratcheting strain over triphasic stages in various steel and copper alloys under uniaxial stress cycles. Good agreements were achieved between the predicted ratcheting strain values based on the proposed formulation and those of experimentally reported. (ii) Kinematic hardening rule approach at which the hardening rule was characterized by the yield surface translation mechanism and the corresponding plastic modulus calculated based on the consistency condition. Various cyclic plasticity models were employed to assess ratcheting response of materials under different loading conditions. The Armstrong-Frederick (A-F) hardening rule was taken as the backbone of ratcheting analysis developed in this thesis mainly due to less complexity and number of coefficients in the hardening rule as compared with other earlier developed hardening rules in the literature. To predict triphasic ratcheting strain over stress cycles, the A-F hardening rule has been further developed by means of new strain rate coefficients gamma 2 and delta. These coefficients improved the hardening rule capability to calibrate and control the rate of ratcheting over its progressive stages. The modified hardening formulation holds the coefficients of the hardening rule to control stress-strain hysteresis loops generated over stress cycles during ratcheting process plus the ratcheting rates over stages I, II, and III. These coefficients were calibrated and defined based on the applied

  2. Spectroscopic investigation of Ni speciation in hardened cement paste.

    PubMed

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  3. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  4. Surface hardening of two cast irons by friction stir processing

    NASA Astrophysics Data System (ADS)

    Fujii, Hidetoshi; Yamaguchi, Yasufumi; Kikuchi, Toshifumi; Kiguchi, Shoji; Nogi, Kiyoshi

    2009-05-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  5. Magnetic hardening of Fe30Co70 nanowires.

    PubMed

    Viñas, Sara Liébana; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-16

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

  6. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  7. The effect of voids on the hardening of body-centered cubic Fe

    NASA Astrophysics Data System (ADS)

    Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.

  8. Complex-shaped hardened parts fatigue limit prediction according to the witness sample study results

    NASA Astrophysics Data System (ADS)

    Surgutanova, Yu N.; Mikushev, N. N.; Surgutanov, N. A.; Kiselev, P. E.; Shlyapnikov, P. A.; Meshcheryakova, A. A.

    2016-11-01

    The aim of this study is to investigate the possibility of assessment of the effect of preparatory surface plastic deformation by hydraulic shot blasting on the fatigue strength of cylindrical parts of different diameters (10-40 mm) of D16T alloy with circular notches of semicircular section, based on measurements of residual stress (initial deformations) of a witness sample. The residual stresses of smooth parts were used to calculate the residual stresses of parts with stress raisers. These were used to predict the increment of these parts fatigue limit caused by hardening hydraulic shot blasting. It was found that the highest compressive residual stresses in the smooth parts obtained through calculations differ from the observed values not more than by 7%, and in notched parts by 8%. Using the criterion of mean integral residual stresses, we calculate the increments of the fatigue limit of parts due to superficial hardening. The discrepancy between the experimental and calculated increment values of the fatigue limit of hardened parts with raisers does not exceed 17%.

  9. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  10. Applications Programs to Facilitate Use of a DBMS (Data Base Management System) to Store and Retrieve Graphics Displays (INGRED II).

    DTIC Science & Technology

    1983-12-01

    originates the particular RIM-5 data base. If password protection is implemented, the password is normally the owner name. Parray - the array within the...which this data base software is concerned is the information packet [Wenner,201. This packet is contained in Parray which is an integer*4 array that...holds up to 30000 entries. Its composition is as follows: Position Number Use 1 count of total entries in Parray 2 to n opcode information yn+1 to (yn+l

  11. Evaluation of irradiation hardening of ion-irradiated V-4Cr-4Ti and V-4Cr-4Ti-0.15Y alloys by nanoindentation techniques

    NASA Astrophysics Data System (ADS)

    Miyazawa, Takeshi; Nagasaka, Takuya; Kasada, Ryuta; Hishinuma, Yoshimitsu; Muroga, Takeo; Watanabe, Hideo; Yamamoto, Takuya; Nogami, Shuhei; Hatakeyama, Masahiko

    2014-12-01

    Irradiation hardening behavior of V-4Cr-4Ti and V-4Cr-4Ti-0.15Y alloys after Cu-ion beam irradiation were investigated with a combination between nanoindentation techniques and finite element method (FEM) analysis. The ion-irradiation experiments were conducted at 473 K with 2.4 MeV Cu2+ ions up to 7.6 dpa. For the unirradiated materials, the increase in nanoindentation hardness with decreasing indentation depth, so-called indentation size effect (ISE), was clearly observed. After irradiation, irradiation hardening in the measured depth was identified. Hardening behavior of bulk-equivalent hardness for V-4Cr-4Ti-0.15Y alloy was similar to that for V-4Cr-4Ti alloy. Y addition has little effect on irradiation hardening at 473 K. Adding the concept of geometrically necessary dislocations (GNDs) to constitutive equation of V-4Cr-4Ti alloy, the ISE was simulated. A constant value of α = 0.5 was derived as an optimal value to simulate nanoindentation test for ion-irradiated V-4Cr-4Ti alloy. Adding the term of irradiation hardening Δσirrad. to constitutive equation with α = 0.5, FEM analyses for irradiated surface of V-4Cr-4Ti alloy were carried out. The analytic data of FEM analyses based on neutron-irradiation hardening equivalent to 3.0 dpa agreed with the experimental data to 0.76 dpa. The comparison indicates that irradiation hardening by heavy ion-irradiation is larger than that by neutron-irradiation at the same displacement damage level. Possible mechanisms for extra hardening by heavy ion-irradiation are the processes that the injected Cu ions could effectively produce irradiation defects such as interstitials compared with neutrons, and that higher damage rate of ion-irradiation enhanced nucleation of irradiation defects and hence increased the number density of the defects compared with neutron-irradiation.

  12. Branching structure and strain hardening of branched metallocene polyethylenes

    SciTech Connect

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  13. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  14. Ion-irradiation-induced hardening in Inconel 718

    NASA Astrophysics Data System (ADS)

    Hunn, J. D.; Lee, E. H.; Byun, T. S.; Mansur, L. K.

    2001-07-01

    Inconel 718 is a material under consideration for areas in the target region of the spallation neutron source (SNS), now under construction at Oak Ridge National Laboratory (ORNL) in the US. In these positions, displacement damage from protons and neutrons will affect the mechanical properties. In addition, significant amounts of helium and hydrogen will build up in the material due to transmutation reactions. Nanoindentation measurements of solution-annealed (SA) Inconel 718 specimens, implanted with Fe-, He-, and H-ions to simulate SNS target radiation conditions, have shown that hardening occurs due to ion-induced displacement damage as well as due to the build-up of helium bubbles in the irradiated layer. Precipitation-hardened (PH) Inconel 718 also exhibited hardening by helium build-up but showed softening as a function of displacement damage due to dissolution of the γ ' and γ″ precipitates.

  15. Determination of Anisotropic Hardening of Sheet Metals by Shear Tests

    SciTech Connect

    Schikorra, Marco; Brosius, Alexander; Kleiner, Matthias

    2005-08-05

    With regard to the increasing necessity of accurate material data determination for the prediction of springback, a material testing equipment has been developed and set up for the measurement of material hardening within cyclic loading. One reason for inaccurate springback predictions can be seen in a missing consideration of load reversal effects in a realistic material model description. Due to bending and unbending while the material is drawn from the flange over a radius of a deep drawing tool, a hardening takes place which leads to an expanding or shifting of the elastic area and yield locus known as isotropic, kinematic, or combined hardening. Since springback is mainly influenced by the actual stress state and a correct distinction between elastic and elastic-plastic regions, an accurate prediction of these stress and strain components is basically required to simulate springback accurately, too. The presented testing method deals with shearing of sheet metal specimens in one or more load cycles to analyze the change of yield point and yield curve. The experimental set up is presented and discussed and the results are shown for different materials such as aluminum A199.5, stainless steel X5CrNi18.10, dual phase steel DP600, and copper Cu99.99. To guarantee a wide experimental range, different sheet thicknesses were used additionally. Simulations using the finite element method were carried out to compare the measured results with calculated results from different yield criterions and different hardening laws mentioned above. It was possible to show that commonly used standard material hardening laws like isotropic and kinematic hardening laws often do not lead to accurate stress state predictions when load reversals occur. The work shows the range of occurring differences and strategies to obtain to a more reliable prediction.

  16. Why semiconductors must be hardened when used in space

    SciTech Connect

    Winokur, P. S.

    2000-01-04

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest.

  17. Strain hardening in polymer glasses: limitations of network models.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2007-09-14

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic rearrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.

  18. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  19. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  20. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  1. Temperature influence on water transport in hardened cement pastes

    SciTech Connect

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  2. Precipitation hardening of a novel aluminum matrix composite

    SciTech Connect

    Suarez, Oscar Marcelo

    2002-09-15

    Deterioration of properties in cast aluminum matrix composites (AMCs) due to matrix/reinforcement chemical reactions is absent when AlB{sub 2} particles are used as reinforcements. This communication reports the fabrication of a heat-treatable AMC reinforced with borides. Final hardness values can be adjusted by solution and precipitation, which harden the composite. Evolution of the microstructure is concisely presented as observed by secondary electron microscopy. Precipitation hardening of the aluminum matrix, observed by microhardness measurements, has been corroborated by differential thermal analysis.

  3. Strain Hardening in Polymer Glasses: Limitations of Network Models

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Robbins, Mark O.

    2007-09-01

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic rearrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.

  4. An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology

    NASA Astrophysics Data System (ADS)

    Lifton, J. J.; Malcolm, A. A.; McBride, J. W.

    2016-01-01

    Scattered radiation and beam hardening introduce artefacts that degrade the quality of data in x-ray computed tomography (CT). It is unclear how these artefacts influence dimensional measurements evaluated from CT data. Understanding and quantifying the influence of these artefacts on dimensional measurements is required to evaluate the uncertainty of CT-based dimensional measurements. In this work the influence of scatter and beam hardening on dimensional measurements is investigated using the beam stop array scatter correction method and spectrum pre-filtration for the measurement of an object with internal and external cylindrical dimensional features. Scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, a gradient-based surface determination method is found to be robust to the influence of artefacts and leads to more accurate dimensional measurements than those evaluated using the ISO50 method. In addition to these observations the GUM method for evaluating standard measurement uncertainties is applied and the standard measurement uncertainty due to scatter and beam hardening is estimated.

