Sample records for based physical science

  1. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  2. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  3. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    ERIC Educational Resources Information Center

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  4. News Almost dry but never dull: ASE 2014 EuroPhysicsFun shows physics to Europe Institute of Physics for Africa (IOPfA) South Sudan Report October 2013 Celebrating the centenary of x-ray diffraction The Niels Bohr Institute—an EPS Historical Site Nordic Research Symposium on Science Education (NFSUN) 2014: inquiry-based science education in technology-rich environments Physics World Cup 2013

    NASA Astrophysics Data System (ADS)

    2014-03-01

    Almost dry but never dull: ASE 2014 EuroPhysicsFun shows physics to Europe Institute of Physics for Africa (IOPfA) South Sudan Report October 2013 Celebrating the centenary of x-ray diffraction The Niels Bohr Institute—an EPS Historical Site Nordic Research Symposium on Science Education (NFSUN) 2014: inquiry-based science education in technology-rich environments Physics World Cup 2013

  5. Superconductivity in iron-based compounds (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 January 2014)

    NASA Astrophysics Data System (ADS)

    2014-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'Superconductivity in iron-based compounds', was held on 29 January 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session, announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Eremin I M (Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Deutschland; Kazan (Volga region) Federal University, Kazan, Russian Federation) "Antiferromagnetism in iron-based superconductors: interaction of the magnetic, orbital, and lattice degrees of freedom"; (2) Korshunov M M (Kirenskii Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk) "Superconducting state in iron-based materials and spin-fluctuation pairing theory"; (3) Kuzmicheva T E (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Lomonosov Moscow State University) "Andreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of Δ_L, S with T_C"; (4) Eltsev Yu F (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Synthesis and study of the magnetic and transport properties of iron-based superconductors of the 122 family". Papers written on the basis of oral presentations 1-4 are published below. • Antiferromagnetism in iron-based superconductors: magnetic order in the model of delocalized electrons, I M Eremin Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 807-813 • Superconducting state in iron-based materials and spin-fluctuation pairing theory, M M Korshunov Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 813-819 • Andreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of Δ_L, S with T_C, T E Kuzmicheva, S A Kuzmichev, M G Mikheev, Ya G Ponomarev, S N Tchesnokov, V M Pudalov, E P Khlybov, N D Zhigadlo Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 819-827 • Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family, Yu F Eltsev, K S Pervakov, V A Vlasenko, S Yu Gavrilkin, E P Khlybov, V M Pudalov Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 827-832

  6. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    ERIC Educational Resources Information Center

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  7. Improving the Teaching of Science through Discipline-Based Education Research: An Example from Physics

    ERIC Educational Resources Information Center

    McDermott, Lillian C.

    2013-01-01

    Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…

  8. 14 CFR 1275.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., social sciences, statistics, and biological and physical research (ground based and microgravity...

  9. 14 CFR § 1275.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., psychology, social sciences, statistics, and biological and physical research (ground based and microgravity...

  10. Bringing Inquiry Science to K-5 Classrooms

    NASA Astrophysics Data System (ADS)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  11. Preparing prospective physics teachers to teach integrated science in junior high school

    NASA Astrophysics Data System (ADS)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  12. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    NASA Astrophysics Data System (ADS)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  13. Modifying ``Six Ideas that Shaped Physics'' for a Life-Science major audience at Hope College

    NASA Astrophysics Data System (ADS)

    Mader, Catherine

    2005-04-01

    The ``Six Ideas That Shaped Physics'' textbook has been adapted and used for use in the algebra-based introductory physics course for non-physics science majors at Hope College. The results of the first use will be presented. Comparison of FCI for pre and post test scores will be compared with results from 8 years of results from both the algebra-based course and the calculus-based course (when we first adopted ``Six Ideas that Shaped Physcs" for the Calculus-based course). In addition, comparison on quantitative tests and homework problems with prior student groups will also be made. Because a large fraction of the audience in the algebra-based course is life-science majors, a goal of this project is to make the material relevant for these students. Supplemental materials that emphasize the connection between the life sciences and the fundamental physics concepts are being be developed to accompany the new textbook. Samples of these materials and how they were used (and received) during class testing will be presented.

  14. Physics. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 36 physics investigations found in the student manual. These investigations focus on concepts related to:…

  15. Physics. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 36 physics investigations which focus on concepts related to: movement; vectors; falling objects; force and acceleration; a…

  16. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    NASA Astrophysics Data System (ADS)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.

  17. Preparing Historically Underserved Students for STEM Careers: The Role of an Inquiry-based High School Science Sequence Beginning with Physics

    NASA Astrophysics Data System (ADS)

    Bridges, Jon P.

    Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.

  18. Enhancing Middle School Science Lessons with Playground Activities: A Study of the Impact of Playground Physics

    ERIC Educational Resources Information Center

    Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng

    2017-01-01

    Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…

  19. Relation between Classroom Climate and Achievement in Physical Science of Secondary School Pupils

    ERIC Educational Resources Information Center

    R., Smitha; Sajan, K. S.

    2010-01-01

    This study estimates the extent of relationship between "Achievement in Physical Science" and "Classroom Climate" for the total sample and Sub sample based on gender. The tools used for collecting the data are scale of classroom climate and achievement test in physical science. The study reveals that boys show indifferent or…

  20. Differences within: A comparative analysis of women in the physical sciences --- Motivation and background factors

    NASA Astrophysics Data System (ADS)

    Dabney, Katherine Patricia Traudel

    Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive undergraduate experiences. Two multiple regression models, one composed of female chemists and one of female physicists, examine significant predictors that positively associated with time to doctoral degree completion. The models account for little differentiation in the outcome of time to doctoral completion. In addition, significant predictors are based on demographic and achievement factors that were not paralleled in the two multiple regressions.

  1. Problem-Based Learning in the Physical Science Classroom, K-12

    ERIC Educational Resources Information Center

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  2. Success in introductory college physics: The role of gender, high school preparation, and student learning perceptions

    NASA Astrophysics Data System (ADS)

    Chen, Jean Chi-Jen

    Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.

  3. The effects of calculator-based laboratories on standardized test scores

    NASA Astrophysics Data System (ADS)

    Stevens, Charlotte Bethany Rains

    Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee Putnam County area. The study should be reproduced in various school districts in the state of Tennessee to compare the findings.

  4. Blight! An Event-Based Science Module. Teacher's Guide. Plants and Plant Diseases Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school life science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  5. Fire!: An Event-Based Science Module. Teacher's Guide. Chemistry and Fire Ecology Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  6. [The physical problems in medicine].

    PubMed

    Bao, Shang-lian; Wang, Wei-dong; Fan, Tie-shuan

    2007-05-01

    According to the World Health Organization (WHO), the basic sciences to support the human health are chemistry, physics and informatics. Chemistry is the base of pharmacy. Physics is the base of medical instruments and equipments (MIE). The diagnosis and therapy of diseases are relying on informatics. Therefore, as the fusion results of physics and medicine, medical physics is the creative source science of MIE. Among all diagnosis tools, medical imaging devices are the fastest-developed and the most-complicated MIE since Roentgen discovered X-ray which was quickly used in medical diagnosis in 1895. Among all treatment tools, the radiotherapeutical devices are the most-widely used and the most effective MIE for tumor treatments since Mrs. Courier found the nature radiation isotope Radium at the end of 19th century and began to use it in tumor therapy. Although the research and development (R&D) of so-complicated MIE need many subjects of science and engineering, the kernel science is medical physics. With the results of more than 50 years' development in developed countries, medical physics has defined its own field, which is the medical imaging physics and the radiotherapeutical physics. But, the definition has been expanded to be wider and wider. Therefore, we should pay more attention to the establishment of Medical Physics in China. In order to develop medical physics in china, the bases of R&D and clinical practice should be also built.

  7. Ultracold atoms and their applications (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 October 2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment, T V Barmashova, K A Mart'yanov, V B Makhalov, A V Turlapov Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 174-183 • Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects, A V Taichenachev, V I Yudin, S N Bagayev Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 184-195 • Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information, I I Ryabtsev, I I Beterov, D B Tret'yakov, V M Èntin, E A Yakshina Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 196-208

  8. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    NASA Astrophysics Data System (ADS)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  9. Impact of Informal Science Education on Children's Attitudes About Science

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  10. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  11. News

    NASA Astrophysics Data System (ADS)

    2001-03-01

    PHYSICS AT ASE Warm welcome for new-look Physics Education; TEACHING COMMUNITY Conference in the Netherlands; RESEARCH Evidence based practice; PHYSICS AT ASE Teacher of Physics Awards; PHYSICS AT ASE Festival encourages science teachers; AWARDS Bragg Medal; PHYSICS AT ASE Meteorites are cool! PUBLIC UNDERSTANDING March 2001 - a science odyssey; WEB RESOURCES New website launched to support the gifted and talented; PHYSICS TEACHING A Fun lesson; RESEARCH FRONTIERS Are cell phones safe? OBITUARY Roy Schofield 1924-2000

  12. From F = ma to flying squirrels: curricular change in an introductory physics course.

    PubMed

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.

  13. When physics is not "just physics": complexity science invites new measurement frames for exploring the physics of cognitive and biological development.

    PubMed

    Kelty-Stephen, Damian; Dixon, James A

    2012-01-01

    The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.

  14. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    ERIC Educational Resources Information Center

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  15. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  16. Models in Science Education: Applications of Models in Learning and Teaching Science

    ERIC Educational Resources Information Center

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  17. Learning Science-Based Fitness Knowledge in Constructivist Physical Education

    ERIC Educational Resources Information Center

    Sun, Haichun; Chen, Ang; Zhu, Xihe; Ennis, Catherine D.

    2012-01-01

    Teaching fitness-related knowledge has become critical in developing children's healthful living behavior. The purpose of this study was to examine the effects of a science-based, constructivist physical education curriculum on learning fitness knowledge critical to healthful living in elementary school students. The schools (N = 30) were randomly…

  18. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes Toward Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Morris, John D.

    2005-12-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.

  19. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  20. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  1. Physics Problems Based on Up-to-Date Science and Technology.

    NASA Astrophysics Data System (ADS)

    Folan, Lorcan M.; Tsifrinovich, Vladimir I.

    2007-03-01

    We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.

  2. Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…

  3. Physics First: Impact on SAT Math Scores

    ERIC Educational Resources Information Center

    Bouma, Craig E.

    2013-01-01

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…

  4. Epistemology, Sociology, and Learning and Teaching in Physics

    ERIC Educational Resources Information Center

    Sin, Cristina

    2014-01-01

    This paper explores the relationship between epistemology, sociology, and learning and teaching in physics based on an examination of literature from research in science studies, history and philosophy of science, and physics pedagogic research. It reveals a mismatch between the positivist epistemological foundation which seems to underpin the…

  5. Effects of Web based inquiry on physical science teachers and students in an urban school district

    NASA Astrophysics Data System (ADS)

    Stephens, Joanne

    An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.

  6. Does Everyone's Motivational Beliefs about Physical Science Decline in Secondary School?: Heterogeneity of Adolescents' Achievement Motivation Trajectories in Physics and Chemistry.

    PubMed

    Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue

    2017-08-01

    Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.

  7. Inquiry-Based Practical Work in Physical Sciences: Equitable Access and Social Justice Issues

    ERIC Educational Resources Information Center

    Tsakeni, Maria

    2018-01-01

    Physical sciences education comes with high expectations for learners to be successfully placed in tertiary institutions in related fields, and developing countries' aspirations to develop advanced and specialised skills to drive economies. However, some of the prevailing instructional strategies in science classrooms work to marginalise learners.…

  8. Reaching Out: The Bachelor of Arts Degree In Physics

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1996-05-01

    Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.

  9. The Intersections of Science and Practice: Examples From FitnessGram® Programming.

    PubMed

    Welk, Gregory J

    2017-12-01

    The FitnessGram® program has provided teachers with practical tools to enhance physical education programming. A key to the success of the program has been the systematic application of science to practice. Strong research methods have been used to develop assessments and standards for use in physical education, but consideration has also been given to ensure that programming meets the needs of teachers, students, parents, and other stakeholders. This essay summarizes some of these complex and nuanced intersections between science and practice with the FitnessGram® program. The commentaries are organized into 5 brief themes: science informing practice; practice informing science; balancing science and practice; promoting evidence-based practice; and the integration of science and practice. The article draws on personal experiences with the FitnessGram® program and is prepared based on comments shared during the 37th Annual C. H. McCloy Research Lecture at the 2017 SHAPE America - Society of Health and Physical Educators Convention.

  10. Popular Science Writing:Why? Who? How?

    NASA Astrophysics Data System (ADS)

    von Baeyer, Hans Christian

    1998-04-01

    Why? Under the threats of anti-science, pseudo-science, and indifference to science, popularization of physics is changing from a genteel art to a necessity for survival. Science writing is one element in a campaign that includes TV, museums, lectures, school visits, etc. Who? Five percent of the total effort of every physics department should be devoted to popularization. The academic reward system should reflect this obligation. How? Hints and suggestions for effective science writing, based on extensive experience, will be presented.

