A simple method used to evaluate phase-change materials based on focused-ion beam technique
NASA Astrophysics Data System (ADS)
Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Lv, Shilong; Zhou, Xilin; Du, Xiaofeng; Cheng, Yan; Yang, Pingxiong; Chu, Junhao
2013-05-01
A nanoscale phase-change line cell based on focused-ion beam (FIB) technique has been proposed to evaluate the electrical property of the phase-change material. Thanks to the FIB-deposited SiO2 hardmask, only one etching step has been used during the fabrication process of the cell. Reversible phase-change behaviors are observed in the line cells based on Al-Sb-Te and Ge-Sb-Te films. The low power consumption of the Al-Sb-Te based cell has been explained by theoretical calculation accompanying with thermal simulation. This line cell is considered to be a simple and reliable method in evaluating the application prospect of a certain phase-change material.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens
Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun
2016-01-01
Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m−2 and 1.5 kW m−2, respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs. PMID:27283350
Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens.
Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun
2016-06-10
Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m(-2) and 1.5 kW m(-2), respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.
Non-binary Colour Modulation for Display Device Based on Phase Change Materials.
Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui
2016-12-19
A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.
2012-10-01
5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works
Modeling of Bulk Evaporation and Condensation
NASA Technical Reports Server (NTRS)
Anghaie, S.; Ding, Z.
1996-01-01
This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.
Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan
2018-05-01
A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.
A numerical analysis of phase-change problems including natural convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Faghri, A.
1990-08-01
Fixed grid solutions for phase-change problems remove the need to satisfy conditions at the phase-change front and can be easily extended to multidimensional problems. The two most important and widely used methods are enthalpy methods and temperature-based equivalent heat capacity methods. Both methods in this group have advantages and disadvantages. Enthalpy methods (Shamsundar and Sparrow, 1975; Voller and Prakash, 1987; Cao et al., 1989) are flexible and can handle phase-change problems occurring both at a single temperature and over a temperature range. The drawback of this method is that although the predicted temperature distributions and melting fronts are reasonable, themore » predicted time history of the temperature at a typical grid point may have some oscillations. The temperature-based fixed grid methods (Morgan, 1981; Hsiao and Chung, 1984) have no such time history problems and are more convenient with conjugate problems involving an adjacent wall, but have to deal with the severe nonlinearity of the governing equations when the phase-change temperature range is small. In this paper, a new temperature-based fixed-grid formulation is proposed, and the reason that the original equivalent heat capacity model is subject to such restrictions on the time step, mesh size, and the phase-change temperature range will also be discussed.« less
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... Bases and replacing the isolation time with the phase, ``within limits.'' The proposed change does not... isolation valves are retained in the TS. Future changes to the Bases or licensee-controlled document will be... referenced in the Bases. In addition, the valve isolation times are replaced in the TS with the phase...
Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.
Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N
2016-09-23
Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.
Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.
Xia, Mengjiao; Zhu, Min; Wang, Yuchan; Song, Zhitang; Rao, Feng; Wu, Liangcai; Cheng, Yan; Song, Sannian
2015-04-15
Phase-change memory (PCM) has great potential for numerous attractive applications on the premise of its high-device performances, which still need to be improved by employing a material with good overall phase-change properties. In respect to fast speed and high endurance, the Ti-Sb-Te alloy seems to be a promising candidate. Here, Ti-doped Sb2Te3 (TST) materials with different Ti concentrations have been systematically studied with the goal of finding the most suitable composition for PCM applications. The thermal stability of TST is improved dramatically with increasing Ti content. The small density change of T0.32Sb2Te3 (2.24%), further reduced to 1.37% for T0.56Sb2Te3, would greatly avoid the voids generated at phase-change layer/electrode interface in a PCM device. Meanwhile, the exponentially diminished grain size (from ∼200 nm to ∼12 nm), resulting from doping more and more Ti, enhances the adhesion between phase-change film and substrate. Tests of TST-based PCM cells have demonstrated a fast switching rate of ∼10 ns. Furthermore, because of the lower thermal conductivities of TST materials, compared with Sb2Te3-based PCM cells, T0.32Sb2Te3-based ones exhibit lower required pulse voltages for Reset operation, which largely decreases by ∼50% for T0.43Sb2Te3-based ones. Nevertheless, the operation voltages for T0.56Sb2Te3-based cells dramatically increase, which may be due to the phase separation after doping excessive Ti. Finally, considering the decreased resistance ratio, TixSb2Te3 alloy with x around 0.43 is proved to be a highly promising candidate for fast and long-life PCM applications.
Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao
2018-05-01
Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
Preservice Elementary Teachers' Knowledge of Observable Moon Phases and Pattern of Change in Phases
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.
2006-01-01
The purpose of this study was to describe selected content knowledge held by 52 preservice elementary teachers about the observable phases of the moon and the monthly pattern of change in observable phases. Data were obtained from participants in a physics course before and after they received inquiry-based instruction designed to promote…
NASA Astrophysics Data System (ADS)
Jiang, Zipeng; Tie, Shengnian
2017-07-01
This paper reports the preparation and characterization of eutectic Glauber’s salt-based composite, phase-change materials (G-PCMs). PCMs were prepared using industrial-grade sodium sulfate decahydrate (Na2SO4 ṡ 10H2O) as the basic material. Other salts were added to obtain the eutectic Glauber’s salt-based PCMs with phase-change temperatures of 25∘C, 15∘C and 10∘C. The modification of the G-PCMs was designed using the same experimental method to select the efficient nucleating, thickening and thermal conductive agents. The results show that borax can be an effective nucleating agent, sodium carboxymethyl cellulose is an excellent thickener and carbon powder is a good thermal conductive agent. The phase-change temperature, latent heat and thermal conductivity of the three different PCMs are 23.9∘C, 15.4∘C and 9.5∘C; 179.6, 129 and 116.2 J/g; and 1.02, 1.10 and 1.23 W/(m K), respectively. These PCMs possess suitable phase-change temperature, high latent heat and good thermal conductivity, and can be used in Qinghai-Tibet Plateau agricultural solar greenhouses.
Preparation of fine powdered composite for latent heat storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz
Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particlemore » size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.« less
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min
2013-11-01
The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.
Passive temperature control based on a phase change metasurface.
Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming
2018-05-16
In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.
2015-07-01
On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu
2016-04-01
On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Thermal analysis of void cavity for heat pipe receiver under microgravity
NASA Astrophysics Data System (ADS)
Gui, Xiaohong; Song, Xiange; Nie, Baisheng
2017-04-01
Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.
Transient analysis of a thermal storage unit involving a phase change material
NASA Technical Reports Server (NTRS)
Griggs, E. I.; Pitts, D. R.; Humphries, W. R.
1974-01-01
The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.
NASA Astrophysics Data System (ADS)
Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.
2018-01-01
Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.
High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement
2005-06-01
Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in
Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Lei, Kai; Wang, Yang; Jiang, Minghui; Wu, Yiqun
2016-05-01
In this study, the controllable effective refractive index modulation of Sb70Te30 phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Kai; Wang, Yang, E-mail: ywang@siom.ac.cn; Jiang, Minghui
2016-05-07
In this study, the controllable effective refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.
Loeser, Helen; O'Sullivan, Patricia; Irby, David M
2007-04-01
After successive Liaison Committee on Medical Education accreditation reports that criticized the University of California, San Francisco, School of Medicine for lack of instructional innovation and curriculum oversight, the dean issued a mandate for curriculum reform in 1997. Could a medical school that prided itself on innovation in research and health care do the same in education? The authors describe their five-phase curriculum change process and correlate this to an eight-step leadership model. The first phase of curricular change is to establish a compelling need for change; it requires leaders to create a sense of urgency and build a guiding coalition to achieve action. The second phase of curriculum reform is to envision a bold new curriculum; leaders must develop such a vision and communicate it broadly. The third phase is to design curriculum and obtain the necessary approvals; this requires leaders to empower broad-based action and generate short-term wins. In the fourth phase, specific courses are developed for the new curriculum, and leaders continue to empower broad-based action, generate short-term wins, consolidate gains, and produce more change. During the fifth phase of implementation and evaluation, leaders need to further consolidate gains, produce more change, and anchor new approaches in the institution. Arising from this experience and the correlation of curricular change phases with leadership steps, the authors identify 27 specific leadership strategies they employed in their curricular reform process.
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip
2012-05-09
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
Self-assembled phase-change nanowire for nonvolatile electronic memory
NASA Astrophysics Data System (ADS)
Jung, Yeonwoong
One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.
NASA Technical Reports Server (NTRS)
2003-01-01
The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.
ERIC Educational Resources Information Center
Pierri, Evgenia; Karatrantou, Anthi; Panagiotakopoulos, Chris
2008-01-01
We examined how first year students (10th grade) of Greek Senior High School could conceptualize the influence of the molecular weight of saturated fatty acids on the melting and the freezing point, during the "change of phase" phenomenon using the Microcomputer-Based Laboratory (MBL) system. Students had to freeze a melted substance,…
Teachers' Experiences of Technology-Based Teaching and Learning in the Foundation Phase
ERIC Educational Resources Information Center
Hannaway, D. M.; Steyn, M. G.
2017-01-01
This paper presents one aspect of a larger scale doctoral study, namely the teachers' experiences of technology-based teaching and learning in the Foundation Phase. Technology is a huge driver of change and South African education has to change regularly to meet the requirements set out by the Department of Education, including the development of…
Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.
2014-01-01
A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.
Fourth-Grade Elementary Students' Conceptions of Standards-Based Lunar Concepts
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.
2007-01-01
Fourth-grade students' knowledge of observable moon phases and patterns of change, as well as conceptual understanding of the cause of moon phases, was investigated before and after special instruction. Pretest and post-test data for 48 students were used to address the research question related to observable moon phases and patterns of change.…
Gatos, D; Tzavara, C
2001-02-01
Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.
Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E
2016-08-10
The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.
Understanding Phase-Change Memory Alloys from a Chemical Perspective
NASA Astrophysics Data System (ADS)
Kolobov, A. V.; Fons, P.; Tominaga, J.
2015-09-01
Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.
Understanding Phase-Change Memory Alloys from a Chemical Perspective.
Kolobov, A V; Fons, P; Tominaga, J
2015-09-01
Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.
Han, Bumsoo; Bischof, John C
2004-04-01
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M., E-mail: willey1@llnl.gov; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; ...
2015-08-07
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Progress and prospects of silicon-based design for optical phased array
NASA Astrophysics Data System (ADS)
Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie
2016-03-01
The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.
Laser-phased-array beam steering based on crystal fiber
NASA Astrophysics Data System (ADS)
Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei
2011-06-01
Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.
Yang, Seung Yun; Butler, Ian S
2013-12-01
Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm⁻¹/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm⁻¹/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.
Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry
2009-05-31
inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter
Life and stability testing of packaged low-cost energy storage materials
NASA Astrophysics Data System (ADS)
Frysinger, G. R.
1980-07-01
A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage like containers called Chubs was developed. Results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications was drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a delta T of 30 F can be used for the packaged material.
Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission
2013-04-01
structures; v) developed CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vi) also engaged in a partnership with...CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vii. exploring approaches to enhance spontaneous emission in...size and bandwidth, we are exploring phase-change materials and, in particular, vanadium dioxide. VO2 undergoes an insulator-to-metal phase transition
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
ERIC Educational Resources Information Center
Vierhaus, Marc; Maass, Asja; Fridrici, Mirko; Lohaus, Arnold
2010-01-01
This study examines whether the assumptions of the Transtheoretical Model (TTM) are useful to evaluate the effectiveness of a school-based stress prevention programme in adolescence to promote appropriate coping behaviour. The TTM assumes three consecutive phases in the adoption of behavioural patterns. Progress throughout the phases is promoted…
Lee, Minyoung; Kim, Minhee; Oh, Sejun; Choi, Yoon-Jin; Lee, Dongshin; Lee, Sang Heon; Yoon, BumChul
2017-09-01
To examine the effectiveness and adherence to a self-determination theory (SDT)-based self-myofascial release (SMR) program in older adults with myofascial trigger points (MTrPs), and to investigate the factors that influence participant behavioral change while conducting the program in a home setting. An explanatory mixed-method design was used to evaluate a 12-week SDT-based SMR program, including a 4-week group-based education and practice (EP) phase and an 8-week home-based self-management (SM) phase. Pain intensity on palpation and sensitivity to pain were assessed at baseline and the post EP and post SM phase. Focus group interviews were conducted at the post SM phase. Fifteen participants completed the study. Pain intensity and sensitivity to pain significantly improved at the post SM phase compared with the baseline. Adherence increased during the SM phase compared with that during the EP phase. Four main themes emerged as factors that influenced participant behavioral change: 1) "awareness of the effectiveness"; 2) "a sense of duty to perform the exercise"; 3) "obedience to expert instruction"; and 4) "lack of friendship." These results support the effectiveness of an SDT-based SMR program for the treatment of MTrPs and in motivating older adults to participate in the program.
Visualising phase change in a brushite-based calcium phosphate ceramic
Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.
2016-01-01
The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s – Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media. PMID:27604149
Visualising phase change in a brushite-based calcium phosphate ceramic
NASA Astrophysics Data System (ADS)
Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.
2016-09-01
The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s - Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media.
Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.
2014-01-01
A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.
NASA Astrophysics Data System (ADS)
Tain, Rong-Wen; Alperin, Noam
2008-03-01
Intracranial compliance (ICC) determines the ability of the intracranial space to accommodate increase in volume (e.g., brain swelling) without a large increase in intracranial pressure (ICP). Therefore, measurement of ICC is potentially important for diagnosis and guiding treatment of related neurological problems. Modeling based approach uses an assumed lumped-parameter model of the craniospinal system (CSS) (e.g., RCL circuit), with either the arterial or the net transcranial blood flow (arterial inflow minus venous outflow) as input and the cranio-spinal cerebrospinal fluid (CSF) flow as output. The phase difference between the output and input is then often used as a measure of ICC However, it is not clear whether there is a predetermined relationship between ICC and the phase difference between these waveforms. A different approach for estimation of ICC has been recently proposed. This approach estimates ICC from the ratio of the intracranial volume and pressure changes that occur naturally with each heartbeat. The current study evaluates the sensitivity of the phase-based and the direct approach to changes in ICC. An RLC circuit model of the cranio-spinal system is used to simulate the cranio-spinal CSF flow for 3 different ICC states using the transcranial blood flows measured by MRI phase contrast from healthy human subjects. The effect of the increase in the ICC on the magnitude and phase response is calculated from the system's transfer function. We observed that within the heart rate frequency range, changes in ICC predominantly affected the amplitude of CSF pulsation and less so the phases. The compliance is then obtained for the different ICC states using the direct approach. The measures of compliance calculated using the direct approach demonstrated the highest sensitivity for changes in ICC. This work explains why phase shift based measure of ICC is less sensitive than amplitude based measures such as the direct approach method.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan
2008-03-01
This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Makinen, Janice; Le, Hung V.
2016-01-01
The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.
NASA Astrophysics Data System (ADS)
Rudenkov, A. S.; Piliptsou, D. G.; Luchnikov, P. A.; Rogachev, A. V.; Jiang, Xiaohong; Fedosenko, N. N.
2018-01-01
The Raman spectroscopy method established that subsequent treatment with ion ions leads to a change in the microstructure of coatings based on carbon and metals. It is established that the structure change is determined by the changes occurring at the interface and depends on the sp3 → sp2 phase transition due to the appearance of local thermal peaks at the end of tracks of nitrogen ions implanted in the coating volume. It is shown that the microhardness of metal-carbon coatings (α-C: Cu, α-C: Ti, α-C:Al) increases after ion-plasma treatment, which is determined by the formation of solid interstitial phases based on CNx and metal carbonitrides.
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qing; Xia, Yangyang; Zheng, Yonghui
Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 ordersmore » of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.« less
Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming
2015-01-01
To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.
Preparation and characterization of novel anion phase change heat storage materials.
Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong
2013-10-01
In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.
NASA Astrophysics Data System (ADS)
Chen, Yingming; Zhang, Honghong; Gao, Weiting; Chen, Yingmin; Wang, Yifan
2018-04-01
For the problems that the phase change material apply to infrared stealth exists easy to broken, hard to control temperature, narrow infrared channel and based on the basic principles of infrared stealth technology, this paper proposed a scheme of thermal infrared composite invisibility multi-layer wrapping, which based on two sides, one is to control the material surface temperature, another is to reduce its infrared emissivity and combine with visible light pigment and electromagnetic wave absorbing material, to realize the materials' wide band compatible stealth. First, choose urea formaldehyde resin and paraffin to prepare multiphase-change microcapsules, and then combine it with the ferroferric oxide absorbing material, zinc oxide visible light pigment, to make the stealth material of wide band. The experimental results show that the new phase change capsule can realize the function of temperature control and infrared stealth in a special temperature range.
Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva
2018-01-15
Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.
Digital microfluidics: Droplet based logic gates
NASA Astrophysics Data System (ADS)
Cheow, Lih Feng; Yobas, Levent; Kwong, Dim-Lee
2007-01-01
The authors present microfluidic logic gates based on two-phase flows at low Reynold's number. The presence and the absence of a dispersed phase liquid (slug) in a continuous phase liquid represent 1 and 0, respectively. The working principle of these devices is based on the change in hydrodynamic resistance for a channel containing droplets. Logical operations including AND, OR, and NOT are demonstrated, and may pave the way for microfludic system automation and computation.
USDA-ARS?s Scientific Manuscript database
Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...
Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y
2008-11-10
A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.
Phase recovery from a single interferogram with closed fringes by phase unwrapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Maciel, Jesus; Casillas-Rodriguez, Francisco J.; Mora-Gonzalez, Miguel
2011-01-01
We describe a new algorithm for phase determination from a single interferogram with closed fringes based on an unwrapping procedure. Here we use bandpass filtering in the Fourier domain, obtaining two wrapped phases with sign changes corresponding to the orientation of the applied filters. An unwrapping scheme that corrects the sign ambiguities by comparing the local derivatives is then proposed. This can be done, assuming that the phase derivatives do not change abruptly among adjacent areas as occurs with smooth continuous phase maps. The proposed algorithm works fast and is robust against noise, as demonstrated in experimental and simulated data.
NASA Astrophysics Data System (ADS)
Zhu, X.
2017-12-01
Based on methods of statistical analysis, the time series of global surface air temperature(SAT) anomalies from 1860-2014 has been defined by three types of phase changes that occur through the division of temperature changes into different stages. The characteristics of the three types of phase changes simulated by CMIP5 models were evaluated. The conclusion is as follows: the SAT from 1860-2014 can be divided into six stages according to trend differences, and this subdivision is proved to be statistically significant. Based on trend analysis and the distribution of slopes between any two points (two points' slope) in every stage, the six stages can be summarized as three phase changes of warming, cooling, and hiatus. Between 1860 and 2014, the world experienced three heating phases (1860-1878, 1909-1942,1975-2004), one cooling phase (1878-1909), and two hiatus phases (1942-1975, 2004-2014).Using the definition method, whether the next year belongs to the previous phase can be estimated. Furthermore, the temperature in 2015 was used as an example to validate the feasibility of this method. The simulations of the heating period by CMIP5 models are well; however the characteristics shown by SAT during the cooling and hiatus period cannot be represented by CMIP5 models. As such, the projections of future heating phases using the CMIP5 models are credible, but for cooling and hiatus events they are unreliable.
Review of Development Survey of Phase Change Material Models in Building Applications
Akeiber, Hussein J.; Wahid, Mazlan A.; Hussen, Hasanen M.; Mohammad, Abdulrahman Th.
2014-01-01
The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data. PMID:25313367
Recent Advances on Neuromorphic Systems Using Phase-Change Materials
NASA Astrophysics Data System (ADS)
Wang, Lei; Lu, Shu-Ren; Wen, Jing
2017-05-01
Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.
Recent Advances on Neuromorphic Systems Using Phase-Change Materials.
Wang, Lei; Lu, Shu-Ren; Wen, Jing
2017-12-01
Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.
ERIC Educational Resources Information Center
Purvis, David
2006-01-01
A lot of good elementary science involves studying solids, liquids, and gases, and some inquiry-based activities that are easy to set up and do. In this article, the author presents activities pertaining to simple phase change. Using water as the example, these activities introduce upper-grade students to the idea of the arrangement of molecules…
Burgess, Adrian P
2012-01-01
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.
Burgess, Adrian P.
2012-01-01
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing. PMID:23049827
NASA Astrophysics Data System (ADS)
Treuhaft, R. N.; Baccini, A.; Goncalves, F. G.; Lei, Y.; Keller, M.; Walker, W. S.
2017-12-01
Tropical forests account for about 50% of the world's forested biomass, and play a critical role in the control of atmospheric carbon dioxide. Large-scale (1000's of km) changes in forest structure and biomass bear on global carbon source-sink dynamics, while small-scale (< 100 m) changes bear on deforestation and degradation monitoring. After describing the interferometric SAR (InSAR) phase-height observation, we show forest phase-height time series from the TanDEM-X radar interferometer at X-band (3 cm), taken with monthly and sub-hectare temporal and spatial resolution, respectively. The measurements were taken with more than 30 TanDEM-X passes over Tapajós National Forest in the Brazilian Amazon between 2011 and 2014. The transformation of phase-height rates into aboveground biomass (AGB) rates is based on the idea that the change in AGB due to a change in phase-height depends on the plot's AGB. Plots with higher AGB will produce more AGB for a given increase in height or phase-height. Postulating a power-law dependence of plot-level mass density on physical height, we previously found that the best conversion factors for transforming phase-height rate to AGB rate were indeed dependent on AGB. For 78 plots, we demonstrated AGB rates from InSAR phase-height rates using AGB from field measurements. For regional modeling of the Amazon Basin, field measurements of AGB, to specify the conversion factors, is impractical. Conversion factors from InSAR phase-height rate to AGB rate in this talk will be based on AGB derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). AGB measurement from MODIS is based on the spectral reflectance of 7 bands from the visible to short wave infrared, and auxiliary metrics describing the variance in reflectance. The mapping of MODIS reflectance to AGB is enabled by training a machine learning algorithm with lidar-derived AGB data, which are in turn trained by field measurements for small areas. The performance of TanDEM-X AGB rate from MODIS-derived conversion factors will be compared to that derived from field-based conversion factors. We will also attempt to improve phase-height rate to AGB rate transformation by deriving improved models of mass density dependences on height, based on the aggregation of single-stem allometrics.
NASA Astrophysics Data System (ADS)
Jing, Gu; Dehong, Xia; Li, Wang; Wenqing, Ao; Zhaodong, Qi
2018-03-01
We report herein a novel series of Mannitol/GNPs (graphene nanoplatelets) composites with incremental GNPs loadings from 1 wt% to 10 wt% for further applications in medium-temperature thermal energy system. The phase change behavior and thermal conductivity of Mannitol/GNPs composite, a nanostructured PCM, have been evaluated as a function of GNPs content. Compared to the pristine Mannitol, the resultant stabilized composite with 8 wt% of GNPs displays an extremely high 1054% enhancement in thermal conductivity, and inherits 92% of phase change enthalpy of bulk Mannitol PCM (phase change material). More importantly, 92%Mannitol/GNPs composite still preserves its initial shape without any leakage even when subjected to a 400 consecutive melting/re-solidification cycles. The resulting Mannitol composites exhibit excellent chemical compatibility, large phase change enthalpy and improved thermal reliability, as compared to base PCM, which stands distinct in its class of organic with reference to the past literatures.
Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.
2018-05-01
Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.
Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.
2018-07-01
Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.
Segmentation and classification of cell cycle phases in fluorescence imaging.
Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan
2009-01-01
Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.
Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.
2017-01-24
A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.
Elvén, Maria; Hochwälder, Jacek; Dean, Elizabeth; Söderlund, Anne
2015-05-01
A biopsychosocial approach and behaviour change strategies have long been proposed to serve as a basis for addressing current multifaceted health problems. This emphasis has implications for clinical reasoning of health professionals. This study's aim was to develop and validate a conceptual model to guide physiotherapists' clinical reasoning focused on clients' behaviour change. Phase 1 consisted of the exploration of existing research and the research team's experiences and knowledge. Phases 2a and 2b consisted of validation and refinement of the model based on input from physiotherapy students in two focus groups (n = 5 per group) and from experts in behavioural medicine (n = 9). Phase 1 generated theoretical and evidence bases for the first version of a model. Phases 2a and 2b established the validity and value of the model. The final model described clinical reasoning focused on clients' behaviour change as a cognitive, reflective, collaborative and iterative process with multiple interrelated levels that included input from the client and physiotherapist, a functional behavioural analysis of the activity-related target behaviour and the selection of strategies for behaviour change. This unique model, theory- and evidence-informed, has been developed to help physiotherapists to apply clinical reasoning systematically in the process of behaviour change with their clients.
Controllable SET process in O-Ti-Sb-Te based phase change memory for synaptic application
NASA Astrophysics Data System (ADS)
Ren, Kun; Li, Ruiheng; Chen, Xin; Wang, Yong; Shen, Jiabin; Xia, Mengjiao; Lv, Shilong; Ji, Zhenguo; Song, Zhitang
2018-02-01
The nonlinear resistance change and small bit resolution of phase change memory (PCM) under identical operation pulses will limit its performance as a synaptic device. The octahedral Ti-Te units in Ti-Sb-Te, regarded as nucleation seeds, are degenerated when Ti is bonded with O, causing a slower crystallization and a controllable SET process in PCM cells. A linear resistance change under identical pulses, a resolution of ˜8 bits, and an ON/OFF ratio of ˜102 has been achieved in O-Ti-Sb-Te based PCM, showing its potential application as a synaptic device to improve recognition performance of the neural network.
NASA Astrophysics Data System (ADS)
Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.
2017-12-01
The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.
Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application
NASA Astrophysics Data System (ADS)
Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye
2017-12-01
A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.
Agile science: creating useful products for behavior change in the real world.
Hekler, Eric B; Klasnja, Predrag; Riley, William T; Buman, Matthew P; Huberty, Jennifer; Rivera, Daniel E; Martin, Cesar A
2016-06-01
Evidence-based practice is important for behavioral interventions but there is debate on how best to support real-world behavior change. The purpose of this paper is to define products and a preliminary process for efficiently and adaptively creating and curating a knowledge base for behavior change for real-world implementation. We look to evidence-based practice suggestions and draw parallels to software development. We argue to target three products: (1) the smallest, meaningful, self-contained, and repurposable behavior change modules of an intervention; (2) "computational models" that define the interaction between modules, individuals, and context; and (3) "personalization" algorithms, which are decision rules for intervention adaptation. The "agile science" process includes a generation phase whereby contender operational definitions and constructs of the three products are created and assessed for feasibility and an evaluation phase, whereby effect size estimates/casual inferences are created. The process emphasizes early-and-often sharing. If correct, agile science could enable a more robust knowledge base for behavior change.
Jin, Zheyan; Hu, Hui
2009-05-01
We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.
The investigations of characteristics of Sb2Te as a base phase-change material
NASA Astrophysics Data System (ADS)
Liu, Guangyu; Wu, Liangcai; Zhu, Min; Song, Zhitang; Rao, Feng; Song, Sannian; Cheng, Yan
2017-09-01
Chalcogenide alloys are paid much attention in the study of nonvolatile phase-change memory (PCM). A comprehensive research is investigated on Sb2Te (ST), a base material, from properties to performances in this paper. For the characteristics of ST films, the sheet resistance is extremely stable during cooling process in resistance-temperature measurement and the thickness change of ST film is 5.7%. However, low 10-year data retention temperature (∼55 °C) and large crystal grain are the demerits for ST. In addition, the structure characteristics show stable hexagonal phase and large grain of several hundred nanometers at crystalline state after annealing. As for electrical properties, although the ST-based PCM devices are characterized by fast operation speed of ∼20 ns, only about 8 × 103 times of stable operation cycles can be obtained. After that, the endurance performance deteriorates gradually due to the growth of grains. About resistance drift, the drift coefficients are very small both in crystalline state and in amorphous state.
NASA Astrophysics Data System (ADS)
Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie
2007-11-01
Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.
During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U 2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloymore » as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the α/γ interface.« less
Morphological analysis of GeTe in inline phase change switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Matthew R., E-mail: matthew.king2@ngc.com; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; El-Hinnawy, Nabil
2015-09-07
Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined bymore » variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.« less
Direct numerical simulations of fluid flow, heat transfer and phase changes
NASA Technical Reports Server (NTRS)
Juric, D.; Tryggvason, G.; Han, J.