  5. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  6. A Critical Assessment of Cyclic Softening and Hardening Behavior in a Near- α Titanium Alloy During Thermomechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Prasad, Kartik; Sarkar, Rajdeep; Rao, K. Bhanu Sankara; Sundararaman, M.

    2016-10-01

    Thermomechanical fatigue behavior of Ti-alloy Timetal 834 has been studied at two temperature intervals viz. 573 K to 723 K (300 °C to 450 °C) and 723 K to 873 K (450 °C to 600 °C) under mechanical strain-controlled cycling. Among the temperatures studied, the alloy exhibited initial cyclic softening followed by cyclic hardening at 723 K (450 °C) in the temperature interval of 573 K to 723 K (300 °C to 450 °C). However, continuous cyclic hardening was observed at 723 K (450 °C) in 723 K to 873 K (450 °C to 600 °C). At 573 K (300 °C) and 873 K (600 °C), cyclic softening was observed in the cyclic stress response curves in both the temperature intervals. The dislocation substructure was observed to be planar in both the modes of TMF loading. Based on TEM microstructures and few unconventional fatigue tests, the observed cyclic hardening is attributed to dynamic strain aging. The reduced fatigue life at 723 K to 873 K (450 °C to 600 °C) under OP-TMF loading was attributed to the combined effect of cyclic hardening (leading to early strain localization and crack initiation), oxidation, and development of tensile mean stresses.

  7. Hardening digital systems with distributed functionality: robust networks

    NASA Astrophysics Data System (ADS)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  8. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  9. A radiation-hardened 16/32-bit microprocessor

    SciTech Connect

    Hass, K.J.; Treece, R.K.; Giddings, A.E.

    1989-01-01

    A radiation-hardened 16/32-bit microprocessor has been fabricated and tested. Our initial evaluation has demonstrated that it is functional after a total gamma dose of 5Mrad(Si) and is immune to SEU from Krypton ions. 3 refs., 2 figs.

  10. BUSFET - A Novel Radiation-Hardened SOI Transistor

    SciTech Connect

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-02-04

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology.

  11. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  12. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum.

  13. Surface hardening of parts from ferrite-pearlite gray iron

    NASA Astrophysics Data System (ADS)

    Gurevich, Yu. G.; Ovsyannikov, V. E.; Marfitsyn, V. V.; Frolov, V. A.

    2011-10-01

    The possibility of a simple method of chromizing of parts from ferrite-pearlite gray iron is studied theoretically and proved experimentally. A process for diffusion chromizing of parts from this iron is suggested. When followed by surface hardening the process yields a high-hardness surface layer with abrasive strength comparable to that of white chromium cast iron.

  14. Hardening by twin boundary during nanoindentation in nanocrystals.

    PubMed

    Qu, Shaoxing; Zhou, Haofei

    2010-08-20

    The atomistic deformation processes of nanocrystals embedded with nanoscale twin boundaries during nanoindentation are studied by molecular dynamics simulations. Load-displacement curves are obtained and the hardening mechanisms associated with the nanoscale twin boundaries are revealed. Johnson's theoretical indentation model is adopted to estimate the elastic stage of the nanoindentation. In addition, twin boundary-mediated dislocation nucleation is observed and analyzed.

  15. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    DTIC Science & Technology

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are...Carpenter Custom 465 precipitation-hardened martensiticstainless steel , linear friction welding, process modeling REPORT DOCUMENTATION PAGE 11

  16. Prefabricated Roof Beams for Hardened Shelters

    DTIC Science & Technology

    1993-08-01

    program performs successive iterations until a measure based on the largest displacement difference is smaller than a specified threshold. In the... based on either measured or computed material properties. 76 Another consideration usciated with pultruded beams is the cifect of temperature on... based on the concrete and steel material properties as measured from concrete cylinders and steel coupons. As seen in the figure, the ADINA results

  17. Algorithm for x-ray beam hardening and scatter correction in low-dose cone-beam CT: phantom studies

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2016-03-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), as well as beam hardening, resulting in image artifacts, contrast reduction, and lack of CT number accuracy. Meanwhile the x-ray radiation dose is also non-ignorable. Considerable scatter or beam hardening correction methods have been developed, independently, and rarely combined with low-dose CT reconstruction. In this paper, we combine scatter suppression with beam hardening correction for sparse-view CT reconstruction to improve CT image quality and reduce CT radiation. Firstly, scatter was measured, estimated, and removed using measurement-based methods, assuming that signal in the lead blocker shadow is only attributable to x-ray scatter. Secondly, beam hardening was modeled by estimating an equivalent attenuation coefficient at the effective energy, which was integrated into the forward projector of the algebraic reconstruction technique (ART). Finally, the compressed sensing (CS) iterative reconstruction is carried out for sparse-view CT reconstruction to reduce the CT radiation. Preliminary Monte Carlo simulated experiments indicate that with only about 25% of conventional dose, our method reduces the magnitude of cupping artifact by a factor of 6.1, increases the contrast by a factor of 1.4 and the CNR by a factor of 15. The proposed method could provide good reconstructed image from a few view projections, with effective suppression of artifacts caused by scatter and beam hardening, as well as reducing the radiation dose. With this proposed framework and modeling, it may provide a new way for low-dose CT imaging.

  18. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  19. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  20. Smartphone-based secure authenticated session sharing in Internet of Personal Things

    NASA Astrophysics Data System (ADS)

    Krishnan, Ram; Ninglekhu, Jiwan

    2015-03-01

    In the context of password-based authentication, a user can only memorize limited number of usernames and passwords. They are generally referred to as user-credentials. Longer character length of passwords further adds complication in mastering them. The expansion of the Internet and our growing dependency on it, has made it almost impossible for us to handle the big pool of user-credentials. Using simple, same or similar passwords is considered a poor practice, as it can easily be compromised by password cracking tools and social engineering attacks. Therefore, a robust and painless technique to manage personal credentials for websites is desirable. In this paper, a novel technique for user-credentials management via a smart mobile device such as a smartphone in a local network is proposed. We present a secure user-credential management scheme in which user's account login (username) and password associated with websites domain name is saved into the mobile device's database using a mobile application. We develop a custom browser extension application for client and use it to import user's credentials linked with the corresponding website from the mobile device via the local Wi-Fi network connection. The browser extension imports and identifies the authentication credentials and pushes them into the target TextBox locations in the webpage, ready for the user to execute. This scheme is suitably demonstrated between two personal devices in a local network.

  1. Prefabricated panelized nuclear-hardened shelter

    SciTech Connect

    Smith, R.A.

    1987-08-18

    This patent describes a shelter for protecting occupants therein from dynamic blast waves and barometric overpressure created by an above ground nuclear detonation proximate to the shelter, the shelter being buried below ground under soil, the soil comprising means for the attenuation of the dynamic blast wave generated by the detonation, the shelter having a semipherical domed roof and a base means supporting the roof, the semipherical domed roof being downwardly displaceable and having a lower edge which is vertically and downwardly movable in response to barometric overpressure generated by the detonation, the base means being a ring made up of a plurality of arcuate sections, the arcuate sections of the base means being crushable in response to the vertical downward movement of the roof to enable the roof to move downwardly to a lower position where it is supported on the crushed base member, the overpressure being transmitted through the soil surrounding the roof.

  2. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    PubMed

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects.

  3. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  4. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  5. Transformation hardening of steel sheet for automotive applications

    NASA Astrophysics Data System (ADS)

    Takechi, H.

    2008-12-01

    Among high-strength steels, transformation hardening steels such as dual-phase (DP) steel and transformation-induced plasticity (TRIP) steel offer a superior relationship between tensile strength (TS) and elongation (El) on a commercial scale. As demand has grown for lighter-weight automobiles, so also has the demand for higher TS, lower yield ratio, and higher hole expansion ratio grown. Recently DP steel has been developed with precipitation hardening and grain refining by TiC. A new TRIP steel composed of 5Mn-2Si and control-rolled with niobium addition suggests the formation of retained austenite ( γ R ) as much as 30% and TS × El = 3,000 kgf/mm2·%.

  6. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  7. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  8. Stress and Distortion Evolution During Induction Case Hardening of Tube

    NASA Astrophysics Data System (ADS)

    Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Ferguson, Lynn; Li, Zhichao

    2013-07-01

    Simulation of stresses during heat treatment relates usually to furnace heating. Induction heating provides a very different evolution of temperature in the part and therefore different stresses. This may be positive for service properties or negative, reducing component strength or even causing cracks. A method of coupled simulation between electromagnetic, thermal, structural, stress, and deformation phenomena during induction tube hardening is described. Commercial software package ELTA is used to calculate the power density distribution in the load resulting from the induction heating process. The program DANTE is used to predict temperature distribution, phase transformations, stress state, and deformation during heating and quenching. Analyses of stress and deformation evolution were made on a simple case of induction hardening of external (1st case) and internal (2nd case) surfaces of a thick-walled tubular body.

  9. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    SciTech Connect

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  10. Elastic constant versus temperature behavior of three hardened maraging steels

    NASA Technical Reports Server (NTRS)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  11. Stress Analysis for Kinematic Hardening in Finite-Deformation Plasticity.

    DTIC Science & Technology

    1981-12-01

    field, straight lines defined by material points remain straight and the square block is deformed into a sequence of parallelograms . The line of...Contract N00014-81-K-0660 DEPARTMENT STRESS ANALYSIS FOR KINEMATIC HARDENING OF IN FINITE- DEFORMATION PLASTICITY MECHANICAL ENGINEERING By E. H. Lee, R, L...Finite- Deformation Plasticity E. H. Lee and R. L. Mallett, Rensselaer Polytechnic Institute and Stanford University, and T. B. Wertheimer, MARC Analysis

  12. Blast response of a hardened Army ISO shelter

    SciTech Connect

    Milligan, R.W.; Lush, A.; Crenshaw, W.L.