  11. Effects of physical science courses which emphasize content or process on efficacy beliefs of preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Aldrich, Lynn Karter

    1997-09-01

    Concerns about the teaching of science in elementary grades have led in recent years to studies of teacher efficacy beliefs, their relation to teaching behaviors, and mechanisms which promote positive changes in those beliefs. The purpose of this study was to determine if science teaching efficacy beliefs of preservice elementary teachers are changed by a process emphasis physical science course and by a content emphasis physical science course and to compare these two effects. The STEBI-B instrument was given as a pretest at the beginning and a posttest at the conclusion of semester physical science courses to 94 subjects in a small liberal arts-based college. The STEBI-B instrument was also given as a pretest at the beginning and a posttest at the conclusion of semester science teaching methods courses to 61 subjects at the same college. No significant change occurred in the outcome expectancy subscale for the content emphasis course, the process emphasis course, or the science methods course. No significant change occurred in the self-efficacy subscale for the content emphasis course. A significant increase occurred in the self-efficacy subscale for the process emphasis course and the science methods course. When the process emphasis subjects were broken down into subgroups based on when the methods course was taken, a significant increase was found only for the subgroups who had previously taken or were concurrently taking a methods course with the physical science course. No significant difference was found in either outcome expectancy or self-efficacy between the content emphasis and process emphasis with ANCOVA using the pretest STEBI-B subscale as a covariate. The results suggest that a physical science course which emphasizes science process by using an integrated approach of lecture, hands-on activities and discussion may result in increased science teaching self-efficacy beliefs for preservice elementary teachers. The results also suggest that these changes in self-efficacy beliefs may not occur if the process emphasis physical science course is taken prior to a science teaching methods course.

  12. Big physics quartet win government backing

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2014-09-01

    Four major physics-based projects are among 10 to have been selected by Japan’s Ministry of Education, Culture, Sports, Science and Technology for funding in the coming decade as part of its “roadmap” of big-science projects.

  13. Technology-Based Inquiry for Middle School

    ERIC Educational Resources Information Center

    Christmann, Edwin

    2006-01-01

    Activities featured in this new compendium--a collection of 26 articles published in Science Scope, NSTA's member journal for middle school teachers--will show how. Technology-Based Inquiry offers fresh approaches that teachers and students can use to explore physical science, Earth and space science, life science, and more. It covers the…

  14. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2012-01-01

    The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the…

  15. Simon van der Meer (1925-2011):. A Modest Genius of Accelerator Science

    NASA Astrophysics Data System (ADS)

    Chohan, Vinod C.

    2011-02-01

    Simon van der Meer was a brilliant scientist and a true giant of accelerator science. His seminal contributions to accelerator science have been essential to this day in our quest for satisfying the demands of modern particle physics. Whether we talk of long base-line neutrino physics or antiproton-proton physics at Fermilab or proton-proton physics at LHC, his techniques and inventions have been a vital part of the modern day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics, in 1984. Van der Meer's lesserknown contributions spanned a whole range of subjects in accelerator science, from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs and controls.

  16. The Influence of Teachers' Knowledge on Student Learning in Middle School Physical Science Classrooms

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Sonnert, Gerhard; Coyle, Harold P.; Cook-Smith, Nancy; Miller, Jaimie L.

    2013-01-01

    This study examines the relationship between teacher knowledge and student learning for 9,556 students of 181 middle school physical science teachers. Assessment instruments based on the National Science Education Standards with 20 items in common were administered several times during the school year to both students and their teachers. For items…

  17. Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format

    ERIC Educational Resources Information Center

    Yoder, Garett; Cook, Jerry

    2014-01-01

    The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…

  18. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    NASA Astrophysics Data System (ADS)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  19. From F = ma to Flying Squirrels: Curricular Change in an Introductory Physics Course

    PubMed Central

    O’Shea, Brian; Terry, Laura; Benenson, Walter

    2013-01-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011–2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences–oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning–based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major. PMID:23737630

  20. From ancient Greece to the cognitive revolution: A comprehensive view of physical rehabilitation sciences.

    PubMed

    Martínez-Pernía, David; González-Castán, Óscar; Huepe, David

    2017-02-01

    The development of rehabilitation has traditionally focused on measurements of motor disorders and measurements of the improvements produced during the therapeutic process; however, physical rehabilitation sciences have not focused on understanding the philosophical and scientific principles in clinical intervention and how they are interrelated. The main aim of this paper is to explain the foundation stones of the disciplines of physical therapy, occupational therapy, and speech/language therapy in recovery from motor disorder. To reach our goals, the mechanistic view and how it is integrated into physical rehabilitation will first be explained. Next, a classification into mechanistic therapy based on an old version (automaton model) and a technological version (cyborg model) will be shown. Then, it will be shown how physical rehabilitation sciences found a new perspective in motor recovery, which is based on functionalism, during the cognitive revolution in the 1960s. Through this cognitive theory, physical rehabilitation incorporated into motor recovery of those therapeutic strategies that solicit the activation of the brain and/or symbolic processing; aspects that were not taken into account in mechanistic therapy. In addition, a classification into functionalist rehabilitation based on a computational therapy and a brain therapy will be shown. At the end of the article, the methodological principles in physical rehabilitation sciences will be explained. It will allow us to go deeper into the differences and similarities between therapeutic mechanism and therapeutic functionalism.

  1. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  2. Learning Physical Science through Astronomy Activities: A Comparison between Constructivist and Traditional Approaches in Grades 3-6

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Sadler, Philip M.; Shapiro, Irwin I.

    2008-01-01

    We report on an evaluation of the effectiveness of Project ARIES, an astronomy-based physical science curriculum for upper elementary and middle school children. ARIES students use innovative, simple, and affordable apparatus to carry out a wide range of indoor and outdoor hands-on, discovery-based activities. Student journals and comprehensive…

  3. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    ERIC Educational Resources Information Center

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-01-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning…

  4. Physics Literacy for All Students

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2010-03-01

    Physics teachers must broaden their focus from physics for scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is: ``Without a scientifically literate population, the outlook for a better world is not promising.'' Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, the standard model, and quantum fields. Many science writers have shown this is possible. It should include physics-related social topics such as global warming and nuclear weapons, because citizens need to vote on these issues. Above all, it should emphasize the scientific process and the difference between science and nonsense. Science is based not on beliefs but rather on evidence and reason. We should constantly ask ``How do we know?'' and ``What is the evidence?''

  5. From "F = ma" to Flying Squirrels: Curricular Change in an Introductory Physics Course

    ERIC Educational Resources Information Center

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-01-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on…

  6. A Computer-Based Instrument That Identifies Common Science Misconceptions

    ERIC Educational Resources Information Center

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  7. Physical Activity Guidelines

    MedlinePlus

    ... use this site. health.gov Physical Activity Guidelines Physical Activity Physical activity is key to improving the health of the Nation. Based on the latest science, the Physical Activity Guidelines for Americans is an essential resource for ...

  8. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.

  9. Development of a Senior Physics Syllabus in New South Wales

    ERIC Educational Resources Information Center

    Binnie, Anna

    2004-01-01

    In 2000, the New South Wales Board of Studies introduced new syllabi for Junior Science (years 7-10) and Senior Science subjects (years 11 and 12), i.e. Physics, Chemistry, Biology, and Earth and Environmental Science (Geology). The structure of these courses is similar: it is based on a contextual perspective and is underpinned by a number of…

  10. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  11. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  12. Vision and change in introductory physics for the life sciences

    NASA Astrophysics Data System (ADS)

    Mochrie, S. G. J.

    2016-07-01

    Since 2010, our physics department has offered a re-imagined calculus-based introductory physics sequence for the life sciences. These courses include a selection of biologically and medically relevant topics that we believe are more meaningful to undergraduate premedical and biological science students than those found in a traditional course. In this paper, we highlight new aspects of the first-semester course, and present a comparison of student evaluations of this course versus a more traditional one. We also present the effect on student perception of the relevance of physics to biology and medicine after having taken this course.

  13. Comparative analysis of female physicists in the physical sciences: Motivation and background variables

    NASA Astrophysics Data System (ADS)

    Dabney, Katherine P.; Tai, Robert H.

    2014-06-01

    The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.

  14. Investigating elementary education and physical therapy majors' perceptions of an inquiry-based physics content course

    NASA Astrophysics Data System (ADS)

    Hilton, John Martin

    This study investigates why physical therapy assistant majors engage and perform better than elementary education majors in an inquiry-based conceptual physics course at Mid-Atlantic Community College. The students from each major are demographically similar, both courses are similar in depth and structure, and each course supports the students' program. However, there is an observed difference in the levels of engagement with the curriculum and performance on writing-based assessments between the two groups. To explore possible explanations for the difference, I examine students' affinity for science, their beliefs about the nature of science and scientific knowledge in the classroom, and their perception of the usefulness of science to their program. During semi-structured interviews, students from both majors displayed nearly identical weak affinities for science, epistemological beliefs, and uncertainty about the usefulness of the class. However, the physical therapy majors' ability to see the relevance of the physics course experience to their program enhanced their interest and motivation. In contrast, the elementary education students do not see connections between the course and their program, and do not see a purpose for their learning of physics content. To improve the program, I propose a two-pronged approach - designing a faded-scaffolded-inquiry approach for both classes, and developing a field-based/seminar class for the elementary education majors. The scaffolded inquiry will help both groups develop better orientations toward lab activities, and the structured observations and reflection will help the elementary group connect the material to their program.

  15. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    NASA Astrophysics Data System (ADS)

    2014-12-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled "A little something from physics for medicine", was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) "Translational medicine as a basis of progress in hematology/oncology"; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) "Promising nuclear medicine research at the INR, RAS"; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) "Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics"; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) "New approaches in laser mass-spectrometry of organic objects". The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239-1243

  16. Analysis of Physical Science Textbooks for Conceptual Frameworks on Acids, Bases and Neutralization: Implications for Students' Conceptual Understanding.

    ERIC Educational Resources Information Center

    Erduran, Sibel

    Eight physical science textbooks were analyzed for coverage on acids, bases, and neutralization. At the level of the text, clarity and coherence of statements were investigated. The conceptual framework for this topic was represented in a concept map which was used as a coding tool for tracing concepts and links present in textbooks. Cognitive…

  17. Historical Experiments and Physics Teaching: adding considerations from a Bibliographic Review and the Cultural History of Science

    NASA Astrophysics Data System (ADS)

    Jardim, W. T.; Guerra, A.

    2017-12-01

    In this paper, a discussion about the purposes of historical experiments in science teaching found in the literature will be presented. As a starting point, we carried out a bibliographic review, on the websites of six relevant periodicals for the area of Science Teaching and, especially for Physics Teaching. The search was based, at first, on works published between the years 2001 and 2016, from terms like "historical experiments", "museums" and "experience". Thereon, due to the large number of publications found, a screening process was developed based on the analysis of titles, abstracts, keywords and, whether necessary, the whole text, aiming to identify which searches emphasize working with historical experiments in Physics teaching, from a theoretical perspective or based on manipulation of a replica of historical apparatus. The selected proposals were arranged in categories adapted from the work of Heering and Höttecke (2014) which allowed us to draw a parallel between the national and international publication that presented resembling scopes. Furthermore, the analysis of the results leads us to infer that, in general, extralab factors, inherent to science, when not neglected, are placed in a peripheral perspective. Thus, we draw theoretical considerations based on Historians of Science, which develop their researches based on the bias of the Cultural History of Science, seeking to add reflections to what has been developed about historical experiments in teaching up to now.

  18. Large-Scale Survey of Chinese Precollege Students' Epistemological Beliefs about Physics: A Progression or a Regression?

    ERIC Educational Resources Information Center

    Zhang, Ping; Ding, Lin

    2013-01-01

    This paper reports a cross-grade comparative study of Chinese precollege students' epistemological beliefs about physics by using the Colorado Learning Attitudes Survey about Sciences (CLASS). Our students of interest are middle and high schoolers taking traditional lecture-based physics as a mandatory science course each year from the 8th grade…

  19. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    ERIC Educational Resources Information Center

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  20. Relationship between teacher preparedness and inquiry-based instructional practices to students' science achievement: Evidence from TIMSS 2007

    NASA Astrophysics Data System (ADS)

    Martin, Lynn A.

    The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.