1997-01-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Investigations into phase effects from diffracted Gaussian beams for high-precision interferometry
NASA Astrophysics Data System (ADS)
Lodhia, Deepali
Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.
Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng
2011-09-01
Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalesse, Heike; de Boer, Gijs; Solomon, Amy; Oue, Mariko; Ahlgrimm, Maike; Zhang, Damao; Shupe, Matthew; Luke, Edward; Protat, Alain
2016-04-01
In the Arctic, a region particularly sensitive to climate change, mixed-phase clouds occur as persistent single or multiple stratiform layers. For many climate models, the correct partitioning of hydrometeor phase (liquid vs. ice) remains a challenge. However, this phase partitioning plays an important role for precipitation processes and the radiation budget. To better understand the partitioning of phase in Arctic clouds, observations using a combination of surface-based remote sensors are useful. In this study, the focus is on a persistent low-level single-layer stratiform Arctic mixed-phase cloud observed during March 11-12, 2013 at the US Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Barrow, Alaska. This case is of particular interest due to two significant shifts in observed precipitation intensity over a 36 hour period. For the first 12 hours of this case, the observed liquid portion of the cloud cover featured a stable cloud top height with a gradually descending liquid cloud base and continuous ice precipitation. Then the ice precipitation intensity significantly decreased. A second decrease in ice precipitation intensity was observed a few hours later coinciding with the advection of a cirrus over the site. Through analysis of the data collected by extensive ground-based remote-sensing and in-situ observing systems as well as Nested Weather Research and Forecasting (WRF) simulations and ECMWF radiation scheme simulations, we try to shed light on the processes responsible for these rapid changes in precipitation rates. A variety of parameters such as the evolution of the internal dynamics and microphysics of the low-level mixed-phase cloud and the influence of the cirrus cloud are evaluated.
Atomic structure and pressure-induced phase transformations in a phase-change alloy
NASA Astrophysics Data System (ADS)
Xu, Ming
Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.
An optoelectronic framework enabled by low-dimensional phase-change films.
Hosseini, Peiman; Wright, C David; Bhaskaran, Harish
2014-07-10
The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.
Optically reconfigurable metasurfaces and photonic devices based on phase change materials
NASA Astrophysics Data System (ADS)
Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.
2016-01-01
Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.
Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.
2016-12-01
Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.
Analyzing the texture changes in the quantitative phase maps of adipocytes
NASA Astrophysics Data System (ADS)
Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.
2016-03-01
We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.
Threshold-voltage modulated phase change heterojunction for application of high density memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less
Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal
NASA Astrophysics Data System (ADS)
Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.
2018-03-01
The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.
ERIC Educational Resources Information Center
Whitney, Diana
1998-01-01
Appreciative inquiry is a form of organizational development based on principles of constructivism, poetics, anticipation, and simultaneity. The model has four phases: discovery, dream, design, and delivery. (SK)
Phase change thermal energy storage methods for combat vehicles, phase 1
NASA Astrophysics Data System (ADS)
Lynch, F. E.
1986-06-01
Three alternative cooling methods, based on latent heat absorption during phase changes, were studied for potential use in combat vehicle microclimate temperature control. Metal hydrides absorb heat as they release hydrogen gas. Plastic crystals change from one solid phase to another, absorbing heat in the process. Liquid air boils at cryogenic temperature and absorbs additional sensible heat as the cold gas mixes with the microclimate air flow. System designs were prepared for each of the three microclimate cooling concepts. These designs provide details about the three phase change materials, their containers and the auxiliary equipment needed to implement each option onboard a combat vehicle. The three concepts were compared on the basis of system mass, system volume and the energy required to regenerate them after use. Metal hydrides were found to be the lightest and smallest option by a large margin. The energy needed to regenerate a hydride thermal storage system can be extracted from the vehicle's exhaust gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhixia; Zhang, Liang; Saha, Kaushik
The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performedmore » for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.« less
Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.
Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining
2017-10-01
This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.
Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.
Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao
2017-11-14
Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.
NASA Astrophysics Data System (ADS)
Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi
2017-05-01
Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.
Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells
NASA Astrophysics Data System (ADS)
Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang
2015-04-01
Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
Chesapeake Bay Low Freshwater Inflow Study. Phase II. MAP FOLIO. Biota Assessment.
1982-05-01
conditions. These were: 1) Base Average -- average freshwater inflow conditions. by increased water consumption projected for the year 2020. 3) Base Drought...RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS. 1963- A TAI m - ii J May 1982 Chesapeake Bay Low Freshwater Inflow Study Phase II Biota Assessment Map...A PERIOD ZOVERED change was found to CIESAPEAKE BAY LOW FRESHWATER INFLOW STUDY FINAL BIOTA ASSESSMENT PHASE II: FINAL REPORT MAP FOLIO s PERFORMING
Bhattacharya, Arpita; Kolovson, Samantha; Sung, Yi-Chen; Eacker, Mike; Chen, Michael; Munson, Sean A; Kientz, Julie A
2018-03-01
Most health technologies are designed to support people who have already decided to work toward better health. Thus, there remains an opportunity to design technologies to help motivate people who have not yet decided to make a change. Understanding the experiences of people who have already started to make a health behavior change and how they made a pivotal decision can be useful in understanding how to design such tools. In this paper, we describe results from data collected in 2 phases. Phase 1 consisted of 127 surveys and 13 interviews with adults who have already accomplished behavior change(s). Phase 2 consisted of 117 surveys and 12 interviews with adults who have either already accomplished their behavior change(s) or are currently working toward them. We identified four factors that lead to pivotal experiences: (1) prolonged discontent and desire to change, (2) significant changes that increase fear or hope of future, (3) increased understanding of one's behavior and personal data, and (4) social accountability. We also describe a design space for designing technology-based interventions for encouraging people to decide to make a change to improve their health. Based on feedback from participants, we discuss opportunities for further exploration of the design space for people who are not yet motivated to change and for ethical considerations for this type of intervention. Copyright © 2018 Elsevier Inc. All rights reserved.
Performance of a cylindrical phase-change thermal energy storage unit
NASA Astrophysics Data System (ADS)
Jacobson, D. L.; Ponnappan, R.
1983-05-01
The high-temperature performance of a eutectic salt Phase Change Material (PCM) in a cylindrical Thermal Energy Storage Container (TESC) sample is evaluated by means of an experimental apparatus with a water-circulated calorimeter. The phase change characteristics of the salt during melting and solidification were observed by monitoring the external axial temperature profile of the container, and the analysis of the phase change heat transfer in the cylindrical geometry was based on the modified heat balance integral method of Tien (1980), which provides the solidification rate and time. Melting point (983 K), freezing point (944 K), latent heat of fusion (782.26 J/gm) and thermal diffusivity (0.00799 sq cm/sec) results are in agreement with those found in the literature. The experimental and analytical results of the nondimensionalized heat transfer resistance as a function of the solidified or melted weight fraction are compared.
Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe
NASA Astrophysics Data System (ADS)
Gabardi, S.; Caravati, S.; Sosso, G. C.; Behler, J.; Bernasconi, M.
2015-08-01
Aging is a common feature of the glassy state. In the case of phase-change chalcogenide alloys the aging of the amorphous state is responsible for an increase of the electrical resistance with time. This phenomenon called drift is detrimental in the application of these materials in phase-change nonvolatile memories, which are emerging as promising candidates for storage class memories. By means of combined molecular dynamics and electronic structure calculations based on density functional theory, we have unraveled the atomistic origin of the resistance drift in the prototypical phase-change compound GeTe. The drift results from a widening of the band gap and a reduction of Urbach tails due to structural relaxations leading to the removal of chains of Ge-Ge homopolar bonds. The same structural features are actually responsible for the high mobility above the glass transition which boosts the crystallization speed exploited in the device.
Phase discriminating capacitive array sensor system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor); Rahim, Wadi (Inventor)
1993-01-01
A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.
The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response
NASA Astrophysics Data System (ADS)
Suchenek, Mariusz
2017-04-01
One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.
NASA Astrophysics Data System (ADS)
Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Yang, Pingxiong; Song, Hongjia; Ren, Kun; Zhou, Xilin; Zhu, Min; Liu, Bo; Chu, Junhao
2012-09-01
W-Sb-Te phase-change material has been proposed to improve the performance of phase-change memory (PCM). Crystallization temperature, crystalline resistance, and 10-year data retention of Sb2Te increase markedly by W doping. The Wx(Sb2Te)1-x films crystallize quickly into a stable hexagonal phase with W uniformly distributing in the crystal lattice, which ensures faster SET speed and better operation stability for the application in practical device. PCM device based on W0.07(Sb2Te)0.93 shows ultrafast SET operation (6 ns) and good endurance (1.8 × 105 cycles). W-Sb-Te material is a promising candidate for the trade-off between programming speed and data retention.
Quantitative phase imaging using grating-based quadrature phase interferometer
NASA Astrophysics Data System (ADS)
Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei
2007-02-01
In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.
The microstructural changes of Ge2Sb2Te5 thin film during crystallization process
NASA Astrophysics Data System (ADS)
Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun
2018-05-01
Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.
NASA Astrophysics Data System (ADS)
Farnam, Yaghoob
Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical phase change creating cracks and damage to concrete under freezing and thawing. In a cementitious system exposed to CaCl2, the chemical phase change is mainly due to the presence of calcium hydroxide (CH) in concrete. Calcium hydroxide can react with CaCl2 solution producing calcium oxychloride. Calcium oxychloride forms at room temperature (i.e., 23 °C) for CaCl 2 salt concentrations at or above ~ 12 % by mass in the solution creating expansion and degradation in concrete. In a cementitious system exposed to MgCl2, it was observed that MgCl2 can be entirely consumed in concrete by reacting with CH and produce CaCl2. As such, it followed a response that is more similar to the concrete-CaCl2-water system than that of the MgCl2-water phase diagram. Formation of calcium/magnesium oxychloride is most likely the main source of the chemical phase change (which can cause damage) in concrete exposed to MgCl2. During the LGCC testing for CaCl2 and MgCl2 salts, it was found that the chemical reactions occur rapidly (~ 10 min) and can cause a significant decrease in subsequent fluid ingress into exposed concrete in comparison to NaCl. Isothermal calorimetry, fluid absorption, oxygen permeability, oxygen diffusivity, and X-ray fluorescence testing showed that the formation of calcium oxychloride in concrete exposed to CaCl2 and MgCl 2 can block or fill in the concrete pores on the surface of the specimen; thereby decreasing the CaCl2 and MgCl2 fluid ingress into the concrete. To mitigate the damage and degradation due to the chemical phase transition, two approaches were evaluated: (1) use of a cementitious binder that does not react with salts, and (2) use of a new practical technology to melt ice and snow, thereby decreasing the demand for deicing salt usage. For the first approach, carbonated calcium silicate based cement (CCSC) was used and the CCSC mortar showed a promising performance and resistance to salt degradation than an ordinary portland mortar does. For the second approach, phase change materials (PCM), including paraffin oil and methyl laurate, were used to store heat in concrete elements and release the stored heat during cooling to reduce ice formation and snow accumulation on the surface of concrete. PCM approach also showed a promising performance in melting ice and snow, thereby decreasing the demand for salt usage.
Vanadium dioxide as a material to control light polarization in the visible and near infrared
NASA Astrophysics Data System (ADS)
Cormier, Patrick; Son, Tran Vinh; Thibodeau, Jacques; Doucet, Alexandre; Truong, Vo-Van; Haché, Alain
2017-01-01
We report on the possible use of vanadium dioxide to produce ultrathin (<100 nm) adjustable phase retarders working over a wide spectral range. The refractive index of vanadium dioxide undergoes large changes when the material undergoes a phase transition from semiconductor to metal at a temperature of 68 °C. In a thin film, the resulting optical phase shift is different for s- and p-polarizations in both reflection and transmission, and under certain conditions the polarization state changes between linear or circular or between linear polarizations oriented differently when the material phase transitions. Specific ultrathin modulators are proposed based on the results.
Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR
NASA Astrophysics Data System (ADS)
Yu, Zhijie; Lu, Yang; Meng, Zhou
2017-10-01
A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.
Crystalline phase-stability of tantalum pentoxide
NASA Astrophysics Data System (ADS)
Walton, Santiago; Padilha, Antonio; Dalpian, Gustavo; Guillén, Jorge; Dalpian's Research Group Collaboration; Grupo de Estado Solido Collaboration; Gritad Collaboration
2013-03-01
Memristive devices are attractive candidates to provide a paradigm change in memory devices fabrication. These new devices would be faster, denser and less power consuming than those available today. However, the mechanism of memristance is not yet well understood. It is believed that a voltage/current-driven phase transition occurs in the material, which leads to significant changes in the device's conductivity. In the particular case of tantalum-oxide-based devices the relevant crystalline phases are still a matter of debate. Some of these phases are not even completely known and there is no agreement about which model best explains the crystallographic results. In this work we have performed ab-initio DFT based calculations to study the structural properties of different phases (and models) of Ta2O5 - the structure which is believed to exist inside Tantalum Oxide based devices. The equations of state for this material were constructed through first principles total energy calculations and we have also calculated the phonon frequencies at Γ. These results show that the most stable phase of this oxide (B-Ta2O5) is in fact composed of octahedral, instead of pentagonal (as L-Ta2O5) or hexagonal (as δ-Ta2O5) bipyramids. Fapesp, CNPq, Capes,CODI-UdeA
Cooperative interactions in dense thermal Rb vapour confined in nm-scale cells
NASA Astrophysics Data System (ADS)
Keaveney, James
Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.
Optically addressed and submillisecond response phase only liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan
2014-10-01
Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.
NASA Astrophysics Data System (ADS)
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
NASA Astrophysics Data System (ADS)
Sahu, Smriti; Manivannan, Anbarasu; Shaik, Habibuddin; Mohan Rao, G.
2017-07-01
Reversible switching between highly resistive (binary "0") amorphous phase and low resistive (binary "1") crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (˜44%) and Te (˜56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (˜63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST.
NASA Astrophysics Data System (ADS)
Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.
2018-02-01
The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.
Reiter, G F; Senesi, R; Mayers, J
2010-10-01
The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6 water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.
Servello, David F; Fallis, Drew W; Alvetro, Lisa
2015-01-01
To assess skeletal and dental changes in patients successfully treated with the Forsus appliance based on cervical vertebral maturation status. Forty-seven Class II patients, successfully treated with the Forsus appliance, were divided into peak and postpeak growth groups determined immediately prior to Forsus placement. The mean (SD) ages of the peak and postpeak groups were 13.4 (1.0) and 14.1 (1.3) years, respectively. Superimpositions of initial, Forsus placement, Forsus removal, and final cephalometric radiographs were completed, allowing the measurement of changes during three treatment phases. There were no significant differences between groups during treatment phase 1 (alignment/leveling), with both groups demonstrating a worsening of the Class II molar relationship. However, during treatment phase 2 (Class II correction), patients within the peak group demonstrated significantly higher mean apical base, mandibular and molar changes, and an increased rate of change compared with those in the postpeak group. No significant differences were observed during treatment phase 3 (detail/finishing). Following an initial worsening of the Class II molar relationship as a result of straight-wire appliance effects, Forsus appliance treatment initiated during cervical vertebral maturation status (CS) 3-4 elicits more effective and efficient correction of Class II molar relationships than when initiated during CS 5-6. Data support that these effects are due mainly to maxillary skeletal and dentoalveolar restraint during a period of more rapid mandibular growth.
Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Zhong, Y. P.; Deng, Y. F.
2013-12-21
Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less
Investigation of the Temperature Fluctuation of Single-Phase Fluid Based Microchannel Heat Sink.
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Lee, Chengkuo
2018-05-10
The temperature fluctuation in a single-phase microchannel heat sink (MCHS) is investigated using the integrated temperature sensors with deionized water as the coolant. Results show that the temperature fluctuation in single phase is not negligible. The causes of the temperature fluctuation are revealed based on both simulation and experiment. It is found that the inlet temperature fluctuation and the gas bubbles separated out from coolant are the main causes. The effect of the inlet temperature fluctuation is global, where the temperatures at different locations change simultaneously. Meanwhile, the gas bubble effect is localized where the temperature changes at different locations are not synchronized. In addition, the relation between temperature fluctuation and temperature gradient is established. The temperature fluctuation increases with the temperature gradient accordingly.
Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity
NASA Technical Reports Server (NTRS)
Yost, William T.; Cantrell, John H.; Kushnick, Peter W.
1991-01-01
A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.
NASA Astrophysics Data System (ADS)
Polukhin, V. A.; Belyakova, R. M.; Rigmant, L. K.
2008-02-01
The nature of microdopant effects of surfactant Te and H2 reagents on structure-phase transitions in rapidly quenched and crystallized eutectic Fe-C-based melts were studied by experimental and computer methods. On the base of results of statistic-geometrical analysis the new information about the structure changes in multi-scaling systems -from meso- to nano-ones were obtained.
Optical image encryption system using nonlinear approach based on biometric authentication
NASA Astrophysics Data System (ADS)
Verma, Gaurav; Sinha, Aloka
2017-07-01
A nonlinear image encryption scheme using phase-truncated Fourier transform (PTFT) and natural logarithms is proposed in this paper. With the help of the PTFT, the input image is truncated into phase and amplitude parts at the Fourier plane. The phase-only information is kept as the secret key for the decryption, and the amplitude distribution is modulated by adding an undercover amplitude random mask in the encryption process. Furthermore, the encrypted data is kept hidden inside the face biometric-based phase mask key using the base changing rule of logarithms for secure transmission. This phase mask is generated through principal component analysis. Numerical experiments show the feasibility and the validity of the proposed nonlinear scheme. The performance of the proposed scheme has been studied against the brute force attacks and the amplitude-phase retrieval attack. Simulation results are presented to illustrate the enhanced system performance with desired advantages in comparison to the linear cryptosystem.
Phase-image-based content-addressable holographic data storage
NASA Astrophysics Data System (ADS)
John, Renu; Joseph, Joby; Singh, Kehar
2004-03-01
We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.
A Liquid Optical Phase Shifter with an Embedded Electrowetting Actuator
Ashtiani, Alireza Ousati; Jiang, Hongrui
2017-01-01
We demonstrate an electrowetting-based liquid optical phase shifter. The phase shifter consists of two immiscible liquid layers with different refractive indices. Sandwiched between the two liquids is a rigid membrane that moves freely along the optical axis and supported by a compliant surround. When applied with a pressure, the thicknesses of both liquid layers change, which induces a difference in optical path, resulting in a phase shift. A miniaturized electrowetting-based actuator is used to produce hydraulic pressure. A multi-layered SU8 bonded structure was fabricated. A phase shift of 171° was observed when the device was incorporated in a Mach-Zehnder interferometer and driven with 100 V. PMID:29038640
Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi
2017-12-06
Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.
Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge
2018-03-14
Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.
Nanoscale thermal cross-talk effect on phase-change probe memory.
Wang, Lei; Wen, Jing; Xiong, Bangshu
2018-05-14
Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.
McCann, Jesse T; Marquez, Manuel; Xia, Younan
2006-12-01
We have developed a method based on melt coaxial electrospinning for fabricating phase change nanofibers consisting of long-chain hydrocarbon cores and composite sheaths. This method combines melt electrospinning with a coaxial spinneret and allows for nonpolar solids such as paraffins to be electrospun and encapsulated in one step. Shape-stabilized, phase change nanofibers have many potential applications as they are able to absorb, hold, and release large amounts of thermal energy over a certain temperature range by taking advantage of the large heat of fusion of long-chain hydrocarbons. We have focused on compounds with melting points near room temperature (octadecane) and body temperature (eicosane) as these temperature ranges are most valuable in practice. We have produced thermally stable, phase change materials up to 45 wt % octadecane, as measured by differential scanning calorimetry. In addition, the resultant fibers display novel segmented morphologies for the cores due to the rapid solidification of the hydrocarbons driven by evaporative cooling of the carrier solution. Aside from the fabrication of phase change nanofibers, the melt coaxial method is promising for applications related to microencapsulation and controlled release of drugs.
NASA Astrophysics Data System (ADS)
Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua
2018-05-01
This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.
Relation between bandgap and resistance drift in amorphous phase change materials
Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin
2015-01-01
Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533
Relation between bandgap and resistance drift in amorphous phase change materials.
Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin
2015-12-01
Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.
Mehrolhassani, Mohammad Hossein; Emami, Mozhgan
2013-01-01
Background: Change theories provide an opportunity for organizational managers to plan, monitor and evaluate changes using a framework which enable them, among others, to show a fast response to environmental fluctuations and to predict the changing patterns of individuals and technology. The current study aimed to explore whether the change in the public accounting system of the Iranian health sector has followed Kurt Lewin’s change theory or not. Methods: This study which adopted a mixed methodology approach, qualitative and quantitative methods, was conducted in 2012. In the first phase of the study, 41 participants using purposive sampling and in the second phase, 32 affiliated units of Kerman University of Medical Sciences (KUMS) were selected as the study sample. Also, in phase one, we used face-to-face in-depth interviews (6 participants) and the quote method (35 participants) for data collection. We used a thematic framework analysis for analyzing data. In phase two, a questionnaire with a ten-point Likert scale was designed and then, data were analyzed using descriptive indicators, principal component and factorial analyses. Results: The results of phase one yielded a model consisting of four categories of superstructure, apparent infrastructure, hidden infrastructure and common factors. By linking all factors, totally, 12 components based on the quantitative results showed that the state of all components were not satisfactory at KUMS (5.06±2.16). Leadership and management; and technology components played the lowest and the greatest roles in implementing the accrual accounting system respectively. Conclusion: The results showed that the unfreezing stage did not occur well and the components were immature, mainly because the emphasis was placed on superstructure components rather than the components of hidden infrastructure. The study suggests that a road map should be developed in the financial system based on Kurt Lewin’s change theory and the model presented in this paper underpins the change management in any organizations. PMID:24596885
Mehrolhassani, Mohammad Hossein; Emami, Mozhgan
2013-11-01
Change theories provide an opportunity for organizational managers to plan, monitor and evaluate changes using a framework which enable them, among others, to show a fast response to environmental fluctuations and to predict the changing patterns of individuals and technology. The current study aimed to explore whether the change in the public accounting system of the Iranian health sector has followed Kurt Lewin's change theory or not. This study which adopted a mixed methodology approach, qualitative and quantitative methods, was conducted in 2012. In the first phase of the study, 41 participants using purposive sampling and in the second phase, 32 affiliated units of Kerman University of Medical Sciences (KUMS) were selected as the study sample. Also, in phase one, we used face-to-face in-depth interviews (6 participants) and the quote method (35 participants) for data collection. We used a thematic framework analysis for analyzing data. In phase two, a questionnaire with a ten-point Likert scale was designed and then, data were analyzed using descriptive indicators, principal component and factorial analyses. The results of phase one yielded a model consisting of four categories of superstructure, apparent infrastructure, hidden infrastructure and common factors. By linking all factors, totally, 12 components based on the quantitative results showed that the state of all components were not satisfactory at KUMS (5.06±2.16). Leadership and management; and technology components played the lowest and the greatest roles in implementing the accrual accounting system respectively. The results showed that the unfreezing stage did not occur well and the components were immature, mainly because the emphasis was placed on superstructure components rather than the components of hidden infrastructure. The study suggests that a road map should be developed in the financial system based on Kurt Lewin's change theory and the model presented in this paper underpins the change management in any organizations.
Failure Analysis of an AH-64 Main Rotor Damper Blade Rod End, P/N 7-211411186-5
2003-12-01
diffraction peaks from the martensite / ferrite alpha phase and austenite gamma phases with calculated theoretical intensities. The software is based on the...the volume expansion occurring as one phase transforms into another phase (i.e., austenite to martensite ) or simply, the same phase may change...spheriodal particles shown in figures 31b and 32b) in a matrix of tempered martensite . Note, however, that Vilella’s reagent does not reveal the
Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices
Raeis-Hosseini, Niloufar; Rho, Junsuk
2017-01-01
Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
NASA Astrophysics Data System (ADS)
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian
2016-02-01
Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain dysfunctions could be better characterized by reduced FC-SC coupling flexibility in this particular phase. Copyright © 2015 Elsevier B.V. All rights reserved.
Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio
2015-05-01
This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.
A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.
NASA Technical Reports Server (NTRS)
Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.
1972-01-01
The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.
NASA Astrophysics Data System (ADS)
Zendejas-Leal, Blanca Estela; Barrientos-Sotelo, Víctor Rodrigo; Cano-Casas, Rogelio; Alvarado-Noguez, Margarita Lizeth; Hernández-Rosas, Juan; Cruz-Orea, Alfredo
2018-07-01
In this work, the optical absorption spectrum of peppers was monitored by phase-resolved photoacoustic spectroscopy during a dehydration process based on hot-air drying, yielding simultaneous information about changes in the exocarp and mesocarp. Our results show that between all of the dehydration processes of green Capsicum annuum L. variety pasilla peppers, only very small changes occur in the different phase angles, which has been correlated with the small changes in the exocarp thickness. The phase-resolved spectra of mesocarp show more clearly the evolution of the carotenoid compounds with respect to the optical absorption spectrum without phase resolving, due to the last spectrum having a band broadening in that region with more signals convolved. We have shown that not only do the ripened chili peppers produce new carotenoid compounds, but also we are probing that the dehydration process, beginning with the green stage, preserves the nutrimental content, similar to changes that occur in the natural ripening process.
Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials.
Mitrofanov, Kirill V; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki
2016-02-12
Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.
Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials
Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; ...
2016-02-12
Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge 2Sb 2Te 5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structuremore » experiment confirms the existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.« less
Design Considerations for Fusible Heat Sink
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.
2011-01-01
Traditionally radiator designs are based off a passive or flow through design depending on vehicle requirements. For cyclical heat loads, a novel idea of combining a full flow through radiator to a phase change material is currently being investigated. The flow through radiator can be designed for an average heat load while the phase change material can be used as a source of supplemental heat rejections when vehicle heat loads go above the average load. Furthermore, by using water as the phase change material, harmful radiation protection can be provided to the crew. This paper discusses numerous trades conducted to understand the most optimal fusible heat sink design for a particular heat load. Trades include configuration concepts, amount of phase change needed for supplemental heat rejection, and the form of interstitial material needed for optimal performance. These trades were used to culminate to a fusible heat sink design. The paper will discuss design parameters taken into account to develop an engineering development unit.
NASA Astrophysics Data System (ADS)
Qin, Tongran; Grigoriev, Roman
2017-11-01
We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.
Measurement technology based on laser internal/external cavity tuning
NASA Astrophysics Data System (ADS)
Zhang, Shulian
2011-08-01
For an ordinary laser with two cavity mirrors, if the length of laser cavity changes half wavelength the laser frequency changes one longitudinal mode separation. For a laser with three cavity mirrors, in which a feedback mirror is used to feed part of the laser output beam back into the laser cavity, the external cavity length changes half wavelength the laser intensity fluctuates one period. This presentation gives some research results in measurement field based on changing (tuning) the length of laser internal/external cavity, including 1) HeNe laser cavity-tuning nanometer displacement measurement instruments (laser nanometer rulers), 2) HeNe laser feedback displacement measurement, 3) Nd:YAG laser feedback nanometer displacement measurement, 4) benchmark of waveplate phase retardation measurement based on laser frequency splitting, 5) in-site waveplate phase retardation measurement instruments based on laser feedback and polarization hopping, 6) quasi-common-path microchip Nd:YAG laser feedback interferometer, 7) non-contact Nd:YAG laser feedback surface profile measurement. Some of these instruments have been put into application and display some irreplaceable advantages.
Optically switchable photonic metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, R. F.; MacDonald, K. F.; Hobson, P. A.
2015-08-24
We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.
Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH.
Neue, Uwe D; Méndez, Alberto
2007-05-01
The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.
Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer
2011-09-01
TRANSFER (Contract No. N000140811139) by Prof. Issam Mudawar Sung-Min Kim Joseph Kim Boiling and Two-Phase Flow Laboratory School of...Final 01-10-2008 to 30-09-2011 Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer NA N00014-08-1-1139 NA NA NA NA Mudawar ...respectively. phase change, condensation, electronics cooling, micro-channel, high-flux U U U UU 107 Mudawar , Issam 765-494-5705 Reset PHYSICS-BASED
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Pump-induced phase aberrations in Yb3+-doped materials(Conference Presentation)
NASA Astrophysics Data System (ADS)
Keppler, Sebastian; Tamer, Issa; Hornung, Marco; Körner, Jörg; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte C.