    1982-09-01

    A prototype shelter was designed to withstand a blast loading corresponding to a 10.0 psi (68.9 kPa) incident overpressure. The hardened shelter was then constructed, instrumented and subjected to a simulated nuclear blast loading. Test results demonstrated that a design featuring shear stiffened sandwich panels with aluminum face materials could withstand a nominal 10.0 psi incident shock loading.

  13. Structure and Hardness of Cast Iron after Surface Hardening

    NASA Astrophysics Data System (ADS)

    Safonov, E. N.

    2005-09-01

    Special features of structure formation in the heat-affected zone of roll-foundry iron with flaked or globular graphite due to surface heat treatment by direct electric (plasma) arc are considered. The influence of the parameters of the process on the composition, structure, and properties of the hardened zone is studied. Treatment modes ensuring a structure with enhanced hardness and wear resistance in the surface layer of iron are determined.

  14. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  15. Variations in the Bainite Hardenability of ASTM A723 Steel

    DTIC Science & Technology

    1987-05-01

    REFERENCES 10 TABLES I. CHEMICAL ANALYSIS OF SAMPLES FROM ESR , CONVENTIONALLY REFINED, 5 AND CALCIUM TREATED STEELS II. COMPARISON OF LABORATORY...balnite formation is detected in the ESR refined sample. However, our survey of A723 steels from a number of suppliers who employ various refining tech...hardenability steels that we have analyzed have nickel concentrations near two percent. The ESR sample is typical of alloys that we classify as high

  16. Work-hardening and effective viscosity in solid beryllium

    SciTech Connect

    Steinberg, D.; Breithaupt, D.; Honodel, C.

    1985-06-01

    Results from Hopkinson split-bar, plate-impact, and cylinder deceleration experiments on beryllium are compared with hydrodynamic computer code simulations. By substantially increasing the beryllium work-hardening in the Steinberg-Guinan constitutive model, excellent agreement between the experiments and the calculations is achieved. A model to estimate effective viscosity is also proposed and the resultant calculations are in reasonable agreement with those derived from another model advanced by Asay, Chhabildas and Wise. 12 refs., 5 figs.

  17. Simulation of Stress and Strain for Induction-Hardening Applications

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitry; Markegård, Leif; Asperheim, John Inge; Kristoffersen, Hans

    2013-11-01

    The possibility to manage stress and strain in hardened parts might be beneficial for a number of induction-hardening applications. The most important of these benefits are the improvement of fatigue strength, avoidance of cracks, and minimization of distortion. An appropriate and powerful way to take the stress and strain into account during the development of a process is to make use of computer simulations. In-house developed and commercial software packages have been coupled to incorporate the electromagnetic task into the calculations. The simulations have been performed followed by analysis of the results. The influences of two different values of quenching intensity, strength of initial material structure, strength of austenite, surface power density-frequency-time combination, and workpiece diameter on the residual stress are studied. The influence of quenching intensity is confirmed by the series of experiments representing the external hardening of a cylinder with eight variations of quenching intensity. Measured by x-rays, the values of surface tangential stress are used as a dataset for verification of the model being used for analyses.

  18. Effect of Welding Speed on Mechanical Properties and the Strain-Hardening Behavior of Friction Stir Welded 7075 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Xu, Weifeng; Li, Zhaoxi; Sun, Xiaohong

    2017-03-01

    The effect of welding speed on the microstructural evolution, mechanical properties and strain-hardening behavior of friction stir welded (FSWed) high-strength AA7075-T651 was investigated. Large intermetallic particles and grains, whose sizes increased at lower welding speeds, were present in the heat-affected zone. FSWed joints fabricated at the higher welding speed or lower strain rates exhibited higher strength, joint efficiency and ductility than those fabricated at lower welding speeds or higher strain rates. A maximum joint efficiency of 97.5% and an elongation to failure of 15.9% were obtained using a welding speed of 400 mm/min at a strain rate of 10-5 s-1. The hardening capacity, strain-hardening exponent and strain-hardening rate of the FSWed joints were significantly higher than those of the base material, but materials exhibited stage III and stage IV hardening characteristics. The results morphology of the fracture surfaces is consistent with the above results.

  19. Radiation-Hardened Wafer Scale Integration

    DTIC Science & Technology

    1989-10-25

    tim technology. A system built with conventional ICs and packaging would be very much larger. The required radiation dose rate and single - event upset ...assuming a 10:1 scaling at the analog to digital converters . (See footnote in Section 2.5.1.) This scale factor is used, for example, in ground-based...transistors which resulted in 5 different circuits . Static CMOS circuitry was used for radiation resistance. All 5 circuits were designed and built

  20. Radiation hardened microprocessor for small payloads

    NASA Technical Reports Server (NTRS)

    Shah, Ravi

    1993-01-01

    The RH-3000 program is developing a rad-hard space qualified 32-bit MIPS R-3000 RISC processor under the Naval Research Lab sponsorship. In addition, under IR&D Harris is developing RHC-3000 for embedded control applications where low cost and radiation tolerance are primary concerns. The development program leverages heavily from commercial development of the MIPS R-3000. The commercial R-3000 has a large installed user base and several foundry partners are currently producing a wide variety of R-3000 derivative products. One of the MIPS derivative products, the LR33000 from LSI Logic, was used as the basis for the design of the RH-3000 chipset. The RH-3000 chipset consists of three core chips and two support chips. The core chips include the CPU, which is the R-3000 integer unit and the FPA/MD chip pair, which performs the R-3010 floating point functions. The two support whips contain all the support functions required for fault tolerance support, real-time support, memory management, timers, and other functions. The Harris development effort had first passed silicon success in June, 1992 with the first rad-hard 32-bit RH-3000 CPU chip. The CPU device is 30 kgates, has a 508 mil by 503 mil die size and is fabricated at Harris Semiconductor on the rad-hard CMOS Silicon on Sapphire (SOS) process. The CPU device successfully passed tesing against 600,000 test vectors derived directly on the LSI/MIPS test suite and has been operational as a single board computer running C code for the past year. In addition, the RH-3000 program has developed the methodology for converting commercially developed designs utilizing logic synthesis techniques based on a combination of VHDK and schematic data bases.

  1. Performance of radiation hardening techniques under voltage and temperature variations

    NASA Astrophysics Data System (ADS)

    Veeravalli, Varadan Savulimedu; Steininger, Andreas

    The effectiveness of the techniques to mitigate radiation particle hits in digital CMOS circuits has been mainly studied under a given set of environmental conditions. This paper will explicitly analyze, how the performance of two selected radiation hardening techniques, namely transistor sizing and stack separation, varies with temperature and supply voltage. Our target is an inverter circuit in UMC90 bulk CMOS technology, instances of which have been hardened against charges of 300fC and 450fC using either of the two techniques under investigation. In a Spice simulation we apply particle hits to these circuits through double-exponential current pulses of the respective charge. We study the effect of these pulses in a temperature range from - 55 C to +175 C and a supply voltage of 0.65 to 1.2V (nominal 1V) at the output of a (unhardened) buffer that has been connected as a load. For the hardening by sizing we observe proper operation in the range from 1.2V to 900mV, while for lower supply we observe full swing pulses of increasing magnitude when the respective maximum charge is applied. The influence of temperature turns out to be minor. For the stack separation approach the observation is similar, however, the circuit starts glitching only at 750mV. Our study allows the following conclusions: (i) The effectiveness of the hardening approaches strongly depends on the supply voltage, and moderately on temperature. (ii) As expected, low voltage and high temperature represent the worst case for rad-hard sizing. Stack separation, on the other hand, unexpectedly shows a stronger and more complicated temperature dependence. (ii) For voltages below approx. 90% of nominal the hardening by sizing fails, when designed for nominal voltage and room temperature. The approach can be enhanced to survive this worst case by increasing the sizing factor further by more than 3 times. (iv) The stack separation only fails for voltages below approx. 75% of nominal, but there is n

  2. Radiation-Hardened Solid-State Drive

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.

    2010-01-01

    A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.

  3. Ammonia hardening of porous silica antireflective coatings

    NASA Astrophysics Data System (ADS)

    Belleville, Philippe F.; Floch, Herve G.

    1994-10-01

    The adhesion of sol-gel antireflective porous silica coatings on vitreous optical substrates has been dramatically improved by exposure to ammonia vapors or a dip in basic solutions. The approximately 70 to 270-nm thick coatings consisted of monolayers of spherical, 20-nm diameter amorphous silica particles deposited from ethanolic colloidal suspensions by conventional liquid coating techniques. Although, the as-deposited coatings had only low adhesion and were easily damaged when cleaned by standard drag-wiping procedures, coatings exposed over 5 hours to ammonia vapors passed both adhesive-tape and moderate abrasive- resistance tests. The increase in strength was accompanied by a roughly 20% shrinkage of the original coating thickness but the antireflective properties were retained. Our explanation of this chemical effect is a base-catalyzed phenomenon leading to surface silanol condensation and hydrogen-bonding of neighbor silica particles. In addition, since this basic treatment enhanced the laser damage resistance, such strengthened antireflective coatings have been successfully evaluated on flashlamps used on Phebus, Europe's most powerful laser. This allows an increase of the laser-disk pumping efficiency.

  4. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I. ); Chagnot, D.; LeRoy, A. )

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10[sup 7] rads and at elevated ambient temperatures.

  5. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures.

  6. The transition from stress softening to stress hardening under cyclic loading induced by magnetic field for magneto-sensitive polymer gels

    NASA Astrophysics Data System (ADS)

    Xu, Yangguang; Liao, Guojiang; Zhang, Canyang; Wan, Qiang; Liu, Taixiang

    2016-04-01

    Magneto-sensitive polymer gel (MSPG) is a kind of ferromagnetic particle filled smart polymer composite, whose magneto-mechanical coupling mechanism has attracted increasing attention in recent years. In this work, the magneto-induced rheological response of MSPG under cyclic shear loading was investigated. It was found that magnetic field is the critical reason for the transition from stress softening to stress hardening under cyclic loading. Besides, the particle concentration and temperature are the controlling factors in the structure optimization of MSPG in the presence of magnetic field. The magneto-induced hardening mechanism was further proposed based on the related experimental results.