  1. Plasmonics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 21 February 2012)

    NASA Astrophysics Data System (ADS)

    2012-10-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'Plasmonics', was held in the Conference Hall of the Lebedev Physical Institute, RAS on 21 February 2012. The following reports were put on the session agenda posted on the website www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kukushkin I V, Murav'ev V M (Institute of Solid State Physics, RAS, Chernogolovka, Moscow region) "Terahertz plasmonics"; (2) Lozovik Yu E (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Plasmonics and magnetoplasmonics based on graphene and a topological insulator"; (3) Protsenko I E (P N Lebedev Physical Institute, RAS, Moscow) "Dipole nanolaser"; (4) Vinogradov A P, Andrianov E S, Pukhov A A, Dorofeenko A V (Institute for Theoretical and Applied Electrodynamics, RAS, Moscow), Lisyansky A A (Queens College of the City University of New York, USA) "Quantum plasmonics of metamaterials: loss compensation using spasers"; (5) Klimov V V (Lebedev Physical Institute, RAS, Moscow) "Quantum theory of radiation of optically active molecules in the vicinity of chiral nano-meta-particles". The papers written on the basis of oral reports 2-5 are published below. • Plasmonics and magnetoplasmonics based on graphene and a topological insulator, Yu E Lozovik Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1035-1039 • Theory of the dipole nanolaser, I E Protsenko Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1040-1046 • Quantum plasmonics of metamaterials: loss compensation using spasers, A P Vinogradov, E S Andrianov, A A Pukhov, A V Dorofeenko, A A Lisyansky Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1046-1053 • Using chiral nano-meta-particles to control chiral molecule radiation, V V Klimov, D V Guzatov Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1054-1058

  2. Black holes: theory and observations (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-07-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Black holes: theory and observations," was held in the conference hall of the Lebedev Physical Institute, RAS, on 23 December 2015. The papers collected in this issue were written based on talks given at the session: (1) I D Novikov (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow; The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen; National Research Center 'Kurchatov Institute', Moscow) "Black holes, wormholes, and time machines"; (2) A M Cherepashchuk (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "Observing stellar-mass and supermassive black holes"; (3) N S Kardashev (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow) "Millimetron space project: a tool for researching black holes and wormholes." Papers written on the basis of oral presentations 1, 2 are published below. • Observing stellar mass and supermassive black holes, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 702-712 • Black holes, wormholes, and time machines, I D Novikov Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 713-715

  3. Reviews Book: George's Cosmic Treasure Hunt Book: 50 Physics Ideas You Really Need to Know Book: Head First Physics Book: Force and Motion—An illustrated Guide to Newton's Laws Book: Froth! The Science of Beer Equipment: SEP Charge Indicator Book: How Mathematics Happened—The First 50,000 Years Web Watch

    NASA Astrophysics Data System (ADS)

    2009-11-01

    WE RECOMMEND George's Cosmic Treasure Hunt Another science-based kids' adventure from the Hawkings 50 Physics Ideas You Really Need to Know Brief, accessible descriptions of some complex physics Head First Physics Mechanics-focused non-traditional textbook Force and Motion—An illustrated Guide to Newton's Laws An original text aimed at students Froth! The Science of Beer A tongue-in-cheek physics-heavy guide to brewery science SEP Charge Indicator Classroom equipment that is affordable, usable and works How Mathematics Happened—The First 50,000 Years An enjoyable read suitable for student or teacher WEB WATCH Simulators can be useful teaching aids, as long as you remain aware of their flaws

  4. Web-Based Instruction in Physics Courses

    NASA Astrophysics Data System (ADS)

    Wijekumar, V.

    1998-05-01

    The World Wide Web will be utilized to deliver instructional materials in physics courses in two cases. In one case, a set of physics courses will be entirely taught using WWW for high school science and mathematics teachers in the physics certification program. In the other case, the WWW will be used to enhance the linkage between the laboratory courses in medical physics, human physiology and clinical nursing courses for nursing students. This project links three departments in two colleges to enhance a project known as Integrated Computer System across the Health Science Curriculum. Partial support for this work was provided by the National Science Foundation's Division od Undergraduate Education through grant DUE # 9650793.

  5. Physics of Health Sciences

    NASA Astrophysics Data System (ADS)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  6. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    NASA Astrophysics Data System (ADS)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning assistants, increased interest in K-12 teaching as a career, and increased appreciation and understanding of student-centered and inquiry-based learning. Data to support these claims will be presented. Neuschatz, M. & McFarling, M. (2003). Broadning the Base: High School Physics Education at the Turn of a New Century, AIP Report No. R-439.

  7. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    ERIC Educational Resources Information Center

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  8. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    PubMed

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  9. An investigation of the impact of science course sequencing on student performance in high school science and math

    NASA Astrophysics Data System (ADS)

    Mary, Michael Todd

    High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.

  10. Activities to Attract Girls to Physics in Iran

    NASA Astrophysics Data System (ADS)

    Izadi, Dina; Araste, Afshin Mohseni; Fadaei, Azita Seied

    2009-04-01

    In Iran there is no difference between boys' and girls' activities in scientific works; however, they study separately at schools until they reach the university level. Before going to university, students think engineering and medical science are better than the other sciences for earning enough money to support their lives. But after the entrance exam for universities most of the girls choose basic sciences based on their test results. Creative methods of teaching physics at the elementary and secondary levels, such as "Dominos in Physics" and "Physics in Nature," and understanding physics through real-life examples and animation are important for attracting students to further studies and careers in physics. Participating in international physics competitions and holding national tournaments and university open houses in physics is also very helpful. Studying physics can improve students' abilities and also help them to imagine, decide, think, and live better.

  11. Implementation literacy strategies on health technology theme Learning to enhance Indonesian Junior High School Student's Physics Literacy

    NASA Astrophysics Data System (ADS)

    Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi

    2016-08-01

    The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.

  12. An Analysis of Naval Officer Student Academic Performance in the Operations Analysis Curriculum in Relationship to Academic Profile Codes and other Factors.

    DTIC Science & Technology

    1985-09-01

    Code 0 Physics (Calculus-Based) or Physical Science niscioline 0----------------------------------------- lR averaqe...opportunity for fficers with inadequate math- ematical and physical science backgrounds to establish a good math foundation to be able to gualify for a...technical curricu2um [Ref. 5: page 36]. There is also a six week refresher available that is designed to rapidly cover the calculus and physics

  13. Predictors of gender achievement in physical science at the secondary level

    NASA Astrophysics Data System (ADS)

    Kozlenko, Brittany Hunter

    This study used the 2009 National Assessment of Educational Progress (NAEP) science restricted data-set for twelfth graders. The NAEP data used in this research study is derived from a sample group of 11,100 twelfth grade students that represented a national population of over 3,000,000 twelfth grade students enrolled in science in the United States in 2009. The researcher chose the NAEP data set because it provided a national sample using uniform questions. This study investigated how the factors of socioeconomic status (SES), parental education level, mode of instruction, and affective disposition affect twelfth grade students' physical science achievement levels in school for the sample population and subgroups for gender. The factors mode of instruction and affective disposition were built through factor analysis based on available questions from the student surveys. All four factors were found to be significant predictors of physical science achievement for the sample population. NAEP exams are administered to a national sample that represents the population of American students enrolled in public and private schools. This was a non-experimental study that adds to the literature on factors that impact physical science for both genders. A gender gap is essentially nonexistent at the fourth grade level but appears at the eighth grade level in science based on information from NAEP (NCES, 1997). The results of the study can be used to make recommendation for policy change to diminish this gender gap in the future. Educators need to be using research to make instructional decisions; research-based instruction helps all students.

  14. A few ideas for teaching environmental physics

    NASA Astrophysics Data System (ADS)

    Forinash, Kyle

    2016-11-01

    Unlike a typical university physics course there is no standardised syllabus for environmental physics. The topics covered also range beyond what is normally part of the physics curriculum, requiring the instructor to become knowledgeable about fields outside of physics. Some of these issues are complex and, unlike the laws of physics, change rapidly over time. This paper, based on 15 years experience teaching undergraduate environmental physics courses, both for non-science students and for students with strong backgrounds in the sciences, attempts to present a reasonable range of concepts and educational resources which could be included in an environmental physics course or added to an existing physics course as motivation for learning traditional physics concepts. An additional goal is to warn the reader of pitfalls they may encounter in trying to include material with which they may not be familiar. The approach is different from environmental courses taught in the social sciences in that the focus of an environmental physics course is on physical constraints to environmental solutions rather than limitations imposed by culture or politics.

  15. Do general physics textbooks discuss scientists’ ideas about atomic structure? A case in Korea

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general physics textbooks often lack detail about the history and philosophy of science. This result is quite similar to those published for the USA. Furthermore, chemistry textbooks published in the USA, Turkey and Venezuela are quite similar to the physics textbooks. This is a cause for concern as textbooks present theories as facts and ignore the historical reconstructions based on the development of scientific theories that frequently involve controversies and conflicts among scientists. The inclusion of historical reconstructions of ideas about atomic structure can provide students with a better appreciation of the dynamics of scientific progress.

  16. High School Physics Students' Personal Epistemologies and School Science Practice

    NASA Astrophysics Data System (ADS)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  17. Consideration of learning orientations as an application of achievement goals in evaluating life science majors in introductory physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Bertram, Charles A.

    2018-06-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.

  18. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    NASA Astrophysics Data System (ADS)

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-02-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.

  19. The Blame Game in the Science Preparation of Future Teachers

    NASA Astrophysics Data System (ADS)

    Stein, Fredrick

    2003-10-01

    Who is responsible for the general lack of science preparation in our newly certified K-12 teachers? If it is true that teachers "teach as they were taught," then we must look to the college and university departments. The American Physical Society (APS), in partnership with the American Association of Physics Teachers (AAPT) and the American Institute of Physics (AIP), has initiated PhysTEC in concert with national reports calling for the improvement of K-12 science teaching. PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. An update of the first two years of the project will be given. Program components include: (1) A long-term, active collaboration between the physics and education departments; (2) A full-time Teacher-in-Residence (TIR) program that provides for a local K-12 science teacher to become a full-time participant in assisting faculty with both team-teaching and course revisions; (3) The redesign of content and pedagogy of targeted physics and education courses; and (4) The establishment of a Induction and mentoring program novice science teachers. This includes the participation of physics faculty in increasing and improving a wide array of school experiences. http://www.phystec.org/

  20. An examination of variables which influence high school students to enroll in an undergraduate engineering or physical science major

    NASA Astrophysics Data System (ADS)

    Porter, Christopher H.

    The purpose of this study was to examine the variables which influence a high school student to enroll in an engineering discipline versus a physical science discipline. Data was collected utilizing the High School Activities, Characteristics, and Influences Survey, which was administered to students who were freshmen in an engineering or physical science major at an institution in the Southeastern United States. A total of 413 students participated in the survey. Collected data were analyzed using descriptive statistics, two-sample Wilcoxon tests, and binomial logistic regression techniques. A total of 29 variables were deemed significant between the general engineering and physical science students. The 29 significant variables were further analyzed to see which have an independent impact on a student to enroll in an undergraduate engineering program, as opposed to an undergraduate physical science program. Four statistically significant variables were found to have an impact on a student's decision to enroll in a engineering undergraduate program versus a physical science program: father's influence, participation in Project Lead the Way, and the subjects of mathematics and physics. Recommendations for theory, policy, and practice were discussed based on the results of the study. This study presented suggestions for developing ways to attract, educate, and move future engineers into the workforce.

  1. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  2. Learning in a Physics Classroom Community: Physics Learning Identity Construct Development, Measurement and Validation

    NASA Astrophysics Data System (ADS)

    Li, Sissi L.

    At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.

  3. A Case Study of the Impact of a Reformed Science Curriculum on Student Attitudes and Learning in a Secondary Physics Classroom

    ERIC Educational Resources Information Center

    Molotsky, Gregg Jeremy

    2011-01-01

    This case study examined the impact of the application of an inquiry-based concept related physics curriculum on student attitudes and learning in a secondary physics classroom in southern New Jersey. Students who had previously used a traditional physics curriculum were presented with a 10 week inquiry-based concept related physics curriculum on…

  4. Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion.

    PubMed

    King, Abby C; Winter, Sandra J; Sheats, Jylana L; Rosas, Lisa G; Buman, Matthew P; Salvo, Deborah; Rodriguez, Nicole M; Seguin, Rebecca A; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G; Sarmiento, Olga Lucia; Gonzalez, Silvia A; Banchoff, Ann; Dommarco, Juan Rivera

    2016-05-15

    While technology is a major driver of many of society's comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people's daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged "citizen science," in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called "Our Voice", are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide.

  5. Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion

    PubMed Central

    King, Abby C.; Winter, Sandra J.; Sheats, Jylana L.; Rosas, Lisa G.; Buman, Matthew P.; Salvo, Deborah; Rodriguez, Nicole M.; Seguin, Rebecca A.; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G.; Sarmiento, Olga Lucia; Gonzalez, Silvia A.; Banchoff, Ann; Dommarco, Juan Rivera

    2016-01-01

    PURPOSE While technology is a major driver of many of society’s comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people’s daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged “citizen science,” in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. METHOD The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. RESULTS Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called “Our Voice”, are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. CONCLUSIONS The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide. PMID:27525309

  6. Empowering Girls with Chemistry, Exercise and Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.

    2015-01-01

    Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…

  7. Valuing IKS in Successive South African Physical Sciences Curricula

    ERIC Educational Resources Information Center

    Taylor, Dale L.; Cameron, Ann

    2016-01-01

    The valuing of Indigenous Knowledge Systems (IKS) is one of the principles on which the South African school curriculum is supposed to be based. The purpose of this paper is to critique the treatment of indigenous knowledge in the South African secondary Physical Sciences curriculum against a backdrop of international debates on the relationship…

  8. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    Part four of the PNL Annual Report for 1990 includes research in physical sciences. Individual reports are processed separately for the data bases in the following areas: Dosimetry Research; Measurement Science; Radiological and Chemical Physics; Radiation Dosimetry; Radiation Biophysics; and Modelling Cellular Response to Genetic Damage. (FL)

  9. Questioning the Validity of Inquiry Assessment in a High Stakes Physical Sciences Examination

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2014-01-01

    The South African science curriculum advocates an inquiry-based approach to practical work. Inquiry is a complex and multifaceted activity involving both cognitive and physical activity; thus, paper-and-pencil items do not provide the authentic context for this assessment. This study investigates the construct validity of inquiry-related questions…

  10. Outstanding Science Trade Books for Children in 1988.

    ERIC Educational Resources Information Center

    Science and Children, 1989

    1989-01-01

    Lists annotations of books based on accuracy of contents, readability, format, and illustrations. Includes number of pages in each entry, price, and availability. Topics cover animals, biographies, space science, astronomy, archaeology, anthropology, earth and life sciences, medical and health sciences, physics, technology, and engineering. (RT)

  11. Science on Wheels

    ERIC Educational Resources Information Center

    Savitz, Maxine L.