2017-05-01
Optical pumping of laser materials is an effective way to create a population inversion necessary for laser operation. However, a fraction of the pump energy is always transfered as heat into the laser material, which is mainly caused by the quantum defect. For Yb3+-doped materials, the small energy difference between the pump level and the laser level and the pumping with narrowband high-power laser diodes result in a quantum defect of approx. 9%, which is significantly lower compared to other dopants e.g. Ti3+ (33%) or Nd3+ (24%). Due to the low heat introduction, high optical-to-optical efficiency and high repetition rate laser systems based on diode-pumping are well-suited for a number of applications. Here, however, laser beam quality is of crucial importance. Phase distortions and beam profile modulations can lead to optical damages as well as a significant reduction of the focal spot intensity. Pump-induced phase aberrations are the main cause for phase distortions of the amplified laser beam. The heat transferred to the material causes a change of the refractive index (dn/dT), thermal expansion and stress within the laser material, eventually leading to spatial phase aberrations (also called `thermal lens'). However, the spatially dependent distribution of the population inversion itself also leads to spatial phase aberrations. Since electron excitation directly leads to a change in the charge distribution of the laser active ions, the dynamic response of the material to external fields changes. These electronic phase aberrations (also called `population lens') are described by a change in the polarizability of the material. Due to the low quantum defect of Yb3+-doped materials, this effect becomes more important. We show the first comprehensive spatio-temporal characterization of the pump-induced phase aberration including both effects. A high-resolution interference measurement was carried out with time steps of 50µs for times during the pump period and the cooling period between subsequent pump pulses. We found that both phase effects significantly contribute to the overall phase distortions. Since the temporal characteristic of the electronic phase depends on the fluorescence lifetime and the thermal phase on the thermal diffusivity, both phase effects could be distinguished by their different lifetimes. The measurements were carried out for Yb:YAG, Yb:CaF2 and Yb:glass, and are in excellent agreement to our detailed, COMSOL-based, spatio-temporal phase simulations. Since Yb:CaF2 and Yb:glass provide a negative dn/dT, the electronic phase change becomes even more important and, in case of Yb:CaF2, almost completely compensates the thermal phase imprint of a pump pulse during the time frame of laser pulse amplification.
Simulations of Lithium-Magnetite Electrodes Incorporating Phase Change
Knehr, Kevin W.; Cama, Christina A.; Brady, Nicholas W.; ...
2017-04-09
In this work, the phase changes occurring in magnetite (Fe 3O 4) during lithiation and voltage recovery experiments are modeled using a model that simulates the electrochemical performance of a Fe 3O 4 electrode by coupling the lithium transport in the agglomerate and nano-crystal length-scales to thermodynamic and kinetic expressions. Phase changes are described using kinetic expressions based on the Avrami theory for nucleation and growth. Also, simulated results indicate that the slow, linear voltage change observed at long times during the voltage recovery experiments can be attributed to a slow phase change from α-Li xFe 3O 4 to β-Limore » 4Fe 3O 4. In addition, the long voltage plateau at ~1.2 V observed during lithiation of electrodes is attributed to conversion from α-Li xFe 3O 4 to γ-(4 Li 2O + 3 Fe). Simulations for the lithiation of 6 and 32 nm Fe 3O 4 suggest the rate of conversion to γ-(4 Li 2O + 3 Fe) decreases with decreasing crystal size.« less
A new ultrasonic temperature measurement system for air conditioners in automobiles
NASA Astrophysics Data System (ADS)
Liao, Teh-Lu; Tsai, Wen-Yuan; Huang, Chih-Feng
2004-02-01
This paper presents a microcomputer-based ultrasonic temperature sensor system to measure the temperature of an air conditioner (AC) in an automobile. It uses the ultrasonic measurement of the changes in the speed of sound in the air to determine the temperature of the environmental air. The changes in the speed of sound are calculated by combining time-of-flight (TOF) and phase shift techniques. This method can work in a wider range than using phase shift alone and is more accurate than the TOF scheme. In the proposed system, we use 40 ± 2 kHz ultrasonic transducers and adopt a single-pass operation. An 89c51 single-chip microcomputer-based binary frequency shift-keyed (BFSK) signal generator and phase detector are designed to record and calculate the TOF, phase shift of the two frequencies and temperature. These data are then sent to either an LCD display or to a PC for calibration and examination. Experimental results show that the proposed measurement system has a high accuracy of ± 0.4 °C from 0 to 80 °C and can reflect the temperature change within 100 ms.
Review of Phase Change Materials Based on Energy Storage System with Applications
NASA Astrophysics Data System (ADS)
Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.
2017-05-01
The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.
NASA Astrophysics Data System (ADS)
Marumo, Yoshitaka; Katayama, Tsuyoshi
This study uses the energy flow method to analyze how structural flexibility affects the motorcycle wobble and weave modes. Lateral bending of the front fork and torsion of the main frame affect the wobble mode stability. These are based on the gyroscopic effect of the front wheel in the steering motion by considering structural flexibility. At high speeds, lateral bending of the front fork and torsion of the rear swing arm more significantly affect the weave mode stability. These are primarily due to the phase changes of the external force generated by the yaw rate in the lateral motion. The phase change of the yaw rate force in the lateral motion originates from the phase change of the tire side forces.
Investigation of Fiber Optics Based Phased Locked Diode Lasers
NASA Technical Reports Server (NTRS)
Burke, Paul D.; Gregory, Don A.
1997-01-01
Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
NASA Astrophysics Data System (ADS)
Schweser, Ferdinand; Dwyer, Michael G.; Deistung, Andreas; Reichenbach, Jürgen R.; Zivadinov, Robert
2013-10-01
The assessment of abnormal accumulation of tissue iron in the basal ganglia nuclei and in white matter plaques using the gradient echo magnetic resonance signal phase has become a research focus in many neurodegenerative diseases such as multiple sclerosis or Parkinson’s disease. A common and natural approach is to calculate the mean high-pass-filtered phase of previously delineated brain structures. Unfortunately, the interpretation of such an analysis requires caution: in this paper we demonstrate that regional gray matter atrophy, which is concomitant with many neurodegenerative diseases, may itself directly result in a phase shift seemingly indicative of increased iron concentration even without any real change in the tissue iron concentration. Although this effect is relatively small results of large-scale group comparisons may be driven by anatomical changes rather than by changes of the iron concentration.
NASA Astrophysics Data System (ADS)
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo
2015-01-01
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.
Applications of compressed sensing image reconstruction to sparse view phase tomography
NASA Astrophysics Data System (ADS)
Ueda, Ryosuke; Kudo, Hiroyuki; Dong, Jian
2017-10-01
X-ray phase CT has a potential to give the higher contrast in soft tissue observations. To shorten the measure- ment time, sparse-view CT data acquisition has been attracting the attention. This paper applies two major compressed sensing (CS) approaches to image reconstruction in the x-ray sparse-view phase tomography. The first CS approach is the standard Total Variation (TV) regularization. The major drawbacks of TV regularization are a patchy artifact and loss in smooth intensity changes due to the piecewise constant nature of image model. The second CS method is a relatively new approach of CS which uses a nonlinear smoothing filter to design the regularization term. The nonlinear filter based CS is expected to reduce the major artifact in the TV regular- ization. The both cost functions can be minimized by the very fast iterative reconstruction method. However, in the past research activities, it is not clearly demonstrated how much image quality difference occurs between the TV regularization and the nonlinear filter based CS in x-ray phase CT applications. We clarify the issue by applying the two CS applications to the case of x-ray phase tomography. We provide results with numerically simulated data, which demonstrates that the nonlinear filter based CS outperforms the TV regularization in terms of textures and smooth intensity changes.
Svärd, Anna; Lahti, Jouni; Roos, Eira; Rahkonen, Ossi; Lahelma, Eero; Lallukka, Tea; Mänty, Minna
2017-09-26
Studies suggest an association between weight change and subsequent poor physical health functioning, whereas the association with mental health functioning is inconsistent. We aimed to examine whether obesity and change of body mass index among normal weight, overweight and obese women and men associate with changes in physical and mental health functioning. The Helsinki Health Study cohort includes Finnish municipal employees aged 40 to 60 in 2000-02 (phase 1, response rate 67%). Phase 2 mail survey (response rate 82%) took place in 2007 and phase 3 in 2012 (response rate 76%). This study included 5668 participants (82% women). Seven weight change categories were formed based on body mass index (BMI) (phase 1) and weight change (BMI change ≥5%) (phase 1-2). The Short Form 36 Health Survey (SF-36) measured physical and mental health functioning. The change in health functioning (phase 1-3) score was examined with repeated measures analyses. Covariates were age, sociodemographic factors, health behaviours, and somatic ill-health. Weight gain was common among women (34%) and men (25%). Weight-gaining normal weight (-1.3 points), overweight (-1.3 points) and obese (-3.6 points) women showed a greater decline in physical component summary scores than weight-maintaining normal weight women. Among weight-maintainers, only obese (-1.8 points) women showed a greater decline than weight-maintaining normal weight women. The associations were similar, but statistically non-significant for obese men. No statistically significant differences in the change in mental health functioning occurred. Preventing weight gain likely helps maintaining good physical health functioning and work ability.
Electronic structure and shearing in nanolaminated ternary carbides
NASA Astrophysics Data System (ADS)
Music, Denis; Sun, Zhimei; Voevodin, Andrey A.; Schneider, Jochen M.
2006-07-01
We have studied shearing in M 2AlC phases (M=Sc,Y,La,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W) using ab initio calculations. We propose that these phases can be classified into two groups based on the valence electron concentration induced changes in C 44. One group comprises M=V B and VIB, where the C 44 values are approximately 170 GPa and independent of the corresponding MC. The other group includes M=IIIB and IVB, where the C 44 shows a linear dependency with the corresponding MC. This may be understood based on the electronic structure: shear resistant bands are filled in M 2AlC phases with M=V B and VIB, while they are not completely filled when M=IIIB and IVB. This notion is also consistent with our stress-strain analysis. These valence electron concentration induced changes in shear behaviour were compared to previously published valence electron concentration induced changes in compression behaviour [Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Phys. Rev. B 70 (2004) 092102]. These classification proposals exhibit identical critical valence electron concentration values for the group boundary. However, the physical mechanisms are not identical: the classification proposal for the bulk modulus is based on MC-A coupling, while shearing is based on MC-MC coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina
The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less
Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.
Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann
2016-05-15
A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nadeem, Erum; Ringle, Vanesa
2017-01-01
The de-adoption of evidence-based practices (EBPs) is a largely understudied topic. The present study examined factors related to the de-adoption of an EBP for students exposed to traumatic events in a large urban school district. Qualitative interviews conducted with school clinicians and district administrators two years after the district embarked on a large-scale roll-out of the EBP distinguished between factors that impacted partial de-adoption after one year (phase 1) and complete de-adoption by the district after two years (phase 2). Phase 1 factors included organizational consistency, workforce stability, prior success, positive student outcomes, school- and district- level supports, innovation-setting fit, and innovation-related issues. Phase 2 factors included district-level leadership changes, financial and workforce instability, and shifting priorities. Study results suggest that sustainment-enhancing strategies should be included in the early stages of program implementation to most effectively adapt to school- and system- level changes. PMID:28775793
Conceptual analysis of Physiology of vision in Ayurveda.
Balakrishnan, Praveen; Ashwini, M J
2014-07-01
The process by which the world outside is seen is termed as visual process or physiology of vision. There are three phases in this visual process: phase of refraction of light, phase of conversion of light energy into electrical impulse and finally peripheral and central neurophysiology. With the advent of modern instruments step by step biochemical changes occurring at each level of the visual process has been deciphered. Many investigations have emerged to track these changes and helping to diagnose the exact nature of the disease. Ayurveda has described this physiology of vision based on the functions of vata and pitta. Philosophical textbook of ayurveda, Tarka Sangraha, gives certain basics facts of visual process. This article discusses the second and third phase of visual process. Step by step analysis of the visual process through the spectacles of ayurveda amalgamated with the basics of philosophy from Tarka Sangraha has been analyzed critically to generate a concrete idea regarding the physiology and hence thereby interpret the pathology on the grounds of ayurveda based on the investigative reports.
Tuning exchange bias by Co doping in Mn₅₀Ni{sub 41–x}Sn₉Co{sub x} melt-spun ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, D. W.; Li, G. K.; Wang, S. Q.
2014-09-14
In Mn₅₀Ni{sub 41–x}Sn₉Co{sub x} ribbons, the exchange bias field is very sensitive to the Co content. Based on both theoretical and experimental studies, it has been found that with increasing Co content, the pinned phase (ferromagnetic phase) remains almost unchanged while the pinning phase is changed from a canonical spin glass to a cluster spin glass and finally to a ferromagnetic phase. Changing the Co content in Mn₅₀Ni{sub 41–x}Sn₉Co{sub x} alloys has been proven to be an effective way of tuning the magnetic anisotropy and the phase structure of the pinning phase. With different Co contents, a continuous tuning ofmore » the exchange bias field from 345 Oe to 3154 Oe is realized.« less
NASA Astrophysics Data System (ADS)
Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping
2017-10-01
Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.
FPGA-based prototype storage system with phase change memory
NASA Astrophysics Data System (ADS)
Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang
2016-10-01
With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.
NASA Astrophysics Data System (ADS)
Hidayati, A.; Rahmi, A.; Yohandri; Ratnawulan
2018-04-01
The importance of teaching materials in accordance with the characteristics of students became the main reason for the development of basic electronics I module integrated character values based on conceptual change teaching model. The module development in this research follows the development procedure of Plomp which includes preliminary research, prototyping phase and assessment phase. In the first year of this research, the module is validated. Content validity is seen from the conformity of the module with the development theory in accordance with the demands of learning model characteristics. The validity of the construct is seen from the linkage and consistency of each module component developed with the characteristic of the integrated learning model of character values obtained through validator assessment. The average validation value assessed by the validator belongs to a very valid category. Based on the validator assessment then revised the basic electronics I module integrated character values based on conceptual change teaching model.
The volume change during solidification
NASA Technical Reports Server (NTRS)
Rittich, M.
1985-01-01
The liquid-solid phase transformation of solidifying metallic melts is accompanied by a volume change Delta-Vm. This volume change produces a gravity-independent microscopic flow near the solidification front. In a ground-based laboratory, solidification processes are also affected by convection due to temperature and concentration gradients. A quantitative evaluation of the effects of these flows on the formation of structure requires reproducible values of Delta-Vm. Alloys with Delta-Vm = 0 would be best suited for such an evaluation, while alloys with a constant value for Delta-Vm are still usable. Another requirement is related to a solidus-liquidus interval which is as small as possible. One-phase alloys, which would be particularly well suited, could not be found. For these reasons, alloys which solidify in two phases, as for example eutectics, have been considered, taking into account the Al-Ge system. Attention is given to the volume change at the melting point, the measurement of this change, the volume change at solidification, and applications to terrestrial technology.
New photosensitive systems for volume phase holography
NASA Astrophysics Data System (ADS)
Bianco, Andrea; Colella, Letizia; Galli, Paola; Zanutta, Alessio; Bertarelli, Chiara
2017-05-01
Volume phase holographic elements are becoming attractive thanks to the large efficiency and good optical quality. They are based on photosensitive materials where a modulation of the refractive index is induced. In this paper, we highlight the strategies to obtain a change in the refractive index in a dielectric material, namely a change in the material density and/or in the molecular polarizability. Moreover, we show the results achieved for materials that undergo the photo-Fries reaction as function of the molecular structure and the illumination conditions. We also report the results on a system based on the diazo Meldrum's acid where volatile molecules are produced upon light exposure.
[Geo-spectrum characteristics of land use change in Jiangsu Province, China.
Lyu, Xiao; Shi, Yang Yang; Huang, Xian Jin; Sun, Xiao Fang; Miao, Zhi Wei
2016-04-22
This paper studied the spatial-temporal characteristics and rules of land use change in Jiangsu Province using theories and methods of geo-spectrum. Based on the land use data translated from remote sensing images of 1990, 2000 and 2010, we synthesized the geo-spectrum of the mode of arable land use change and that of land use change in two corresponding phases, 1990-2000 and 2000-2010, in Jiangsu using ArcGIS 10.0. The results showed that in the phase of 1990-2000, the major characteristics of land use change were swaps between the geo-spectrum unit of arable land and urban-rural construction land, arable land and water body, and arable land and grassland. Specifically, the patterns of "arable land → urban-rural construction land" and "arable land→ water body" were highly significant. We also found the reduction of arable land area and the concentration of its spatial distribution. In the phase of 2000-2010, the "arable land → urban-rural construction land" pattern was still the most salient characteristic. In addition, the patterns of "grassland → water body" and "urban-rural construction land → water body" became more spatially concentrated and tended to expand. Compared with the previous phase, the area of the land use in the phase of 2000-2010 had been changed expanded and became more scattered. Overall, the geo-spectrum of arable land use change in Jiangsu was mainly shaped by the anaphase change type and partially by the prophase change type, with a tiny influence of the repeated and continuous change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Ghosh, Surajit; Seth, Sudeshna
2013-11-15
Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less
Pollock, Brianna E; Macfie, Jenny; Elledge, L Christian
2017-01-01
We report on the treatment and successful outcome of a 58-year-old Native American male with a history of complex trauma presenting with dissociative identity disorder (DID) and major depressive disorder. The treatment included a trauma-informed phase-based psychotherapy as recommended by the International Society for the Study of Trauma and Dissociation for treating DID. We assessed symptoms at baseline and at three additional time points over the course of 14 months. We utilized the Reliable Change Index to examine statistically significant change in symptoms over the course of treatment. Significant symptom improvements were realized posttreatment across all measured domains of functioning, including dissociative symptoms, alcohol abuse, depression, anxiety, and emotion regulation skills. Moreover, the client no longer met criteria for DID, major depressive disorder, or alcohol abuse. Results are discussed in terms of the effectiveness of trauma-focused, phase-based treatment for DID for cases of complex trauma with comorbid disorders.
NASA Astrophysics Data System (ADS)
Kolobov, A. V.; Fons, P.; Krbal, M.; Mitrofanov, K.; Tominaga, J.; Uruga, T.
2017-02-01
Phase-change memories are usually associated with GeTe-Sb2Te3 quasibinary alloys, where the large optical contrast between the crystalline and amorphous phases is attributed to the formation of resonant bonds in the crystalline phase, which has a rocksalt-like structure. The recent findings that tetrahedrally bonded Ga2Te3 possesses a similarly large property contrast and very low thermal conductivity in the crystalline phase and undergoes low-energy switching [H. Zhu et al., Appl. Phys. Lett. 97, 083504 (2010), 10.1063/1.3483762; K. Kurosaki et al., Appl. Phys. Lett. 93, 012101 (2008), 10.1063/1.2940591] challenge the existing paradigm. In this work we report on the local structure of the crystalline and amorphous phases of Ga2Te3 obtained from x-ray absorption measurements and ab initio simulations. Based on the obtained results, a model of phase change in Ga2Te3 is proposed. We argue that efficient switching in Ga2Te3 is due to the presence of primary and secondary bonding in the crystalline phase originating from the high concentration of Ga vacancies, whereas the structural stability of both phases is ensured by polyvalency of Te atoms due to the presence of lone-pair electrons and the formation of like-atom bonds in the amorphous phase.
NASA Astrophysics Data System (ADS)
Nordebo, Sven; Dalarsson, Mariana; Khodadad, Davood; Müller, Beat; Waldmann, Andreas D.; Becher, Tobias; Frerichs, Inez; Sophocleous, Louiza; Sjöberg, Daniel; Seifnaraghi, Nima; Bayford, Richard
2018-05-01
Classical homogenization theory based on the Hashin–Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples based on realistic parameter values and frequency ranges used with electrical impedance tomography (EIT). The theory may be potentially useful for imaging and clinical evaluations in connection with lung EIT for respiratory management and control.
Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi
2018-05-11
Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Dynamic Control of Light Emission Faster than the Lifetime Limit Using VO2 Phase-Change
2015-10-22
ARTICLE Received 1 Jun 2015 | Accepted 14 Sep 2015 | Published 22 Oct 2015 Dynamic control of light emission faster than the lifetime limit using VO2...excited state lifetime . This proof-of-concept demonstration shows how integration with phase-change materials can transform wide- spread phosphorescent...faster than their radiative lifetime . The concept is based on the dynamic manipulation of light through tailoring the local density of optical states
Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L
2015-01-01
As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.
Design rules for phase-change materials in data storage applications.
Lencer, Dominic; Salinga, Martin; Wuttig, Matthias
2011-05-10
Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji
2018-05-01
Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.
Xu, Ou; Zhang, Jiejun; Yao, Jianping
2016-11-01
High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.
Inauen, Jennifer; Mosler, Hans-Joachim
2016-01-01
Theory-based interventions can enhance people's safe water consumption, but the sustainability of these interventions and the mechanisms of maintenance remain unclear. We investigated these questions based on an extended theory of planned behaviour. Seven hundred and ten (445 analysed) randomly selected households participated in two cluster-randomised controlled trials in Bangladesh. Study 1 promoted switching to neighbours' arsenic-safe wells, and Study 2 promoted switching to arsenic-safe deep wells. Both studies included two intervention phases. Structured interviews were conducted at baseline (T1), and at 1-month (T2), 2-month (T3) and 9-month (T4) follow-ups. In intervention phase 1 (between T1 and T2), commitment-based behaviour change techniques--reminders, implementation intentions and public commitment--were combined with information and compared to an information-only control group. In phase 2 (between T2 and T3), half of each phase 1 intervention group was randomly assigned to receive either commitment-based techniques once more or coping planning with reminders and information. Initial well-switching rates of up to 60% significantly declined by T4: 38.3% of T2 safe water users stopped consuming arsenic-safe water. The decline depended on the intervention. Perceived behavioural control, intentions, commitment strength and coping planning were associated with maintenance. In line with previous studies, the results indicate that commitment and reminders engender long-term behavioural change.
Seasonal multiphase equilibria in the atmospheres of Titan and Pluto
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.
2017-12-01
At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.
Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.
Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris
2017-07-10
A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.
New Phase of Internationalization of Higher Education and Institutional Change
ERIC Educational Resources Information Center
Wadhwa, Rashim
2016-01-01
Internationalization of higher education has undergone significant change in the current scenario. The approach to traditional internationalization which was based on international co-operation and rarely a profit making activity were at the center of traditional internationalization has changed significantly from the last two decades. Emergence…
An amplitude and phase hybrid modulation Fresnel diffractive optical element
NASA Astrophysics Data System (ADS)
Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi
2018-04-01
An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.
Imaging polarimetry in patients with neovascular age-related macular degeneration
Elsner, Ann E.; Weber, Anke; Cheney, Michael C.; VanNasdale, Dean A.; Miura, Masahiro
2007-01-01
Imaging polarimetry was used to examine different components of neovascular membranes in age-related macular degeneration. Retinal images were acquired with a scanning laser polarimeter. An innovative pseudo-color scale, based on cardinal directions of color, displayed two types of image information: relative phases and magnitudes of birefringence. Membranes had relative phase changes that did not correspond to anatomical structures in reflectance images. Further, membrane borders in depolarized light images had significantly higher contrasts than those in reflectance images. The retinal birefringence in neovascular membranes indicates optical activity consistent with molecular changes rather than merely geometrical changes. PMID:17429494
Shape Memory Alloys and Their Applications in Power Generation and Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jun
The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.
Shape Memory Alloys and their Applications in Power Generation and Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jun
The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.
76 FR 36095 - Defense Transportation Regulation, Part IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... with the Defense Personal Property Program (DP3) Phase III Domestic Small Shipments (dS2) and... Regulation, Part IV Web site at http://www.transcom.mil/dtr/part-iv/phaseiii.cfm . All identified changes... based on completion of Defense Personal Property System (DPS) Phase III programming projected for FY15...
Validating and Optimizing the Effects of Model Progression in Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton; Anjewierden, Anjo; Bollen, Lars
2012-01-01
Model progression denotes the organization of the inquiry learning process in successive phases of increasing complexity. This study investigated the effectiveness of model progression in general, and explored the added value of either broadening or narrowing students' possibilities to change model progression phases. Results showed that…
A platform for proactive, risk-based slope asset management, phase II.
DOT National Transportation Integrated Search
2015-03-01
The lidar visualization technique developed by this project enables highway managers to understand changes in slope characteristics : along highways. This change detection and analysis can be the basis of informed decisions for slope inspection and r...
A platform for proactive, risk-based slope asset management, phase II.
DOT National Transportation Integrated Search
2015-08-01
The lidar visualization technique developed by this project enables highway managers to understand changes : in slope characteristics along highways. This change detection and analysis can be the basis of informed : decisions for slope inspection and...
McDonald, Suzanne; O'Brien, Nicola; White, Martin; Sniehotta, Falko F
2015-02-21
There are considerable inter-individual differences in the direction and degree of change in physical activity (PA) levels during the retirement transition. There is currently a limited theoretical understanding of how these differences can be explained. This study aimed to explore and compare perceptions about how theory-based factors influence PA change during the transition from employment to retirement among individuals approaching retirement and recently retired. Theory-based, one-to-one, semi-structured interviews were conducted with a purposive sample of 28 adults (15 retired) within 24 months of retirement. Participants were sampled to reflect a diverse range of socio-economic and occupational backgrounds. The interview was based on the 12 domains within the Theory Domain Framework and designed to elicit anticipated or experienced retirement-related changes in PA behaviour and perceived determinants. Interview transcripts were analysed using Framework analysis to explore intra- and inter-individual perceptions of how PA changes after retirement and the factors which may influence this change. The majority of participants perceived retirement to be related to an increase in PA levels. Four themes emerged from the data regarding factors perceived to influence changes in PA behaviour after retirement: (1) resources for PA; (2) structure of daily life in retirement; (3) opportunities for PA; and (4) transitional PA phases after retirement. Retirement is associated with a number of inter-related changes and opportunities which can have a positive or negative impact on PA behaviour. The influence of these factors does not appear to be static and may change over time. A number of different transitional phases may be experienced after leaving work and each phase may have a differential impact on PA behaviour. The findings of this qualitative study contribute to the theoretical understanding of PA change during the retirement transition. Each post-retirement PA trajectory is highly individual and personalised intervention approaches to increase PA during the retirement transition may be most successful. Future research should focus on the maintenance of PA change during the retirement transition and should develop and evaluate interventions to promote and maintain PA during retirement.
Ubeda-Torres, M T; Ortiz-Bolsico, C; García-Alvarez-Coque, M C; Ruiz-Angel, M J
2015-02-06
In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Phase-sensitive fiber-based parametric all-optical switch.
Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A
2015-12-28
We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.
NASA Astrophysics Data System (ADS)
Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.
2018-06-01
In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.
NASA Astrophysics Data System (ADS)
Lutsenko, N. A.; Fetsov, S. S.
2017-10-01
Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.
Experimental evidence for the lattice instability of Bi-based superconducting systems
NASA Astrophysics Data System (ADS)
Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang
1989-11-01
Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.
Phase Change Fabrics Control Temperature
NASA Technical Reports Server (NTRS)
2009-01-01
Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.
Prediction of Thermodynamic Equilibrium Temperature of Cu-Based Shape-Memory Smart Materials
NASA Astrophysics Data System (ADS)
Eskİl, Murat; Aldaş, Kemal; Özkul, İskender
2015-01-01
The thermodynamic equilibrium temperature ( T 0) is an important factor in the austenite and martensitic phases. In this study, the effects of alloying elements and heat treatments on T 0 temperature were investigated using Genetic Programming (GP) which has become one of the tools used in the study of condensed matter. Due to the changes in T 0, it is possible to analyze the changes in the entropy of the phase transitions. The data patterns of the GP formulation are based on well-established experimental results from the literature. The results of the GP-based formulation were compared with experimental results and found to be reliable with a very high correlation ( R 2 = 0.965 for training and R 2 = 0.952 for testing).
Research on effects of phase error in phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai
2007-12-01
Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.
Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Caraher, Joel; Chen, Wei
2015-03-31
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less
NASA Astrophysics Data System (ADS)
Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.
2015-09-01
The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
NASA Astrophysics Data System (ADS)
Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.
2017-05-01
We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).
Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Ibrahem, Ahmed M.; El-Amin, Mohamed F.; Sun, Shuyu
In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103-105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.
PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.
Marcos, Marco A; Cabaleiro, David; Guimarey, María J G; Comuñas, María J P; Fedele, Laura; Fernández, Josefa; Lugo, Luis
2017-12-29
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol -1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.
PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets
Marcos, Marco A.; Guimarey, María J. G.; Comuñas, María J. P.
2017-01-01
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol−1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number. PMID:29286324
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Astrophysics Data System (ADS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-08-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Milton, H E; Nagaraj, M; Kaur, S; Jones, J C; Morgan, P B; Gleeson, H F
2014-11-01
Liquid crystal lenses are an emerging technology that can provide variable focal power in response to applied voltage. Many designs for liquid-crystal-based lenses are polarization dependent, so that 50% of light is not focused as required, making polarization-independent technologies very attractive. Recently, the dark conglomerate (DC) phase, which is an optically isotropic liquid crystalline state, has been shown to exhibit a large change in refractive index in response to an applied electric field (Δn=0.04). This paper describes computational modeling of the electrostatic solutions for two different types of 100 μm diameter liquid crystal lenses, which include the DC phase, demonstrating that it shows great potential for efficient isotropic optical switching in lenses. A feature of the field dependence of the refractive index change in the DC phase is that it is approximately linear in a certain range, leading to the prediction of excellent optical quality for driving fields in this regime. Interestingly, a simulated microlens is shown to exhibit two modes of operation: a positive lens based upon a uniform bulk change in refractive index at high voltages, and a negative lens resulting from the induction of a gradient index effect at intermediate voltages.
Wu, Weihua; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang
2017-10-06
Superlattice-like Ge 50 Te 50 /Ge 8 Sb 92 (SLL GT/GS) thin film was systematically investigated for multi-level storage and ultra-fast switching phase-change memory application. In situ resistance measurement indicates that SLL GT/GS thin film exhibits two distinct resistance steps with elevated temperature. The thermal stability of the amorphous state and intermediate state were evaluated with the Kissinger and Arrhenius plots. The phase-structure evolution revealed that the amorphous SLL GT/GS thin film crystallized into rhombohedral Sb phase first, then the rhombohedral GeTe phase. The microstructure, layered structure, and interface stability of SLL GT/GS thin film was confirmed by using transmission electron microscopy. The transition speed of crystallization and amorphization was measured by the picosecond laser pump-probe system. The volume variation during the crystallization was obtained from x-ray reflectivity. Phase-change memory (PCM) cells based on SLL GT/GS thin film were fabricated to verify the multi-level switching under an electrical pulse as short as 30 ns. These results illustrate that the SLL GT/GS thin film has great potentiality in high-density and high-speed PCM applications.
Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim
2015-01-01
Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.
NASA Astrophysics Data System (ADS)
Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim
2015-11-01
Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.
Perrotte, Justine; Guédon, Yann; Gaston, Amèlia; Denoyes, Béatrice
2016-01-01
The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years. PMID:27664957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less
Naturally stable Sagnac–Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-11-16
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less
A low jitter PLL clock used for phase change memory
NASA Astrophysics Data System (ADS)
Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li
2013-02-01
A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.
Daenen, S; Huiges, W; Modderman, E; Halie, M R
1993-01-01
Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows that the cellular buoyant density increases slightly with up to 0.008 g/ml during the S-phase, at least in cryo-preserved cells used in this study. This contrasts with the generally accepted belief that S-phase cells have a lower or constant buoyant density. A practical implication is that separation of cell (sub)populations based on differences in buoyant density could be flawed to the extent that these populations contain S-phase cells.
Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.
Charin, R M; Nele, M; Tavares, F W
2013-05-21
Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III.
Laser nitriding of iron: Nitrogen profiles and phases
NASA Astrophysics Data System (ADS)
Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.
1995-07-01
Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.
Bilateral preictal signature of phase-amplitude coupling in canine epilepsy.
Gagliano, Laura; Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad
2018-01-01
Seizure forecasting would improve the quality of life of patients with refractory epilepsy. Although early findings were optimistic, no single feature has been found capable of individually characterizing brain dynamics during transition to seizure. Cross-frequency phase amplitude coupling has been recently proposed as a precursor of seizure activity. This work evaluates the existence of a statistically significant difference in mean phase amplitude coupling distribution between the preictal and interictal states of seizures in dogs with bilaterally implanted intracranial electrodes. Results show a statistically significant change (p<0.05) of phase amplitude coupling during the preictal phase. This change is correlated with the position of implanted electrodes and is more significant within high-gamma frequency bands. These findings highlight the potential benefit of bilateral iEEG analysis and the feasibility of seizure forecasting based on slow modulation of high frequency amplitude. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydration states of AFm cement phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.
2015-07-15
The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less
Kamal, Noreen; Fels, Sidney
2013-01-01
Positive health behaviour is critical to preventing illness and managing chronic conditions. A user-centred methodology was employed to design an online social network to motivate health behaviour change. The methodology was augmented by utilizing the Appeal, Belonging, Commitment (ABC) Framework, which is based on theoretical models for health behaviour change and use of online social networks. The user-centred methodology included four phases: 1) initial user inquiry on health behaviour and use of online social networks; 2) interview feedback on paper prototypes; 2) laboratory study on medium fidelity prototype; and 4) a field study on the high fidelity prototype. The points of inquiry through these phases were based on the ABC Framework. This yielded an online social network system that linked to external third party databases to deploy to users via an interactive website.
China's "Exported Carbon" Peak: Patterns, Drivers, and Implications
NASA Astrophysics Data System (ADS)
Mi, Zhifu; Meng, Jing; Green, Fergus; Coffman, D'Maris; Guan, Dabo
2018-05-01
Over the past decade, China has entered a "new normal" phase in economic development, with its role in global trade flows changing significantly. This study estimates the driving forces of Chinese export-embodied carbon emissions in the new normal phase, based on environmentally extended multiregional input-output modeling and structural decomposition analysis. We find that Chinese export-embodied CO2 emissions peaked in 2008 at a level of 1,657 million tones. The subsequent decline in CO2 emissions was mainly due to the changing structure of Chinese production. The peak in Chinese export-embodied emissions is encouraging from the perspective of global climate change mitigation, as it implies downward pressure on global CO2 emissions. However, more attention should focus on ensuring that countries that may partly replace China as major production bases increase their exports using low-carbon inputs.
NASA Astrophysics Data System (ADS)
Solomon, Laura
2013-01-01
Encapsulated phase change materials (EPCM) have a great deal of potential for the storage of thermal energy in a wide range of applications. The present work is aimed at developing encapsulated phase change materials capable of storing thermal energy at temperatures above 700°C for use in concentrated solar power (CSP) systems. EPCM with a phase change material (PCM) with both a salt (sodium chloride) and a metal (aluminum) are considered here. Sodium chloride and aluminum are effective storage mediums because of their high melting points and large latent heats of fusion, 800°C and 660°C and 430kJ/kg and 397kJ/kg, respectively. Based on the heat capacities and the latent heat of fusion, for a 100 degree temperature range centered on the melting point of the PCM, 80% of the energy stored by the sodium chloride PCM can be attributed to the latent heat and 79% for the aluminum PCM. These large fractions attributed to latent heat have the potential for making EPCM based thermal energy storage devices smaller and less expensive. To study the performance of the candidate PCMs considered here, a specialized immersion calorimeter was designed, calibrated, and used to evaluate the storage capabilities of sodium chloride and aluminum based EPCMs. Additionally, the EPCMs were studied to ensure no loss of capacity would occur over the lifetime of the EPCM. While no reduction in the storage capacity of the sodium chloride EPCMs was found after repeated thermal cycles, there was a decrease in the storage capacity of the aluminum EPCMs after prolonged exposure to high temperatures.
Use of a business case model for organizational change.
Shirey, Maria R
2011-01-01
This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author discusses the concept of a business case and introduces a 3-phase business case model for organizational change.
Relative velocity change measurement based on seismic noise analysis in exploration geophysics
NASA Astrophysics Data System (ADS)
Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.
2011-12-01
Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Enhanced tagging of light utilizing acoustic radiation force with speckle pattern analysis
NASA Astrophysics Data System (ADS)
Vakili, Ali; Hollmann, Joseph L.; Holt, R. Glynn; DiMarzio, Charles A.
2017-10-01
In optical imaging, the depth and resolution are limited due to scattering. Unlike light, scattering of ultrasound (US) waves in tissue is negligible. Hybrid imaging methods such as US-modulated optical tomography (UOT) use the advantages of both modalities. UOT tags light by inducing phase change caused by modulating the local index of refraction of the medium. The challenge in UOT is detecting the small signal. The displacement induced by the acoustic radiation force (ARF) is another US effect that can be utilized to tag the light. It induces greater phase change, resulting in a stronger signal. Moreover, the absorbed acoustic energy generates heat, resulting in change in the index of refraction and a strong phase change. The speckle pattern is governed by the phase of the interfering scattered waves; hence, speckle pattern analysis can obtain information about displacement and temperature changes. We have presented a model to simulate the insonation processes. Simulation results based on fixed-particle Monte Carlo and experimental results show that the signal acquired by utilizing ARF is stronger compared to UOT. The introduced mean irradiance change (MIC) signal reveals both thermal and mechanical effects of the focused US beam in different timescales. Simulation results suggest that variation in the MIC signal can be used to generate a displacement image of the medium.
Shimada, Tomohiro; Tanaka, Kan
2016-10-01
Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here, we used a Vibrio fischeri luciferase monitoring system to probe the intracellular metabolic condition in Escherichia coli Using a limited amount of glucose batch culture, a series of sequential peaks (peaks 1 to 4) in the luciferase activity was observed. Changes in the pattern of these peaks by the addition of extra carbon sources and in mutant strains involved in glycolysis or the TCA cycle/gluconeogenesis gene assigned the metabolic phase corresponding to peak 1 as the glycolysis phase and peak 3 as the TCA cycle/gluconeogenesis phase. Intriguingly, the acetate excretion pathway engaged in peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique
2017-12-14
Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.
Cassidy, Christine; Steenbeek, Audrey; Langille, Donald; Martin-Misener, Ruth; Curran, Janet
2017-11-02
University students are at risk for acquiring sexually transmitted infections and suffering other negative health outcomes. Sexual health services offer preventive and treatment interventions that aim to reduce these infections and associated health consequences. However, university students often delay or avoid seeking sexual health services. An in-depth understanding of the factors that influence student use of sexual health services is needed to underpin effective sexual health interventions. In this study, we aim to design a behavior change intervention to address university undergraduate students' use of sexual health services at two universities in Nova Scotia, Canada. This mixed methods study consists of three phases that follow a systematic approach to intervention design outlined in the Behaviour Change Wheel. In Phase 1, we examine patterns of sexual health service use among university students in Nova Scotia, Canada, using an existing dataset. In Phase 2, we identify the perceived barriers and enablers to students' use of sexual health services. This will include focus groups with university undergraduate students, health care providers, and university administrators using a semistructured guide, informed by the Capability, Opportunity, Motivation-Behaviour Model and Theoretical Domains Framework. In Phase 3, we identify behavior change techniques and intervention components to develop a theory-based intervention to improve students' use of sexual health services. This study will be completed in March 2018. Results from each phase and the finalized intervention design will be reported in 2018. Previous intervention research to improve university students' use of sexual health services lacks a theoretical assessment of barriers. This study will employ a mixed methods research design to examine university students' use of sexual health service and apply behavior change theory to design a theory- and evidence-based sexual health service intervention. Our approach will provide a comprehensive foundation to co-design a theory-based intervention with service users, health care providers, and administrators to improve sexual health service use among university students and ultimately improve their overall health and well-being. ©Christine Cassidy, Audrey Steenbeek, Donald Langille, Ruth Martin-Misener, Janet Curran. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 02.11.2017.
Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.
Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V
2008-12-22
A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.
Phase transformations in the reaction cell of TiNi-based sintered systems
NASA Astrophysics Data System (ADS)
Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon
2018-05-01
The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.
Ground-based real-time tracking and traverse recovery of China's first lunar rover
NASA Astrophysics Data System (ADS)
Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang
2016-02-01
The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.
McKellar, Robin C
2008-01-15
Developing accurate mathematical models to describe the pre-exponential lag phase in food-borne pathogens presents a considerable challenge to food microbiologists. While the growth rate is influenced by current environmental conditions, the lag phase is affected in addition by the history of the inoculum. A deeper understanding of physiological changes taking place during the lag phase would improve accuracy of models, and in earlier studies a strain of Pseudomonas fluorescens containing the Tn7-luxCDABE gene cassette regulated by the rRNA promoter rrnB P2 was used to measure the influence of starvation, growth temperature and sub-lethal heating on promoter expression and subsequent growth. The present study expands the models developed earlier to include a model which describes the change from exponential to linear increase in promoter expression with time when the exponential phase of growth commences. A two-phase linear model with Poisson weighting was used to estimate the lag (LPDLin) and the rate (RLin) for this linear increase in bioluminescence. The Spearman rank correlation coefficient (r=0.830) between the LPDLin and the growth lag phase (LPDOD) was extremely significant (P
The Effect of SiC Polytypes on the Heat Distribution Efficiency of a Phase Change Memory.
NASA Astrophysics Data System (ADS)
Aziz, M. S.; Mohammed, Z.; Alip, R. I.
2018-03-01
The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using three types of silicon carbide’s structure as a heating element was investigated. Simulation was done using COMSOL Multiphysic 5.0 software with separate heater structure. Silicon carbide (SiC) has three types of structure; 3C-SiC, 4H-SiC and 6H-SiC. These structures have a different thermal conductivity. The temperature of GST and phase transition of GST can be obtained from the simulation. The temperature of GST when using 3C-SiC, 4H-SiC and 6H-SiC are 467K, 466K and 460K, respectively. The phase transition of GST from amorphous to crystalline state for three type of SiC’s structure can be determined in this simulation. Based on the result, the thermal conductivity of SiC can affecting the temperature of GST and changed of phase change memory (PCM).
Chang, Susan; Vogelbaum, Michael; Lang, Frederick F; Haines, Stephen; Kunwar, Sandeep; Chiocca, E Antonio; Olivi, Alessandro; Quinones-Hinojosa, Alfredo; Parsa, Andrew; Warnick, Ronald
2007-04-01
We present guidelines to standardize the reporting of surgically based neuro-oncology trials. The guidelines are summarized in a checklist format that can be used as a framework from which to construct a surgically based trial. This manuscript follows and is taken in part from GNOSIS: Guidelines for neuro-oncology: Standards for investigational studies-reporting of phase 1 and phase 2 clinical trials [Chang SM, Reynolds SL, Butowski N, Lamborn KR, Buckner JC, Kaplan RS, Bigner DD (2005) Neuro-oncology 7:425-434].
Conceptual analysis of Physiology of vision in Ayurveda
Balakrishnan, Praveen; Ashwini, M. J.
2014-01-01
The process by which the world outside is seen is termed as visual process or physiology of vision. There are three phases in this visual process: phase of refraction of light, phase of conversion of light energy into electrical impulse and finally peripheral and central neurophysiology. With the advent of modern instruments step by step biochemical changes occurring at each level of the visual process has been deciphered. Many investigations have emerged to track these changes and helping to diagnose the exact nature of the disease. Ayurveda has described this physiology of vision based on the functions of vata and pitta. Philosophical textbook of ayurveda, Tarka Sangraha, gives certain basics facts of visual process. This article discusses the second and third phase of visual process. Step by step analysis of the visual process through the spectacles of ayurveda amalgamated with the basics of philosophy from Tarka Sangraha has been analyzed critically to generate a concrete idea regarding the physiology and hence thereby interpret the pathology on the grounds of ayurveda based on the investigative reports. PMID:25336853
Doppler-corrected differential detection system
NASA Technical Reports Server (NTRS)
Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)
1991-01-01
Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.
Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing
Lin, Shih-kang; Yeh, Chao-kuei; Xie, Wei; Liu, Yu-chen; Yoshimura, Masahiro
2013-01-01
Soldering is an ancient process, having been developed 5000 years ago. It remains a crucial process with many modern applications. In electronic devices, electric currents pass through solder joints. A new physical phenomenon – the supersaturation of solders under high electric currents – has recently been observed. It involves (1) un-expected supersaturation of the solder matrix phase, and (2) the formation of unusual “ring-shaped” grains. However, the origin of these phenomena is not yet understood. Here we provide a plausible explanation of these phenomena based on the changes in the phase stability of Pb-Sn solders. Ab initio-aided CALPHAD modeling is utilized to translate the electric current-induced effect into the excess Gibbs free energies of the phases. Hence, the phase equilibrium can be shifted by current stressing. The Pb-Sn phase diagrams with and without current stressing clearly demonstrate the change in the phase stabilities of Pb-Sn solders under current stressing. PMID:24060995
Phase diagram of germanium telluride encapsulated in carbon nanotubes from first-principles searches
NASA Astrophysics Data System (ADS)
Wynn, Jamie M.; Medeiros, Paulo V. C.; Vasylenko, Andrij; Sloan, Jeremy; Quigley, David; Morris, Andrew J.
2017-12-01
Germanium telluride has attracted great research interest, primarily because of its phase-change properties. We have developed a general scheme, based on the ab initio random structure searching (AIRSS) method, for predicting the structures of encapsulated nanowires, and using this we predict a number of thermodynamically stable structures of GeTe nanowires encapsulated inside carbon nanotubes of radii under 9 Å . We construct the phase diagram of encapsulated GeTe, which provides quantitative predictions about the energetic favorability of different filling structures as a function of the nanotube radius, such as the formation of a quasi-one-dimensional rock-salt-like phase inside nanotubes of radii between 5.4 and 7.9 Å . Simulated TEM images of our structures show excellent agreement between our results and experimental TEM imagery. We show that, for some nanotubes, the nanowires undergo temperature-induced phase transitions from one crystalline structure to another due to vibrational contributions to the free energy, which is a first step toward nano-phase-change memory devices.
Application of phase-change materials in memory taxonomy.
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.
Performance drifts in two-finger cyclical force production tasks performed by one and two actors.
Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L
2018-03-01
We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.
NASA Astrophysics Data System (ADS)
Chilakapaty, Ankit Paul
The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.
Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre
2015-01-01
Background: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Aims: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. Methods: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. Results: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. Conclusions: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. PMID:28725713
Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre
2015-01-01
Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Improvement of orbital temperature measurements for long duration earth observing and remote sensing. To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.
Phillips-Caesar, Erica G.; Winston, Ginger; Peterson, Janey C.; Wansink, Brian; Devine, Carol M.; Kanna, Balavanketsh; Michelin, Walid; Wethington, Elaine; Wells, Martin; Hollenberg, James; Charlson, Mary E.
2015-01-01
Background Obesity is a major health problem that disproportionately affects Black and Hispanic adults. This paper presents the rationale and innovative design of a small change eating and physical activity intervention (SC) combined with a positive affect and self-affirmation (PA/SA) intervention versus the SC intervention alone for weight loss. Methods Using a mixed methods translational model (EVOLVE), we designed and tested a SC approach intervention in overweight and/ or obese African American and Hispanic adults. In Phase I, we explored participant’s values and beliefs about the small change approach. In Phase II, we tested and refined the intervention and then, in Phase III we conducted a RCT. Participants were randomized to the SC approach with PA/SA intervention vs. a SC approach alone for 12 months. The primary outcome was clinically significant weight loss at 12 months. Results Over 4.5 years a total of 574 participants (67 in Phase I, 102 in Phase II and 405 in Phase III) were enrolled. Phase I findings were used to create a workbook based on real life experiences about weight loss and to refine the small change eating strategies. Phase II results shaped the recruitment and retention strategy for the RCT, as well as the final intervention. The RCT results are currently under analysis. Conclusion The present study seeks to determine if a SC approach combined with a PA/SA intervention will result in greater weight loss at 12 months in Black and Hispanic adults compared to a SC approach alone. PMID:25633208
Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam
NASA Technical Reports Server (NTRS)
Bootle, John
2008-01-01
A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.
Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L
2010-01-18
We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J.
2008-05-01
The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
NASA Astrophysics Data System (ADS)
Levan, P.
2010-09-01
Geosynchronous objects appear as unresolved blurs even when observed with the largest ground-based telescopes. Due to the lack of any spatial detail, two or more objects appearing at similar brightness levels within the spectral bandpass they are observed are difficult to distinguish. Observing a changing pattern of such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change. This paper explores solutions to this deficiency in the form of spectral (under small business innovative research) and phase curve analyses. The extension of the technique to phase curves proves to be a powerful new capability.
Pullen, Carol H.; Pozehl, Bunny; Eisenhauer, Christine; Boeckner, Linda S.
2017-01-01
Objective. This trial compared the effectiveness of a web-based only (WO) intervention with web-based supplemented by peer-led discussion (WD) or professional email counseling (WE) across 3 phases to achieve weight loss and weight maintenance in women from underserved rural communities. Methods. 301 women (BMI of 28–45 kg/m2) randomly assigned to groups participated in guided weight loss (baseline to 6 months), guided weight loss and maintenance (6 to 18 months), and self-managed weight maintenance (18 to 30 months). Results. Retention was 88.7%, 76.5%, and 71.8% at 6, 18, and 30 months, respectively. Intent-to-treat analyses demonstrated no group differences in change in weight within any phases. At 6 months, observed mean (SD) weight loss was 5.1 (6.0) kg in WO, 4.1 (5.6) kg in WD, and 6.0 (6.3) kg in WE, with 42%, 38%, and 51%, respectively, meeting ≥ 5% weight loss. These proportions dropped by a third after phase 2 with no further change during phase 3. Conclusion. Web-based interventions assisted women from rural communities in achieving 6-month weight loss, with weight regain by half at 30 months. No group differences were potentially due to the robust nature of the web-based intervention. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01307644. PMID:28480078
ERIC Educational Resources Information Center
Samarapungavan, Ala; Bryan, Lynn; Wills, Jamison
2017-01-01
In this paper, we present a study of second graders' learning about the nature of matter in the context of content-rich, model-based inquiry instruction. The goal of instruction was to help students learn to use simple particle models to explain states of matter and phase changes. We examined changes in students' ideas about matter, the coherence…
Summary report for the FY-2015 SACSESS Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterman, Dean Richard; Mincher, Bruce Jay
2015-09-01
During FY-2015, a collaborative research program was established by the Department of Energy-Nuclear Energy (DOE-NE) Material Recovery and Waste Form Development program and the European Union (EU) Safety of Actinide Separation Processes (SACSESS) program. One component of this collaboration was the evaluation of the radiolytic stability of a Selective ActiNide Extraction (SANEX) separation which utilized a TODGA-based organic solvent and an aqueous phase containing the hydrophilic complexing reagent, SO3-Ph-BTP. To best simulate process conditions, this experiment was irradiated in the radiolysis/hydrolysis test loop located at the Idaho National Laboratory. The effect of irradiation on a SACSESS program iSANEX formulation containingmore » a TODGA-based organic phase and a BTP-based aqueous phase was investigated using irradiations at INL in static and test loop modes. When irradiated in contact with only the acidic aqueous phase, the TODGA organic solution maintained excellent extraction performance of americium, cerium and europium to a maximum absorbed dose of nearly 0.9 MGy. When the aqueous phase was changed to that containing the aqueous soluble BTP, the irradiated aqueous phase showed a dramatic color change, but this does not appear to have adverse effects on solvent extraction performance. Only minor increases in distribution ratios for both the lanthanides and actinide were measured, and the separation factors were essentially unchanged to a maximum absorbed dose of 174 kGy. The determination of the americium, cerium, and europium distribution ratios for the remaining SACSESS test loop samples will be completed in the near future. The analysis of stable metals concentration in the the irradiated aqueous and organic phases will be completed shortly.« less
Optical Simulation and Fabrication of Pancharatnam (Geometric) Phase Devices from Liquid Crystals
NASA Astrophysics Data System (ADS)
Gao, Kun
Pancharatnam made clear the concept of a phase-only device based on changes in the polarization state of light. A device of this type is sometimes called a circular polarization grating because of the polarization states of interfering light beams used to fabricate it by polarization holography. Here, we will call it a Pancharatnam (geometric) phase device to emphasize the fact that the phase of diffracted light does not have a discontinuous periodic profile but changes continuously. In this dissertation, using simulations and experiments, we have successfully demonstrated a 90% diffraction efficiency based on the Pancharatnam phase deflector (PPD) with the dual-twist structure. Unlike the conventional Pancharatnam phase deflector (c-PPD) limited to small diffraction angles, our work demonstrates that a device with a structural periodicity near the wavelength of light is highly efficient at deflecting light to large angles. Also, from a similar fabrication procedure, we have made an ultra-compact non-mechanical zoom lens system based on the Pancharatnam phase lens (PPL) with a low f-number and high efficiency. The wavelength dependence on the image quality is evaluated and shown to be satisfactory from red light to near-infrared machine vision systems. A demonstration device is shown with a 4x zoom ratio at a 633 nm wavelength. The unique characteristic of these devices is made possible through the use of azo-dye photoalignment materials to align a liquid crystal polymer (reactive mesogens). Furthermore, the proposed dual-twist design and fabrication opens the possibility for making a high-efficiency beam-steering device, a lens with an f-number less than 1.0, as well as a wide range of other potential applications in the optical and display industry. The details of simulation, fabrication, and characterization of these devices are shown in this dissertation.
Zeeman-Field-Tuned Topological Phase Transitions in a Two-Dimensional Class-DIII Superconductor
Deng, W. Y.; Geng, H.; Luo, W.; Sheng, L.; Xing, D. Y.
2016-01-01
We investigate the topological phase transitions in a two-dimensional time-reversal invariant topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, we find that the system exhibits a number of topologically distinct phases with changing the out-of-plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we demonstrate that the zero bias conductance provides clear transport signatures of the different topological phases, which are robust against symmetry-breaking perturbations. PMID:27148675
2D DOST based local phase pattern for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.
Effect of atomic disorder on the magnetic phase separation.
Groshev, A G; Arzhnikov, A K
2018-05-10
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2017-09-01
A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.
Effect of atomic disorder on the magnetic phase separation
NASA Astrophysics Data System (ADS)
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
van Mierlo, Trevor; Fournier, Rachel; Jean-Charles, Anathalie; Hovington, Jacinthe; Ethier, Isabelle; Selby, Peter
2014-01-01
Introduction For many organizations, limited budgets and phased funding restrict the development of digital health tools. This problem is often exacerbated by the ever-increasing sophistication of technology and costs related to programming and maintenance. Traditional development methods tend to be costly and inflexible and not client centered. The purpose of this study is to analyze the use of Agile software development and outcomes of a three-phase mHealth program designed to help young adult Quebecers quit smoking. Methods In Phase I, literature reviews, focus groups, interviews, and behavior change theory were used in the adaption and re-launch of an existing evidence-based mHealth platform. Based on analysis of user comments and utilization data from Phase I, the second phase expanded the service to allow participants to live text-chat with counselors. Phase II evaluation led to the third and current phase, in which algorithms were introduced to target pregnant smokers, substance users, students, full-time workers, those affected by mood disorders and chronic disease. Results Data collected throughout the three phases indicate that the incremental evolution of the intervention has led to increasing numbers of smokers being enrolled while making functional enhancements. In Phase I (240 days) 182 smokers registered with the service. 51% (n = 94) were male and 61.5% (n = 112) were between the ages of 18–24. In Phase II (300 days), 994 smokers registered with the service. 51% (n = 508) were male and 41% (n = 403) were between the ages of 18–24. At 174 days to date 873 smokers have registered in the third phase. 44% (n = 388) were male and 24% (n = 212) were between the ages of 18–24. Conclusions Emerging technologies in behavioral science show potential, but do not have defined best practices for application development. In phased-based projects with limited funding, Agile appears to be a viable approach to building and expanding digital tools. PMID:24647098
van Mierlo, Trevor; Fournier, Rachel; Jean-Charles, Anathalie; Hovington, Jacinthe; Ethier, Isabelle; Selby, Peter
2014-01-01
For many organizations, limited budgets and phased funding restrict the development of digital health tools. This problem is often exacerbated by the ever-increasing sophistication of technology and costs related to programming and maintenance. Traditional development methods tend to be costly and inflexible and not client centered. The purpose of this study is to analyze the use of Agile software development and outcomes of a three-phase mHealth program designed to help young adult Quebecers quit smoking. In Phase I, literature reviews, focus groups, interviews, and behavior change theory were used in the adaption and re-launch of an existing evidence-based mHealth platform. Based on analysis of user comments and utilization data from Phase I, the second phase expanded the service to allow participants to live text-chat with counselors. Phase II evaluation led to the third and current phase, in which algorithms were introduced to target pregnant smokers, substance users, students, full-time workers, those affected by mood disorders and chronic disease. Data collected throughout the three phases indicate that the incremental evolution of the intervention has led to increasing numbers of smokers being enrolled while making functional enhancements. In Phase I (240 days) 182 smokers registered with the service. 51% (n = 94) were male and 61.5% (n = 112) were between the ages of 18-24. In Phase II (300 days), 994 smokers registered with the service. 51% (n = 508) were male and 41% (n = 403) were between the ages of 18-24. At 174 days to date 873 smokers have registered in the third phase. 44% (n = 388) were male and 24% (n = 212) were between the ages of 18-24. Emerging technologies in behavioral science show potential, but do not have defined best practices for application development. In phased-based projects with limited funding, Agile appears to be a viable approach to building and expanding digital tools.