  7. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    SciTech Connect

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than

  8. Disaster-hardened imaging POD for PACS

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice; Frost, Meryll

    2005-04-01

    After the events of 9/11, many people questioned their ability to keep critical services operational in the face of massive infrastructure failure. Hospitals increased their backup and recovery power, made plans for emergency water and food, and operated on a heightened alert awareness with more frequent disaster drills. In a film-based radiology department, if a portable X-ray unit, a CT unit, an Ultrasound unit, and an film processor could be operated on emergency power, a limited, but effective number of studies could be performed. However, in a digital department, there is a reliance on the network infrastructure to deliver images to viewing locations. The system developed for our institution uses several imaging PODS, a name we chose because it implied to us a safe, contained environment. Each POD is a stand-alone emergency powered network capable of generating images and displaying them in the POD or printing them to a DICOM printer. The technology we used to create a POD consists of a computer with dual network interface cards joining our private, local POD network, to the hospital network. In the case of an infrastructure failure, each POD can and does work independently to produce CTs, CRs, and Ultrasounds. The system has been tested during disaster drills and works correctly, producing images using equipment technologists are comfortable using with very few emergency switch-over tasks. Purpose: To provide imaging capabilities in the event of a natural or man-made disaster with infrastructure failure. Method: After the events of 9/11, many people questioned their ability to keep critical services operational in the face of massive infrastructure failure. Hospitals increased their backup and recovery power, made plans for emergency water and food, and operated on a heightened alert awareness with more frequent disaster drills. In a film-based radiology department, if a portable X-ray unit, a CT unit, an Ultrasound unit, and an film processor could be

  9. Beam hardening: analytical considerations of the effective attenuation coefficient of X-ray tomography.

    PubMed

    Alles, J; Mudde, R F

    2007-07-01

    Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water.

  10. Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review

    PubMed Central

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive. PMID:24688443

  11. The role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    An investigation was conducted to determine softening and hardening behavior in ternary Mo alloys and to correlate these effects with electron concentration. Results showed that the hardness behavior of ternary Mo alloys could be correlated with results anticipated from binary data based upon expressions involving the number of s + d electrons contributed by the solute elements. It was further shown that combining alloying elements at concentrations that produce the maximum amount of softening in Mo does not result in additive softening in ternary Mo alloys. Once a critical electron concentration is exceeded, only alloy hardening is observed. A comparison of hardness behavior with literature data on Hall coefficient and magnetic susceptibility for W-Re alloys showed that hardness minima occur at Re concentrations where minima are observed for the physical property measurements. These observations, and the correlation of hardness with electron concentration, support the hypothesis that alloy softening in Group VI metals is an intrinsic characteristic of these metals and that electron concentration plays the dominant role in controlling hardness.

  12. Hardening anisotropy of {gamma}/{gamma}{prime} superalloy single crystals. 2: Numerical analysis of heterogeneity effects

    SciTech Connect

    Estevez, R.; Hoinard, G.; Franciosi, P.

    1997-04-01

    In the first part of this study, the {gamma}/{gamma}{prime} superalloy single crystals yield stress and hardening anisotropy were experimentally estimated at 650 C, assuming homogeneous plasticity, G. Hoinard, R. Estevez and P. Franciosi, Acta Metall. 43, 1593 (1995). Here alloy morphology is regarded in two different ways: first as a two-phase anisotropic material with a uniform {gamma} matrix, describing the {gamma}{prime} precipitates arrangement with the help of an elementary pattern of inclusions; then treating the {gamma} matrix as a three (geometrical) phase medium, i.e., the three families of orthogonal {gamma} layers separating the precipitates, to estimate the matrix behavior heterogeneity in a 4-phase modelling of the alloy. Both {gamma} and {gamma}{prime} phases are treated as elastic-plastic crystalline media deforming by octahedral and cubic slip, and the models are based on the self consistent approximation. The alloy elasticity limit, internal stresses and hardening anisotropy are discussed with regard to the chosen behavior description for each phase, and behavior simulations are compared to experimental information.

  13. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response

    SciTech Connect

    Rowland, M.S.; Holliday, M.A.; Karpachov, J.A.; Ivanov, A.

    1995-01-01

    Researchers are developing a radiation hardened, Telerobotic Dismantling System (TDS) to remediate the Chernobyl facility. To withstand the severe radiation fields, the robotic system, will rely on electrical motors, actuators, and relays proven in the Chernobyl power station. Due to its dust suppression characteristics and ability to cut arbitrary materials the authors propose using a water knife as the principle tool to slice up the large fuel containing masses. The front end of the robot will use a minimum number of moving parts by locating most of the susceptible and bulky components outside the work area. Hardened and shielded video cameras will be designed for remote control and viewing of the robotic functions. Operators will supervise and control robot movements based on feedback from a suite of sensory systems that would include vision systems, radiation detection and measurement systems and force reflection systems. A gripper will be instrumented with a variety of sensors (e.g. force, torque, or tactile), allowing varying debris surface properties to be grasped. The gripper will allow the operator to manipulate and segregate debris items without entering the radiologically and physically dangerous dismantlement operations area. The robots will initially size reduce the FCM`s to reduce the primary sources of the airborne radionuclides. The robot will then remove the high level waste for packaging or decontamination, and storage nearby.

  14. Beam hardening: Analytical considerations of the effective attenuation coefficient of x-ray tomography

    SciTech Connect

    Alles, J.; Mudde, R. F.

    2007-07-15

    Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water.

  15. Hardened planar nitride based cold cathode electron emitter

    NASA Astrophysics Data System (ADS)

    Pillai, R.; Starikov, D.; Boney, C.; Bensaoula, A.

    2012-03-01

    Low threshold electron emission from planar AlN/Silicon heterostructures is reported. The surface emitting ballistic electron structure consisted of an undoped AlN layer grown on Silicon by Molecular Beam Epitaxy, a Ti/Au Ohmic contact, and a thin Pt Schottky contact fabricated by e-beam deposition. Tunnel-transparent Pt Schottky contact was deposited on a 1 μm thick Silicon Dioxide (SiO2) layer and covered a 4 x 4 matrix of 50 μm diameter via produced in the SiO2 layer using photolithography The measurements were performed in vacuum (~10-8 Torr) using a metal grid separated from the structure by a 60 micron thick Kapton® polyimide film having an opening aligned with the via. Bias voltages in the range of 0-130 V were applied across the Schottky diode, while currents were recorded across the structure for grid voltages ranging from 0 to 50 V. The field emission nature of the measured currents was confirmed by plotting the Fowler-Nordheim dependence. Current density of at least 2.5x10-4A/cm2 was achieved for a grid voltage of 50 V and a bias of 130 V. Degradation of the structure performance was observed at bias voltages exceeding 90 V as a result of Schottky barrier modification under the elevated temperature and high electric field operation. The solid-state electron emitting structure indicated a threshold field as low as 0.2 V/μm under applied grid voltage of 12 V.

  16. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  17. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  18. The password is praise: content of feedback affects categorization of feedback sources.

    PubMed

    Rabinovich, Anna; Morton, Thomas A; Landon, Emily; Neill, Caitlin; Mason-Brown, Sapphire; Burdett, Lucie

    2014-09-01

    In three experimental studies, we investigated the effect of the content of group-directed feedback on categorization of the feedback source as an ingroup or an outgroup member. In all studies, feedback valence (criticism vs. praise) and the attributional content of feedback (attributing outcomes to internal properties of the group vs. external circumstances) were experimentally manipulated. The results demonstrated that anonymous (Study 1) and ambiguous (Studies 2 and 3) sources of feedback are more likely to be seen as (typical) ingroup members when they provide praise rather than criticism. In addition, in all studies there was a significant interaction between valence and the attributional content of feedback, such that sources of praise were more likely to be seen as ingroup members when they attributed the group's success to internal (rather than external) causes, while the opposite was observed for critics. These effects were mediated by perceived group image threat. Implications for research on group-based feedback and social categorization are discussed.

  19. [The effect of daily exposure to low hardening temperature on plant vital activity].

    PubMed

    Markovskaia, E F; Sysoeva, M I; Sherudilo, E G

    2008-01-01

    Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia x hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher rate of increase in cold tolerance (cf. two- or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3-4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to rapidly increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible methods underlying the plant response to daily short-term exposure to low temperature are proposed.

  20. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  1. Surface hardening of steel by laser and electron beam. (Latest citations from METADEX). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning electron beam hardening of steels and alloys. Among the materials surface hardened are carbon and alloy steels, aircraft spur gears, nitrocarburized steel, turbine blades, titanium-carbon steel, titanium, and rolling bearings. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment is also examined. (Contains a minimum of 93 citations and includes a subject term index and title list.)

  2. Surface hardening of steel by laser and electron beam. (Latest citations from Metadex). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning electron beam hardening of steels and alloys. Among the materials surface hardened are carbon and alloy steels, aircraft spur gears, nitrocarburized steel, turbine blades, titanium-carbon steel, titanium, and rolling bearings. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment is also examined.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. A Combined Isotropic-Kinematic Hardening Model for Large Deformation Metal Plasticity

    DTIC Science & Technology

    1988-12-01

    713C and Waspaloy, ASME Series D, 87, p. 275. 1965 WILSON, D.V., Reversible Work Hardening in Alloys of Cubic Metals, Acta Metallurgica, 13, pp. 807-814...Sum m ary ............................................................ 32 3. Micromodeling of a Particle-Hardened Alloy Using the Finite Element M...in a particle hardened alloy is presented. A finite element model was used to model the effects of the particle-matrix interaction. The results

  4. BUSFET - A Novel Radiation-Hardened SOI Transistor

    SciTech Connect

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-07-20

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10{sup 18} cm{sup {minus}3} and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10{sup 17} cm{sup {minus}3}, a thicker silicon film (300 nm) must be used.

  5. Hardening communication ports for survival in electrical overstress environments

    NASA Technical Reports Server (NTRS)

    Clark, O. Melville

    1991-01-01

    Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.

  6. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  7. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  8. The effect of niobium on the hardenability of microalloyed austenite

    NASA Astrophysics Data System (ADS)

    Fossaert, C.; Rees, G.; Maurickx, T.; Bhadeshia, H. K. D. H.