    1973-01-01

    A science program was developed which is based on a mobile laboratory containing scientific experiments in biology, chemistry, physics, applied science, and mathematics. Discussion and experiments differ from the normal classroom setting as they utilize small groups and center around the relationship of modern science and technology of the urban…

  12. The effects of topic choice in project-based instruction on undergraduate physical science students' interest, ownership, and motivation

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina

    2001-07-01

    Motivating nonscience majors in science and mathematics studies became one of the most interesting and important challenges in contemporary science and mathematics education. Therefore, designing and studying a learning environment, which enhances students' motivation, is an important task. This experimental study sought to explore the implications of student autonomy in topic choice in a project-based Physical Science Course for nonscience majors' on students' motivational orientation. It also suggested and tested a model explaining motivational outcomes of project-based learning environment through increased student ownership of science projects. A project, How Things Work, was designed and implemented in this study. The focus of the project was application of physical science concepts learned in the classroom to everyday life situations. Participants of the study (N = 59) were students enrolled in three selected sections of a Physical Science Course, designed to fulfill science requirements for nonscience majors. These sections were taught by the same instructor over a period of an entire 16-week semester at a large public research university. The study focused on four main variables: student autonomy in choosing a project topic, their motivational orientation, student ownership of the project, and the interest in the project topic. Achievement Goal Orientation theory became the theoretical framework for the study. Student motivational orientation, defined as mastery or performance goal orientation, was measured by an Achievement Goal Orientation Questionnaire. Student ownership was measured using an original instrument, Ownership Measurement Questionnaire, designed and tested by the researchers. Repeated measures yoked design, ANOVA, ANCOVA, and multivariate regression analysis were implemented in the study. Qualitative analysis was used to complement and verify quantitative results. It has been found that student autonomy in the project choice did not make a significant impact on their motivational orientation, while their initial interest in the project topic did. The latter was found to be related to students' ownership of the project, which was found to lead to improved mastery goal orientation. These findings indicate that incorporating project-based learning in science teaching may lead to increased student mastery goal orientation, and may result in improved science learning.

  13. Science Anxiety and Gender in Students Taking General Education Science Courses

    ERIC Educational Resources Information Center

    Udo, M. K.; Ramsey, G. P.; Mallow, J. V.

    2004-01-01

    Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. "Journal of Science Education and Technology" 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? "Journal of Science Education and Technology" 10: 237-247] of…

  14. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical formulations as are necessary to express the concept clearly (Invention Phase). To further clarify the concept, exercises will be carried out using Web-accessible SEC mission data to develop facility in use of the mathematical formulations, stimulate a sense of participation in ongoing research, and expand on ways to introduce future pupils to the excitement of real-world exploration (Expansion Phase).

  15. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  16. Pre-Service Teachers' Perceptions of Teaching STSE-Based High School Physics: Implications for Post-Secondary Studies

    ERIC Educational Resources Information Center

    MacLeod, Katarin

    2014-01-01

    Science, Technology, Society and Environment (STSE) education has received attention in educational research, policy, and science curricula development, yet less advancement has been made in moving theory into practice. There are many examples of STSE-based teaching in science at the elementary and secondary levels, yet little has focused…

  17. Physics: Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    The physics objectives are geared to use in college preparatory, high school physics courses and are based on the three most common physics curricula: (1) Physical Science Study Committee (PSSC); (2) The Project Physics Course; and (3) Modern Physics by Dull, Metcalf, and Williams. Since many of the sample items can be answered in various ways,…

  18. Experts' Views on Using History and Philosophy of Science in the Practice of Physics Instruction

    NASA Astrophysics Data System (ADS)

    Galili, Igal; Hazan, Amnon

    This study examines the views of a representative sample of experts in physics, physics education and history and philosophy of science (HPS) on the incorporation of HPS based materials in physics instruction. The obtained spectrum of views addresses three areas: the rationale to include HPS, the most appropriate ways of doing so, and anticipated difficulties in such a new educational approach. The elicited views, interpreted and categorized, reflect the attitude of the community of science educators in Israeli colleges and universities with regard to the subject. The constructed profiles indicate low awareness of the recent changes in the understanding of learning and the role of HPS in the light of these changes. Such knowledge can guide the activities of those who devote their efforts to constructing and implementing learning materials utilizing HPS contents in science education.

  19. Comparison of textbook passages, nonfiction trade book passages and fiction trade book passages as instructional tools for learning science

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    This study examined the impact of different types of text on student achievement in elementary school science. Gender was also examined to see if the type of text passage read had any differential effect on boys' and girls' achievement. This study was a pretest/posttest/retention test design. Eighty-four fourth grade students from a public charter elementary school in South Florida were randomly assigned a passage from a physical science textbook, a physical science nonfiction trade book, a physical science fiction trade book, a biological science textbook or a biological science nonfiction trade book. Results in the physical science content area revealed that students in the textbook passage group had higher posttest and retention test results than students in the nonfiction and fiction trade book passage groups. There was no difference on the posttest results of students in the biological science textbook and nonfiction trade book passage groups. Students in the biological science textbook passage group had higher retention results than students in the biological science nonfiction passage group. Gender results in the physical science content area revealed that boys had a higher retention score than girls in the fiction trade book passage group. There were no gender achievement differences as a result of the text passage read in the biological science content area. It was concluded that no definitive answer as to the efficacy of textbooks versus trade books was possible based upon results of the study. Recommendations for future research include examining the effects of different types of texts in conjunction with other authentic teaching methods.

  20. Tools for Scientific Thinking: Microcomputer-Based Laboratories for the Naive Science Learner.

    ERIC Educational Resources Information Center

    Thornton, Ronald K.

    A promising new development in science education is the use of microcomputer-based laboratory tools that allow for student-directed data acquisition, display, and analysis. Microcomputer-based laboratories (MBL) make use of inexpensive microcomputer-connected probes to measure such physical quantities as temperature, position, and various…

  1. Effective Teaching Methods--Project-based Learning in Physics

    ERIC Educational Resources Information Center

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  2. A Model of the Creative Process Based on Quantum Physics and Vedic Science.

    ERIC Educational Resources Information Center

    Rose, Laura Hall

    1988-01-01

    Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…

  3. Teaching the Nature of Science in Physics Courses: The Contribution of Classroom Historical Inquiries

    ERIC Educational Resources Information Center

    Maurines, Laurence; Beaufils, Daniel

    2013-01-01

    Physics and chemistry programs at the secondary school level in France recommend introducing components of the history of science (HS). Emphasis is placed on a "cultural" dimension, which is poorly defined but essentially refers to elements of epistemological nature. Moreover, the few examples of activities based on HS suggested by the…

  4. A Teaching Intervention to Increase Achievement of Hispanic Nonscience Majors Taking Physical Science Courses

    ERIC Educational Resources Information Center

    Poelzer, G. Herold; Zeng, Liang

    2008-01-01

    This quasi-experimental pilot study of nonscience majors taking a physical science course at a university in South Texas was conducted on Hispanic undergraduate students, and is theory based--an application of attribution theory. That the treatment group outperformed the comparison group provides evidence of the positive effect of having students…

  5. Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…

  6. Emerging Technologies in Physics Education

    ERIC Educational Resources Information Center

    Krusberg, Zosia A. C.

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…

  7. Summer Institute for Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  8. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  9. Scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (7 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-05-01

    A scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 7 December 2015. The papers collected in this issue were written based on talks given at the session (the program of the session is available on the RAS Physical Sciences Division website http://www.gpad.ac.ru). (1) Loshchenov V B (Prokhorov General Physics Institute, RAS, Moscow) "Pharmacodynamics of a nanophotosensitizer under irradiation by an electromagnetic field: from THz to Cherenkov radiation"; (2) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Successes and problems in the development of medical radioisotope production in Russia"; (3) Tikhonov Yu A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Applying nuclear physics methods in healthcare"; (4) Turchin I V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Methods of biomedical optical imaging: from subcellular structures to tissues and organs"; (5) Breus T K, Petrukovich A A (Space Research Institute, RAS, Moscow), Binhi V N (Prokhorov General Physics Institute, RAS, Moscow; Lomonosov Moscow State University, Moscow) "Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research"; (6) Makarov D I (Special Astrophysical Observatory, RAS, Nizhnii Arkhyz, Zelenchukskii region, Karachai-Cherkessian Republic) "Studying the Local University". Papers based on oral reports 2, 4, and 5 are presented below. • Successes and problems in the development of medical radioisotope production in Russia, B L Zhuikov Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 481-486 • Methods of biomedical optical imaging: from subcellular structures to tissues and organs, I V Turchin Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 487-501 • Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research, T K Breus, V N Binhi, A A Petrukovich Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 502-510

  10. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  11. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    NASA Astrophysics Data System (ADS)

    Henke, Andreas; Höttecke, Dietmar

    2015-05-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers' decisions towards implementing its practices and ideas. We therefore investigate the perceptions of 8 HPS-experienced German middle school physics teachers within and beyond an HPS implementation project. Within focused interviews these teachers describe and evaluate the challenges of planning and conducting HPS-based physics lessons using collaboratively developed HPS teaching materials. The teachers highlight a number of obstacles to the implementation of HPS specific to this approach: finding and adapting HPS teaching material, knowing and using instructional design principles for HPS lessons, presenting history in a motivating way, dealing with students' problematic ideas about the history of science, conducting open-ended historical classroom investigations in the light of known historical outcomes, using historical investigations to teach modern science concepts, designing assessments to target HPS-specific learning outcomes, and justifying the HPS-approach against curriculum and colleagues. Teachers' perceived demands point out critical aspects of pedagogical content knowledge necessary for confident, comfortable and effective teaching of HPS-based science. They also indicate how HPS teacher education and the design of curricular materials can be improved to make implementing HPS into everyday teaching less demanding.

  12. The Effects of Using Jigsaw Method Based on Cooperative Learning Model in the Undergraduate Science Laboratory Practices

    ERIC Educational Resources Information Center

    Karacop, Ataman

    2017-01-01

    The main aim of the present study is to determine the influence of a Jigsaw method based on cooperative learning and a confirmatory laboratory method on prospective science teachers' achievements of physics in science teaching laboratory practice courses. The sample of this study consisted of 33 female and 15 male third-grade prospective science…

  13. Physics in Cuba from the Perspective of Bibliometrics

    NASA Astrophysics Data System (ADS)

    Marx, Werner; Cardona, Manuel

    We present a bibliometric analysis of the development of the physical sciences in Cuba since the revolution of 1959. We analyze, using available databases (Web of Science, Essential Science Indicators, INSPEC), the development of the output (number of publications of authors based in Cuba) and of their impact (number of citations) from 1959 until now. We discuss the productivity of Cuba in comparison to the Latin American sister republics and the collaborative efforts between Cuba and highly developed countries. The most important areas of scientific activity within the field of physics, the preferred journals and the leading affiliations are identified. The most frequently cited Cuban physics publications are given. Finally, the overall scientific ranking of Cuba among the world nations is investigated.

  14. Informal science participation positively affects the communication and pedagogical skills of university physics students

    NASA Astrophysics Data System (ADS)

    Hinko, Kathleen; Finkelstein, Noah

    2013-04-01

    Many undergraduate and graduate physics students choose to participate in an informal science program at the University of Colorado Boulder (Partnerships for Informal Science Education in the Community (PISEC)). They coach elementary and middle school students in inquiry-based physics activities during weekly, afterschool sessions. Observations from the afterschool sessions, field notes from the students, and pre/post surveys are collected. University students are also pre/post- videotaped explaining a textbook passage on a physics concept to an imagined audience for the Communications in Everyday Language assessment (CELA). We present findings from these data that indicate informal experiences improve the communication and pedagogical skills of the university student as well as positively influence their self-efficacy as scientific communicators and teachers.

  15. Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.; Green, Robert; Jakupca, Ian

    2015-01-01

    NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.

  16. 7 CFR 91.5 - Where services are offered.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...

  17. 7 CFR 91.5 - Where services are offered.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...

  18. 7 CFR 91.5 - Where services are offered.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...

  19. 7 CFR 91.5 - Where services are offered.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...

  20. Kenny Gruchalla | NREL

    Science.gov Websites

    feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology

  1. Enhancing Pre-Service Physics Teachers' Perceived Self-Efficacy of Argumentation-Based Pedagogy through Modelling and Mastery Experiences

    ERIC Educational Resources Information Center

    Ogan-Bekiroglu, Feral; Aydeniz, Mehmet

    2013-01-01

    This study explored the impact of explicit instruction on argumentation-based pedagogy, coupled with modelling and hands-on learning activities on pre-service physics teachers' perceived self-efficacy to teach science through argumentation. Participants consisted of 24 pre-service physics teachers attending an established teacher education program…

  2. Learning Environments and Inquiry Behaviors in Science Inquiry Learning: How Their Interplay Affects the Development of Conceptual Understanding in Physics

    ERIC Educational Resources Information Center

    Bumbacher, Engin; Salehi, Shima; Wierzchula, Miriam; Blikstein, Paulo

    2015-01-01

    Studies comparing virtual and physical manipulative environments (VME and PME) in inquiry-based science learning have mostly focused on students' learning outcomes but not on the actual processes they engage in during the learning activities. In this paper, we examined experimentation strategies in an inquiry activity and their relation to…

  3. Examining the Relationship between Students' Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry

    ERIC Educational Resources Information Center

    Gobert, Janice D.; O'Dwyer, Laura; Horwitz, Paul; Buckley, Barbara C.; Levy, Sharona Tal; Wilensky, Uri

    2011-01-01

    This research addresses high school students' understandings of the nature of models, and their interaction with model-based software in three science domains, namely, biology, physics, and chemistry. Data from 736 high school students' understandings of models were collected using the Students' Understanding of Models in Science (SUMS) survey as…

  4. Development of CAG Model for Developing Instructional Materials for Teaching Physical Science Concepts for Grade 8 Students.