Yancy, William S; Shaw, Pamela A; Wesby, Lisa; Hilbert, Victoria; Yang, Lin; Zhu, Jingsan; Troxel, Andrea; Huffman, David; Foster, Gary D; Wojtanowski, Alexis C; Volpp, Kevin G
2018-05-25
Financial incentives can improve initial weight loss; we examined whether financial incentives can improve weight loss maintenance. Participants aged 30-80 years who lost at least 5 kg during the first 4-6 months in a nationally available commercial weight loss program were recruited via the internet into a three-arm randomized trial of two types of financial incentives versus active control during months 1-6 (Phase I) followed by passive monitoring during months 7-12 (Phase II). Interventions were daily self-weighing and text messaging feedback alone (control) or combined with a lottery-based incentive or a direct incentive. The primary outcome was weight change 6 months after initial weight loss. Secondary outcomes included weight change 12 months after initial weight loss (6 months after cessation of maintenance intervention), and self-reported physical activity and eating behaviors. Of 191 participants randomized, the mean age was 49.0 (SD = 10.5) years and weight loss prior to randomization was 11.4 (4.7) kg; 92% were women and 89% were White. Mean weight changes during the next 6 months (Phase I) were: lottery -3.0 (5.8) kg; direct -2.8 (5.8) kg; and control -1.4 (5.8) kg (all pairwise comparisons p > 0.1). Weight changes through the end of 12 months post-weight loss (Phase II) were: lottery -1.8 (10.5) kg; direct -0.7 (10.7) kg; and control -0.3 (9.4) kg (all pairwise comparisons p > 0.1). The percentages of participants who maintained their weight loss (defined as gaining ≤1.36 kg) were: lottery 79%, direct 76%, and control 67% at 6 months and lottery 66%, direct 62%, and control 59% at 12 months (all pairwise comparisons p > 0.1). At 6 and 12 months after initial weight loss, changes in self-reported physical activity or eating behaviors did not differ across arms. Compared with the active control of daily texting based on daily home weighing, lottery-based and direct monetary incentives provided no additional benefit for weight loss maintenance.
Kattelmann, Kendra K; White, Adrienne A; Greene, Geoffrey W; Byrd-Bredbenner, Carol; Hoerr, Sharon L; Horacek, Tanya M; Kidd, Tandalayo; Colby, Sarah; Phillips, Beatrice W; Koenings, Mallory M; Brown, Onikia N; Olfert, Melissa; Shelnutt, Karla P; Morrell, Jesse Stabile
2014-01-01
To develop a tailored, theory-based, Web-delivered intervention to prevent excessive weight gain in young adults using a Community-Based Participatory Research model. Investigators from 14 universities developed the intervention and supporting administrative portal using the 4 phases of the PRECEDE model. Steering committees were composed of the target audience (aged 19-24 years) and key health/wellness personnel were formed at each institution and provided information during each phase that was used to guide development of the intervention, Project YEAH (Young Adults Eating and Active for Health). Piloting results were used to refine the curriculum and identify and avoid barriers to delivery. Qualitative and quantitative data collected at each phase informed Project YEAH development. In Phase 1, factors of highest priority to young adults were identified. In Phase 2, environmental supports for healthful lifestyles were elucidated. In Phase 3, behavior and environmental changes considered important and changeable were identified. In Phase 4, the 10-week, theory-based, stage-tailored, interactive-learning intervention with a 10-month reinforcement period was developed. Applying the PRECEDE model with fidelity during development of Project YEAH resulted in an intervention that pilot participants found relevant and useful, gained attention, instilled confidence in the ability to apply the information, and provided a sense of satisfaction. Copyright © 2014. Published by Elsevier Inc.
Application of phase-change materials in memory taxonomy
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557
NASA Astrophysics Data System (ADS)
Anani, A.; Huggins, R. A.
The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.
Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V
2015-01-05
We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).
Zou, Longfang; Cryan, Martin; Klemm, Maciej
2014-10-06
The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.
Numerical modeling of a finned PCM heat sink
NASA Astrophysics Data System (ADS)
Kozak, Y.; Ziskind, G.
2012-09-01
Phase-change materials (PCMs) can absorb large amounts of heat without significant rise of their temperature during the melting process. This effect is attractive for using in thermal energy storage and passive thermal management. One of the techniques enhance the rate of heat transfer into PCMs is by using fins made of a thermally high conductive material. This paper deals with numerical modeling of a finned PCM-based heat sink. Heat is dissipated on the heat sink base and may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. A detailed analysis had been done by means of a complete solution of the governing multi-dimensional conservation equations, taking into account convection in the melt, density and volume change due to phase change and temperature variation, motion of solid in the liquid, and other associated phenomena.
ERIC Educational Resources Information Center
Sackes, Mesut
2010-01-01
This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…
Contextual remapping in visual search after predictable target-location changes.
Conci, Markus; Sun, Luning; Müller, Hermann J
2011-07-01
Invariant spatial context can facilitate visual search. For instance, detection of a target is faster if it is presented within a repeatedly encountered, as compared to a novel, layout of nontargets, demonstrating a role of contextual learning for attentional guidance ('contextual cueing'). Here, we investigated how context-based learning adapts to target location (and identity) changes. Three experiments were performed in which, in an initial learning phase, observers learned to associate a given context with a given target location. A subsequent test phase then introduced identity and/or location changes to the target. The results showed that contextual cueing could not compensate for target changes that were not 'predictable' (i.e. learnable). However, for predictable changes, contextual cueing remained effective even immediately after the change. These findings demonstrate that contextual cueing is adaptive to predictable target location changes. Under these conditions, learned contextual associations can be effectively 'remapped' to accommodate new task requirements.
Human Research Initiative (HRI)
NASA Technical Reports Server (NTRS)
Motil, Brian
2003-01-01
A code U initiative starting in the FY04 budget includes specific funding for 'Phase Change' and 'Multiphase Flow Research' on the ISS. NASA GRC developed a concept for two facilities based on funding/schedule constraints: 1) Two Phase Flow Facility (TphiFFy) which assumes integrating into FIR; 2) Contact Line Dynamics Experiment Facility (CLiDE) which assumes integration into MSG. Each facility will accommodate multiple experiments conducted by NRA selected PIs with an overall goal of enabling specific NASA strategic objectives. There may also be a significant ground-based component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherchenkov, A. A.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Lazarenko, P. I.
The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shiftmore » along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.« less
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI
Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.
Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.
Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth
NASA Astrophysics Data System (ADS)
Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji
2009-01-01
Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.
Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol
2009-01-01
Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.
Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R
2018-04-22
To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Brooks, Daniel R.; Wozniak, Kaitlin T.; Knox, Wayne; Ellis, Jonathan D.; Huxlin, Krystel R.
2018-02-01
Intra-Tissue Refractive Index Shaping (IRIS) uses a 405 nm femtosecond laser focused into the stromal region of the cornea to induce a local refractive index change through multiphoton absorption. This refractive index change can be tailored through scanning of the focal region and variations in laser power to create refractive structures, such as gradient index lenses for visual refractive correction. Previously, IRIS was used to create 2.5 mm wide, square, -1 D cylindrical refractive structures in living cats. In the present work, we first wrote 400 μm wide bars of refractive index change at varying powers in enucleated cat globes using a custom flexure-based scanning system. The cornea and surrounding sclera were then removed and mounted into a wet cell. The induced optical phase change was measured with a Mach- Zehnder Interferometer (MZI), and appeared as fringe displacement, whose magnitude was proportional to the refractive index change. The interferograms produced by the MZI were analyzed with a Fourier Transform based algorithm in order to extract the phase change. This provided a phase change versus laser power calibration, which was then used to design the scanning and laser power distribution required to create -1.5 D cylindrical Fresnel lenses in cat cornea covering an area 6 mm in diameter. This prescription was inscribed into the corneas of one eye each of two living cats, under surgical anesthesia. It was then verified in vivo by contrasting wavefront aberration measurements collected pre- IRIS with those obtained over six months post-IRIS using a Shack-Hartmann wavefront sensor.
Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
NASA Astrophysics Data System (ADS)
Balakrishna, Ananya Renuka; Carter, W. Craig
2018-04-01
Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
NASA Astrophysics Data System (ADS)
Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato
2017-06-01
We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.
Elvén, Maria; Hochwälder, Jacek; Dean, Elizabeth; Söderlund, Anne
2018-05-01
A systematically developed and evaluated instrument is needed to support investigations of physiotherapists' clinical reasoning integrated with the process of clients' behavior change. This study's aim was to develop an instrument to assess physiotherapy students' and physiotherapists' clinical reasoning focused on clients' activity-related behavior and behavior change, and initiate its evaluation, including feasibility and content validity. The study was conducted in three phases: 1) determination of instrument structure and item generation, based on a model, guidelines for assessing clinical reasoning, and existing measures; 2) cognitive interviews with five physiotherapy students to evaluate item understanding and feasibility; and 3) a Delphi process with 18 experts to evaluate content relevance. Phase 1 resulted in an instrument with four domains: Physiotherapist; Input from client; Functional behavioral analysis; and Strategies for behavior change. The instrument consists of case scenarios followed by items in which key features are identified, prioritized, or interpreted. Phase 2 resulted in revisions of problems and approval of feasibility. Phase 3 demonstrated high level of consensus regarding the instrument's content relevance. This feasible and content-validated instrument shows potential for use in investigations of physiotherapy students' and physiotherapists' clinical reasoning, however continued development and testing are needed.
NASA Astrophysics Data System (ADS)
Sorokin, V. A.; Volkov, Yu V.; Sherstneva, A. I.; Botygin, I. A.
2016-11-01
This paper overviews a method of generating climate regions based on an analytic signal theory. When applied to atmospheric surface layer temperature data sets, the method allows forming climatic structures with the corresponding changes in the temperature to make conclusions on the uniformity of climate in an area and to trace the climate changes in time by analyzing the type group shifts. The algorithm is based on the fact that the frequency spectrum of the thermal oscillation process is narrow-banded and has only one mode for most weather stations. This allows using the analytic signal theory, causality conditions and introducing an oscillation phase. The annual component of the phase, being a linear function, was removed by the least squares method. The remaining phase fluctuations allow consistent studying of their coordinated behavior and timing, using the Pearson correlation coefficient for dependence evaluation. This study includes program experiments to evaluate the calculation efficiency in the phase grouping task. The paper also overviews some single-threaded and multi-threaded computing models. It is shown that the phase grouping algorithm for meteorological data can be parallelized and that a multi-threaded implementation leads to a 25-30% increase in the performance.
Roshani, G H; Nazemi, E; Roshani, M M
2017-05-01
Changes of fluid properties (especially density) strongly affect the performance of radiation-based multiphase flow meter and could cause error in recognizing the flow pattern and determining void fraction. In this work, we proposed a methodology based on combination of multi-beam gamma ray attenuation and dual modality densitometry techniques using RBF neural network in order to recognize the flow regime and determine the void fraction in gas-liquid two phase flows independent of the liquid phase changes. The proposed system is consisted of one 137 Cs source, two transmission detectors and one scattering detector. The registered counts in two transmission detectors were used as the inputs of one primary Radial Basis Function (RBF) neural network for recognizing the flow regime independent of liquid phase density. Then, after flow regime identification, three RBF neural networks were utilized for determining the void fraction independent of liquid phase density. Registered count in scattering detector and first transmission detector were used as the inputs of these three RBF neural networks. Using this simple methodology, all the flow patterns were correctly recognized and the void fraction was predicted independent of liquid phase density with mean relative error (MRE) of less than 3.28%. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng
2017-04-01
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng
2017-04-06
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.
NASA Astrophysics Data System (ADS)
Vanpeene, V.; Etiemble, A.; Bonnin, A.; Maire, E.; Roué, L.
2017-05-01
The evolution of the three-dimensional (3D) morphology of a Si-based electrode upon cycling (1st discharge, 1st charge and 2nd discharge) is studied by in-situ synchrotron X-ray tomography. The Si-based electrode is constituted of silicon/carbon black/carboxymethylcellulose (Si/CB/CMC) embedded in a commercial carbon fiber paper, acting as a flexible 3D current collector. Its initial areal discharge capacity is 4.9 mAh cm-2. A reconstructed volume of 293 × 293 × 137 μm3 is analyzed with a resolution of ∼0.3 μm. Three phases are identified: (i) the solid phase (C fibers + Si + CB + CMC), (ii) the electrolyte phase (pores filled with electrolyte) and (iii) the gas phase (electrolyte-free pores). Their respective volume fraction, size distribution and connectivity, and also the dimensional changes of the electrode along the three axes are quantified during cycling. At the beginning of the 1st discharge (lithiation), the formation of gas channels attributed to the reductive electrolyte decomposition is observed. During the 1st charge, large cracks are formed through the electrode, which reclose during the subsequent discharge. The electrode expansion/contraction due to the Si volume change is partially irreversible, occurs mainly in the transverse direction and is much larger in the bottom part of the electrode.
Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials
Zhu, Zhihua; Evans, Philip G.; Haglund, Richard F.; ...
2017-07-21
Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated andmore » local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.« less
Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.
Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G
2017-08-09
Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.
Ruff, Kiersten M; Roberts, Stefan; Chilkoti, Ashutosh; Pappu, Rohit V
2018-06-24
Proteins and synthetic polymers can undergo phase transitions in response to changes to intensive solution parameters such as temperature, proton chemical potentials (pH), and hydrostatic pressure. For proteins and protein-based polymers, the information required for stimulus responsive phase transitions is encoded in their amino acid sequence. Here, we review some of the key physical principles that govern the phase transitions of archetypal intrinsically disordered protein polymers (IDPPs). These are disordered proteins with highly repetitive amino acid sequences. Advances in recombinant technologies have enabled the design and synthesis of protein sequences of a variety of sequence complexities and lengths. We summarize insights that have been gleaned from the design and characterization of IDPPs that undergo thermo-responsive phase transitions and build on these insights to present a general framework for IDPPs with pH and pressure responsive phase behavior. In doing so, we connect the stimulus responsive phase behavior of IDPPs with repetitive sequences to the coil-to-globule transitions that these sequences undergo at the single chain level in response to changes in stimuli. The proposed framework and ongoing studies of stimulus responsive phase behavior of designed IDPPs have direct implications in bioengineering, where designing sequences with bespoke material properties broadens the spectrum of applications, and in biology and medicine for understanding the sequence-specific driving forces for the formation of protein-based membraneless organelles as well as biological matrices that act as scaffolds for cells and mediators of cell-to-cell communication. Copyright © 2018. Published by Elsevier Ltd.
Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber
NASA Astrophysics Data System (ADS)
Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten
2018-04-01
The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.
NASA Astrophysics Data System (ADS)
Muskett, R. R.
2016-12-01
Measuring centimeter-scale and smaller surface changes by satellite-based systems on the periglacial terrains and permafrost zones of the northern hemisphere is an ongoing challenge. We are investigating this challenge by using data from the NASA Ice, Cloud, and land Elevation Satellite Geoscience Laser Altimeter System (ICESat GLAS) and the JAXA Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) on the continuous permafrost zone of the North Slope, Alaska. Using the ICESat GLAS exact-repeat profiles in the analysis of ALOS PALSAR InSAR Line-Of-Sight (LOS) changes we find evidence of volume scattering over much of the tundra vegetation covered active-layer and surface scattering from river channel/banks (deposition and erosion), from rock outcropping bluffs and ridges. Pingos, ice-cored mounds common to permafrost terrains can be used as benchmarks for assessment of LOS changes. For successful InSAR processing, topographic and tropospheric phase cannot be assumed negligible and must be removed. The presence of significant troposphere phase in short-period repeat interferograms renders stacking ill suited for the task of deriving verifiable centimeter-scale surface deformation phase and reliable LOS changes. Ref.: Muskett, R.R. (2015), Int. Journal of Geosciences, 6 (10), 1101-1115. doi:10.4236/ijg.2015.610086 http://www.scirp.org/Journal/PaperDownload.aspx?paperID=60406
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing
2015-05-01
Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation. Copyright © 2015. Published by Elsevier Inc.
Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation
NASA Astrophysics Data System (ADS)
Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang
2017-09-01
Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.
Lehman, Wayne E. K.; Simpson, D. Dwayne; Knight, Danica K.; Flynn, Patrick M.
2015-01-01
Sustained and effective use of evidence-based practices in substance abuse treatment services faces both clinical and contextual challenges. Implementation approaches are reviewed that rely on variations of plan-do-study-act (PDSA) cycles, but most emphasize conceptual identification of core components for system change strategies. A 2-phase procedural approach is therefore presented based on the integration of TCU models and related resources for improving treatment process and program change. Phase 1 focuses on the dynamics of clinical services, including stages of client recovery (cross-linked with targeted assessments and interventions), as the foundations for identifying and planning appropriate innovations to improve efficiency and effectiveness. Phase 2 shifts to the operational and organizational dynamics involved in implementing and sustaining innovations (including the stages of training, adoption, implementation, and practice). A comprehensive system of TCU assessments and interventions for client and program-level needs and functioning are summarized as well, with descriptions and guidelines for applications in practical settings. PMID:21443294
NASA Astrophysics Data System (ADS)
Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn
2016-03-01
Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.
Wavelets and the squeezed states of quantum optics
NASA Technical Reports Server (NTRS)
Defacio, B.
1992-01-01
Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.
Electron correlations and magnetism in iron-based superconductors
NASA Astrophysics Data System (ADS)
Birgeneau, Robert
We have carried out a comprehensive study of the phase diagram, structures and phase transitions in the system RbxFeySe2-zSz. We find that the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase (y 1.5), the block AF phase (y 1,6) and the iron vacancy-free metallic phase (y 2). These phases are separated by first order transitions. In going from superconducting Rb0.8Fe2Se2 to non-superconducting Rb0.8Fe2S2 we observe in our ARPES experiments little change in the Fermi surface topology but an increase in the overall bandwidth by a factor of 2, hence demonstrating that moderate correlation is essential in achieving high Tc. We show also using neutron scattering that for z =0 there is a sharp magnetic resonance mode well below the superconducting gap which is replaced by a broad hump structure above the gap for z 1. This is accompanied by an insignificant change in Tc. This implies a concomitant change from sign-reversed to sign preserved Cooper-Pairing symmetry driven by the change in electron band width. In this talk we will discuss the overall significance of this rich behavior observed in this alkali Fe-chalcogenide system. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202).
Compensating temperature-induced ultrasonic phase and amplitude changes
NASA Astrophysics Data System (ADS)
Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.
2016-04-01
In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.
A self-resetting spiking phase-change neuron
NASA Astrophysics Data System (ADS)
Cobley, R. A.; Hayat, H.; Wright, C. D.
2018-05-01
Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.
A self-resetting spiking phase-change neuron.
Cobley, R A; Hayat, H; Wright, C D
2018-05-11
Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.
Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P
2013-01-01
In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.
2015-03-01
We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.
Pokharia, Anil K; Agnihotri, Rajesh; Sharma, Shalini; Bajpai, Sunil; Nath, Jitendra; Kumaran, R N; Negi, Bipin Chandra
2017-01-01
Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.
Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.
2014-05-01
Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.
Su, Jing-Wei; Lin, Yang-Hsien; Chiang, Chun-Ping; Lee, Jang-Ming; Hsieh, Chao-Mao; Hsieh, Min-Shu; Yang, Pei-Wen; Wang, Chen-Ping; Tseng, Ping-Huei; Lee, Yi-Chia; Sung, Kung-Bin
2015-01-01
The progression of epithelial precancers into cancer is accompanied by changes of tissue and cellular structures in the epithelium. Correlations between the structural changes and scattering coefficients of esophageal epithelia were investigated using quantitative phase images and the scattering-phase theorem. An ex vivo study of 14 patients demonstrated that the average scattering coefficient of precancerous epithelia was 37.8% higher than that of normal epithelia from the same patient. The scattering coefficients were highly correlated with morphological features including the cell density and the nuclear-to-cytoplasmic ratio. A high interpatient variability in scattering coefficients was observed and suggests identifying precancerous lesions based on the relative change in scattering coefficients. PMID:26504630
NASA Astrophysics Data System (ADS)
Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H.; Kühne, Thomas D.; Bernasconi, Marco
2016-05-01
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.
Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H; Kühne, Thomas D; Bernasconi, Marco
2016-05-28
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.
First-principles study of the amorphous In3SbTe2 phase change compound
NASA Astrophysics Data System (ADS)
Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco
2013-11-01
Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.
NASA Astrophysics Data System (ADS)
Hou, Xiaoqing; Hou, Guangliang; Wang, Fangfang; Wang, Qingbo
2018-02-01
Northeastern Qinghai-tibet Plateau is considered as the ideal region for study of the climate change during the Holocene. Based on the meteorological data, the surface & fossil pollen data, this paper reconstructed the precipitation series of the region since middle Holocene with the GIS and MAT techniques, and discussed its relationship with prehistorical human activities. The results indicate that there are four major climatic phases: (I) Middle Holocene Humid Phase (6300-5000 aBP), with the primitive millet-farming first imported into the region; (II) Late Middle Holocene Sub-humid Phase (5000-3900 aBP), with the millet-farming spread rapidly within the region; (III) Late Holocene Fluctuation Phase (3900-2900 aBP), with the mean annual precipitation dropped down to lower than 240 mm, and a production mode-shift to a combination of cropping and husbandry; (IV) Late Holocene Stationary Phase (2900-0 aBP), with a precipitation alike the modern time, and a steady farming-pastoral economic pattern.
NASA Astrophysics Data System (ADS)
Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann
2012-11-01
We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.
NASA Technical Reports Server (NTRS)
Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.
2000-01-01
Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.
Balasubramonian, Rajeev [Sandy, UT; Dwarkadas, Sandhya [Rochester, NY; Albonesi, David [Ithaca, NY
2009-02-10
In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.
Avanesov, Maxim; Weinrich, Julius M; Kraus, Thomas; Derlin, Thorsten; Adam, Gerhard; Yamamura, Jin; Karul, Murat
2016-11-01
The purpose of the retrospective study was to evaluate the additional value of dual-phase multidetector computed tomography (MDCT) protocols over a single-phase protocol on initial MDCT in patients with acute pancreatitis using three CT-based pancreatitis severity scores with regard to radiation dose. In this retrospective, IRB approved study MDCT was performed in 102 consecutive patients (73 males; 55years, IQR48-64) with acute pancreatitis. Inclusion criteria were CT findings of interstitial edematous pancreatitis (IP) or necrotizing pancreatitis (NP) and a contrast-enhanced dual-phase (arterial phase and portal-venous phase) abdominal CT performed at ≥72h after onset of symptoms. The severity of pancreatic and extrapancreatic changes was independently assessed by 2 observers using 3 validated CT-based scoring systems (CTSI, mCTSI, EPIC). All scores were applied to arterial phase and portal venous phase scans and compared to score results of portal venous phase scans, assessed ≥14days after initial evaluation. For effective dose estimation, volume CT dose index (CTDIvol) and dose length product (DLP) were recorded in all examinations. In neither of the CT severity scores a significant difference was observed after application of a dual-phase protocol compared with a single-phase protocol (IP: CTSI: 2.7 vs. 2.5, p=0.25; mCTSI: 4.0 vs. 4.0, p=0.10; EPIC: 2.0 vs. 2.0, p=0.41; NP: CTSI: 8.0 vs. 7.0, p=0.64; mCTSI: 8.0 vs. 8.0, p=0.10; EPIC: 3.0 vs. 3.0, p=0.06). The application of a single-phase CT protocol was associated with a median effective dose reduction of 36% (mean dose reduction 31%) compared to a dual-phase CT scan. An initial dual-phase abdominal CT after ≥72h after onset of symptoms of acute pancreatitis was not superior to a single-phase protocol for evaluation of the severity of pancreatic and extrapancreatic changes. However, the effective radiation dose may be reduced by 36% using a single-phase protocol. Copyright © 2016. Published by Elsevier Ireland Ltd.
Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)
2015-01-01
An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.
Interaction of pulsed laser radiation with a powder complex based on the Al-Mg-C matrix
NASA Astrophysics Data System (ADS)
Voznesenskaya, A.; Khorkov, K.; Kochuev, D.; Zhdanov, A.; Morozov, V.
2018-01-01
Experimental work on laser melting of the Al powder composition has been carried out. The influence of the duration of the laser pulse on the result of processing the powder composition has been studied. In this work, the powder material was obtained by the joint mechanical activation of matrix material and filler particles in high-energy ball mills. The research work consisted of analyzing the starting material, the phase composition, the particle size distribution, and the morphology of the powder particles. The obtained samples also studied the phase composition, the presence of pores, cracks, the surface of the formed coating, the average height of the roller. The obtained samples were studied by X-ray diffractometry, Raman spectroscopy, and microsections of the structures obtained by optical microscopy. On the basis of the data obtained, conclusions were drawn about changes in the structural-phase composition, the nature of the distribution, the localization of alloying additives in the course of phase-to-phase transitions, and the change in the phase states of alloying additives.
42 CFR 422.258 - Calculation of benchmarks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... section 1853(n)(2) of Act. The weights for each component are based on the phase-in period assigned each... phase-in period, the blended benchmark for an area for a year equals the section 1853(n)(2) of the Act... year after 2012, there is a change in the quartile in which an area is ranked compared to the previous...
Advanced Nanostructures for Two-Phase Fluid and Thermal Transport
2014-08-07
commercial applications. Pumped phase-change based microfluidic systems promise compact solutions with high heat removal capability. However...materials for liquid transport in microfluidics , cell manipulation in biological systems, and light tuning in optical applications via their...and 3c) with precise control for real- time fluid and optical manipulation. Inspired by hair and motile cilia on animal skin and plant leaves for
ERIC Educational Resources Information Center
Osborne, Roger; And Others
In the action-research phase of the Learning in Science Project, four groups of people worked on problems identified in the project's second (in-depth) phase. The Chemistry Action-Research Group considered problems related to the teaching and learning of ideas associated with particles and physical/chemical changes. Based on findings during the…
Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu
2014-01-01
In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506
NASA Astrophysics Data System (ADS)
Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.
2017-03-01
A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.
Composite materials for thermal energy storage
Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.
1986-01-01
The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.
Thermal residual stress evaluation based on phase-shift lateral shearing interferometry
NASA Astrophysics Data System (ADS)
Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan
2018-06-01
An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.
In situ investigations of the phase change behaviour of tungsten oxide nanostructures.
Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu
2018-04-01
This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W 18 O 49 nanowires and WO 3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO 3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO 3 ; however, W 18 O 49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO 3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm -1 as the fingerprint band for the phase transition from γ- to β-phase of the WO 3 nanoparticle. Furthermore, WO 3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W 18 O 49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.
In situ investigations of the phase change behaviour of tungsten oxide nanostructures
NASA Astrophysics Data System (ADS)
Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu
2018-04-01
This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W18O49 nanowires and WO3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO3; however, W18O49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm-1 as the fingerprint band for the phase transition from γ- to β-phase of the WO3 nanoparticle. Furthermore, WO3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W18O49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.
Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.
Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu
2017-04-07
Energy piles-A fairly new renewable energy concept-Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.
Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles
Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu
2017-01-01
Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications. PMID:28772752
Phase change water processing for Space Station
NASA Technical Reports Server (NTRS)
Zdankiewicz, E. M.; Price, D. F.
1985-01-01
The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.
Potential for U sequestration with select minerals and sediments via base treatment.
Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim
2018-06-13
Temporary base treatment is a potential remediation technique for heavy metals through adsorption, precipitation, and co-precipitation with minerals. Manipulation of pH with ammonia gas injection may be especially useful for vadose zone environments as it does not require addition of liquids that would increase the flux towards groundwater. In this research, we conducted laboratory batch experiments to evaluate the changes in uranium mobility and mineral dissolution with base treatments including sodium hydroxide, ammonium hydroxide, and ammonia gas. Our data show that partitioning of uranium to the solid phase increases by several orders of magnitude following base treatment in the presence of different minerals and natural sediments from the Hanford site. The presence of dissolved calcium and carbonate play an important role in precipitation and co-precipitation of uranium at elevated pH. In addition, significant incongruent dissolution of bulk mineral phases occurs and likely leads to precipitation of secondary mineral phases. These secondary phases may remove uranium via adsorption, precipitation, and co-precipitation processes and may coat uranium phases with low solubility minerals as the pH returns to natural conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.
2016-12-01
Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.
Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae
Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang
2016-01-01
Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications. PMID:27469931
Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae.
Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang
2016-07-29
Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications.
NASA Astrophysics Data System (ADS)
Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.
2016-10-01
This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.
Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept.
Smedal, Tori; Lygren, Hildegunn; Myhr, Kjell-Morten; Moe-Nilssen, Rolf; Gjelsvik, Bente; Gjelsvik, Olav; Strand, Liv Inger; Inger, Liv
2006-06-01
Patients with multiple sclerosis (MS) tend to have movement difficulties, and the effect of physiotherapy for this group of patients has been subjected to limited systematic research. In the present study physiotherapy based on the Bobath concept, applied to MS patients with balance and gait problems, was evaluated. The ability of different functional tests to demonstrate change was evaluated. A single-subject experimental study design with ABAA phases was used, and two patients with relapsing-remitting MS in stable phase were treated. Tests were performed 12 times, three at each phase: A (at baseline); B (during treatment); A (immediately after treatment); and A (after two months). The key feature of treatment was facilitation of postural activity and selective control of movement. Several performance and self report measures and interviews were used. After intervention, improved balance was shown by the Berg Balance Scale (BBS) in both patients, and improved quality of gait was indicated by the Rivermead Visual Gait Assessment (RVGA). The patients also reported improved balance and gait function in the interviews and scored their condition as 'much improved'. Gait parameters, recorded by an electronic walkway, changed, but differently in the two patients. Among the physical performance tests the BBS and the RVGA demonstrated the highest change, while no or minimal change was demonstrated by the Rivermead Mobility Index (RMI) and Ratings of Perceived Exertion (RPE). The findings indicate that balance and gait can be improved after physiotherapy based on the Bobath concept, but this should be further evaluated in larger controlled trials of patients with MS.
Liu, Qingtao; Hu, Jinming; Whittaker, Michael R; Davis, Thomas P; Boyd, Ben J
2017-12-15
Herein we report on the development of a nitric oxide-sensing lipid-based liquid crystalline (LLC) system specifically designed to release encapsulated drugs on exposure to NO through a stimulated phase change. A series of nitric oxide (NO)-sensing lipids compatible with phytantriol and GMO cubic phases were designed and synthesized, and utilized in enabling nitric oxide-sensing LLC systems. The nitric oxide (NO)-sensing lipids react with nitric oxide, resulting in hydrolysis of these lipids and phase transition of the LLC system. Specifically, the N-3-aminopyridinyl myristylamine (NAPyM)+phytantriol mixture formed a lamellar phase in excess aqueous environment. The NAPyM+phytantriol LLC responded to the nitric oxide gas as a chemical stimulus which triggers a phase transition from lamellar phase to inverse cubic and hexagonal phase. The nitric oxide-triggered phase transition of the LLC accelerated the release of encapsulated model drug from the LLC bulk phase, resulting in a 15-fold increase in the diffusion coefficient compared to the starting lamellar structure. The nitric oxide-sensing LLC system has potential application in the development of smart medicines to treat nitric oxide implicated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muskett, Reginald
2016-04-01
Measuring centimeter-scale and smaller surface changes by satellite-based systems on the periglacial terrains and permafrost zones of the northern hemisphere is an ongoing challenge. We are investigating this challenge by using data from the NASA Ice, Cloud, and land Elevation Satellite Geoscience Laser Altimeter System (ICESat GLAS) and the JAXA Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) on the continuous permafrost zone of the North Slope, Alaska. Using the ICESat GLAS exact-repeat profiles in the analysis of ALOS PALSAR InSAR Line-Of-Sight (LOS) changes we find evidence of volume scattering over much of the tundra vegetation covered active-layer and surface scattering from river channel/banks (deposition and erosion), from rock outcropping bluffs and ridges. Pingos, ice-cored mounds common to permafrost terrains can be used as benchmarks for assessment of LOS changes. For successful InSAR processing, topographic and tropospheric phase cannot be assumed negligible and must be removed. The presence of significant troposphere phase in short-period repeat interferograms renders stacking ill suited for the task of deriving verifiable centimeter-scale surface deformation phase and reliable LOS changes. Ref.: Muskett, R.R. (2015), ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-Of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska. International Journal of Geosciences, 6 (10), 1101-1115. doi:10.4236/ijg.2015.610086 http://www.scirp.org/Journal/PaperDownload.aspx?paperID=60406
Capra, N F; Ro, J Y
2000-05-01
The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the proprioceptive signals and functional implications of the changes are discussed.
Ma, Q; Han, Z; Huang, W
1998-03-01
To investigate the changes of endometrial progesterone receptor (PR) of luteal-phase-defect (LPD) patients during the secretory phase, thirteen patients with complaints of infertility or habitual abortion were studied. During the early-mid secretory phase, endometrial tissue was obtained by dilatation and curettage (D & C) for histological and receptor study: meanwhile serum E2, P, FSH, LH and PRL were measured. Based on histologic diagnosis, the patients were divided into two groups: the LPD group (n = 7) and the normal control group(n = 6). PR content was determined by immunohisto-chemical (IHC) assay. The results showed that during the early-mid luteal phase a significantly low PR content on endometrial glandular nucleus was observed in LPD group, compared with normal control(6.75 +/- 2.57 vs 9.50 +/- 1.64 P < 0.05), but no difference in serum progesterone was noted between the two groups. These findings suggest that during early-mid secretory phase, PR content on endometrial glandular nucleus decreases in LPD cases, which results in deficient response of endometrium to proper stimulus of progesterone. This change may cause endometrial secretory deficiency and blockade of embreyo implantation. That is why infertility or habitual abortion happened.
Application of extremum seeking for time-varying systems to resonance control of RF cavities
Scheinker, Alexander
2016-09-13
A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less
Strengths-Based Nursing: A Process for Implementing a Philosophy Into Practice.
Gottlieb, Laurie N; Gottlieb, Bruce
2017-08-01
Strengths-Based Nursing (SBN) is both a philosophy and value-driven approach that can guide clinicians, educators, manager/leaders, and researchers. SBN is rooted in principles of person/family centered care, empowerment, relational care, and innate health and healing. SBN is family nursing yet not all family nursing models are strengths-based. The challenge is how to translate a philosophy to change practice. In this article, we describe a process of implementation that has organically evolved of a multi-layered and multi-pronged approach that involves patients and families, clinicians, educators, leaders, managers, and researchers as well as key stakeholders including union leaders, opinion leaders, and policy makers from both nursing and other disciplines. There are two phases to the implementation process, namely, Phase 1: pre-commitment/pre-adoption and Phase 2: adoption. Each phase consists of distinct steps with accompanying strategies. These phases occur both sequentially and concurrently. Facilitating factors that enable the implementation process include values which align, readiness to accept SBN, curiosity-courage-commitment on the part of early adopters, a critical mass of early adopters, and making SBN approach both relevant and context specific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinker, Alexander
A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less
Feng, Hao; Ashkar, Rana; Steinke, Nina; ...
2018-02-01
A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less
Structure and Properties of Sn2Se3, a mixed valent tin selenium compound
NASA Astrophysics Data System (ADS)
Xing, Guangzong; Li, Yuwei; Fan, Xiaofeng; Zhang, Lijun; Singh, David
Sn2Se3 is a possibly expected phase based on analogy with Sn2S3 but it has never been reported. It is of interest due to reported phase change memories using this composition using transitions between an amorphous phase and an unknown crystalline phase. We identify the crystal structure Sn2Se3 and report its properties at ambient pressure based on the ab initio evolutionary methodology for crystal structure prediction implemented in the Calypso code. We find a structure based on Sn-Se ribbons with clear Sn(II)and Sn(IV)sites similar to the structure of Sn2S3. Compared with the known phase SnSe (Pnma) +SnSe2 (P-3m1), the energy is only 2.3meV/atom higher. The electronic structure of this phase shows mixed valent tins Sn2+ and Sn4+ in this compound. A small band gap of 0.023 eV is obtained from the band structure consistent with the small resistance reported by Kyung-Min Chung et al. Work at the University of Missouri is supported by DOE through the S3TEC EFRC.
Satellite thermal storage systems using metallic phase-change materials
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C.
Solar (thermal) dynamic power systems for satellites require a heat storage system capable of operating the engine during eclipse. A system is described in which the phase-change material (PCM) is a metal rather than the more conventional fluoride salts. Thermal storage modules consisting of germanium contained in graphite have good thermal conductivity, low parasitic mass, and are physically and chemically stable. The result is described for thermal cycle testing of graphite capsules containing germanium and several germanium- and silicon-based alloys, as well as some initial tests of the compatibility of graphite with Nb-1 percent Zr structural materials.
Hospital successes and failures indicate change in hospital marketing.
Krampf, R F; Miller, D W
1993-01-01
Marketing has become an essential management function for hospitals during the past decade. A number of changes have occurred in hospital marketing as they have progressed through the marketing adoption process. A survey of Hospital CEOs reporting hospital successes and failures in the area of marketing have recently placed emphasis on sales and advertising based upon marketing research programs thus indicating entrance into the "Integrated Tactical Marketing" phase. This study also indicates that a few hospitals have entered the "Strategic Marketing Orientation" phase while future plans reported by the CEOs provide evidence that this trend is likely to continue.
Hively, Lee M.
2014-09-16
Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2004-08-24
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2007-01-02
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2006-03-21
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2002-01-01
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2000-01-01
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2007-01-23
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Invasion-wave-induced first-order phase transition in systems of active particles.
Ihle, Thomas
2013-10-01
An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.
Polymerase chain reaction with phase change as intrinsic thermal control
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei
2013-04-01
This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.
Zhang, Shuoting; Liu, Bo; Zheng, Sheng; ...
2018-01-01
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuoting; Liu, Bo; Zheng, Sheng
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
The World Grain Economy and Climate Change to the Year 2000: Implications for Policy
1983-01-01
THE WORLD GRAIN ECONOMY AND CUMATE CHANGE TO THE YEAR 2000: IMPUCATIONS FOR POUCY REPORT ON THE FINAL PHASE OF A CLIMATE IMPACT ASSESSMENT CONDUCTED...MODEL...................................... 37 APPENDIX B-A SUMMARY OF CROP YIELDS AND CLIMATE CHANGE TOTHE YR00............33 CONTENTS LIST OF FIGURES...114. PROJECTED BASE 2000 YIELDS .................. 1S LIST OF TABLES 1. CLIMATE PARAMETERS BY LATITUDINAL ZONES .. S 2. SOURCES OF CLIMATE CHANGE
Staffileno, Beth A; Tangney, Christy C; Fogg, Louis; Darmoc, Rebecca
2015-01-01
Less is known about young African American (AA) women, largely because the young are hard to reach. Traditional approaches to behavior changes interventions impose several challenges, especially for AA women at risk for developing hypertension. This feasibility study describes the process of transforming a face-to-face lifestyle change intervention into a Web-based platform (eHealth) accessible by iPads, iPhones, smartphones, and personal computers. Four sequential phases were conducted using elements of formative evaluation and quantitative analysis. A convenience sample of AA women, aged 18 to 45 years, with self-reported prehypertension and regular access to the Internet were eligible to participate. Eleven women involved in phase 1 expressed that they (1) currently use the Internet to retrieve health-related information, (2) prefer to use the Internet rather than face-to-face contact for nonserious conditions, (3) need convenience and easily accessible health-related interventions, and (4) are amenable to the idea of an eHealth lifestyle modification program. During phase 2, learning modules derived from printed manuals were adapted and compressed for a Web audience. The modules were designed to present evidence-based content but allowed for tailoring and individualization according to the needs of the target population. During phase 3, 8 women provided formative information concerning appeal and usability of the eHealth program in relation to delivery, visual quality, interactivity, and engagement. Phase 4 involved 8 women beta testing the 12-week program, with a 63% completion rate. Most of the women agreed that the program and screens opened with ease, the functions on the screens did what they were supposed to do, and the discussion board was easy to access. Program completion was greater for physical activity compared with dietary content. This study outlines a step-by-step process for transforming face-to-face content into a Web-based platform, which, importantly, can serve as a template for promoting other health behaviors.
Engineering Low-Dimensional Nanostructures Towards Flexible Electronics
NASA Astrophysics Data System (ADS)
Byrley, Peter Samuel
Flexible electronics have been proposed as the next generation of electronic devices. They have advantages over traditional electronics in that they use less material, are more durable and have greater versatility in their proposed applications. However, there are a variety of types of devices being developed that have specific engineering challenges. This dissertation addresses two of those challenges. The first challenge involves lowering contact resistance in MoS2 based flexible thin film transistor devices using a photochemical phase change method while the second addresses using silver nanowire networks as a replacement flexible electrode for indium tin oxide in flexible electronics. In this dissertation, a scalable method was developed for making monolayer MoS2 using ambient pressure chemical vapor deposition. These films were then characterized using spectroscopic techniques and atomic force microscopy. A photochemical phase change mechanism was then proposed to improve contact resistance in MoS2 based devices. The central hypothesis is that the controllable partial transition from a semiconducting 2H to metallic 1T phase can be realized in monolayer TMDs through photo-reduction in the presence of hole scavenging chemicals. Phase-engineering in monolayer TMDs would enable the fabrication of high-quality heterophase structures with the potential to improve carrier mobility and contact. Phase change as a result of the proposed photochemical method was confirmed using Raman spectroscopy, photoluminescence measurements, X-Ray photoelectron spectroscopy and other supporting data. Gold coated silver nanowires were then created to serve as flexible nanowire based electrodes by overcoming galvanic replacement in solution. This was confirmed using various forms of electron microscopy. The central hypothesis is that a thin gold coating will enable silver nanowire meshes to remain electrically stable in atmosphere and retain necessary low resistance values and transparencies over time. It was shown that gold coated silver nanowire meshes could be created with sheet resistances comparable to indium tin oxide and outlast their bare silver nanowire counterparts in environments at 80 deg C.
Atkins, Michael; Coutinho, Anna D; Nunna, Sasikiran; Gupte-Singh, Komal; Eaddy, Michael
2018-02-01
The utilization of healthcare services and costs among patients with cancer is often estimated by the phase of care: initial, interim, or terminal. Although their durations are often set arbitrarily, we sought to establish data-driven phases of care using joinpoint regression in an advanced melanoma population as a case example. A retrospective claims database study was conducted to assess the costs of advanced melanoma from distant metastasis diagnosis to death during January 2010-September 2014. Joinpoint regression analysis was applied to identify the best-fitting points, where statistically significant changes in the trend of average monthly costs occurred. To identify the initial phase, average monthly costs were modeled from metastasis diagnosis to death; and were modeled backward from death to metastasis diagnosis for the terminal phase. Points of monthly cost trend inflection denoted ending and starting points. The months between represented the interim phase. A total of 1,671 patients with advanced melanoma who died met the eligibility criteria. Initial phase was identified as the 5-month period starting with diagnosis of metastasis, after which there was a sharp, significant decline in monthly cost trend (monthly percent change [MPC] = -13.0%; 95% CI = -16.9% to -8.8%). Terminal phase was defined as the 5-month period before death (MPC = -14.0%; 95% CI = -17.6% to -10.2%). The claims-based algorithm may under-estimate patients due to misclassifications, and may over-estimate terminal phase costs because hospital and emergency visits were used as a death proxy. Also, recently approved therapies were not included, which may under-estimate advanced melanoma costs. In this advanced melanoma population, optimal duration of the initial and terminal phases of care was 5 months immediately after diagnosis of metastasis and before death, respectively. Joinpoint regression can be used to provide data-supported phase of cancer care durations, but should be combined with clinical judgement.
Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.
Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel
2013-12-01
We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.
Competing phases in a model of Pr-based cobaltites
NASA Astrophysics Data System (ADS)
Sotnikov, A.; Kuneš, J.
2017-12-01
Motivated by the physics of Pr-based cobaltites, we study the effect of the external magnetic field in the hole-doped two-band Hubbard model close to instabilities toward the excitonic condensation and ferromagnetic ordering. Using the dynamical mean-field theory we observe a field-driven suppression of the excitonic condensate. The onset of a magnetically ordered phase at the fixed chemical potential is accompanied by a sizable change of the electron density. This leads us to predict that Pr3 + abundance increases on the high-field side of the transition.
Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units
NASA Astrophysics Data System (ADS)
Chen, Zhaobin; Deng, Hui; Xiong, Qingxu; Liu, Chen
2018-03-01
It has been pointed out by many documents that a phase gradient metasurface with wideband characteristics can be designed by the unit with a low-quality factor ( Q value). In this paper, a cross-shaped unit with a low-quality factor Q is proposed. By changing the variable parameters of the unit, it is found that the reflection phase of the unit can achieve a stable distribution of phase gradient in the frequency range of 8.0-20.0 GHz. we analyze variation of the electromagnetic field distribution on the unit with frequency and find that the size along electrical field polarization of electromagnetic field distribution area changes with frequency. Based on our design, effective size of electromagnetic field distribution area keeps meeting the subwavelength condition, thus stable phase distribution is gained across broadened bandwidth. It is found by the analysis of the phase gradient metasurface composed of seven units that the metasurface can exhibit anomalous reflection in the wide frequency band of 8.0-20.0 GHz, and the efficiency of abnormal reflection is higher in the range of 10.0-18.0 GHz. The error between the simulation results of abnormal reflection angle and the theoretical result is only - 1.5° to 0.5° after the work of comparison. Therefore, the metasurface designed by the new cross-shaped unit has a good control on the deflection direction of the reflected wave, and shows obvious advantages in widening the bandwidth.
Capin, Jacob J.; Behrns, William; Thatcher, Karen; Arundale, Amelia; Smith, Angela Hutchinson; Snyder-Mackler, Lynn
2017-01-01
SYNOPSIS Limited literature exists pertaining to rehabilitation of ice hockey players seeking to return-to-sport after anterior cruciate ligament reconstruction (ACLR). The purpose of this clinical commentary is to present a criterion-based, return-to-ice hockey progression for athletes after ACLR. First, we review pertinent literature and provide previously published guidelines on general rehabilitation after ACLR. Then, we present a four-phase, on-ice skating progression with objective criteria to initiate each phase. During the early on-ice phase, the athlete is reintroduced to specific demands, including graded exposure to forward, backward, and crossover skating. In the intermediate on-ice phase, the emphasis shifts to developing power and introducing anticipated changes of direction within a controlled environment. During the late on-ice phase, the focus progresses to developing anaerobic endurance and introducing unanticipated changes of direction, but still without other players or contact. Finally, once objective return-to-sport criteria are met, non-contact team drills, outnumbered and even-numbered drills, practices, scrimmages, and games are progressively reintroduced during the return-to-sport phase. Recommendations for off-ice strength and conditioning exercises complement the on-ice progression. Additionally, we apply the return-to-hockey progression framework to a case report of a female collegiate defensive ice hockey player who returned to sport successfully after ACLR. This criterion-based return-to-hockey progression may guide rehabilitation specialists managing athletes returning to ice hockey after ACLR. PMID:28355976
Encapsulation of thermal energy storage media
Dhau, Jaspreet; Goswami, Dharendra; Jotshi, Chand K.; Stefanakos, Elias K.
2017-09-19
In one embodiment, a phase change material is encapsulated by forming a phase change material pellet, coating the pellet with flexible material, heating the coated pellet to melt the phase change material, wherein the phase change materials expands and air within the pellet diffuses out through the flexible material, and cooling the coated pellet to solidify the phase change material.
Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase
NASA Astrophysics Data System (ADS)
Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.
2014-12-01
Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).
NASA Astrophysics Data System (ADS)
Hobson, Sally Merryman
This mixed methods study explored young children's understandings of targeted lunar concepts, including when the moon can be observed, observable lunar phase shapes, predictable lunar patterns, and the cause of moon phases. Twenty-one children (ages seven to nine years) from a multi-aged classroom participated in this study. Data were collected using semi-structured interviews, student drawings, and card sorting before and after an inquiry-based, technology-enhanced instructional intervention. Students' lunar calendars, written responses, field notes, and videotaped class sessions also provided data throughout the study. Data were analyzed using codes from prior lunar studies, constant comparative analysis, and nonparametric analysis. The instructional intervention included lunar data gathering, recording, and sharing, through the use of Starry Night planetarium software and an inquiry-based instruction on moon phases (McDermott, 1996). In a guided inquiry context children worked in groups to gather and analyze nine weeks of lunar data. Findings indicated a positive change in students' understanding of all targeted concepts. After the intervention more children understood that the moon could be observed sometimes during the day, more children drew scientific moon phase shapes, and more children drew scientific representations of the moon phase sequences. Also, more children understood the cause of moon phases.
Raberg, Matthias; Reinecke, Frank; Reichelt, Rudolf; Malkus, Ursula; König, Simone; Pötter, Markus; Fricke, Wolfgang Florian; Pohlmann, Anne; Voigt, Birgit; Hecker, Michael; Friedrich, Bärbel; Bowien, Botho; Steinbüchel, Alexander
2008-01-01
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), in combination with matrix-assisted laser desorption ionization-time of flight analysis, and the recently revealed genome sequence of Ralstonia eutropha H16 were employed to detect and identify proteins that are differentially expressed during different phases of poly(3-hydroxybutyric acid) (PHB) metabolism. For this, a modified protein extraction protocol applicable to PHB-harboring cells was developed to enable 2D PAGE-based proteome analysis of such cells. Subsequently, samples from (i) the exponential growth phase, (ii) the stationary growth phase permissive for PHB biosynthesis, and (iii) a phase permissive for PHB mobilization were analyzed. Among several proteins exhibiting quantitative changes during the time course of a cultivation experiment, flagellin, which is the main protein of bacterial flagella, was identified. Initial investigations that report on changes of flagellation for R. eutropha were done, but 2D PAGE and electron microscopic examinations of cells revealed clear evidence that R. eutropha exhibited further significant changes in flagellation depending on the life cycle, nutritional supply, and, in particular, PHB metabolism. The results of our study suggest that R. eutropha is strongly flagellated in the exponential growth phase and loses a certain number of flagella in transition to the stationary phase. In the stationary phase under conditions permissive for PHB biosynthesis, flagellation of cells admittedly stagnated. However, under conditions permissive for intracellular PHB mobilization after a nitrogen source was added to cells that are carbon deprived but with full PHB accumulation, flagella are lost. This might be due to a degradation of flagella; at least, the cells stopped flagellin synthesis while normal degradation continued. In contrast, under nutrient limitation or the loss of phasins, cells retained their flagella. PMID:18502919
Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp)
Taylor, Mercedes K.; Runčevski, Tomče; Oktawiec, Julia; ...
2016-11-02
Metal–organic frameworks that flex to undergo structural phase changes upon gas adsorption are promising materials for gas storage and separations, and achieving synthetic control over the pressure at which these changes occur is crucial to the design of such materials for specific applications. To this end, a new family of materials based on the flexible metal–organic framework Co(bdp) (bdp 2– = 1,4-benzenedipyrazolate) has been prepared via the introduction of fluorine, deuterium, and methyl functional groups on the bdp 2– ligand, namely, Co(F-bdp), Co(p-F 2-bdp), Co(o-F 2-bdp), Co(D 4-bdp), and Co(p-Me 2-bdp). These frameworks are isoreticular to the parent framework andmore » exhibit similar structural flexibility, transitioning from a low-porosity, collapsed phase to high-porosity, expanded phases with increasing gas pressure. Powder X-ray diffraction studies reveal that fluorination of the aryl ring disrupts edge-to-face π–π interactions, which work to stabilize the collapsed phase at low gas pressures, while deuteration preserves these interactions and methylation strengthens them. In agreement with these observations, high-pressure CH 4 adsorption isotherms show that the pressure of the CH 4-induced framework expansion can be systematically controlled by ligand functionalization, as materials without edge-to-face interactions in the collapsed phase expand at lower CH 4 pressures, while frameworks with strengthened edge-to-face interactions expand at higher pressures. This work puts forth a general design strategy relevant to many other families of flexible metal–organic frameworks, which will be a powerful tool in optimizing these phase-change materials for industrial applications.« less
Lowe, Donna O; Lummis, Heather; Zhang, Ying; Sketris, Ingrid S
2008-01-01
Asthma and chronic obstructive pulmonary disease treatment guidelines support the preferential use of portable inhalers (PIs) over wet nebulization (WN) respiratory therapy. Hospital- and community-based educational initiatives and a community-based provincial drug program policy change were previously implemented to promote the conversion of WN therapy to PI and spacer device use in Nova Scotia. To examine the effect of these interventions on salbutamol, ipratropium bromide, and spacer device (Aerochamber) use at the Queen Elizabeth II Health Sciences Centre (QEII HSC). We conducted a time-series analysis of drug utilization data from August 1998 to July 2005. We used two intervention phases compared to the pre-intervention phase to determine whether the educational and policy interventions were associated with significant changes in monthly drug and spacer device utilization rates at the QEII HSC (1000-bed teaching hospital; Halifax, Nova Scotia). Salbutamol and ipratropium bromide PI use significantly increased in both intervention phases, compared to the pre-intervention phase. Mean (SD) defined daily doses/100 bed-days for salbutamol PI increased from 30.4 (0.4) in the pre-intervention phase to 34.6 (0.9) and 37.0 (0.4) in intervention phases I and II respectively (p<0.001 for both), and ipratropium bromide PI increased from 27.3 (3.5) to 32.8 (2.5) in intervention phase I (p=0.004) and 35.6 (3.5) in intervention phase II (p<0.001). However, a significant corresponding decrease was observed with salbutamol WN only. Mean (SD) Aerochamber units/100 bed-days significantly increased. Educational and policy interventions had limited effects on converting WN to PI use at the QEII HSC.
All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.
Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing
2016-01-15
VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.
The Use of a Computer Simulation to Promote Conceptual Change: A Quasi-Experimental Study
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Bell, Randy L.
2010-01-01
This mixed-methods investigation compared the effectiveness of three instructional approaches in achieving desired conceptual change among early childhood preservice teachers (n = 157). Each of the three treatments employed inquiry-based instruction on moon phases using data collected from: (1) the planetarium software program, Starry Night[TM],…
Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, WA. Passive Flux Meters (PFM) and a va...
NASA Technical Reports Server (NTRS)
Wittenberger, J. D.; Behrendt, D. R.
1973-01-01
Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.
Quant, Sylvia; Maki, Brian E; McIlroy, William E
2005-06-24
Previous studies have suggested that early cortical potentials (e.g. N1) that are evoked by perturbations to upright stance are associated with sensory processing of the initial perturbation and that later potentials may represent cognitive processing of this perturbation. However, it has also been suggested that later cortical potentials could reflect sensory and motor processing of later phases of the postural reaction. The current study set out to provide additional insight into the association between perturbation-evoked cortical potentials and postural reactions evoked by whole-body perturbations. By altering the deceleration onset of the perturbation, which altered the timing of later postural responses, we determined whether changes in later postural responses were associated with changes in later potentials. Based on previous work, we hypothesized that later potentials would not be associated with changes in later postural responses. During stance, seven healthy young adults were instructed to maintain their balance following two types of perturbations: (1) acceleration phase immediately followed by a deceleration phase (TASK 1), and (2) acceleration phase followed by a delayed deceleration phase (TASK 2). In spite of profound task differences in later postural responses, results revealed no significant differences in later potentials. This work provides additional support for the idea that latter elements of perturbation-evoked cortical responses are likely independent of evoked motor reactions required to maintain stability.
Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS
Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...
2016-08-08
Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less
Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí
2007-01-05
The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.
NASA Astrophysics Data System (ADS)
Sedarous, Salah S.