    1995-01-01

    The powerful effect that varying the extent of niobium-carbide dissolution has on the “hardenability” of microalloyed austenite is demonstrated using dilatometric measurement of the critical cooling rate required to from microstructures containing >95 Pct martensite. The results can be rationalized on the hypothesis that the hardenability of austenite is enhanced by niobium in solid solution, possibly by its segregation to austenite grain boundaries, but is decreased by precipitation of niobium-carbide particles. This effect appears analogous to that of boron in steels and is found to be independent of variations in the austenite grain size.

  9. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, David

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line θ = θ0 - K2σ, where θ0 is theoretical work hardening rate at zero stress and K2 is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of θ0 and K2 and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The θ0 and K2 associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of θ0 and K2. The actual value of K2 in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K2 than microstructures that remain partially or fully unrecrystallized. The higher K2 value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  10. Stochastic Analysis of Facilities Hardened Against Conventional Weapons Effects

    DTIC Science & Technology

    1994-05-01

    called FAST Ill was completed which modeled various elements of the hardened or strategic systems failure problem (Rowan, 1977). Failure Analysis by...later date. If the system is modeled as a general beamn the equation of motion of the system can be written as m + pAv,, = q.(xt) (3.5) where the comma...3.6 into equation 3.5 rermsm: (1 -AdM,= + Ao~v,= + pAv,,, = q,,(xt) (3.7) The term q.xt) represents the load model input to the system . The hystertc

  11. Development of a Flexible Laser Hardening & Machining Center and Proof of Concept on C-45 Steel

    NASA Astrophysics Data System (ADS)

    Bouquet, Jan; Van Camp, Dries; Vanhove, Hans; Clijsters, Stijn; Amirahmad, Mohammadi; Lauwers, Bert

    The production of hardened precision parts is conventionally done in 3 steps. Rough machining of a workpiece in soft stage is followed by a hardening step, usually a batch process, and finalized by a hard machining finishing step. To omit the inevitable time delay and loss of accuracy because of part re-clamping, these steps should be incorporated within one flexible machining center. This paper describes the development of this machining center which allowsmachining and laser hardening in one setup, followed by a proof of concept for hardening C45 steel on this setup.

  12. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  13. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  14. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-06-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  15. Monitoring of sulphate attack on hardened cement paste studied by synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Stroh, J.; Meng, B.; Emmerling, F.

    2015-10-01

    The complex matter of external sulphate attack on cement-based construction materials is still not completely understood. The concentration of sulphate is a crucial factor for the formation of secondary phases and phase transitions of cement hydrates due to sulphate ingress into the microstructure. The sulphate attack on building materials for high and low sulphate concentrations was monitored by laboratory experiments. Hardened cement paste consisting of ordinary Portland cement (CEM I) were exposed to aqueous solutions of sodium sulphate for 18 months. Three sample compositions were used for this research, including different supplementary cementitious materials (SCM). The phase composition was determined for different time spans by high resolution synchrotron X-ray diffraction. Cross sections of exposed cement prisms were investigated as a representation of the microstructural profile. Based on the data, a temporal and spatial determination of the stages of the sulphate attack and the deterioration course was possible. Cement matrices blended with slag showed the highest resistance against sulphate attack.

  16. Biometrics based authentication scheme for session initiation protocol.

    PubMed

    Xie, Qi; Tang, Zhixiong

    2016-01-01

    Many two-factor challenge-response based session initiation protocol (SIP) has been proposed, but most of them are vulnerable to smart card stolen attacks and password guessing attacks. In this paper, we propose a novel three-factor SIP authentication scheme using biometrics, password and smart card, and utilize the pi calculus-based formal verification tool ProVerif to prove that the proposed protocol achieves security and authentication. Furthermore, our protocol is highly efficient when compared to other related protocols.

  17. [Study of mutagenicity of epoxy resin hardeners by fluctuation test].

    PubMed

    Hayashi, K; Koike, N; Mashizu, N; Mozawa, K; Sakaba, H; Shimizu, H

    1987-11-01

    Mutagenicity of nine epoxy resin hardeners was examined by a fluctuation test modified by Gatehouse. The test was performed by using Salmonella typhimurium TA98 with a metabolic activation system. In our laboratory, the results of the fluctuation test were compared with the results obtained by the previously mentioned Ames preincubation method. Six out of nine epoxy resin hardeners showed mutagenic activity in both the fluctuation test and Ames preincubation method, but one out of the nine was negative in both test systems. Two out of the nine were positive by either of the two testing systems. The fluctuation test is disadvantageous in that it is marginally slower and requires slightly more labor than the Ames test and furthermore it is difficult to increase the amount of microsome because of background interference. These disadvantages, however, are somewhat offset by the advantages that small organs such as urinary bladder can be used instead of liver cells and that a small amount of microsome can be employed for metabolic activation. This test is also suitable for testing aqueous samples containing low levels of mutagen.

  18. Quantifying characters: polygenist anthropologists and the hardening of heredity.

    PubMed

    Hume, Brad D

    2008-01-01

    Scholars studying the history of heredity suggest that during the 19th-century biologists and anthropologists viewed characteristics as a collection of blended qualities passed on from the parents. Many argued that those characteristics could be very much affected by environmental circumstances, which scholars call the inheritance of acquired characteristics or "soft" heredity. According to these accounts, Gregor Mendel reconceived heredity--seeing distinct hereditary units that remain unchanged by the environment. This resulted in particular traits that breed true in succeeding generations, or "hard" heredity. The author argues that polygenist anthropology (an argument that humanity consisted of many species) and anthropometry in general should be seen as a hardening of heredity. Using a debate between Philadelphia anthropologist and physician, Samuel G. Morton, and Charleston naturalist and reverend, John Bachman, as a springboard, the author contends that polygenist anthropologists hardened heredity by conceiving of durable traits that might reappear even after a race has been eliminated. Polygenists saw anthropometry (the measurement of humans) as one method of quantifying hereditary qualities. These statistical ranges were ostensibly characteristics that bred true and that defined racial groups. Further, Morton's interest in hybridity and racial mixing demonstrates that the polygenists focused as much on the transmission and recognition of "amalgamations" of characters as they did on racial categories themselves. The author suggests that seeing race science as the study of heritable, statistical characteristics rather than broad categories helps explain why "race" is such a persistent cultural phenomenon.

  19. Folding and faulting of strain-hardening sedimentary rocks

    USGS Publications Warehouse

    Johnson, A.M.

    1980-01-01

    The question of whether single- or multi-layers of sedimentary rocks will fault or fold when subjected to layer-parallel shortening is investigated by means of the theory of elastic-plastic, strain-hardening materials, which should closely describe the properties of sedimentary rocks at high levels in the Earth's crust. The most attractive feature of the theory is that folding and faulting, intimately related in nature, are different responses of the same idealized material to different conditions. When single-layers of sedimentary rock behave much as strain-hardening materials they are unlikely to fold, rather they tend to fault, because contrasts in elasticity and strength properties of sedimentary rocks are low. Amplifications of folds in such materials are negligible whether contacts between layer and media are bonded or free to slip for single layers of dolomite, limestone, sandstone, or siltstone in media of shale. Multilayers of these same rocks fault rather than fold if contacts are bonded, but they fold readily if contacts between layers are frictionless, or have low yield strengths, for example due to high pore-water pressure. Faults may accompany the folds, occurring where compression is increased in cores of folds. Where there is predominant reverse faulting in sedimentary sequences, there probably were few structural units. ?? 1980.

  20. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  1. A radiation-hardened, computer for satellite applications

    SciTech Connect

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`s Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.

  2. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  3. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  4. Irradiation hardening of pure tungsten exposed to neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relatively modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.

  5. idRHa+ProMod - Rail Hardening Control System

    NASA Astrophysics Data System (ADS)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  6. Active Authentication: Beyond Passwords

    DTIC Science & Technology

    2011-11-18

    semantic analysis (how you construct sentences); Forensic authorship Keystroke pattern; Mouse movement Fingerprint ; Iris pattern; Vein...Solutions Physiological Biometrics Sensors tracking the physical attributes of you • DNA • Ear Geometry • Facial Geometry • Fingerprint • Iris...Preview Fingerprint Forensic authorship2 Mouse tracking1 How you behave Physical aspects of you The context you exist in • The Active Authentication

  7. Access denied; invalid password.

    PubMed

    Chambers, David W

    2006-11-01

    Progress addressing access to oral health is difficult to evaluate because it is unclear what access means. Ozar's proposal that access should be defined by dentists as true dental need is criticized. It is proposed that four different types of treatment are currently identifiable in dentistry: 1) traditional oral health care, 2) oral care that has minimal or no health component, 3) episodic care, and 4) oral health outcomes not resulting from dentist interventions such as fluoridation. Each of these models has a different definition of care and of access. The profession is becoming segmented--including growing disparities among dentists in earning potential--to the point where a single model may no longer be able to cover all needs for oral health.

  8. Continuous Hardening During Isothermal Aging at 723 K (450 °C) of a Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada-Casero, Carola; Chao, Jesús; Urones-Garrote, Esteban; San Martin, David

    2016-11-01

    The isothermal aging behavior of a cold-rolled precipitation hardening stainless steel has been studied at 723 K (450 °C) for holding times up to 72 hours. The precipitation hardening has been investigated using microhardness Vickers (Hv), thermoelectric power (TEP) measurements, and tensile testing. Microhardness compared to TEP measurements is more sensitive to detect the initial stages of aging. Two precipitation regimes have been observed: the first one related to the formation of Cu-clusters for aging times below 1 hour and a second one associated with formation of Ni-rich precipitates. The results show that the material exhibits an outstanding continuous age strengthening response over the aging time investigated, reaching a hardness of 710 ± 4 HV1 and an ultimate tensile strength ( σ UTS) of 2.65 ± 0.02 GPa after 72 hours. Engineering stress-plastic strain curves reveal that the strength increases and the ductility decreases as the aging time increases. However, after prolonged holding times (24-72 hours) and, although small, a rise in both the strength and the total elongation is observed. The precipitation kinetics can be well predicted over the entire range of aging times by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Finally, a reliable linear hardness-yield strength correlation has been found, which enables a rapid evaluation of the strength from bulk hardness measurements.