    ERIC Educational Resources Information Center

    Hse, Shun-Yi

    1991-01-01

    The development of an instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) is described. A module developed for heat and temperature was administered to test its effects by comparing its use with the same unit in the New Physical Science Curriculum (NPSC). The methodology, results, and discussion…

  5. Mapping Science in Discourse-based Inquiry Classrooms

    NASA Astrophysics Data System (ADS)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most of the science thematic patterns in the lessons were not only developed by the students but also resemble the standard thematics. Similarly, in the open-ended inquiry classroom, True Dialogue and Cross-discussion were the two most common communicative patterns and students did most of the science thematic patterns in the lessons but most of the student thematics were commonsense than resembling the standard thematics on the topic. This research showed that if teachers are to help students participate in classroom discourse that would enable them meaningfully connects core ideas and concepts in science, teachers could use various discourse tools and pedagogic resources that could fit into their particular classroom realities and contexts. This study demonstrated that when given the opportunity, students in challenging contexts such in typical inner city schools are able to engage in scientific processes and develop nuanced understandings of scientific phenomena.

  6. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  7. A Seven-Year Longitudinal Study of the Research Outcomes for the CASPER Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Land-Zandstra, Anna; Stark, Gary; Tarman, Lisa; Menefee, Matt; Wang, Li; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell

    2014-10-01

    The CASPER Physics Circus was specifically designed to increase student interest in science, technology, engineering and mathematics (STEM) careers where the current generation of scientists and engineers is rapidly approaching retirement age. The Physics Circus followed Waco and LaVega ISD students starting in the sixth grade and ending in the twelfth grade with this cohort group attending the Physics Circus event on the Baylor University campus, interacting with CASPER graduate students and participating in hands-on instructional activities. The event was designed as an informal learning environment intervention and operated under the discovery, project and guided-inquiry base framework wrapped in a learner-center ideology. Participating students were allowed to experiment with hands-on manipulatives while interacting with physicists, science educators and graduate students in both STEM and science education fields. Professional Development was also a part of the Physics Circus for all science teachers within the cohort. This paper presents the results of a seven-year longitudinal study on the Physics Circus and presents future plans to expand the program's effectiveness and impact.

  8. An Analogy-Based Computer Tutor for Remediating Physics Misconceptions.

    ERIC Educational Resources Information Center

    Murray, Tom; And Others

    1990-01-01

    Describes an intelligent tutoring system designed to help students remedy misconceptions of physics concepts based on a teaching strategy called bridging analogies. Highlights include tutoring strategies; misconceptions in science education; the example situation network; confidence checking; formative evaluation with college students, including…

  9. Two-year colleges, Physics, and Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Clay, Keith

    2002-05-01

    In the midst of a teacher shortage no field suffers more than physics. Half of our secondary physics teachers have less than a minor in physics. Meanwhile half of our future teachers start out at two-year colleges with physicists on staff. The opportunity for community colleges to have an impact on K-12 teaching is tremendous. Project TEACH has been honored as an outstanding teacher preparation program. It is a collaboration of colleges and K-12 schools dedicated to the improvement of teacher preparation, especially in science and math. Based at Green River Community College, Project TEACH unites certification institutions, community colleges, and K-12 school districts in the pre-service and in-service training of teachers. Activities of Project TEACH include recruitment and advising of future teachers, field experience for education students, creation of pre-teaching and para-educator degrees, tutoring from elementary school through college, in-service courses for current teachers, and special math and science courses aimed at future teachers. The yearlong interdisciplinary science sequence blends chemistry, physics, geology, and biology in a hands-on inquiry-based environment. The yearlong math sequence covers arithmetic, algebra, geometry, and probability with inquiry-based pedagogy. The programs developed by Project TEACH are being disseminated to colleges across Washington State and beyond.

  10. 75 FR 14565 - NIST Summer Institute for Middle School Science Teachers; Availability of Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...), including, but not limited to, earth science, physical science, chemistry, physics, and/or biology. This... science, physical science, chemistry, physics and/or biology. NIST will award funding that will support... instruction in general science fields including earth science, physical science, chemistry, physics, and/or...

  11. The Effectiveness of Brain-Based Teaching Approach in Dealing with the Problems of Students' Conceptual Understanding and Learning Motivation towards Physics

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    Teachers of science-based education in Malaysian secondary schools, especially those in the field of physics, often find their students facing huge difficulties in dealing with conceptual ideas in physics, resulting thus in a lack of interest towards the subject. The aim of this study was to assess the effectiveness of the Brain-Based Teaching…

  12. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  13. After-school, Activity-based Physical Science in a Low-income, Rural County

    NASA Astrophysics Data System (ADS)

    Small, Staci; Ryan, Ben; Vann, Nik; Moore, Christopher

    2010-02-01

    Longwood University's Society of Physics Students conducted a six-week, activity-based after-school program for middle-school students in partnership with a rural low-income school system. Hands-on learning activities were designed and implemented to improve content knowledge in typically low-scoring standardized testing areas in the physical sciences. For example, we used colored yarn of different lengths to help demonstrate visible light in the electromagnetic spectrum along with the relationship between wavelength and frequency. Other topics were explored, such as reflection, refraction, sound and inference. At the end of the six-week program, a science exposition was held where the students came to Longwood and participated in more sophisticated experiments, such as liquid nitrogen demonstrations. After the exposition, Longwood University held a small awards ceremony in which the parents were invited to watch their students receive an award congratulating them on completing the program and welcoming them into the Lancer Discovery Club. )

  14. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    NASA Astrophysics Data System (ADS)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual and culturally based nature of teachers' conceptions of inquiry. For the education community, disciplinary differences should be considered in the development of curriculum and professional development. An understanding of disciplinary trends can allow for more targeted and relevant representations of inquiry.

  15. Taking evolution seriously in political science.

    PubMed

    Lewis, Orion; Steinmo, Sven

    2010-09-01

    In this essay, we explore the epistemological and ontological assumptions that have been made to make political science "scientific." We show how political science has generally adopted an ontologically reductionist philosophy of science derived from Newtonian physics and mechanics. This mechanical framework has encountered problems and constraints on its explanatory power, because an emphasis on equilibrium analysis is ill-suited for the study of political change. We outline the primary differences between an evolutionary ontology of social science and the physics-based philosophy commonly employed. Finally, we show how evolutionary thinking adds insight into the study of political phenomena and research questions that are of central importance to the field, such as preference formation.

  16. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    NASA Astrophysics Data System (ADS)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The bridging between these two human aspects of life, can lead to a “why” of science, and a “meaning” of life. A progress report on these efforts is presented, essentially being of the results indicated by an extended format of the usual weekly reporting used previously in Basic Physics lectures.

  17. Science teacher's perception about science learning experiences as a foundation for teacher training program

    NASA Astrophysics Data System (ADS)

    Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh

    2017-05-01

    Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.

  18. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  19. Youth Exploring Science

    NASA Astrophysics Data System (ADS)

    Miller, Diane

    2008-04-01

    This session features Youth Exploring Science (YES), Saint Louis Science Center's nationally recognized work-based teen development program. In YES, underserved audiences develop interest and understanding in physics through design engineering projects. I will discuss breaking down barriers, helping youth develop skills, and partnering with community organizations, universities and engineering firms.

  20. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    NASA Astrophysics Data System (ADS)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.

  1. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    ERIC Educational Resources Information Center

    Henke, Andreas; Höttecke, Dietmar

    2015-01-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers'…

  2. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    ERIC Educational Resources Information Center

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  3. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  4. Research and technology, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  5. Jorge Luis Borges and the New Physics: the Literature of Modern Science and the Science of Modern Literature

    NASA Astrophysics Data System (ADS)

    Mosher, Mark Robert

    1992-01-01

    By examining the works of the Argentine writer, Jorge Luis Borges, and the parallels it has with modern physics, literature and science converge in their quest for truth regarding the structure and meaning of the universe. The classical perception of physics as a "hard" science--that of quantitative, rational thought which was established during the Newtonian era--has been replaced by the "new physics," which integrates the so-called "soft" elements into its paradigm. It presents us with a universe based not exclusively on a series of particle-like interactions, or a "billiard-ball" hypothesis where discrete objects have a measurable position and velocity in absolute space and time, but rather on a combination of these mechanistic properties and those that make up the non-physical side of nature such as intuition, consciousness, and emotion. According to physicists like James Jeans science has been "humanized" to the extent that the universe as a "great machine" has been converted into a "great thought.". In nearly all his collections of essays and short stories, Borges complements the new physics by producing a literature that can be described as "scientized." The abstract, metaphysical implications and concerns of the new world-view, such as space, time, language, consciousness, free will, determinism, etc., appear repeatedly throughout Borges' texts, and are treated in terms that are remarkably similar to those expressed in the scientific texts whose authors include Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrodinger. As a final comparison, Borges and post-modern physicists address the question of the individual's ability to ever comprehend the universe. They share an attitude of incredulity toward all models and theories of reality simply because they are based on partial information, and therefore seen only as conjectures.

  6. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    NASA Astrophysics Data System (ADS)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  7. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Taylor, P. L.; Lee, R. L.

    2000-10-01

    The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.

  8. Investigating Student Understanding of Control of Variables

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew; Heron, P. R.; Shaffer, P. S.

    2006-12-01

    The concept of control of variables is fundamental to science. A practical understanding is especially important for science teachers, who must help students design experiments and learn to interpret the results. Findings from an extended study of student and teacher facility with the reasoning underlying control of variables will be reported. This research has involved precollege science teachers, liberal arts physics students, calculus-based introductory physics students, and college science faculty. The results suggest that while most participants are familiar with the idea of controlled experiments, many lack functional skill with the underlying reasoning. Results from interviews and written questions will be used to illustrate specific difficulties.

  9. STAIRSTEP -- a research-oriented program for undergraduate students at Lamar University

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian

    2011-03-01

    The relative low number of undergraduate STEM students in many science disciplines, and in particular in physics, represents a major concern for our faculty and the administration at Lamar University. Therefore, a collaborative effort between several science programs, including computer science, chemistry, geology, mathematics and physics was set up with the goal of increasing the number of science majors and to minimize the retention rate. Lamar's Student Advancing through Involvement in Research Student Talent Expansion Program (STAIRSTEP) is a NSF-DUE sponsored program designed to motivate STEM students to graduate with a science degree from one of these five disciplines by involving them in state-of-the-art research projects and various outreach activities organized on-campus or in road shows at the secondary and high schools. The physics program offers hands-on experience in optics, such as computer-based experiments for studying the diffraction and interference of light incident on nettings or electronic wave packets incident on crystals, with applications in optical imaging, electron microscopy, and crystallography. The impact of the various activities done in STAIRSTEP on our Physics Program will be discussed.

  10. Biology. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 18 biology investigations. These investigations focus on concepts related to: organisms; classification; populations;…

  11. Technology Enhanced Elementary and Middle School Science (TEEMSS). What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Technology Enhanced Elementary and Middle School Science" ("TEEMSS") is a physical science curriculum for grades 3-8 that utilizes computers, sensors, and interactive models to support investigations of real-world phenomena. Through 15 inquiry-based instructional units, students interact with computers, gather and analyze…

  12. A Sense of Place in the Science Classroom

    ERIC Educational Resources Information Center

    Membiela, Pedro; DePalma, Renee; Pazos, Mercedes Suarez

    2011-01-01

    Place-based science education engages with the laboratories of complex reality where natural processes combine with social practice, going beyond the physical world, to encompass the meanings and sense of attachment local residents feel for places. This brief report describes how a university science methods class in a primary teacher training…

  13. Reimagining professional competence in physical education

    PubMed Central

    Ennis, Catherine D.

    2015-01-01

    Physical educators have critical roles to play in assisting communities and schools to increase physical activity for all citizens. They can assist classroom teachers in increasing physical activity in the academic school day and can serve as school wellness directors to increase the amount of physical activity students and school staff members receive during the day. Additionally, physical educators can implement innovative approaches to physical education curricula to enhance students’ opportunities to be active and to learn concepts to assist them to be physically active now and for a lifetime. When implementing evidence-based approaches to physical education, teachers need to teach the curriculum coherently and with fidelity. New programs such as Science, PE, & Me! and the Science of Healthful Living provide opportunities for students to examine the effects of exercise on their bodies in a physically active, learning-oriented approach to physical education. PMID:26617976

  14. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    NASA Astrophysics Data System (ADS)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  15. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    NASA Astrophysics Data System (ADS)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  16. Preparing Science Teachers for the future

    NASA Astrophysics Data System (ADS)

    Stein, Fredrick

    2002-04-01

    What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/

  17. A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics

    NASA Astrophysics Data System (ADS)

    Ochi, Nobuaki

    A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.