1996-03-01
Despite the large quantity of data on the macroscopic changes in the physical properties of ferroelectric crystals during phase transition, there is a continued need for understanding their microscopic origin. Here we describe a novel method for examining the microscopic dynamics of the ferroelectric phase transition using time-resolved fluorescence spectroscopy. The fluorescence properties of organic chromophores embedded in the ferroelectric crystals triglycine sulfate and potassium dihydrogen phosphate are altered in response to the structural phase transitions. The lifetime and the fractional intensity decay show large changes around Tc and the order of the phase transition is readily recovered (first or second order). To explain the fluorescence lifetime data we present a novel theoretical model based on the concept of polaritons in these crystals. Deactivation of the excited state chromophore involves the participation of the vibrational modes of the chromophore. These modes are coupled to the polarization dispersion of the matrix and facilitate the coupling of the excited state to the collective modes in the crystal. The net result is the flow of energy from the excited state chromophore to the lattice phonon. The data indicate that changes in fluorescence lifetime can be used to examine directly the collective modes in these crystals. Our work provides important insight into the emergence of macroscopic phase transition behavior out of microscopic fluctuations.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Younus, Mohammad; Hawley, Adrian; Boyd, Ben J; Rizwan, Shakila B
2018-05-07
Tween 80 has been reported to provide a means of targeting drug nanocarriers to the blood- brain barrier. This study investigated the influence of addition of Tween 80 on the formation of different bulk and dispersed lyotropic liquid crystalline phases in selachyl alcohol-based systems. The effect of increasing concentrations of Tween 80 and Pluronic F127 (as a control) (0-25% w/w relative to SA) on the bulk phase behaviour and dispersions of selachyl alcohol (SA) were investigated using small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. The addition of Tween 80 to SA bulk phase samples triggered concentration-dependent phase changes with the structure sequentially evolving from a reverse hexagonal phase (H 2 ) to a mixed H 2 and inverse bicontinuous cubic (V 2 ) then a V 2 phase alone. In contrast, the addition of Pluronic F127 resulted in a phase change from H 2 phase to a mixed lamellar and H 2 phase system. The mean particle size of internally structured particles was 125-190 nm with low polydispersity indices (0.1-0.2). Nanoparticles retained the bulk phase internal structure in the presence of Tween 80, whereas in the presence of Pluronic F127, the additional lamellar phase that formed in bulk phase systems was not observed. Cryo-TEM revealed the formation of cubosomes and hexosomes by SA in excess water in the presence of Tween 80 and Pluronic F127 respectively. In summary, it was shown that stabilisation of SA dispersions using Tween 80 resulted in a decrease in negative curvature leading to a change in internal structure from H 2 to V 2 phase. The studies provide the core understanding of particle structure to progress these structured lipid nanocarriers into delivery studies with Tween 80 as a mechanism to target the blood-brain barrier. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anetai, Y; Mizuno, H; Sumida, I
2015-06-15
Purpose: To determine which proton planning technique on average-CT is more vulnerable to respiratory motion induced density changes and interplay effect among (a) IMPT of CTV-based minimax robust optimization with 5mm set-up error considered, (b, c) IMPT/SFUD of 5mm-expanded PTV optimization. Methods: Three planning techniques were optimized in Raystation with a prescription of 60/25 (Gy/fractions) and almost the same OAR constraints/objectives for each of 10 NSCLC patients. 4D dose without/with interplay effect was recalculated on eight 4D-CT phases and accumulated after deforming the dose of each phase to a reference (exhalation phase). The change of D98% of each CTV causedmore » by density changes and interplay was determined. In addition, evaluation of the DVH information vector (D99%, D98%, D95%, Dave, D50%, D2%, D1%) which compares the whole DVH by η score = (cosine similarity × Pearson correlation coefficient − 0.9) × 1000 quantified the degree of DVH change: score below 100 indicates changed DVH. Results: Three 3D plans of each technique satisfied our clinical goals. D98% shift mean±SD (Gy) due to density changes was largest in (c): −0.78±1.1 while (a): −0.11±0.65 and (b): − 0.59±0.93. Also the shift due to interplay effect most was (c): −.54±0.70 whereas (a): −0.25±0.93 and (b): −0.12±0.13. Moreover lowest η score caused by density change was also (c): 69, while (a) and (b) kept around 90. η score also indicated less effect of interplay than density changes. Note that generally the changed DVH were still acceptable clinically. Paired T-tests showed a significantly smaller density change effect in (a) (p<0.05) than in (b) or (c) and no significant difference in interplay effect. Conclusion: CTV-based robust optimized IMPT was more robust against respiratory motion induced density changes than PTV-based IMPT and SFUD. The interplay effect was smaller than the effect of density changes and similar among the three techniques. The JSPS Core-to-Core Program (No. 23003), Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (No. 23390300), Grant-in-Aid for Young Scientists (B) (No. 21791194) and Grant-in-Aid for Cancer Research (H22-3rd Term Cancer Control-General-043)« less
Porter; Eastman; Pace; Bradley
2000-09-01
Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Wurigen; Shashkov, Mikhail
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
NASA Astrophysics Data System (ADS)
Peresunko, A. P.; Zavadovskya, I. G.
2004-06-01
The paper deals with the studying of prognostic possibilities of determining the orientation structure of endometrial strome in the normal state and hiperplasia. The laser diagnostic of endometrial state is based on the principles of optical changes of laser radiation during its passing through the histological sample with the following investigation of its wavelet coefficients.
NASA Technical Reports Server (NTRS)
Richardson, David
2018-01-01
Model-Based Systems Engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases . This presentation will discuss the value proposition that MBSE has for Systems Engineering, and the associated culture change needed to adopt it.
Polydimethylsiloxane-based Self healing Composite and Coating Materials
2006-01-01
TGA thermogravimetric analysis TDCB tapered double cantilever beam RH relative humidity DMDN-Sn dimethyldineodacanoate tin DBBE-Sn di-n-butyl bis(2...properties of micro-capsules by thermogravimetric analysis (TGA). As shown in figure 2.17, no weight change occurred up to the boiling point of...Elemental analysis of separated prepolymer phase and control samples. ..............24 Table 2.4: The size values of phase separated PDMS droplets
A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs
NASA Astrophysics Data System (ADS)
Huber, Christian; Parmigiani, Andrea
2018-04-01
We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.
NASA Astrophysics Data System (ADS)
Petronijevic, Emilija; Sibilia, Concita
2017-05-01
Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng
2017-01-01
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation. PMID:28383017
Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics
NASA Technical Reports Server (NTRS)
Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John
1996-01-01
We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Variation in the Hearing Threshold in Women during the Menstrual Cycle
Souza, Dayse da Silva; Luckwu, Brunna; Andrade, Wagner Teobaldo Lopes de; Pessoa, Luciane Spinelli de Figueiredo; Nascimento, João Agnaldo do; Rosa, Marine Raquel Diniz da
2017-01-01
Introduction The hormonal changes that occur during the menstrual cycle and their relationship with hearing problems have been studied. However, they have not been well explained. Objective The objective of our study is to investigate the variation in hearing thresholds in women during the menstrual cycle. Method We conducted a cohort and longitudinal study. It was composed of 30 volunteers, aged 18–39 years old, of which 20 were women during the phases of the menstrual cycle and 10 were men (control group) who underwent audiometry and impedance exams, to correlate the possible audiological changes in each phase of the menstrual cycle. Results There were significant changes in hearing thresholds observed during the menstrual cycle phases in the group of women who used hormonal contraceptives and the group who did not use such contraceptives. Improved hearing thresholds were observed in the late follicular phase in the group who did not use hormonal contraceptives and the hearing thresholds at high frequencies were better. Throughout the menstrual cycle phases, the mean variation was 3.6 db HL between weeks in the group who used hormonal contraceptives and 4.09 db HL in the group who did not use them. Conclusions The present study found that there may be a relationship between hearing changes and hormonal fluctuations during the menstrual cycle based on changes in the hearing thresholds of women. In addition, this study suggests that estrogen has an otoprotective effect on hearing, since the best hearing thresholds were found when estrogen was at its maximum peak. PMID:29018493
Variation in the Hearing Threshold in Women during the Menstrual Cycle.
Souza, Dayse da Silva; Luckwu, Brunna; Andrade, Wagner Teobaldo Lopes de; Pessoa, Luciane Spinelli de Figueiredo; Nascimento, João Agnaldo do; Rosa, Marine Raquel Diniz da
2017-10-01
Introduction The hormonal changes that occur during the menstrual cycle and their relationship with hearing problems have been studied. However, they have not been well explained. Objective The objective of our study is to investigate the variation in hearing thresholds in women during the menstrual cycle. Method We conducted a cohort and longitudinal study. It was composed of 30 volunteers, aged 18-39 years old, of which 20 were women during the phases of the menstrual cycle and 10 were men (control group) who underwent audiometry and impedance exams, to correlate the possible audiological changes in each phase of the menstrual cycle. Results There were significant changes in hearing thresholds observed during the menstrual cycle phases in the group of women who used hormonal contraceptives and the group who did not use such contraceptives. Improved hearing thresholds were observed in the late follicular phase in the group who did not use hormonal contraceptives and the hearing thresholds at high frequencies were better. Throughout the menstrual cycle phases, the mean variation was 3.6 db HL between weeks in the group who used hormonal contraceptives and 4.09 db HL in the group who did not use them. Conclusions The present study found that there may be a relationship between hearing changes and hormonal fluctuations during the menstrual cycle based on changes in the hearing thresholds of women. In addition, this study suggests that estrogen has an otoprotective effect on hearing, since the best hearing thresholds were found when estrogen was at its maximum peak.
Digital holographic microscopy of phase separation in multicomponent lipid membranes
NASA Astrophysics Data System (ADS)
Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat
2016-12-01
Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.
Crystallographic evolution of MAX phases in proton irradiating environments
NASA Astrophysics Data System (ADS)
Ward, Joseph; Middleburgh, Simon; Topping, Matthew; Garner, Alistair; Stewart, David; Barsoum, Michel W.; Preuss, Michael; Frankel, Philipp
2018-04-01
This work represents the first use of proton irradiation to simulate in-core radiation damage in Ti3SiC2 and Ti3AlC2 MAX phases. Irradiation experiments were performed to 0.1 dpa at 350 °C, with a damage rate of 4.57 × 10-6 dpa s-1. The MAX phases displayed significant dimensional instabilities at the crystal level during irradiation leading to large anisotropic changes in lattice parameter, even at low damage levels. The instabilities were accompanied by a decomposition of the Ti-based MAX phases to their binary constituents, TiC. Experimentally observed changes in lattice parameter have been correlated with density functional theory modelling. The most energetically favourable and/or most difficult to recombine defects considered were an M-A antisite ({MA:AM}), and carbon Frenkel ({VC:Ci}). It is proposed that antisite defects, {MA:AM}, are the main contributor to the observed changes in lattice parameter. The proposed mechanism reported in this work potentially enables to design MAX phase compositions, which do not favour antisite defect accumulation. In addition, comparison between the experimental results and theoretical calculations shows that a greater amount of residual damage remains in Ti3AlC2 when compared to Ti3SiC2 after the same irradiation treatment.
Spectromicroscopic insights for rational design of redox-based memristive devices
Baeumer, Christoph; Schmitz, Christoph; Ramadan, Amr H. H.; Du, Hongchu; Skaja, Katharina; Feyer, Vitaliy; Müller, Philipp; Arndt, Benedikt; Jia, Chun-Lin; Mayer, Joachim; De Souza, Roger A.; Michael Schneider, Claus; Waser, Rainer; Dittmann, Regina
2015-01-01
The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably. PMID:26477940
Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Hensley, Scott; Chen, Curtis
2010-01-01
Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.
Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do
2014-01-01
This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.
Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.
2016-01-01
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342
Sharma, Ashwani Kumar; Gaikwad, Shailesh; Gupta, Vipul; Garg, Ajay; Mishra, Nalini K
2008-04-01
Since it was first described, normal pressure hydrocephalus (NPH) and its treatment by means of cerebrospinal fluid (CSF) shunting have been the focus of much investigation. Whatever be the cause of NPH, it has been hypothesized that in this disease there occurs decreased arterial expansion and an increased brain expansion leading to increased transmantle pressure. We cannot measure the latter, but fortunately the effect of these changes (increased peak flow velocity through the aqueduct) can be quantified with cine phase-contrast magnetic resonance imaging (MRI). This investigation was thus undertaken to characterize and measure CSF peak flow velocity at the level of the aqueduct, before and after lumbar CSF drainage, by means of a phase-contrast cine MRI and determine its role in selecting cases for shunt surgery. 37 patients with clinically suspected NPH were included in the study. Changes in the hyperdynamic peak CSF flow velocity with 50 ml lumbar CSF drainage (mimicking shunt) were evaluated in them for considering shunt surgery. 14 out of 15 patients who were recommended for shunt surgery, based on changes peak flow velocity after lumbar CSF drainage, improved after shunt surgery. None of the cases which were not recommended for shunt surgery, based on changes in CSF peak flow velocity after lumbar CSF drainage, improved after shunt surgery (2 out of 22 cases). The study concluded that the phase-contrast MR imaging, done before and after CSF drainage, is a sensitive method to support the clinical diagnosis of normal pressure hydrocephalus, selecting patients of NPH who are likely to benefit from shunt surgery, and to select patients of NPH who are not likely to benefit from shunt surgery.
Cooperative behavior and phase transitions in co-evolving stag hunt game
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.
2016-02-01
Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.
Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon
2013-09-06
Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.
Problem Based Learning: Cognitive and Metacognitive Processes during Problem Analysis.
ERIC Educational Resources Information Center
De Grave, W. S.; And Others
1996-01-01
To investigate whether problem-based learning leads to conceptual change, the cognitive and metacognitive processes of a group of medical students were studied during the problem analysis phase, and their verbal communication and thinking processes were analyzed. Stimulated recall of the thinking process during the discussion detected a conceptual…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botvinick, E.H.; Frais, M.A.; Shosa, D.W.
1982-08-01
The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less
Tunable optical filter based on Sagnac phase-shift using single optical ring resonator
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Asghari, Fatemeh
2010-02-01
In this paper, a single optical ring resonator connected to a Sagnac loop is used to demonstrate theoretically a novel narrow band optical filter response that is based on Sagnac phase-shift Δ φ. The given filter structure permits the Sagnac rotation to control the filter response. It is shown that by changing the Sagnac rotation rate, we can tune the filter response for desired bandwidths. To increase the wavelength selectivity of the filter, the Sagnac phase-shift should be as small as possible that is limited by the loop length. For Δ φ=0.1 rad, the obtained FWHM is 2.63 MHz for tuning loop length of 2 m. The simulation response agrees fairly with the recently reported experimental result.
A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector
NASA Astrophysics Data System (ADS)
Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.
2016-09-01
In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.
LST phase A design update study
NASA Technical Reports Server (NTRS)
1973-01-01
An update is presented of the Phase A study of the Large Space Telescope (LST), based on changes in guidelines and new data developed subsequent to the Phase A study. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. A low cost design approach was followed. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and sharing of shuttle maintenance flights with other payloads (See N73-18449 through N73-18453)
The Africa Yoga Project and Well-Being: A Concept Map of Students' Perceptions.
Giambrone, Carla A; Cook-Cottone, Catherine P; Klein, Jessalyn E
2018-03-01
Concept mapping methodology was used to explore the perceived impact of practicing yoga with the Africa Yoga Project (AYP)-an organisation created to increase health and well-being by providing community-based yoga classes throughout Kenya. AYP's mission fit with theoretical models of well-being is discussed. Anecdotal evidence and initial qualitative research suggested the AYP meaningfully impacted adult students. Of the hundreds of AYP's adult students, 56 and 82 students participated in Phases I and II, respectively. Phase I brainstorming resulted in 94 student-generated statements about their perceived change. Phase II participants sorted and rated statements in terms of importance. Multidimensional scaling and hierarchical cluster analysis of sort data was utilised to map and group statements into clusters. Based on statistical and interpretive criteria, a five-cluster solution with the following concepts was identified as the best model of students' change: Personal Growth; Interpersonal Effectiveness (lowest importance); Physical and Social Benefits; Emotional Resiliency; and Improved Self-Concept (highest importance). Overall, students reported positive perceptions of the AYP. Additional research is needed to quantify students' change, and to compare the AYP outcomes to those of other programs aimed at poverty-related stress reduction and well-being. © 2018 The International Association of Applied Psychology.
Yousefzadeh, Behrooz; Hodgson, Murray
2012-09-01
A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.
Simultaneous ultra-long data retention and low power based on Ge10Sb90/SiO2 multilayer thin films
NASA Astrophysics Data System (ADS)
You, Haipeng; Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Song, Sannian; Song, Zhitang
2018-02-01
In this article, Ge10Sb90/SiO2 multilayer thin films were prepared to improve thermal stability and data retention for phase change memory. Compared with Ge10Sb90 monolayer thin film, Ge10Sb90 (1 nm)/SiO2 (9 nm) multilayer thin film had higher crystallization temperature and resistance contrast between amorphous and crystalline states. Annealed Ge10Sb90 (1 nm)/SiO2 (9 nm) had uniform grain with the size of 15.71 nm. After annealing, the root-mean-square surface roughness for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film increased slightly from 0.45 to 0.53 nm. The amorphization time for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film (2.29 ns) is shorter than Ge2Sb2Te5 (3.56 ns). The threshold voltage of a cell based on Ge10Sb90 (1 nm)/SiO2 (9 nm) (3.57 V) was smaller than GST (4.18 V). The results indicated that Ge10Sb90/SiO2 was a promising phase change thin film with high thermal ability and low power consumption for phase change memory application.
NASA Astrophysics Data System (ADS)
Bobela, David C.
Recent technological applications of some chalcogenide materials, compounds containing a group VI atom, have prompted studies of the local atomic structure of the amorphous phase. In the case of Ge2Sb2Te 5, metastability in the local bonding structure is responsible for its usefulness as a phase-change memory material. There is no consensus on the exact phase-change mechanism, which is partly due to the inadequacy of standard scattering techniques to probe the structure of the amorphous phase. Nuclear magnetic resonance methods, on the other hand, are well suited to study local structural order even in the absence of a periodic lattice. In this technique, structural information is encoded as an oscillating voltage caused by the nuclear spin. For the tellurium isotope, 125Te (spin = 1/2 in the ground state), the dominant interaction comes from the core and valence electrons that carry angular momentum. This interaction is helpful in identifying Te sites of different local coordination since the number of neighboring atoms should markedly change the local electronic structure. The antimony isotope 125Sb has a spin = 5/2 in the ground state and possesses an asymmetric nuclear charge. This quadrupole moment will interact with an electric field gradient at the nuclear site, which is provided by an asymmetric electron cloud surrounding the nucleus. The frequency-space spectra will reflect the strength of the interaction as well as the symmetry of the local electronic environment. This work investigates the nuclear magnetic resonance spectrum of 125Te and 125Sb in the crystalline and amorphous forms of several GexSbyTe 1-x-y compounds where 0 < (x, y) < 1. Results from the crystalline phase 125Te data show a trend in the spectral position that can be related to the tellurium bonded to three and six neighbors. In the amorphous phase, the same trend is observed, and the nuclear magnetic resonance fingerprint of two-fold and three-fold coordinated tellurium is obtained. It is concluded, based upon this comparison that the Te atoms see a dramatically different bonding environment depending on which phase the lattice has. The 125Sb data for the crystalline phase indicate electric field gradients that are consistent with similarly bonded quadrupolar nuclei, such as Sb atoms in crystalline Sb or five-fold coordinated Sb in crystalline MnSb. The NMR data exemplify the consequences of combinatorial disorder on the spectra via the absence of certain line-shape features. In the amorphous phase, the electric field gradients are approximately seven times larger, and the fingerprints of both highly-symmetric and asymmetric antimony sites emerge. Details of field gradient, i.e. the magnitude and symmetry, are remarkably similar to those found in Sb containing compounds where the Sb sites are three-fold pyramidal, such as in crystalline Sb2X3 where X = O, S, or Se. The observations from the NMR data provide a critical litmus test for recent structural models of the amorphous phase. In particular, the amorphous phase data provides clear evidence that the Te atoms are two-fold and three-fold coordinated while the Sb atoms are most likely bonded in three-fold pyramidal configurations. These observations imply a structural model of the amorphous phase that agrees best with a models based upon the "8 minus n", or "8-n" rule for chemical bonding in amorphous semiconductors. Thus, the lattice of these compounds is arranged such that the constituent elements have enough bonds, on average, to satisfy their valence requirement. The implications of the NMR data on theoretical modeling data are immediate. Theoretical models of these systems must possess some aspect of the "8-n" mentality. With this idea as a foundation for physically realistic representations of the amorphous phase, the origin of the phase-change mechanism may be unraveled, which will ultimately speed the process of compositional optimization of phase-change materials.
Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.
Asaoka, Yoshiji; Togashi, Yuko; Mutsuga, Mayu; Imura, Naoko; Miyoshi, Tomoya; Miyamoto, Yohei
2016-04-01
Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristov, Andrey I.; Kabashin, Andrei V., E-mail: kabashin@lp3.univ-mrs.fr; Zywietz, Urs
2014-02-17
By using methods of laser-induced transfer combined with nanoparticle lithography, we design and fabricate large-area gold nanoparticle-based metamaterial arrays exhibiting extreme Heaviside-like phase jumps in reflected light due to a strong diffractive coupling of localized plasmons. When employed in sensing schemes, these phase singularities provide the sensitivity of 5 × 10{sup 4} deg. of phase shift per refractive index unit change that is comparable with best values reported for plasmonic biosensors. The implementation of sensor platforms on the basis of such metamaterial arrays promises a drastic improvement of sensitivity and cost efficiency of plasmonic biosensing devices.
Flat dielectric metasurface lens array for three dimensional integral imaging
NASA Astrophysics Data System (ADS)
Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong
2018-05-01
In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.
2013-01-01
In this study, different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (selected as phase change material) with nanoparticles using the direct-synthesis method. The thermal properties of the nanofluids obtained were investigated. These nanofluids can be used in concentrating solar plants with a reduction of storage material if an improvement in the specific heat is achieved. The base salt mixture was a NaNO3-KNO3 (60:40 ratio) binary salt. The nanoparticles used were silica (SiO2), alumina (Al2O3), titania (TiO2), and a mix of silica-alumina (SiO2-Al2O3). Three weight fractions were evaluated: 0.5, 1.0, and 1.5 wt.%. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements on thermophysical properties were performed by differential scanning calorimetry analysis and the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM). The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of 15% to 57% in the solid phase and of 1% to 22% in the liquid phase. In particular, this research shows that the addition of silica-alumina nanoparticles has a significant potential for enhancing the thermal storage characteristics of the NaNO3-KNO3 binary salt. These results deviated from the predictions of the theoretical model used. SEM suggests a greater interaction between these nanoparticles and the salt. PMID:24168168
Phase-change materials handbook
NASA Technical Reports Server (NTRS)
Hale, D. V.; Hoover, M. J.; Oneill, M. J.
1972-01-01
Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.
Experimental study on thermal storage performance of binary mixtures of fatty acids
NASA Astrophysics Data System (ADS)
Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu
2018-02-01
We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.
Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage
Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.
2007-01-01
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winseck, M. M.; Cheng, H. -Y.; Campbell, G. H.
2016-03-30
GeSb 6Te is a chalcogenide-based phase change material that has shown great ptoential for use in solid-state memory devices. The crystallization kinetics of amorphous thin films of GeSb 6Te during laser crystallization were followed with dynamic transmission electron microscopy, a photo-emission electron microscopy technique with nanosecond-scale time resolution. Nine-frame movies of crystal growth were taken during laser crystallization. The nucleation rate is observed to be very low and the growth rates are very high, up to 10.8 m s –1 for amorphous as-deposited films and significantly higher for an amorphous film subject to sub-threshold laser annealing before crystallization. The measuredmore » growth rates exceed any directly measured growth rate of a phase change material. Here, the crystallization is reminiscent of explosive crystallization of elemental semiconductors both in the magnitude of the growth rate and in the resulting crystalline microstructures.« less
NASA Astrophysics Data System (ADS)
Wang, Lei; Wright, C. David; Aziz, Mustafa. M.; Yang, Ci Hui; Yang, Guo Wei
2014-11-01
The capping layer and the probe tip that serve as the protective layer and the recording tool, respectively, for phase-change probe memory play an important role on the writing performance of phase-change probe memory, thus receiving considerable attention. On the other hand, their influence on the readout performance of phasechange probe memory has rarely been reported before. A three-dimensional parametric study based on the Laplace equation was therefore conducted to investigate the effect of the capping layer and the probe tip on the resulting reading contrast for the two cases of reading a crystalline bit from an amorphous matrix and reading an amorphous bit from a crystalline matrix. The results indicated that a capping layer with a thickness of 2 nm and an electrical conductivity of 50 Ω-1m-1 is able to provide an appropriate reading contrast for both the cases, while satisfying the previous writing requirement, particularly with the assistance of a platinum silicide probe tip.
NASA Technical Reports Server (NTRS)
Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert
1987-01-01
Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.
Subscale Water Based Phase Change Material Heat Exchanger Development
NASA Technical Reports Server (NTRS)
Sheth, Rubik; Hansen, Scott
2016-01-01
Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.
The development of Drink Less: an alcohol reduction smartphone app for excessive drinkers.
Garnett, Claire; Crane, David; West, Robert; Brown, Jamie; Michie, Susan
2018-05-04
Excessive alcohol consumption poses a serious problem for public health. Digital behavior change interventions have the potential to help users reduce their drinking. In accordance with Open Science principles, this paper describes the development of a smartphone app to help individuals who drink excessively to reduce their alcohol consumption. Following the UK Medical Research Council's guidance and the Multiphase Optimization Strategy, development consisted of two phases: (i) selection of intervention components and (ii) design and development work to implement the chosen components into modules to be evaluated further for inclusion in the app. Phase 1 involved a scoping literature review, expert consensus study and content analysis of existing alcohol apps. Findings were integrated within a broad model of behavior change (Capability, Opportunity, Motivation-Behavior). Phase 2 involved a highly iterative process and used the "Person-Based" approach to promote engagement. From Phase 1, five intervention components were selected: (i) Normative Feedback, (ii) Cognitive Bias Re-training, (iii) Self-monitoring and Feedback, (iv) Action Planning, and (v) Identity Change. Phase 2 indicated that each of these components presented different challenges for implementation as app modules; all required multiple iterations and design changes to arrive at versions that would be suitable for inclusion in a subsequent evaluation study. The development of the Drink Less app involved a thorough process of component identification with a scoping literature review, expert consensus, and review of other apps. Translation of the components into app modules required a highly iterative process involving user testing and design modification.
Confirmation of a change in the global shear velocity pattern at around 1000 km depth
NASA Astrophysics Data System (ADS)
Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S.
2017-12-01
In this study, we confirm the existence of a change in the shear velocity spectrum around 1000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross-coupling structure coefficients of spheroidal normal modes and body wave traveltimes which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e. richest in 'short' wavelengths corresponding to spherical harmonic degrees greater than 10) around 1000 km depth and this flattening occurs between 670 and 1500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1000 km depth where we also observed the upper boundary of Large Low Shear Velocity Provinces. The existence of a flatter spectrum, richer in short-wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.
Impact of Disorder on the Superconducting Phase Diagram in BaFe2(As1-xPx)2
NASA Astrophysics Data System (ADS)
Mizukami, Yuta; Konczykowski, Marcin; Matsuura, Kohei; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada
2017-08-01
In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue is to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe2(As1-xPx)2 changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature Tc is depressed at high concentrations (x ≳ 0.28), it shows an initial increase at lower x. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-Tc family.
Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits
NASA Astrophysics Data System (ADS)
Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.
2017-05-01
Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Jin, Di; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Due to the large number of available mirrors, the patterning speed, low-cost, and compactness, digital-micromirror devices (DMDs) have been extensively used in biomedical imaging system. Recently, DMDs have been brought to the quantitative phase microscopy (QPM) field to achieve synthetic-aperture imaging and tomographic imaging. Last year, our group demonstrated using DMD for QPM, where the phase-retrieval is based on a recently developed Fourier ptychography algorithm. In our previous system, the illumination angle was varied through coding the aperture plane of the illumination system, which has a low efficiency on utilizing the laser power. In our new DMD-based QPM system, we use the Lee-holograms, which is conjugated to the sample plane, to change the illumination angles for much higher power efficiency. Multiple-angle illumination can also be achieved with this method. With this versatile system, we can achieve FPM-based high-resolution phase imaging with 250 nm lateral resolution using the Rayleigh criteria. Due to the use of a powerful laser, the imaging speed would only be limited by the camera acquisition speed. With a fast camera, we expect to achieve close to 100 fps phase imaging speed that has not been achieved in current FPM imaging systems. By adding reference beam, we also expect to achieve synthetic-aperture imaging while directly measuring the phase of the sample fields. This would reduce the phase-retrieval processing time to allow for real-time imaging applications in the future.