  9. The Effect of Hardenability Variation on Phase Transformation of Spiral Bevel Gear in Quenching Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Shi, Wankai; Yang, Lin; Gu, Zhifei; Li, Zhichao

    2016-07-01

    The hardenability of gear steel is dependent on the composition of alloying elements and is one of important criteria to assess process of phase transformation. The variation of hardenability has to be considered in control of the microstructures and distortion during gear quenching. In this paper, the quantitative effect of hardenability has been investigated on phase transformations of spiral bevel gears in die quenching. The hardenability deviation of 22CrMoH steel was assessed by using Jominy test. The dilatometry experiments were conducted to build phase transformation kinetic models for steels with low and high hardenability, respectively. The complete die quenching process of spiral bevel gear was modeled to reveal the significant difference on microstructures and temperature history with variation of hardenability. The final microstructures of the gear are martensite in surface layer after quenching process. There are bainite inside the gear tooth and the mixture of bainite and ferrite inside gear for the gear with low hardenability. The microstructure is bainite inside the gear with high hardenability.

  10. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  11. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    PubMed

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.

  12. Thermomechanical formulation of ductile damage coupled to nonlinear isotropic hardening and multiplicative viscoplasticity

    NASA Astrophysics Data System (ADS)

    Soyarslan, C.; Bargmann, S.

    2016-06-01

    In this paper, we present a thermomechanical framework which makes use of the internal variable theory of thermodynamics for damage-coupled finite viscoplasticity with nonlinear isotropic hardening. Damage evolution, being an irreversible process, generates heat. In addition to its direct effect on material's strength and stiffness, it causes deterioration of the heat conduction. The formulation, following the footsteps of Simó and Miehe (1992), introduces inelastic entropy as an additional state variable. Given a temperature dependent damage dissipation potential, we show that the evolution of inelastic entropy assumes a split form relating to plastic and damage parts, respectively. The solution of the thermomechanical problem is based on the so-called isothermal split. This allows the use of the model in 2D and 3D example problems involving geometrical imperfection triggered necking in an axisymmetric bar and thermally triggered necking of a 3D rectangular bar.

  13. Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi

    NASA Astrophysics Data System (ADS)

    Cox, A.; Franco, B.; Wang, S.; Baxevanis, T.; Karaman, I.; Lagoudas, D. C.

    2017-03-01

    The effective thermomechanical response of precipitation hardened near-equiatomic Ni-rich NiTi alloys is predicted on the basis of composition and heat treatment using a microscale-informed model. The model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, elastic mismatch between the precipitates and the matrix, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni-depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time-temperature-martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated for relatively low precipitate volume fractions.

  14. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel.

    PubMed

    Dmitrieva, O; Choi, P; Gerstl, S S A; Ponge, D; Raabe, D

    2011-05-01

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected.

  15. A Water-Drop Method of Hardening of the Welded Joints of Drill Pipes

    NASA Astrophysics Data System (ADS)

    Maisuradze, M. V.; Yudin, Yu. V.; Eismondt, Yu. G.

    2015-09-01

    A combined computational and experimental technique is developed for implementing a scientifically based approach to the selection of a technology of heat hardening of welded joints of drill pipes made of steel 25KhGM with the use of water-drop quenching. The basic service characteristics of the water-drop cooling device are presented. An analytic model that relates the parameters of the water-drop quenching device (standard size and number of jets in device, pressure of fed water, distance from the jet nozzle to the cooled surface) to the properties of the welded joint is proposed. With the new technique the construction of a quenching device may be developed and the technology of heat treatment of the welded joints of drill pipes optimized in order to increase the level of mechanical properties.

  16. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries

    NASA Astrophysics Data System (ADS)

    Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X.

    2014-09-01

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  17. Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi

    NASA Astrophysics Data System (ADS)

    Cox, A.; Franco, B.; Wang, S.; Baxevanis, T.; Karaman, I.; Lagoudas, D. C.

    2017-01-01

    The effective thermomechanical response of precipitation hardened near-equiatomic Ni-rich NiTi alloys is predicted on the basis of composition and heat treatment using a microscale-informed model. The model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, elastic mismatch between the precipitates and the matrix, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni-depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time-temperature-martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated for relatively low precipitate volume fractions.

  18. Thermomechanical cyclic hardening behavior of Hastelloy-X. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1985-01-01

    Experimental evidence of thermomechanical history dependence on the cyclic hardening behavior of a representative combustor liner material Hastelloy-X is presented, along with a discussion about the relevant concept of thermomechanical path dependence. Based on the experimental results, a discussion is given on the inadequacy of formulating nonisothermal constitutive equations solely on the basis of isothermal testing. Finally, the essence of a mathematical representation of thermoviscoplasticity is presented that qualitatively accounts for the observed hereditary behavior. This is achieved by formulating the scaler evolutionary equation in an established viscoplastic theory to reflect thermomechanical path dependence. Although the necessary nonisothermal tests for further quantifying the thermoviscoplastic model have been identified, such data are not yet available.

  19. Studying the Warm Layer and the Hardening Factor in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.

  20. Magnetic Hardening from the Suppression of Domain Walls by Nonmagnetic Particles

    SciTech Connect

    Hu, Shenyang Y.; Li, Yulan; McCloy, John S.; Montgomery, Robert O.; Henager, Charles H.

    2013-03-07

    Magnetic domain switching and hysteresis loops in a single crystal α-iron with and without nonmagnetic particles were simulated based on the magnetization dynamics of the Landau–Lifshitz–Gilbert equation. It is found that the 360o Bloch domain wall is the easiest nucleation site for an anti-direction domain. The nucleation occurs by splitting the 360o Bloch domain wall into two 180o domain walls. However, the existence of nonmagnetic particles destroys the 180o domain walls and prevents the formation of 360o Bloch domain walls. Simulation results demonstrate that the impact of nonmagnetic particle on the formation of the 360o Bloch domain wall is a magnetic hardening mechanism.

  1. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  2. Dislocation substructures and nonproportional hardening. [TEM observations under tension-torsion cyclic loading

    SciTech Connect

    Shiinghwa Doong; Socie, D.F.; Robertson, I.M. )

    1990-10-01

    The dislocation substructures created in 1100 aluminum, OFHC copper, and type 304 and 310 stainless steels by in-phase (proportional) and 90 deg out-of-phase (nonproportional) tension-torsion cyclic loading were examined with a transmission-electron microscope. Multislip structures (cells and subgrains) are observed in aluminum under both in-phase and 90 deg out-of-phase tension-torsion loading. For copper and stainless steel, single-slip structures (planar dislocations, matrix veins, and ladders) are observed after proportional loading, whereas multislip structures (cells and labyrinths) are observed after nonproportional loading. The increased cyclic hardening of copper and stainless steels under nonproportional loading is attributed to the change of dislocation substructures. Based on these observations, formulation of a nonproportionality parameter for constitutive modeling is discussed.

  3. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically <1.3%), enabling a 3.3x gain in processing performance as compared to the equivalent traditionally radiation hardened processor. The recently concluded STP-H4 flight experiment was an opportunity to upgrade the RHBSW techniques for the Virtex5 FPGA and demonstrate them on-board the ISS to achieve TRL 7. This work details the implementation of the RHBSW techniques, that were previously developed for the Virtex4-based SpaceCube 1.0 platform, on the Virtex5-based SpaceCube 2.0 flight platform. The evaluation spans the development and integration with flight software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  4. Hardening characteristics of CO2 laser welds in advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Han, Tae-Kyo; Park, Bong-Gyu; Kang, Chung-Yun

    2012-06-01

    When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600-1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation "Hmax=701CEL+281". The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed

  5. New distortional hardening model capable of predicting eight ears for textured aluminum sheet

    SciTech Connect

    Yoon, J. H.; Cazacu, O.; Yoon, J. W.; Dick, R. E.

    2011-05-04

    The effects of the anisotropy evolution and of the directionality in hardening on the predictions of the earing profile of a strongly textured aluminum alloy are investigated using a new distortional hardening model that incorporates multiple hardening curves corresponding to uniaxial tension along several orientations with respect to the rolling direction, and to biaxial tension. Yielding is described using a form of CPB06ex2 yield function (Plunkett et al. (2008)) which is tailored for metals with no tension-compression asymmetry. It is shown that even if directional hardening and its evolution are neglected, this yield function predicts a cup with eight ears as was observed experimentally. However, directional hardening can be of considerable importance for improved accuracy in prediction of the non-uniformity of the cup height profile.

  6. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    NASA Astrophysics Data System (ADS)

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  7. Effect of Aged Microstructure on the Strength and Work Hardening Behavior of Ti-15V-3Cr-3Sn-3Al Alloy

    NASA Astrophysics Data System (ADS)

    Sarkar, Rajdeep; Mukhopadhyay, A.; Ghosal, P.; Nandy, T. K.; Ray, K. K.

    2015-08-01

    This investigation is aimed at revealing the deformation behavior of a β-Ti alloy, namely Ti-15V-3Cr-3Sn-3Al, under various aged conditions with an emphasis on correlating the work hardening characteristics of the alloy with its corresponding microstructure. The alloy was cast, forged, hot rolled, solution treated, and aged differently to generate microstructures with varying amounts and morphologies of α- and β-phases. While microstructural characterization was carried out using scanning and transmission electron microscopy (TEM), tensile tests were conducted to study the work hardening behavior of the alloy. One may infer from the results that the strength of the alloy deteriorates, while the elongation to failure improves with an increase in the aging temperature. The strength of the alloy depends strongly on the amount of α- and the inter-α-spacing. The work hardening behavior of the alloy aged at temperatures below 808 K (535 °C) is markedly different than those aged at higher temperatures. This characteristic behavior has been explained using the deformation signatures in the α-phase revealed by TEM examinations. A stress gradient-based model and a dislocation evolution-type model are found to satisfactorily describe the strength and the work hardening behavior of the alloy aged under different conditions.

  8. Pr-Zr-Co precipitation-hardened magnet

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Zhang, Yong; Hadjipanayis, G. C.