  18. Lift, Squeeze, Stretch, and Twist: Research-Based Inquiry Physics Experiences (RIPE) of Energy for Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.; Huziak-Clark, Tracy L.

    2008-01-01

    This study examines changes in kindergarten students' understanding of energy after participating in a series of lessons developed using an inquiry-based early childhood science teaching model: Research-based Inquiry Physics Experiences (RIPE). The lessons addressed where objects get their energy and what they use their energy to do, and how…

  19. Scientific Reasoning Abilities of Nonscience Majors in Physics-Based Courses

    ERIC Educational Resources Information Center

    Moore, J. Christopher; Rubbo, Louis J.

    2012-01-01

    We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on…

  20. Modeling the Water Balloon Slingshot

    NASA Astrophysics Data System (ADS)

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments, from non-science major classes to algebra-based and calculus-based introductory physics classes.

  1. Essential Mathematics for the Physical Sciences; Volume I: Homogeneous boundary value problems, Fourier methods, and special functions

    NASA Astrophysics Data System (ADS)

    Borden, Brett; Luscombe, James

    2017-10-01

    Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations and the special functions introduced. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well.

  2. Annual Research Briefs - 2006

    DTIC Science & Technology

    2006-12-01

    IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical

  3. Contemporary Test Validity in Theory and Practice: A Primer for Discipline-Based Education Researchers

    ERIC Educational Resources Information Center

    Reeves, Todd D.; Marbach-Ad, Gili

    2016-01-01

    Most discipline-based education researchers (DBERs) were formally trained in the methods of scientific disciplines such as biology, chemistry, and physics, rather than social science disciplines such as psychology and education. As a result, DBERs may have never taken specific courses in the social science research methodology--either quantitative…

  4. Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change

    ERIC Educational Resources Information Center

    Colaianne, Blake

    2015-01-01

    Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…

  5. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  6. Understanding student use of mathematics in IPLS with the Math Epistemic Games Survey

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Mark; Hemingway, Deborah; Redish, Edward F.

    2017-01-01

    We present the Math Epistemic Games Survey (MEGS), a new concept inventory on the use of mathematics in introductory physics for the life sciences. The survey asks questions that are often best-answered via techniques commonly-valued in physics instruction, including dimensional analysis, checking special or extreme cases, understanding scaling relationships, interpreting graphical representations, estimation, and mapping symbols onto physical meaning. MEGS questions are often rooted in quantitative biology. We present preliminary data on the validation and administration of the MEGS in a large, introductory physics for the life sciences course at the University of Maryland, as well as preliminary results on the clustering of questions and responses as a guide to student resource activation in problem solving. This material is based upon work supported by the US National Science Foundation under Award No. 15-04366.

  7. Linking Science Fiction and Physics Courses

    NASA Astrophysics Data System (ADS)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  8. Evaluating How Universities Engage School Students with Science: A Model Based on the Analysis of the Literature

    ERIC Educational Resources Information Center

    Cridge, B. J.; Cridge, A. G.

    2015-01-01

    Every year fewer students are electing to take university level science courses, particularly physics. This situation has led universities and employers to try and encourage more students into science subjects through the development of numerous science outreach initiatives such as guest lectures and summer schools. Much of this work is of an…

  9. Teaching Strategis Designed to Change the Undergraduate Experience for College Women Learning Chemistry

    NASA Astrophysics Data System (ADS)

    Khan, Samia

    A college for women has been cited as one of the most productive origins of female physical science doctorates in the United States. A case study was conducted to investigate teaching strategies that support the retention of women in the physical sciences, based on evidence from one of the college's most notable instructors and her teaching strategies. The strategies this teacher used included a personal "contract", confidence building techniques, and science internships. Data were collected from classroom documents, classroom observations, teacher interviews, student focus groups, student feedback sheets, Likert-response student surveys, and student final exams. Evidence from the Likert-response survey and focus groups suggested that the contract increased students' likelihood of success in the course and that confidence-building strategies improved students' confidence in their ability to succeed in science. An analysis of students' final exam scores indicated that student marks improved after the introduction of the aforementioned teaching innovations: 4% of students taking the same science course with the same teacher earned less than a C-, compared to a previous three-year average of 18% of students with below C- grades. In addition, notably fewer minority women dropped the course than they had in the past. The findings of this study suggest that this teacher's strategies may have played a part in retaining these women in the physical sciences. Based on the data, a theoretical model is proposed that suggests how switching or "fading" out of the course may have been addressed and how multiple teaching strategies can work in concert with each other to contribute to women's positive experiences in the physical sciences.

  10. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.

    NASA Astrophysics Data System (ADS)

    Buja, L.

    2016-12-01

    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  11. The language of the arrows

    NASA Astrophysics Data System (ADS)

    2015-10-01

    I think and hope that most experienced physics and astronomy teachers would agree that teaching is both a science and a creative art. There is a way to creatively introduce vectors into introductory astronomy that lets students learn some basic, but fundamental, physics and at the same time demonstrates that mathematics need not be a barrier in a science course. The approach is entirely graphical in that it is based on the geometric properties of vectors and is implemented by drawing diagrams. Despite the simplicity, it allows astronomy students to experience genuine physics reasoning at about the same level of a conceptual physics course (and possibly a higher level).

  12. Students’ Conception on Heat and Temperature toward Science Process Skill

    NASA Astrophysics Data System (ADS)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  13. Getting First Graders Started in Science

    ERIC Educational Resources Information Center

    Hartman, Ann

    1975-01-01

    Instructions are given for a first graders' science and mathematical lesson entitled: "Stone Soup" (based on a popular story by Marcia Brown). Activities include reading, discussing, collecting materials, cooking, growing plants, and observing physical and chemical changes. (CR)

  14. A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates

    NASA Astrophysics Data System (ADS)

    Dark, Marta L.

    2011-05-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.

  15. Innovative science within and against a culture of achievement

    NASA Astrophysics Data System (ADS)

    Carlone, Heidi B.

    2003-05-01

    As science educators struggle to reform science education, we need a better understanding of the conundrums associated with the ways educators enact innovative science within and against the academic, rigorous, and elite sociohistorical constructions of science. I ethnographically investigated the meanings of an innovative, reform-based curriculum (Active Physics) in various micro (classroom) and macro (school and community) contexts. I conducted the study in a high school serving primarily upper middle class students, the majority of whom (97%) planned to attend college. I explored how meanings of the curriculum transformed as the curriculum traveled across space and time. While certain aspects of the context enabled innovative science (e.g., support from the administration, pressure to serve a wider range of students), other aspects of the context constrained the potential of the curriculum (e.g., the need to establish for students, parents, and administrators the legitimacy of Active Physics as real and rigorous physics). Using practice theory to understand the influence of context and agency in shaping school science practice, this study demonstrates the potential for viewing meanings of science in local settings as partially fluid entities, sometimes reproducing and sometimes contesting sociohistorical legacies.

  16. Behavioral science and the study of gene-nutrition and gene-physical activity interactions in obesity research.

    PubMed

    Faith, Myles S

    2008-12-01

    This report summarizes emerging opportunities for behavioral science to help advance the field of gene-environment and gene-behavior interactions, based on presentations at The National Cancer Institute (NCI) Workshop, "Gene-Nutrition and Gene-Physical Activity Interactions in the Etiology of Obesity." Three opportunities are highlighted: (i) designing potent behavioral "challenges" in experiments, (ii) determining viable behavioral phenotypes for genetics studies, and (iii) identifying specific measures of the environment or environmental exposures. Additional points are underscored, including the need to incorporate novel findings from neuroimaging studies regarding motivation and drive for eating and physical activity. Advances in behavioral science theory and methods can play an important role in advancing understanding of gene-brain-behavior relationships in obesity onset.

  17. Magic Physics?

    ERIC Educational Resources Information Center

    Featonby, David

    2010-01-01

    This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)

  18. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  19. Leon Cooper's Perspective on Teaching Science: An Interview Study

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Klassen, Stephen; McMillan, Barbara; Metz, Don

    2010-01-01

    The authors of this paper portray the perspective of Professor Leon Cooper, a theoretical physicist, Nobel laureate, active researcher, and physics textbook author, on teaching science and on the nature of science (NOS). The views presented emerged from an interview prepared by the authors and responded to in writing by Professor Cooper. Based on…

  20. Investigating the Effect of Argument-Driven Inquiry in Laboratory Instruction

    ERIC Educational Resources Information Center

    Demircioglu, Tuba; Ucar, Sedat

    2015-01-01

    The aim of this study is to investigate the effect of argument-driven inquiry (ADI) based laboratory instruction on the academic achievement, argumentativeness, science process skills, and argumentation levels of pre-service science teachers in the General Physics Laboratory III class. The study was conducted with 79 pre-service science teachers.…

  1. Biology. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 18 biology investigations found in the student manual. These investigations focus on concepts related to:…

  2. Evidence for Family Engagement in Scientific Reasoning at Interactive Animal Exhibits

    ERIC Educational Resources Information Center

    Kisiel, James; Rowe, Shawn; Vartabedian, Melanie Ani; Kopczak, Charles

    2012-01-01

    While the opportunity to engage in scientific reasoning has been identified as an important aspect of informal science learning (National Research Council, 2009), most studies have examined this strand of science learning within the context of physics-based science exhibits. Few have examined the presence of such activity in conjunction with live…

  3. Predictors of Student Success in Entry-Level Science Courses

    ERIC Educational Resources Information Center

    Singh, Mamta K.

    2009-01-01

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…

  4. What Will Happen If...Young Children and the Scientific Mind.

    ERIC Educational Resources Information Center

    Sprung, Barbara; And Others

    Based on the premise that exposure to science and technology is important in early childhood curricula, this guide was developed to help teachers incorporate mathematics, sciences, and technology-related activities into existing programs. Activities contained in this guide focus on concepts in the physical sciences and in the development of…

  5. Chemistry. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 19 chemistry investigations found in the student manual. These investigations focus on concepts related to:…

  6. Chemistry. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 19 chemistry investigations. These investigations focus on concepts related to: interactions with water; salt and calcium;…

  7. [Competence Based Catalogue of Learning Objectives for Rehabilitation, Physical Medicine, Naturopathic Treatment - Revised Version - Joint Recommendations of the German Society of Rehabilitation Science and the German Society of Physical Medicine and Rehabilitation].

    PubMed

    Mau, Wilfried; Liebl, Max Emanuel; Deck, Ruth; Lange, Uwe; Smolenski, Ulrich Christian; Walter, Susanne; Gutenbrunner, Christoph

    2017-12-01

    Since the first publication of learning objectives for the interdisciplinary subject "Rehabilitation, Physical Medicine, Naturopathic Treatment" in undergraduate medical education in 2004 a revision is reasonable due to heterogenous teaching programmes in the faculties and the introduction of the National Competence Based Catalogue of Learning Objectives in Medicine as well as the "Masterplan Medical Education 2020". Therefore the German Society of Rehabilitation Science and the German Society of Physical Medicine and Rehabilitation started a structured consensus process using the DELPHI-method to reduce the learning objectives and arrange them more clearly. Objectives of particular significance are emphasised. All learning objectives are assigned to the cognitive and methodological level 1 or to the action level 2. The learning objectives refer to the less detailed National Competence Based Catalogue of Learning Objectives in Medicine. The revised learning objectives will contribute to further progress in competence based and more homogenous medical teaching in core objectives of Rehabilitation, Physical Medicine, and Naturopathic Treatment in the faculties. © Georg Thieme Verlag KG Stuttgart · New York.

  8. An Inquiry-Based Course Using "Physics?" in Cartoons and Movies

    ERIC Educational Resources Information Center

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.…

  9. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    NASA Astrophysics Data System (ADS)

    2013-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842

  10. The ERG Science Center

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yoshizumi; Hori, Tomoaki; Shoji, Masafumi; Teramoto, Mariko; Chang, T. F.; Segawa, Tomonori; Umemura, Norio; Matsuda, Shoya; Kurita, Satoshi; Keika, Kunihiro; Miyashita, Yukinaga; Seki, Kanako; Tanaka, Yoshimasa; Nishitani, Nozomu; Kasahara, Satoshi; Yokota, Shoichiro; Matsuoka, Ayako; Kasahara, Yoshiya; Asamura, Kazushi; Takashima, Takeshi; Shinohara, Iku

    2018-06-01

    The Exploration of energization and Radiation in Geospace (ERG) Science Center serves as a hub of the ERG project, providing data files in a common format and developing the space physics environment data analysis software and plug-ins for data analysis. The Science Center also develops observation plans for the ERG (Arase) satellite according to the science strategy of the project. Conjugate observations with other satellites and ground-based observations are also planned. These tasks contribute to the ERG project by achieving quick analysis and well-organized conjugate ERG satellite and ground-based observations.