Lehman, Wayne E K; Simpson, D Dwayne; Knight, Danica K; Flynn, Patrick M
2011-06-01
Sustained and effective use of evidence-based practices in substance abuse treatment services faces both clinical and contextual challenges. Implementation approaches are reviewed that rely on variations of plan-do-study-act (PDSA) cycles, but most emphasize conceptual identification of core components for system change strategies. A two-phase procedural approach is therefore presented based on the integration of Texas Christian University (TCU) models and related resources for improving treatment process and program change. Phase 1 focuses on the dynamics of clinical services, including stages of client recovery (cross-linked with targeted assessments and interventions), as the foundations for identifying and planning appropriate innovations to improve efficiency and effectiveness. Phase 2 shifts to the operational and organizational dynamics involved in implementing and sustaining innovations (including the stages of training, adoption, implementation, and practice). A comprehensive system of TCU assessments and interventions for client and program-level needs and functioning are summarized as well, with descriptions and guidelines for applications in practical settings. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu
2017-05-31
Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.
Cramp, A G; Brawley, L R
2009-09-01
The objective of the current investigation was to examine if the effects of a group-mediated cognitive behavioural counselling plus exercise intervention were superior to the effects of a standard exercise care condition on postnatal mothers' self-regulatory efficacy (SRE), outcome expectations (OEs) and self-directed physical activity (PA). The design of the study consisted of two intervention conditions; group-mediated cognitive behavioural counselling plus exercise (GMCB) and standard exercise (SE). Each condition consisted of two phases; a 4-week supervised, centre-based intensive exercise training phase followed by a 4-week home-based phase. Participants were 57 postnatal women randomly assigned to conditions (SE: N=31; GMCB: N=26). Measures of SRE and OEs were assessed prior to and following the centre-based aspect of the intervention. Physical activity was measured following the intensive exercise training phase as well as the home-based phase. GMCB participants' SRE and OEs were sustained during the intervention whereas those of SE participants declined. GMCB participants also reported significantly greater time spent engaging in self-directed PA at the conclusion of the intensive and home-based phases. Mediation analysis revealed that SRE partially mediated the relationship between intervention condition and post home-based PA as confirmed by a significant sobel test. These findings suggest that a theory-based GMCB counselling plus exercise intervention is superior to the SE condition in sustaining SRE and OEs, and in promoting greater self-directed PA. SRE partially mediated the relationship between intervention condition and post home-based PA supporting the targeting of that variable for change as part of the intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabardi, Silvia; Caravati, Sebastiano; Bernasconi, Marco, E-mail: marco.bernasconi@mater.unimib.it
2016-05-28
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In{sub 3}SbTe{sub 2} compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtainedmore » with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge{sub 2}Sb{sub 2}Te{sub 5} phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.« less
a Thermal Conduction Switch Based on Low Hysteresis Nitife Shape Memory Alloy Helical Springs
NASA Astrophysics Data System (ADS)
Krishnan, V. B.; Bewerse, C.; Notardonato, W. U.; Vaidyanathan, R.
2008-03-01
Shape memory alloy (SMA) actuators possess an inherent property of sensing a change in temperature and delivering significant force against external loads through a shape change resulting from a temperature-induced phase transformation. The utilization of a reversible trigonal (R-phase) to cubic phase transformation in NiTiFe SMAs allows for this strain recovery to occur with reduced hysteresis between the forward and reverse transformations. However, the magnitude of the strain recovery associated with the R-phase transformation is lower than that of the monoclinic to cubic phase transformation. The use of helical springs can compensate for this design constraint as they produce significant stroke when compared to straight elements such as thin strips and wires. This work reports on the development and implementation of NiTiFe helical springs in a low-hysteresis thermal conduction switch for advanced spaceport applications associated with NASA's requirements for future lunar and Mars missions. Such a low-hysteresis thermal conduction switch can provide on-demand heat transfer between two reservoirs at different temperatures.
Wavelet filtered shifted phase-encoded joint transform correlation for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.
Photonic Multitasking Interleaved Si Nanoantenna Phased Array.
Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L
2016-12-14
Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.
Predicting neural network firing pattern from phase resetting curve
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel; Oprisan, Ana
2007-04-01
Autonomous neural networks called central pattern generators (CPG) are composed of endogenously bursting neurons and produce rhythmic activities, such as flying, swimming, walking, chewing, etc. Simplified CPGs for quadrupedal locomotion and swimming are modeled by a ring of neural oscillators such that the output of one oscillator constitutes the input for the subsequent neural oscillator. The phase response curve (PRC) theory discards the detailed conductance-based description of the component neurons of a network and reduces them to ``black boxes'' characterized by a transfer function, which tabulates the transient change in the intrinsic period of a neural oscillator subject to external stimuli. Based on open-loop PRC, we were able to successfully predict the phase-locked period and relative phase between neurons in a half-center network. We derived existence and stability criteria for heterogeneous ring neural networks that are in good agreement with experimental data.
Estreet, Anthony; Apata, Jummai; Kamangar, Farin; Schutzman, Christine; Buccheri, Jane; O'Keefe, Anne-Marie; Wagner, Fernando; Sheikhattari, Payam
2017-01-01
This study compares participant' sretention in three phases of smoking cessation interventions, one provided in a health clinic and the subsequent two in community-based settings. Smoking cessation interventions were conducted in three phases from 2008 to 2015 in two underserved urban communities with low socioeconomic profiles and high rates of smoking ( n = 951). Phase I was conducted in a clinic; Phases II and III were conducted in community venues. In Phases II and III, incremental changes were made based on lessons learned from the previous phases. Retention (attending six or more sessions) was the primary predictor of cessation and was analyzed while controlling for associated factors including age, gender, race, employment, education, and nicotine dependence. Retention increased substantially over the three phases, with rates for attending six or more sessions of 13.8%, 51.9%, and 67.9% in Phases I, II, and III, respectively. Retention was significantly higher in community settings than in the clinic setting (adjusted odds ratio [OR] = 6.7; 95% confidence intervals [CI] = 4.6, 9.8). In addition to the intervention in community venues, predictors of retention included age and unemployment. Higher retention was significantly associated with higher quit rates (adjusted OR = 2.4; 95% CI = 1.5, 3.8). Conducting the intervention in community settings using trained peer motivators rather than health-care providers resulted in significantly higher retention and smoking cessation rates. This was due in part to the ability to tailor cessation classes in the community for specific populations and improving the quality of the intervention based on feedback from participants and community partners.
NASA Technical Reports Server (NTRS)
Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.
2001-01-01
A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.
PI and repetitive control for single phase inverter based on virtual rotating coordinate system
NASA Astrophysics Data System (ADS)
Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang
2018-03-01
Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Mousavi, Seyed Mortaza; Adamoğlu, Ahmet; Demiralp, Tamer; Shayesteh, Mahrokh G
2014-01-01
Awareness during general anesthesia for its serious psychological effects on patients and some juristically problems for anesthetists has been an important challenge during past decades. Monitoring depth of anesthesia is a fundamental solution to this problem. The induction of anesthesia alters frequency and mean of amplitudes of the electroencephalogram (EEG), and its phase couplings. We analyzed EEG changes for phase coupling between delta and alpha subbands using a new algorithm for depth of general anesthesia measurement based on complex wavelet transform (CWT) in patients anesthetized by Propofol. Entropy and histogram of modulated signals were calculated by taking bispectral index (BIS) values as reference. Entropies corresponding to different BIS intervals using Mann-Whitney U test showed that they had different continuous distributions. The results demonstrated that there is a phase coupling between 3 and 4 Hz in delta and 8-9 Hz in alpha subbands and these changes are shown better at the channel T 7 of EEG. Moreover, when BIS values increase, the entropy value of modulated signal also increases and vice versa. In addition, measuring phase coupling between delta and alpha subbands of EEG signals through continuous CWT analysis reveals the depth of anesthesia level. As a result, awareness during anesthesia can be prevented.
Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi
2014-10-20
The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.
Fowler, J Christopher; Ackerman, Steven J; Speanburg, Stefanie; Bailey, Adrian; Blagys, Matthew; Conklin, Adam C
2004-12-01
In this study, we examined global treatment outcomes during 16 months of intensive, psychodynamic treatment for 77 inpatients suffering from treatment-refractory disorders. Hypotheses based on the phase model of treatment change (Howard, Lueger, Maling, & Martinovich, 1993; Howard, Moras, Brill, Martinovich, & Lutz, 1996) were supported in the study results. Diagnostic and Statistical Manual of Mental Disorders (4th ed.; American Psychiatric Association, 1994) Axis V scales assessing behavioral functioning demonstrated large and medium effect size change, whereas stable, enduring personality functioning assessed by psychoanalytic Rorschach scales and the Social Cognition and Object Relations Scale (Westen, 1995) for the Thematic Apperception Test (Murray, 1943) demonstrated small and medium effect size change. We also report assessment of reliable change index and clinical significance. The ecological validity of Rorschach measures is supported by significant validity coefficients (in the hypothesized directions) between implicit measures of personality functioning and behavioral ratings.
Dimensionality effects in chalcogenide-based devices
NASA Astrophysics Data System (ADS)
Kostylev, S. A.
2013-06-01
The multiplicity of fundamental bulk effects with small characteristic dimensions and short times and diversity of their combinations attracts a lot of researcher and industrialist attention in nanoelectronics and photonics to chalcogenide materials. Experimental data presented on dimensional effects of electrical chalcogenide switching (threshold voltage and threshold current dependence on device area and the film thickness), and in phase-change memory (switching, programming and read parameters), are analyzed from the point of view of choice of low dimensional materials with S-NDC and participation of electrical instabilities - high current density filaments. New ways of improving parameters of phase-change devices are proposed together with new criteria of material choice.
Mantle convection with plates and mobile, faulted plate margins.
Zhong, S; Gurnis, M
1995-02-10
A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.
Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy
NASA Astrophysics Data System (ADS)
Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi
2018-01-01
2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.
NASA Astrophysics Data System (ADS)
Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2014-03-01
The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.
Schaeffler-Type Phase Diagram of Ti-Based Alloys
NASA Astrophysics Data System (ADS)
Ishida, K.
2017-10-01
The α(hcp)/β(bcc) phase equilibria of Ti-based multi-component alloys can be described by a Schaeffler-type diagram, where Al and Mo equivalents (Aleq and Moeq) are used. Aleq is thermodynamically defined by the ratio of partial molar free energy changes transfer of one mole of each α forming element and Al from a dilute solution of α to β phases, while Moeq is also deduced by similar thermodynamic quantities of β forming element and Mo. Aleq and Moeq for 40 alloying elements are estimated from the thermodynamic parameters assessed by Kaufman and Murray. It is shown that three types of Ti alloys, i.e., α and near α, α+β, and β alloys, can be exactly classified using Aleq and Moeq. The Ms and β transus temperatures can also be predicted by Aleq and Moeq. The proposed Aleq and Moeq are very useful for alloy design, heat treatment, and microstructural evolution of Ti-based alloys.
Quantum Hall bilayer as pseudospin magnet
NASA Astrophysics Data System (ADS)
Kyriienko, O.; Wierschem, K.; Sengupta, P.; Shelykh, I. A.
2015-03-01
We revisit the physics of electron gas bilayers in the quantum Hall regime (MacDonald A. and Eisenstein J., Nature, 432 (2004) 691; Eisenstein J., Science, 305 (2004) 950), where transport and tunneling measurements provided evidence of a superfluid phase being present in the system. Previously, this behavior was explained by the possible formation of a BEC of excitons in the half-filled electron bilayers, where empty states play the role of holes. We discuss the fundamental difficulties with this scenario, and propose an alternative approach based on a treatment of the system as a pseudospin magnet. We show that the experimentally observed tunneling peak can be linked to the XY ferromagnet (FM) to Ising antiferromagnet (AFM) phase transition of the S = 1/2 XXZ pseudospin model, driven by the change in total electron density. This transition is accompanied by a qualitative change in the nature of the low-energy spin wave dispersion from a gapless linear mode in the XY-FM phase to a gapped, quadratic mode in the Ising AFM phase.
Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay
2017-06-01
We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.
Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay
2018-05-01
We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.
NASA Astrophysics Data System (ADS)
Nagasaka, Y.; Brimacombe, J. K.; Hawbolt, E. B.; Samarasekera, I. V.; Hernandez-Morales, B.; Chidiac, S. E.
1993-04-01
A mathematical model, based on the finite-element technique and incorporating thermo-elasto-plastic behavior during the water spray quenching of steel, has been developed. In the model, the kinetics of diffusion-dependent phase transformation and martensitic transformation have been coupled with the transient heat flow to predict the microstructural evolution of the steel. Furthermore, an elasto-plastic constitutive relation has been applied to calculate internal stresses resulting from phase changes as well as temperature variation. The computer code has been verified for internal consistency with previously published results for pure iron bars. The model has been applied to the water spray quenching of two grades of steel bars, 1035 carbon and nickel-chromium alloyed steel; the calculated temperature, hardness, distortion, and residual stresses in the bars agreed well with experimental measurements. The results show that the phase changes occurring during this process affect the internal stresses significantly and must be included in the thermomechanical model.
Numerical simulation of CdTe vertical Bridgman growth
NASA Astrophysics Data System (ADS)
Ouyang, Hong; Shyy, Wei
1997-04-01
Numerical simulation has been conducted for steady-state Bridgman growth of the CdTe crystal with two ampoule configurations, namely, flat base and semi-spherical base. The present model accounts for conduction, convection and radiation, as well as phase change dynamics. The enthalpy formulation for phase change has been incorporated into a pressure-based algorithm with multi-zone curvilinear grid systems. The entire system which consists of the furnace enclosure wall, the encapsulated gas and the ampoule, contains irregularly configured domains. To meet the competing needs of producing accurate solutions with reasonable computing resources, a two-level approach is employed. The present study reveals that although the two ampoule configurations are quite different, their influence on the melt-solid interface shape is modest, and the undesirable concave interface appears in both cases. Since the interface shape strongly depends on thermal conductivities between the melt and the crystal, as well as ampoule wall temperature, accurate prescriptions of materials transport properties and operating environment are crucial for successful numerical predictions.
Making Predictions in a Changing World: The Benefits of Individual-Based Ecology
Stillman, Richard A.; Railsback, Steven F.; Giske, Jarl; Berger, Uta; Grimm, Volker
2014-01-01
Ecologists urgently need a better ability to predict how environmental change affects biodiversity. We examine individual-based ecology (IBE), a research paradigm that promises better a predictive ability by using individual-based models (IBMs) to represent ecological dynamics as arising from how individuals interact with their environment and with each other. A key advantage of IBMs is that the basis for predictions—fitness maximization by individual organisms—is more general and reliable than the empirical relationships that other models depend on. Case studies illustrate the usefulness and predictive success of long-term IBE programs. The pioneering programs had three phases: conceptualization, implementation, and diversification. Continued validation of models runs throughout these phases. The breakthroughs that make IBE more productive include standards for describing and validating IBMs, improved and standardized theory for individual traits and behavior, software tools, and generalized instead of system-specific IBMs. We provide guidelines for pursuing IBE and a vision for future IBE research. PMID:26955076
Luppens, James A.; Janke, Louis G.; McCord, Jamey D.; Bullock, John H.; Brazeau, Lisa; Affronter, Ronald H.
2007-01-01
A performance audit of the U.S. Geological Survey (USGS), Energy Resource Program (ERP) Inorganic Geochemistry Laboratory (IGL) was conducted between August, 2003 and October, 2005. The goals were to ensure that a high level of analytical performance was maintained and identify any areas that could be enhanced. The audit was subdivided into three phases. Phase 1 was a preliminary assessment of current performance based on recent performance on CANSPEX samples. IGL performance was also compared to laboratories world-wide with similar scope. Phase 2 consisted of the implementation of the recommended changes made in Phase 1. Phase 3 of the audit consisted of a reassessment effort to evaluate the effectiveness of the recommendations made in the Phase 1 and an on-site audit of the laboratory facilities. Phases 1 and 3 required summary reports that are included in Appendices A and B of this report. The audit found that the IGL was one of the top two laboratories compared for trace element analyses. Several recommendations to enhance performance on major and minor elemental parameters were made and implemented. Demonstrated performance improvements as a result of the recommended changes were documented. Several initiatives to sustain the performance improvements gained from the audit have been implemented.
NASA Astrophysics Data System (ADS)
Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.
2017-05-01
Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.
Development of theory-based health messages: three-phase programme of formative research
Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F. Alexandra; Sheeran, Paschal
2015-01-01
Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions. PMID:24504361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H.; Lee, S.M.; Lee, J.Y.
1999-10-01
AB{sub 2} type Zr-based Laves phase alloys have been studied for possible use as negative electrodes of Ni/MH batteries with high hydrogen storage capacity. However, these alloys have the serious problem of slow activation owing to the formation of surface oxide films. To overcome this problem, alloys with multiphase microstructures have been developed. These alloys become electrochemically active via the creation of micropores by the dissolution of soluble oxide components such as vanadium oxide. However, this phenomenon has been described based only on changes in the chemical composition of the oxide layer. In the present study, this phenomenon is approachedmore » with respect to interactions between the constituent phases. An electrochemical analysis of constituent phases showed that the second phase, resulting in localized Ni-rich pits on the alloy surface. The presence of microcracks at the periphery of the Ni-rich pits after 30 h exposure to KOH electrolyte implies that hydrogen is absorbed preferentially at Ni-rich pits, thereby forming a large active surface area. However, such multiphase alloys have poor cycle durability due to the persistent dissolution of components in the second phase. Through Cr substitution, the authors have developed a family of durable alloys to prevent this unwanted dissolution from the second phase.« less
Mishra, Raghavendra; Barnwal, Amit Kumar
2015-05-01
The Telecare medical information system (TMIS) presents effective healthcare delivery services by employing information and communication technologies. The emerging privacy and security are always a matter of great concern in TMIS. Recently, Chen at al. presented a password based authentication schemes to address the privacy and security. Later on, it is proved insecure against various active and passive attacks. To erase the drawbacks of Chen et al.'s anonymous authentication scheme, several password based authentication schemes have been proposed using public key cryptosystem. However, most of them do not present pre-smart card authentication which leads to inefficient login and password change phases. To present an authentication scheme with pre-smart card authentication, we present an improved anonymous smart card based authentication scheme for TMIS. The proposed scheme protects user anonymity and satisfies all the desirable security attributes. Moreover, the proposed scheme presents efficient login and password change phases where incorrect input can be quickly detected and a user can freely change his password without server assistance. Moreover, we demonstrate the validity of the proposed scheme by utilizing the widely-accepted BAN (Burrows, Abadi, and Needham) logic. The proposed scheme is also comparable in terms of computational overheads with relevant schemes.
On-Ice Return-to-Hockey Progression After Anterior Cruciate Ligament Reconstruction.
Capin, Jacob J; Behrns, William; Thatcher, Karen; Arundale, Amelia; Smith, Angela Hutchinson; Snyder-Mackler, Lynn
2017-05-01
Synopsis The literature pertaining to the rehabilitation of ice hockey players seeking to return to sport after anterior cruciate ligament reconstruction (ACLR) is currently limited. The purpose of this clinical commentary was to present a criterion-based progression for return to ice hockey for athletes after ACLR. First, we review pertinent literature and provide previously published guidelines on general rehabilitation after ACLR. Then, we present a 4-phase, on-ice skating progression with objective criteria to initiate each phase. During the early on-ice phase, the athlete is reintroduced to specific demands, including graded exposure to forward, backward, and crossover skating. In the intermediate on-ice phase, the emphasis shifts to developing power and introducing anticipated changes of direction within a controlled environment. During the late on-ice phase, the focus progresses to developing anaerobic endurance and introducing unanticipated changes of direction, but still without other players or contact. Finally, once objective return-to-sport criteria are met, noncontact team drills, outnumbered and even-numbered drills, practices, scrimmages, and games are progressively reintroduced during the return-to-sport phase. Recommendations for off-ice strength and conditioning exercises complement the on-ice progression. Additionally, we apply the return-to-hockey progression framework to a case report of a female collegiate defensive ice hockey player who returned to sport successfully after ACLR. This criterion-based return-to-hockey progression may guide rehabilitation specialists managing athletes returning to ice hockey after ACLR. J Orthop Sports Phys Ther 2017;47(5):324-333. Epub 29 Mar 2017. doi:10.2519/jospt.2017.7245.
The construction phase’s influence to the moving ability of cross-sections of woven structure
NASA Astrophysics Data System (ADS)
Inogamdjanov, D.; Daminov, A.; Kasimov, O.
2017-10-01
The purpose of this study is to work out bases to predict properties for single layer flat woven fabrics depending on changes of construction phases. A structural model of cross-section of single layered fabric is described based on the Pierce’s model. Form transformation of the yarn like straight, semi-arch and arch yarn is considered according to the alteration of yarn tension under the theory of Novikov. The value contributions to movement index of warp and weft yarn and their total moving ability in cross-sections at all structure phases of fabric are summarized.
Crystal growth within a phase change memory cell.
Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel
2014-07-07
In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.
Possible impacts of climate change on natural vegetation in Saxony (Germany).
Chmielewski, Frank M; Müller, Antje; Küchler, Wilfried
2005-11-01
Recent climate changes have had distinct impacts on plant development in many parts of the world. Higher air temperatures, mainly since the end of the 1980s, have led to advanced timing of phenological phases and consequently to an extension of the general growing season. For this reason it is interesting to know how plants will respond to future climate change. In this study simple phenological models have been developed to estimate the impact of climate change on the natural vegetation in Saxony. The estimations are based on a regional climate scenario for the state of Saxony. The results indicate that changes in the timing of phenophases could continue in the future. Due to distinct temperature changes in winter and in summer, mainly the spring and summer phases will be advanced. Spring phenophases, such as leafing or flowering, show the strongest trends. Depending on the species, the average timing of these phenophases could be advanced by 3-27 days by 2050. Phenophases in autumn show relatively small changes. Thus, the annual growth period of individual trees will be further extended, mainly because of the shift of spring phases. Frequent droughts in summer and in autumn can compensate for the earlier leafing of trees, because in this case leaf colouring and leaf fall would start some weeks earlier. In such cases, the growing period would not be really extended, but shifted to the beginning of the year.
All-silicon nanorod-based Dammann gratings.
Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong
2015-09-15
Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.
An Innovative, No-cost, Evidence-Based Smartphone Platform for Resident Evaluation.
Green, John M
Timely performance evaluation and feedback are critical to resident development. However, formulating and delivering this information disrupts physician workflow, leading to low participation. This study was designed to determine if a locally developed smartphone platform would integrate regular evaluation into daily processes and thus increase faculty participation in timely resident evaluation. Formal, documented resident operative and patient interaction evaluations were compiled over an 8-month study period. The study was divided into two 4-month phases. No changes to the existing evaluation methods were made during Phase 1. Phase 2 began after a washout period of 2 weeks and coincided with the launch of a smartphone-based platform. The platform uses a combination of Likert scale questions and the Dreyfus model of skill acquisition to describe competence levels in technical and nontechnical skills. The instrument inflicts minimal effect on surgeon workflow, with the aim of integrating resident evaluation into daily processes. The number of different faculty members performing evaluations, resident level (postgraduate year), type of interaction or procedure, and competency data were compiled. All evaluations were tracked by the program director as they were automatically uploaded into a database. Faculty members were introduced to the new platform at the beginning of Phase 2, and previous methods of evaluation continued to be encouraged and were considered valid throughout both phases of the study. Data were analyzed using Fisher exact test for specific PGY level, and chi-square test was used for overall program analysis. Statistical significance was set at p < 0.05. Total faculty engagement, that is, number of faculty members completing evaluations, increased from 13% (5/38) in Phase 1 to 53% (20/38) in Phase 2. During Phase 1, all evaluations consisted of online forms through the department's established system or e-mails to the program director. Evaluations were completed in 0.9% (15/1599) of cases residents completed in Phase 1 versus 12% (217/1812) of those in Phase 2. During Phase 2, evaluations were conducted exclusively using the new platform. This was done based on participant's choice. Total numbers of residents and core faculty members did not change between Phases 1 and 2. A smartphone-based platform can be created with existing technology at no cost. It is adaptable and can be updated in real-time and can employ validated scales to build an evaluation portfolio for learners assessing technical and nontechnical skills. Furthermore, and perhaps most importantly, it can be designed to integrate into existing workflow patterns to increase faculty participation. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakahara, Hisashi
2015-02-01
For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available.
Gumz, Antje; Geyer, Michael; Brähler, Elmar
2014-01-01
Observations from therapeutic practice and a series of empirical findings, for example, those on discontinuous change in psychotherapeutic processes, suggest modelling the therapeutic process as a self-organizing system with stable and critical instable phases and abrupt transitions. Here, a concept of psychotherapeutic change is presented that applies self-organization theory to psychodynamic principles. The authors explain the observations and considerations that form the basis of the concept and present some connections with existing findings and concepts. On the basis of this model, they generated two hypotheses regarding the co-occurrence of instability and discontinuous change and the degree of synchrony between the therapist and patient. A study design to test these hypotheses was developed and applied to a single case (psychodynamic therapy). After each session, patient and therapist rated their interaction. A measure of instability was calculated across the resulting time series. Sequences of destabilization were observed. On the basis of points of extreme instability, the process was divided into phases. Local instability maxima were accompanied by significant discontinuous change. Destabilization was highly synchronous in therapist and patient ratings. The authors discussed the concept and the methodological procedure. The approach enables the operationalization of crises and to empirically assess the significance of critical phases and developments within the therapeutic relationship. We present a concept of change that applies self-organization theory to psychodynamic therapy. We empirically tested the hypotheses formulated in the concept based on an extract of 125 long-term psychodynamic therapy sessions. We continuously monitored the therapeutic interaction and calculated a measure of the instability of the assessments. We identified several sequences of stable and unstable episodes. Episodes of high instability were accompanied by discontinuous change. On the basis of these episodes of high instability, we divided the process into four phases. Mean values of variables differed across these phases. Destabilization proved to be highly synchronous in therapist and patient ratings. The approach allows to empirically assess critical phases and developments within the therapeutic relationship. Copyright © 2013 John Wiley & Sons, Ltd.
Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.
Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. PMID:22511861
Pandiyan, Vimal Prabhu; John, Renu
2016-01-20
We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.
Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.
2012-01-01
Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.
The summer North Atlantic Oscillation (SNAO) variability on decadal to paleoclimate time scales
NASA Astrophysics Data System (ADS)
Linderholm, H. W.; Folland, C. K.; Zhang, P.; Gunnarson, B. E.; Jeong, J. H.; Ren, H.
2017-12-01
The summer North Atlantic Oscillation (SNAO), strongly related to the latitude of the North Atlantic and European summer storm tracks, exerts a considerable influence on European summer climate variability and extremes. Here we extend the period covered by the SNAO from July and August to June, July and August (JJA). As well as marked interannual variability, the JJA SNAO has shown a large inter-decadal change since the 1970s. Decadally averaged, there has been a change from a very positive to a rather negative SNAO phase. This change in SNAO phase is opposite in sign from that expected by a number of climate models under enhanced greenhouse forcing by the late twenty first century. It has led to noticeably wetter summers in North West Europe in the last decade. On interannual to multidecadal timescales, SNAO variability is linked to variations in North Atlantic sea surface temperature (SST): observations and models indicate an association between the Atlantic Multi-decadal Oscillation (AMO) where the cold (warm) phase of the AMO corresponds a positive (negative) phase of the SNAO. Observations also indicate a link with SST in the Gulf Stream region of the North Atlantic where, particularly on decadal time scales, SST warming may favour a more positive phase of the SNAO. Influences of Arctic climate change on North Atlantic and European atmospheric circulation may also exist, particularly reduced sea ice coverage, perhaps favouring the negative phase of the SNAO. A new tree-ring data based JJA SNAO reconstruction extending over the last millennium, as well as climate model output for the same period, enables us to examine the influence of North Atlantic SST and Arctic sea-ice coverage, as well as SNAO impacts on European summer climate, in a long-term, pre-industrial context.
An Evaluation Model for Competency Based Teacher Preparatory Programs.
ERIC Educational Resources Information Center
Denton, Jon J.
This discussion describes an evaluation model designed to complement a curriculum development project, the primary goal of which is to structure a performance based program for preservice teachers. Data collected from the implementation of this four-phase model can be used to make decisions for developing and changing performance objectives and…