    2000-06-01

    Hard magnetic properties have been found in homogenized and subsequently aged Pr-Zr-Co alloys. Transmission electron microscopy reveals a microstructure consisting of a Pr2(Co, Zr)17 matrix with (Pr, Zr)Co5 precipitates formed after aging the homogenized alloys with the (Pr, Zr)Co5+δ structure. This microstructure is similar to that of the Sm-Co-Cu-Zr precipitation-hardened magnets. However, unlike Sm2Co17, the easy magnetization direction (EMD) of Pr2Co17 lies in a basal plane. The coexistence of the 2:17 matrix phase with EMD∥(001) and the 1:5 cell-boundary phase with EMD∥[001] results in unusual alignment effects. Anisotropic Pr11.5Zr4Co85 powders with coercivity of 4.1 kOe and energy product of 7.2 MGOe were obtained.

  9. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    SciTech Connect

    Goerrn, Patrick; Wagner, Sigurd

    2010-11-15

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  10. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  11. Hardening by annealing and softening by deformation in nanostructured metals.

    PubMed

    Huang, Xiaoxu; Hansen, Niels; Tsuji, Nobuhiro

    2006-04-14

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and dislocation-interface reactions, such that heat treatment reduces the generation and interaction of dislocations, leading to an increase in strength and a reduction in ductility. A subsequent deformation step may restore the dislocation structure and facilitate the yielding process when the metal is stressed. As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing.

  12. Method of forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J.

    2010-08-31

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  13. Low-temperature tolerance and cold hardening of cacti

    SciTech Connect

    Nobel, P.S.

    1982-12-01

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 300 m altitude in southern Wyoming, were quite cold tolerant. Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the approx. = 600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species. A decrease from 50/sup 0//40/sup 0/ to 10/sup 0//0/sup 0/ lowered by 4/sup 0/ the temperature at which the fraction of the chlorenchyma cells taking up stain was reduced 50% for both D. rhodacantha and T. candicans, with a half-time for the shift of approx. = 3 d. The tolerance of subzero temperatures and the ability to cold harden allow cacti to range into regions with considerable wintertime freezing.

  14. 78 FR 57418 - Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... COMMISSION Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened... Licenses with Regard to Reliable Hardened Containment Vents Capable of Operation under Severe Accident...-109, ``Order Modifying Licenses with Regard to Reliable Hardened Containment Vents Capable...

  15. Mechanical Properties Anisotropy of Isothermally Forged and Precipitation Hardened Inconel 718 Disk

    NASA Astrophysics Data System (ADS)

    Khaja, Shaik; Mehta, K. K.; Veera Babu, R.; Sri Rama Devi, R.; Singh, A. K.

    2015-03-01

    The present work describes the tensile and cyclic flow behavior of the as-received disk of Inconel 718 in solution treated and precipitation hardened condition at different locations and orientations. The disk shows moderately high values of anisotropy index indicating significant difference in uniform true strain along radial and tangential orientations. The tensile true stress-plastic strain curves exhibit two slopes defined by Ludwigson relation []. The low-strain regime during tensile test is associated with low-strain localization between broad annealing twins and slips, while high-strain regime is related to the presence of large volume fraction of deformation twins and high-strain localization between narrow deformation twins. It appears that both the γ' and γ″ play a critical role during low deformation regime while the role of γ″ precipitates becomes significant in high-strain regime. The stabilized cyclic true stress-plastic strain curves follow Ludwik relationship ( σ = Kɛ n ) similar to that of high-strain regime of two-slope tensile curves. The true stress-strain curves show softening during cyclic test in comparison to that of monotonic condition and are independent of sample orientations and locations. The lower degree of cyclic softening associated with radial-oriented sample can be attributed to the alignment of δ-phase precipitates normal to the loading direction. The low ductility and low work-hardening exponent of radial-oriented sample in web region have been explained based on the dislocation storage capacity and dynamic recovery coefficient using Kock-Mecking-Estrin analysis.

  16. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  17. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  18. Improved dynamic ID-based authentication scheme for telecare medical information systems.

    PubMed

    Cao, Tianjie; Zhai, Jingxuan

    2013-04-01

    In order to protect users' identity privacy, Chen et al. proposed an efficient dynamic ID-based authentication scheme for telecare medical information systems. However, Chen et al.'s scheme has some weaknesses. In Chen et al.'s scheme, an attacker can track a user by a linkability attack or an off-line identity guessing attack. Chen et al.'s scheme is also vulnerable to an off-line password guessing attack and an undetectable on-line password guessing attack when user's smart card is stolen. In server side, Chen et al.'s scheme needs large computational load to authentication a legal user or reject an illegal user. To remedy the weaknesses in Chen et al.'s scheme, we propose an improved smart card based password authentication scheme. Our analysis shows that the improved scheme can overcome the weaknesses in Chen et al.'s scheme.

  19. Tradeoffs in Flight Design Upset Mitigation in State of the Art FPGAs: Hardened by Design vs. Design Level Hardening

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Roosta, Ramin

    2004-01-01

    This presentation compares and contrasts the effectiveness and the system/designer impacts of the two main approaches to upset hardening: the Actel approach (RTSX-S and RTAX-S) of low-level (inside each flip-flop) triplication and the Xilinx approach (Virtex and Virtex2) of design-level triplication of both functional blocks and voters. The effectiveness of these approaches is compared using measurements made in conjunction with each of the FPGAs' manufacturer: for Actel, published data [1] and for Xilinx, recent results from the Xilinx SEE Test Consortium (note that the author is an active and founding member). The impacts involve Actel advantages in the areas of transistor-utilization efficiency and minimizing designer involvement in the triplication while the Xilinx advantages relate to the ability to custom tailor upset hardness and the flexibility of re-configurability. Additionally, there are currently clear Xilinx advantages in available features such as the number of I/O's, logic cells, and RAM blocks as well as speed. However, the advantage of the Actel anti-fuses for configuration over the Xilinx SRAM cells is that the latter need additional functionality and external circuitry (PROMs and, at least a watchdog timer) for configuration and configuration scrubbing. Further, although effectively mitigated if done correctly, the proton upset-ability of the Xilinx FPGAs is a concern in severe proton-rich environments. Ultimately, both manufacturers' upset hardening is limited by SEFI (single-event functional interrupt) rates where it appears the Actel results are better although the Xilinx Virtex2-family result of about one SEFI in 65 device-years in solar-min GCR (the more intense part of the galactic cosmic-ray background) should be acceptable to most missions

  20. Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lee, K. B.; Yang, H. R.; Lee, J. B.; Kim, Y. S.

    1997-03-01

    In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which cointain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.

  1. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.

    PubMed

    Milton, Claire C; Partridge, Linda

    2008-01-01

    Carbon dioxide is a commonly used anaesthetic in Drosophila research. While any detrimental effects of CO2 exposure on behaviour or traits are largely unknown, a recent study observed significant effects of CO2 exposure on rapid cold hardening and chill-coma recovery in Drosophila melanogaster. In this study we investigated the effect of a brief CO2 exposure on heat hardening and cold acclimation in D. melanogaster, measuring heat knockdown and chill-coma recovery times of flies exposed to CO2 for 1 min after hardening or acclimation. CO2 anaesthesia had a significant negative effect on heat hardening, with heat knockdown rates in hardened flies completely reduced to those of controls after CO2 exposure. Chill-coma recovery rates also significantly increased in acclimated flies that were exposed to CO2, although not to the same extent seen in the heat populations. CO2 exposure had no impact on heat knockdown rates of control flies, while there was a significant negative effect of the anaesthetic on chill-coma recovery rates of control flies. In light of these results, we suggest that CO2 should not be used after hardening in heat resistance assays due to the complete reversal of the heat hardening process upon exposure to CO2.

  2. Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.

    PubMed

    Mondéjar, Irene; Martínez-Martínez, Irene; Avilés, Manuel; Coy, Pilar

    2013-09-01

    Oviduct fluid increases the time required for digestion of the zona pellucida (ZP) by proteolytic enzymes (ZP hardening). This effect has been associated with levels of monospermy after in vitro fertilization (IVF) in the pig and cow, but the possible existence of a directly proportional relationship between hardening and monospermy remains unknown. To investigate whether variations in hardening of different oviductal fluids (OFs) are correlated with variations in levels of monospermy after IVF, porcine oocytes were incubated with three batches of OFs known to produce different ZP hardening effects (3, 7, and 25 min); after IVF, monospermy levels were 0%, 14.58% ± 5.14%, and 35.14% ± 7.95%, respectively. These results could partially explain the lack of polyspermy found during in vivo fertilization in pigs (with a hardened oviductal ZP) compared with levels found during IVF (with no hardened ZP). Using the bovine model, OF was fractionated by heparin affinity chromatography, and the hardening effect on the ZP was tested for each fraction obtained from a linear gradient of sodium chloride concentration. The highest effect was obtained with the fraction eluted with 0.4 M sodium chloride. Fractions with high-level or low-level effects were processed by on-chip electrophoresis and high-performance liquid chromatography-tandem mass spectrometry. A list of potential proteins responsible for this effect includes OVGP1 and members of the HSP and PDI families.

  3. Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Bertin, Nicolas; Capolungo, Laurent

    2015-08-01

    Irradiation hardening in -iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.

  4. SU-E-I-57: Evaluation and Optimization of Effective-Dose Using Different Beam-Hardening Filters in Clinical Pediatric Shunt CT Protocol

    SciTech Connect

    Gill, K; Aldoohan, S; Collier, J

    2014-06-01

    Purpose: Study image optimization and radiation dose reduction in pediatric shunt CT scanning protocol through the use of different beam-hardening filters Methods: A 64-slice CT scanner at OU Childrens Hospital has been used to evaluate CT image contrast-to-noise ratio (CNR) and measure effective-doses based on the concept of CT dose index (CTDIvol) using the pediatric head shunt scanning protocol. The routine axial pediatric head shunt scanning protocol that has been optimized for the intrinsic x-ray tube filter has been used to evaluate CNR by acquiring images using the ACR approved CT-phantom and radiation dose CTphantom, which was used to measure CTDIvol. These results were set as reference points to study and evaluate the effects of adding different filtering materials (i.e. Tungsten, Tantalum, Titanium, Nickel and Copper filters) to the existing filter on image quality and radiation dose. To ensure optimal image quality, the scanner routine air calibration was run for each added filter. The image CNR was evaluated for different kVps and wide range of mAs values using above mentioned beam-hardening filters. These scanning protocols were run under axial as well as under helical techniques. The CTDIvol and the effective-dose were measured and calculated for all scanning protocols and added filtration, including the intrinsic x-ray tube filter. Results: Beam-hardening filter shapes energy spectrum, which reduces the dose by 27%. No noticeable changes in image low contrast detectability Conclusion: Effective-dose is very much dependent on the CTDIVol, which is further very much dependent on beam-hardening filters. Substantial reduction in effective-dose is realized using beam-hardening filters as compare to the intrinsic filter. This phantom study showed that significant radiation dose reduction could be achieved in CT pediatric shunt scanning protocols without compromising in diagnostic value of image quality.