  11. Physical Foundations of Plasma Microwave Sources Based on Anomalous Doppler Effect

    DTIC Science & Technology

    2007-09-17

    International Science and Technology Center ( ISTC ), Moscow. ISTC Project A-1512p Physical Foundations of Plasma Microwave Sources Based on Anomalous...07 – 31-Aug-07 5a. CONTRACT NUMBER ISTC Registration No: A-1512p 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Physical foundations of plasma microwave... ISTC 05-7008 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES

  12. Multi-level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    NASA Astrophysics Data System (ADS)

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-11-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective, affords opportunities for analysts to perform a theoretically based detailed analysis of discourse events. Along with the presentation of analysis, we show and discuss how the articulation of different levels offers interpretative criteria for analyzing instructional conversations. We synthesize the results into a model for a teacher's practice and discuss the implications and possibilities of this approach for the field of discourse analysis in science classrooms. Finally, we reflect on how the development of teachers' understanding of their activity structures can contribute to forms of progressive discourse of science education.

  13. A Context Menu for the Real World: Controlling Physical Appliances Through Head-Worn Infrared Targeting

    DTIC Science & Technology

    2013-12-10

    Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-200...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...movement. PHYSICAL TARGET ACQUISITION STUDY To understand the accuracy and performance of head- orientation-based selection through our device, we car - ried

  14. Teaching Physics to In-Service Primary School Teachers in the Context of the History of Science: The Case of Falling Bodies

    ERIC Educational Resources Information Center

    Kokkotas, Panos; Piliouras, Panagiotis; Malamitsa, Katerina; Stamoulis, Efthymios

    2009-01-01

    Our paper presents an in-service primary school teachers' training program which is based on the idea that the history of science can play a vital role in promoting the learning of physics. This training program has been developed in the context of Comenius 2.1 which is a European Union program. This program that we have developed in the…

  15. Impacting university physics students through participation in informal science

    NASA Astrophysics Data System (ADS)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  16. Turning the Ship: The Transformation of DESY, 1993-2009

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Hallonsten, Olof; Heinecke, Steffi

    2017-12-01

    This article chronicles the most recent history of the Deutsches Elektronen-Synchrotron (DESY) located in Hamburg, Germany, with particular emphasis on how this national laboratory founded for accelerator-based particle physics shifted its research program toward multi-disciplinary photon science. Synchrotron radiation became DESY's central experimental research program through a series of changes in its organizational, scientific, and infrastructural setup and the science policy context. Furthermore, the turn toward photon science is part of a broader transformation in the late twentieth century in which nuclear and particle physics, once the dominating fields in national and international science budgets, gave way to increasing investment in the materials sciences and life sciences. Synchrotron radiation research took a lead position on the experimental side of these growing fields and became a new form of big science, generously funded by governments and with user communities expanding across both academia and industry.

  17. Developing Critical Thinking in Undergraduate Courses: A Philosophical Approach.

    ERIC Educational Resources Information Center

    Kalman, Calvin S.

    2002-01-01

    Examines how 20th century philosophers of science have influenced current physics educational research. Examines the introduction of a study of these philosophers in several courses, including the calculus-based introductory physics course on optics and modern physics. Concludes that students seem to have made a marked improvement in their…

  18. Evaluating a Contextual-Based Course on Data Analysis for the Physics Laboratory

    ERIC Educational Resources Information Center

    Kukliansky, Ida; Eshach, Haim

    2014-01-01

    The interpretation of data and construction and understanding of graphs are central practices in science; therefore, an important skill needed in the undergraduate physics laboratory is the ability to analyze data obtained from experiments. Often students are not able to reach logical deductions based on data, acquired from the experiments that…

  19. Inquiry-Based Course in Physics and Chemistry for Preservice K-8 Teachers

    ERIC Educational Resources Information Center

    Loverude, Michael E.; Gonzalez, Barbara L.; Nanes, Roger

    2011-01-01

    We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat…

  20. Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline

    NASA Astrophysics Data System (ADS)

    Perkins, K. K.; Barbera, J.; Adams, W. K.; Wieman, C. E.

    2007-01-01

    A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors — generally required to take both of the courses — view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P ⩽ 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in `Overall' and the `Real World Connection' category, respectively, in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses.

  1. Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools

    NASA Astrophysics Data System (ADS)

    Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.

    2014-11-01

    The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.

  2. Can the History of Science Contribute to Modelling in Physics Teaching? The Case of Galilean Studies and Mario Bunge's Epistemology

    ERIC Educational Resources Information Center

    Machado, Juliana; Braga, Marco Antônio Barbosa

    2016-01-01

    A characterization of the modelling process in science is proposed for science education, based on Mario Bunge's ideas about the construction of models in science. Galileo's "Dialogues" are analysed as a potentially fruitful starting point to implement strategies aimed at modelling in the classroom in the light of that proposal. It is…

  3. A Conflict in Your Head: An Exploration of Trainee Science Teachers' Subject Matter Knowledge Development and Its Impact on Teacher Self-Confidence

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2009-01-01

    Teachers' subject matter knowledge (SMK) is one factor contributing to teaching 'successfully', as this provides a basis from which pedagogical content knowledge develops. UK-based trainee science teachers teach all sciences to age 14 and often up to age 16. Trainees have specialist science knowledge in chemistry, physics, or biology from their…

  4. Philosophical Issues in Educational Research: Is There Room for Truth in the Soft Sciences? Research Seminar and Workshop Series.

    ERIC Educational Resources Information Center

    Phillips, D. C.

    Many in the research community no longer believe that a naturalistic social science is possible. A social science based on the model of the physical sciences seems unattainable. Relativistic views are becoming common; it is often said that what is true depends on what different theoretical frameworks will be confronted by different realities. A…

  5. Influence Based Learning Program Scientific Learning Approach to Science Students Generic Skills

    ERIC Educational Resources Information Center

    Wahyuni, Ida; Amdani, Khairul

    2016-01-01

    This study aims to determine the influence of scientific approach based learning program (P2BPS) against generic science skills of students. The method used in this research is "quasi experiment" with "two-group pretest posttest" design.The population in this study were all students who take courses in general physics II at the…

  6. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    ERIC Educational Resources Information Center

    Moore, James Christopher

    2018-01-01

    We have investigated the efficacy of on-line, multimedia learning modules (MLMs) as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science). Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving…

  7. Designing a Site to Embed and to Interact with Wolfram Alpha Widgets in Math and Sciences Courses

    ERIC Educational Resources Information Center

    Cepeda, Francisco Javier Delgado; Acosta, Ruben Dario Santiago

    2014-01-01

    This paper reports design and implementation outcomes at middle development advance of an educative program based on use and construction of widgets on Wolfram Alpha platform at higher education level for engineering and sciences areas. Widgets were based on Physics and Mathematics curricula under Project Oriented Learning and Blended Learning…

  8. Guidelines for School and Community Programs To Promote Lifelong Physical Activity among Young People. Morbidity and Mortality Weekly Report: Recommendations and Reports.

    ERIC Educational Resources Information Center

    MMWR, 1997

    1997-01-01

    This report summarizes recommendations for encouraging physical activity among young people so they will continue to engage in physical activity in adulthood and obtain the benefits of physical activity throughout life. The guidelines are based on an in-depth review of research, theory, and current practice in physical education, exercise science,…

  9. Physlets and Web-based Physics Curricular Material

    NASA Astrophysics Data System (ADS)

    Cain, L. S.; Boye, D. M.; Christian, W.

    1998-11-01

    The WWW provides the most uniformly standardized and stable mode of networked information sharing available to date. Physlets, scriptable Java applets specific to physics pedagogy, provide the source around which interactive exercises can be created across the physics curriculum. We have developed WWW-based curricular materials appropriate for courses at the introductory and intermediate level. These include interactive demonstrations, homework assignments, pre-lab and post-lab exercises. A variety of examples, which have been used in courses in musical technology, general physics, physics for non-science majors, and modern physics, will be discussed.

  10. 78 FR 37590 - Advisory Committee for Mathematical and Physical Sciences #66; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences 66; Notice... Physical Sciences ( 66). Dates/Time: July 18, 2013 1:00 p.m.-5:15 p.m. Place: National Science Foundation... Federal Officer, Directorate for Mathematical and Physical Sciences, National Science Foundation, 4201...

  11. Can there be a physics of financial markets? Methodological reflections on econophysics

    NASA Astrophysics Data System (ADS)

    Huber, Tobias A.; Sornette, Didier

    2016-12-01

    We address the question whether there can be a physical science of financial markets. In particular, we examine the argument that, given the reflexivity of financial markets (i.e., the feedback mechanism between expectations and prices), there is a fundamental difference between social and physical systems, which demands a new scientific method. By providing a selective history of the mutual cross-fertilization between physics and economics, we reflect on the methodological differences of how models and theories get constructed in these fields. We argue that the novel conception of financial markets as complex adaptive systems is one of the most important contributions of econophysics and show that this field of research provides the methods, concepts, and tools to scientifically account for reflexivity. We conclude by arguing that a new science of economic and financial systems should not only be physics-based, but needs to integrate findings from other scientific fields, so that a truly multi-disciplinary complex systems science of financial markets can be built.

  12. Microgravity science and applications: Program tasks and bibliography for FY 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is a compilation of the FY 1992 Principal Investigator program task descriptions funded by the Microgravity Science and Applications Division (MSAD), NASA Headquarters, Washington, DC. The document also provides a bibliography of FY 1992 publications and presentations cited by MSAD Principal Investigators, and an index of the Principal Investigators and their affiliations. The purpose of the document is to provide an overview and progress report for the funded tasks for scientists and researchers in industry, university, and government communities. The tasks are grouped into three categories appropriate to the type of research being done-space flight, ground based, and advanced technology development-and by science discipline. The science disciplines are: biotechnology, combustion science,, electronic materials, fluid physics, fundamental physics, glass and ceramics, metals and alloys, and protein crystal growth.

  13. Science and Technological Innovation.

    ERIC Educational Resources Information Center

    Braun, Ernest

    1979-01-01

    This article is based on a presentation at the 1979 conference of the Education Group of The Institute of Physics which was held in Cambridge, England. It discusses the interaction between science and technological innovation using a historical approach: the development of microelectronics. (HM)

  14. Systems Models for Transportation Problems : Volume 1. Introducing a Systems Science for Transportation Planning.

    DOT National Transportation Integrated Search

    1976-03-01

    This introductory portion of a system science for tranportation planning, which is based on the statistical physics of ensembles, a foundations laid on how statistical mechanics, equilibrium thermodynamics, and near equilbrium thermodynamics can be u...

  15. 75 FR 62891 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... science and education activities within the Directorate for Mathematical and Physical Sciences. Agenda... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical...

  16. 77 FR 64831 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... education activities within the Directorate for Mathematical and Physical Sciences. Agenda: Update on... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Mathematical and Physical Sciences Advisory...

  17. 76 FR 64123 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical.... Morris L. Aizenman, Senior Science Associate, Directorate for Mathematical and Physical Sciences, Room...

  18. 75 FR 29369 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical... Physical Sciences, Room 1005, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230. (703...

  19. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science

    ERIC Educational Resources Information Center

    Sumter, Takita Felder; Owens, Patrick M.

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to…

  20. Incorporating Scientific Argumentation into Inquiry-Based Activities with Online Personally Seeded Discussions

    ERIC Educational Resources Information Center

    Sampson, Victor; Clark, Douglas

    2007-01-01

    An explicit goal of the current reform movement in science education is to promote scientific literacy in the United States. One way to encourage scientific literacy is to help students develop a better understanding of science subject matter, that is, the declarative knowledge specifically associated with the physical, life, and earth sciences.…

  1. Subject Specialization and Science Teachers' Perception of Information and Communication Technology for Instruction in Kwara State

    ERIC Educational Resources Information Center

    Fakomogbon, Michael Ayodele; Adebayo, Rachael Funmi; Adegbija, Mosiforeba Victoria; Shittu, Ahmed Tajudeen; Oyelekan, Oloyede Solomon

    2014-01-01

    This study examined Kwara State secondary school science teachers' perception of [information and communications technology] ICT for instruction based on their area of specialization. Participants were 630 science teachers of Biology, Chemistry, Physics and Mathematics from both public and private senior secondary schools in 12 Local Government…

  2. [Evaluation of the lifestyle of students of physiotherapy and technical & computer science basing on their diet and physical activity].

    PubMed

    Medrela-Kuder, Ewa

    2011-01-01

    The aim of the study was the evaluation of a dietary habits profile and physical activity of Physiotherapy and Technical & Computer Science students. The research involved a group of 174 non-full-time students of higher education institutions in Krakow aged between 22 and 27. 81 students of the surveyed studied Physiotherapy at the University of Physical Education, whereas 93 followed a course in Technical & Computer Science at the Pedagogical University. In this project a diagnostic survey method was used. The study revealed that the lifestyle of university youth left much to be desired. Dietary errors were exemplified by irregular meals intake, low consumption of fish, milk and dairy, snacking between meals on high calorie products with a poor nutrient content. With regard to physical activity, Physiotherapy students were characterised by more positive attitudes than those from Technical & Computer Science. Such physical activity forms as swimming, team sports, cycling and strolling were declared by the surveyed the most frequently. Health-oriented education should be introduced in such a way as to improve the knowledge pertaining to a health-promoting lifestyle as a means of prevention of numerous diseases.

  3. Tapping the Geoscience Two-Year College Student Reservoir: Factors that Influence Student Transfer Intent and Physical Science Degree Aspirations

    NASA Astrophysics Data System (ADS)

    Wolfe, Benjamin A.