  5. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    SciTech Connect

    Langelier, Brian Esmaeili, Shahrzad

    2015-03-15

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities.

  6. Experimental insight into the cyclic softening/hardening behavior of austenitic stainless steel using ultrasonic higher harmonics

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-zhen; Xiang, Yanxun; Zhao, Peng

    2014-11-01

    The correlation of cyclic hardening/softening behavior of 304 stainless steel (SS) was investigated using nonlinear ultrasonic wave technique. Results reveal that primary hardening leads to the increase of acoustic nonlinearity, while secondary hardening causes the reverse tendency. This distinct phenomenon is governed by two competitive mechanisms: in the primary-hardening stage, the ascended acoustic nonlinearity is related to the increase of planar dislocation structures. While in the second-hardening stage, the decrease of acoustic nonlinearity is partly caused by the development of cell structures. In addition, the deformation-induced martensitic transformation also contributes to the increase of acoustic nonlinearity under higher stress amplitudes.

  7. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    PubMed

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%.

  8. Age-hardening of grid alloys and its effect on battery manufacturing processes

    NASA Astrophysics Data System (ADS)

    Gillian, Warren F.; Rice, David M.

    The age-hardening behaviour of three generic classes of lead—antimony grid alloys commonly used in the lead/acid battery manufacturing industry were studied. The effects on age-hardening behaviour of several heat treatments devised to simulate downstream processing of battery grids in the manufacturing process were investigated together with the effect of varying cooling rate following casting. Rapid cooling (water quenching) resulted in a general acceleration and enhancement of the age-hardening behaviour of all alloys, whilst heat treatment following casting generally gave rise to a reduction in peak hardness.

  9. Local hardening evaluation of carbon steels by using frequency sweeping excitation and spectrogram method

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yuji; Kudo, Yuki; Enokizono, Masato

    2017-02-01

    This paper presents our proposed frequency sweeping excitation and spectrogram method (FSES method) by a magnetic sensor for non-destructive testing of hardened low carbon steels. This method can evaluate the magnetic properties of low carbon steels which were changed after induction heating treatment. It was examined by our proposed method that the degrees of yield strength of low carbon steels were varied depending on hardened conditions. Moreover, it was made clear that the maximum magnetic field strength, Hmax, derived from the measured B-H loops was very sensitive to the hardening if the surface of the samples were flat.

  10. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  11. Hardening/finishing treatment of compressor blades using a machine with planetary container motion

    NASA Astrophysics Data System (ADS)

    Shpatakovskii, A. F.

    A process for the hardening and finishing of high-pressure compressor blades for aircraft powerplants is described whereby the blades are placed in containers that move along a planetary path in a hardening medium consisting of steel balls. The extent of surface hardening, surface roughness, and residual stresses are determined for specimens of U8A steel and blades of EP718VD alloy treated under different conditions. The efficiency of the treatment in terms of increased blade durability and productivity is estimated.

  12. Impact properties and hardening behavior of laser and electron-beam welds of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Strain, R.V.; Tsai, H.C.; Park, J.H.; Smith, D.L.

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure that can be applied to large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Results of initial investigation of mechanical properties and hardening behavior of laser and electron-beam (EB) welds of the production-scale heat of V-4Cr-4Ti (500-kg Heat 832665) in as-welded and postwelding heat-treated (PWHT) conditions are presented in this paper. The laser weld was produced in air using a 6-kW continuous CO{sub 2} laser at a welding speed of {approx}45 mm/s. Microhardness of the laser welds was somewhat higher than that of the base metal, which was annealed at a nominal temperature of {approx}1050{degrees}C for 2 h in the factory. In spite of the moderate hardening, ductile-brittle transition temperatures (DBTTs) of the initial laser ({approx}80{degrees}C) and EB ({approx}30{degrees}C) welds were significantly higher than that of the base metal ({approx}{minus}170{degrees}C). However, excellent impact properties, with DBTT < {minus}80{degrees}C and similar to those of the base metal, could be restored in both the laser and EB welds by postwelding annealing at 1000{degrees}C for 1 h in vacuum.

  13. Influence of grain structure and solute composition on the work hardening behavior of aluminium at cryogenic temperatures

    SciTech Connect

    Chu, D.; Morris, J.W. Jr.

    1993-07-01

    An unrecrystallized structure is found to significantly improve the work hardening characteristics by lowering the work hardening rate during early stages of deformation. This is in contrast to a recrystallized structure, which requires a higher work hardening rate to accommodate the greater degree of multiple slip necessary to maintain strain compatibility between the more randomly oriented grains. The stronger texture associated with the unrecrystallized structure allows deformation to occur more efficiently. Addition of magnesium also improves work hardening by increasing overall level of the work hardening rate. The improved characteristics of the work hardening behavior result in a parallel increase in both the strength and ductility at cryogenic temperatures. These findings are positive since they suggest a method by which improvements in the work hardening behavior and subsequent mechanical properties may be obtained through practical modifications of the microstructure and composition.

  14. Switchable hardening of a ferromagnet at fixed temperature

    PubMed Central

    Silevitch, D. M.; Aeppli, G.; Rosenbaum, T. F.

    2010-01-01

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above. PMID:20133728

  15. Hardening by bubbles in He-implanted Ni

    SciTech Connect

    Knapp, J. A.; Follstaedt, D. M.; Myers, S. M.

    2008-01-01

    Detailed finite-element modeling of nanoindentation data is used to obtain the mechanical properties of Ni implanted with 1-10 at. % He. The mechanical properties of this material elucidate the fundamental materials science of dislocation pinning by nanometer-size gas bubbles and also have implications for radiation damage of materials. Cross-section transmission electron microscopy showed that implantation of 1-5 at. % He at room temperature or at 200 deg. C produced a highly damaged layer extending to a depth of 700-800 nm and containing a fine dispersion of He bubbles with diameters of 1.1{+-}0.2 nm. Implantation at 500 deg. C enlarged the bubble sizes. By fitting the nanoindentation data with a finite-element model that includes the responses of both the implanted layer and the unimplanted substrate in the deformation, the Ni(He) layers are shown to have hardnesses as much as approximately seven times that of untreated Ni, up to 8.3{+-}0.6 GPa. Examination of the dependence of yield strength on He concentration, bubble size, and bubble density reveals that an Orowan hardening mechanism is likely to be in operation, indicating that the bubbles pin dislocation motion as strongly as hard second-phase precipitates do. This strong pinning of dislocations by bubbles is also supported by our numerical simulations, which show that substantial applied shear stress is required to move a dislocation through an empty cavity.

  16. The structural dependence of work hardening in low carbon steels

    SciTech Connect

    Johnson, P.E.

    1991-12-01

    The influence of the dislocation cell structure on the work hardening behavior of low carbon steel sheets was investigated. Specimens were prestrained at low temperature to suppress cell formation and their subsequent behavior was compared with results of isothermal reference tests. It was found that the extent of cell development has little or no influence on the plastic behavior at room temperature and below. Interrupted temperature, tensile-shear tests demonstrated further that the transient behavior induced by loading path changes is also not strongly associated with the cell walls. In-situ straining studies indicate that the factor controlling the flow stress at room temperature is the limited mobility of screw dislocations moving the cell interiors, and not dislocation interactions with the cell walls. The unique properties of a/2<111> screw dislocations are known to dominate low temperature deformation behavior in bcc metals. The current work indicates that these dislocations may still control the flow stress at intermediate temperatures, even in the presence of a developed cell structure.

  17. Waste tyre rubberized concrete: properties at fresh and hardened state.

    PubMed

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997).

  18. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  19. Grain Size Hardening Effects in Mg-Gd Solid Solutions

    NASA Astrophysics Data System (ADS)

    Nagarajan, Devarajan; Cáceres, Carlos H.; Griffiths, John R.

    2016-11-01

    Pure Mg and alloys with 0.4, 1.3, and 3.8 at. pct Gd were cast with grain sizes between 700 and 35 µm and tested in tension and compression after solid solution heat treatment and quenching. The grain structure of the castings was random, that is, there was no preferred orientation, unlike the situation in extrusions and forgings usually reported in the literature. The results are compared to earlier work on Mg-Zn alloys. A tension-compression asymmetry in which the yield strength in compression is less than in tension was observed in pure Mg but was reversed for the concentrated alloys. The Hall-Petch stress intensity factor, k, first increased then decreased with the amount of Gd in solution. It is noted that defining the friction stress by extrapolating the data to infinite grain size should be treated with caution in Mg and its alloys: nevertheless, a rationale involving solid solution softening/hardening and twinning is offered for the observed values of the friction stress. The reversion of the tension-compression asymmetry is explained by the operation of { {10bar{1}1} } (contraction) twinning in the concentrated alloys in place of { {10bar{1}2} } (extension) twinning in pure Mg and the dilute alloys. It is argued that the activation of { {10bar{1}1} } twinning in the more concentrated alloys accounts for their lower k-value.

  20. Volume-surface hardening of railroad transport parts by a high-speed water stream

    NASA Astrophysics Data System (ADS)

    Fedin, V. M.

    1996-09-01

    Large production volumes of rolling stock and track structure require the introduction of effective strengthening methods at a minimum expenditure. This stimulates a search for ways of increasing the service life of parts of railroad transport. Volume-surface hardening is an efficient method of thermal strengthening. The method consists in through or deep furnace or induction heating of parts before hardening and subsequent intense cooling. The hardenability of the steel used is consistent with the thickness of the strengthened layer, which creates a hardness gradient over the thickness of the parts, i.e., a high surface hardness and a ductile core. In turn, this creates a favorable distribution of internal stresses and provides a high cyclic endurance of the parts in operation. The possibility of using volume-surface hardening to strength railroad transport parts is considered with allowance for the special features of their production and operation.