    Colleges and universities are facing greater accountability to identify and implement practices that increase the number of two-year college (2YC) students who transfer to four-year institutions (4YC) and complete baccalaureate degrees. This is particularly true for physical science and geoscience disciplines, which have the lowest STEM degree completion rates of students transferring from 2YCs (Wilson, 2014a). A better understanding of how academic engagement experiences contribute to increased 2YC student interest in these disciplines and student intent to transfer is critical in strengthening the transfer pathway for the physical sciences and geosciences. The purpose of this study was to gain understanding of the influence that background characteristics, mathematics preparation, academic experiences (e.g. faculty-student interaction, undergraduate research experiences, and field experiences), and academic advisor engagement have on 2YC student intentions to transfer to a four-year institution (4YC) with physical science or geoscience degree aspirations. Incorporating the conceptual frameworks of student engagement and transfer student capital (Laanan et al., 2010), this study used Astin's (1993; 1999) input-environment-outcomes (I-E-O) model to investigate what factors predict 2YC students' intent to transfer to a 4YC and pursue physical science or geoscience degrees. This study used a quantitative research approach with data collected from 751 student respondents from 24 2YCs. Results from three sequential multiple regression models revealed advisor interaction, speaking with a transfer advisor, and visiting the intended 4YC were significant in increased 2YC student transfer intent. Student-faculty interaction and faculty and academic advisors discussing career opportunities in the physical sciences were significant in leading to increased 2YC student intent to pursue physical science degrees or geoscience degrees. The results also substantiated the significant role that field-based experiences have in increasing student intent in pursuing geoscience related majors. Surprisingly, developmental math placement was not found to be a significant predictor of transfer intent nor intent to pursue physical science or geoscience degrees. These findings reveal that developing practices focused on transfer student capital acquisition can strengthen the pipeline of physical science and geoscience degrees and supports the suggestion that 2YCs can serve as an intervention point to broaden participation in STEM related degrees.

  4. Gender differences in introductory university physics performance: The influence of high school physics preparation and affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra Sana

    The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family's belief that science is a series of courses to pass. This study is a unique and noteworthy addition to the literature. The results paint a dynamic picture of the factors from high school physics and within the affective domain that influence students' future physics performance. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be beneficial to females and males in university.

  5. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    PubMed

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  6. The Physical Sciences. Report of the National Science Board Submitted to the Congress.

    ERIC Educational Resources Information Center

    Handler, Philip

    Recent advances in the physical sciences, including astronomy, chemical synthesis, chemical dynamics, solid-state sciences, atomic and nuclear science, and elementary particles and high-energy physics are summarized in this report to Congress. The nature of physical science, including its increasing unity, the relationship between science and…

  7. Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation

    DTIC Science & Technology

    2015-03-21

    the interface that ensures the consistency and validity of the solution given by the two methods. Transfer functions are used to model two-way...release; distribution is unlimited. Adaptive modeling of details for physically-based sound synthesis and propagation The views, opinions and/or...Research Triangle Park, NC 27709-2211 Applied sciences, Adaptive modeling , Physcially-based, Sound synthesis, Propagation, Virtual world REPORT

  8. Gender, Complexity, and Science for All: Systemizing and Its Impact on Motivation to Learn Science for Different Science Subjects

    ERIC Educational Resources Information Center

    Zeyer, Albert

    2018-01-01

    The present study is based on a large cross-cultural study, which showed that a systemizing cognition type has a high impact on motivation to learn science, while the impact of gender is only indirect thorough systemizing. The present study uses the same structural equation model as in the cross-cultural study and separately tests it for physics,…

  9. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  10. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.

  11. Why do girls persist in science? A qualitative study of the decision-making processes of pre-adolescent and adolescent girls

    NASA Astrophysics Data System (ADS)

    James, Holly Mcdonnell

    2002-09-01

    Girls are often found to drop out of science in greater numbers and sooner than boys. Because previous research has focused on gender differences, rather than examining differences and similarities among girls, little is known about why some girls choose to pursue science, particularly the physical sciences, rather than drop it. Specifically, little is known about how and why girls make their decisions to persist or not in specific science careers and the courses leading up to them. Through the use of semi-structured, in-depth, qualitative, interviews conducted over the span of a year, this thesis explored the choice of classes and career decisions of twelve elementary through high school girls who participated in an engineering camp. The purpose was to gain an understanding of why these girls chose to persist or not in a science and engineering career over time. Age-related differences were found in the reasons the girls gave for wanting to take future classes. The elementary school girls believed that interest would be their only reason while the high school girls gave multiple reasons, including interest, utility, perceptions of ability, and who would be teaching the class. The implications of these findings for Eccles' model of academic choice are discussed. Overall, the girls in this study liked their science classes because they involved hands-on activities. By high school they showed a preference for and a greater knowledge of biology rather than physics. All of the girls were unsure about what kinds of science information they would need to know for future jobs. Half of the girls were considering biology-based careers, such as doctors and veterinarians, because they wanted to help and take care of people and animals. Only one girl was considering engineering, a physics-based career, and only because her parents required it. Despite believing that they were doing well in school in general, at least half of the girls believed they were doing poorly in math because they found the concepts difficult to understand. The implications of these findings for promoting all girls' interest in the sciences, and particularly the physical sciences, are discussed.

  12. Teaching Personal and Social Responsibility Model-Based Programmes in Physical Education: A Systematic Review

    ERIC Educational Resources Information Center

    Pozo, Pablo; Grao-Cruces, Alberto; Pérez-Ordás, Raquel

    2018-01-01

    The purpose of this study was to conduct a review of research on the Teaching Personal and Social Responsibility model-based programme within physical education. Papers selected for analysis were found through searches of Web of Science, SportDiscus (EBSCO), SCOPUS, and ERIC (ProQuest) databases. The keywords "responsibility model" and…

  13. "Me? Teach Science?" Exploring EC-4 Pre-Service Teachers' Self Efficacy in an Inquiry-Based Constructivist Physics Classroom

    ERIC Educational Resources Information Center

    Narayan, Ratna; Lamp, David

    2010-01-01

    In this qualitative and interpretive study, we investigated factors that influenced elementary preservice teachers' self-efficacy in a constructivist, inquiry-based physics class. Bandura's (1977) theory of social learning was used as a basis to examine preservice teacher's self-efficacy. Participants included 70 female EC-4 preservice teachers…

  14. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    NASA Astrophysics Data System (ADS)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  15. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  16. On the first direct detection of gravitational waves (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 March 2016)

    NASA Astrophysics Data System (ADS)

    2016-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "On the first direct detection of gravitational waves," was held in the conference hall of the Lebedev Physical Institute, RAS on 2 March 2016. The papers collected in this issue were written based on talks given at the session: (1) Pustovoit V I (Scientific and Technological Center of Unique Instrumentation, Moscow) "On the direct detection of gravitational waves"; (2) Braginsky V B, Bilenko I A, Vyatchanin S P, Gorodetsky M L, Mitrofanov V P, Prokhorov L G, Strigin S E, Khalili F Ya (Lomonosov Moscow State University, Moscow) "The road to the discovery of gravitational waves"; (3) Khazanov E A (Institute of Applied Physics, RAS, Nizhny Novgorod) "Thermooptics of magnetoactive media: Faraday isolators for high average power lasers"; (4) Cherepashchuk A M (Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Discovery of gravitational waves: a new chapter in black hole studies"; (5) Lipunov V M (Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Astrophysical meaning of the discovery of gravitational waves." Papers based on talks 2-5 are published in this issue of the journal. A paper based on talk 1 will be published in a forthcoming issue of Physics-Uspekhi. Additional information on the discovery of gravitational waves, the history of their theoretical prediction, and the advances in possible methods for their investigation can be found on the Physics-Uspekhi site www.ufn.ru, on the page http://ufn.ru/en/events/gravitational_waves_discovery.html dedicated to this outstanding discovery. • The road to the discovery of gravitational waves, V B Braginsky, I A Bilenko, S P Vyatchanin, M L Gorodetskii, V P Mitrofanov, L G Prokhorov, S E Strigin, F Ya Khalili Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 879-885 • Thermooptics of magnetoactive media: Faraday isolators for high average power lasers, E A Khazanov Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 886-909 • Discovery of gravitational waves: a new chapter in black hole studies, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 910-917 • Astrophysical meaning of the discovery of gravitational waves, V M Lipunov Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 918-928

  17. Examination of Learning Equity among Prospective Science Teachers Who Are Concrete, Formal and Postformal Reasoners after an Argumentation-Based Inquiry Course

    ERIC Educational Resources Information Center

    Acar, Ömer; Patton, Bruce R.

    2016-01-01

    This study had two research purposes. First, we examined the scientific reasoning gains of prospective science teachers who are concrete, formal, and postformal reasoners in an argumentation-based physics inquiry instruction. Second, we sought conceptual knowledge and achievement gaps between these student groups before and after the instruction.…

  18. 77 FR 17102 - Advisory Committee for Mathematical and Physical Sciences

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences Correction... meeting information is as follows: Name: Directorate for Mathematical and Physical Sciences Advisory... Person: Dr. Morris L. Aizenman, Senior Science Associate, Directorate for Mathematical and Physical...

  19. Courses and Resources to Teach Space Physics to Standards

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.

    2008-12-01

    We have created four courses for teachers, and inquiry-based materials to go with them, that embed space physics concepts while teaching Space Physics to National and State standards. The state of Texas recently adopted a "4x4" standard, which makes the "recommended" graduation requirement for high school students to include four science and four math courses. Space Physics is not specifically listed as a topic, but falls naturally as part of three of the Texas High School courses: "Physics", "Astronomy" and "Earth and Space Science", a new course whose syllabus is being decided now. The national standards which are most relevant at the high school level are "Change, Constancy and Measurement", "Motions and Forces", "Interactions of Energy and Matter" and "Natural and Human-induced hazards" [National Science Ed Standards, 1996]. The "Texas Essential Knowledge and Skills" includes circuits, electricity and magnetism, and waves in their Physics course syllabus, and include "describe the Sun's effects on the Earth" in the Astronomy class. In the new Earth and Space Science class we expect that additional heliospheric concepts will be included. At Rice we have four Astronomy courses (and four Earth Science courses) for teachers, two of which involve a substantial space physics content. By taking those eight courses, plus a research project and another content or education elective, the teachers can earn a "Masters of Science Teaching" degree. In "Teaching Earth and Space Science" (ASTR 402) we dedicate about 4 weeks on the Sun and the Earth and its environment. The "Physics of Ham Radio" course (PHYS 401) has an even more relevant focus. That class introduces electricity and magnetism, with hands-on activities on circuits and electromagnetic waves. The students earn their "Technician" class amateur license by making at least 75 per cent on the first quiz, which allows them VHF and UHF broadcast privileges. The second half of the course covers more space weather topics including the ionosphere, solar activity, radio propagation and absorption, antennas, etc. Some students pass the more detailed "General" amateur license by the end of the semester, which allows them to transmit at HF frequencies. Ham radio clubs are becoming more interesting to students as internet-based and digital modes allow more extensive communication even with minimum licensing, and amateur radio clubs are an excellent resource to teachers who want to set up a station in their school. A Technician license can also allow even communication with the Space Station.

  20. 78 FR 42111 - Advisory Committee for Mathematical and Physical Sciences #66; Notice of Meeting; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences 66; Notice... July 18 Advisory Committee for Mathematical and Physical Sciences in the Federal Register on June 21..., Directorate for Mathematical and Physical Sciences, National Science Foundation, 4201 Wilson Blvd., Arlington...

  1. "Physics and Life" for Europe's Science Teachers

    NASA Astrophysics Data System (ADS)

    2003-04-01

    The EIROforum Contribution to the European Science and Technology Week 2003 [Physics on Stage 3 Logo] What do you know about modern science? Was your school science teacher inspiring and enthusiastic? Or was physics class a good time to take a nap? Unfortunately, many young Europeans don't have the fondest memories of science in school, and the result is a widespread disinterest and lack of understanding of science among adults. This has become a real problem - especially at a time when science is having a growing impact on our daily lives, and when society needs more scientists than ever! What can be done? Some of Europe's leading research organisations, scientists and teachers have put their heads together and come up with a unique approach called "Physics on Stage" . This will be the third year that these institutes, with substantial support from the European Commission, are running this project - attacking the problem at its roots. EIROforum and "Physics on Stage 3" [EIROforum Logo] "Physics On Stage 3" is based on the very successful "Physics On Stage" concept that was introduced in 2000. It is directed towards science teachers and students in Europe's secondary schools. It is a part of the year-long build-up to the European Science and Technology Week 2003 (3-9 November), an initiative by the European Commission, and is run by seven of Europe's leading Intergovernmental Research Organizations (the EIROforum) [1]. The project addresses the content and format of science teaching in European schools , seeking to improve the quality of teaching and to find new ways to stimulate pupils to take an interest in science. Innovative and inspirational science teaching is seen as a key component to attract young people to deal with scientific issues, whether or not they finally choose a career in science. Hence, "Physics On Stage 3" aims to stimulate the interest of young people through the school teachers, who can play a key role in reversing the trend of falling interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now preparing related programs in their countries. Through these national activities, outstanding individuals will be selected to represent their teachers' communities at the final international event, the "Physics on Stage 3" festival. A list of national contact points is attached below. International festival The high-profile "festival" during the European Science and Technology Week 2003 will stimulate the dissemination of successful education tools and methods, identify the most effective ways to support teachers and motivate novel developments in science education. It will take place at the ESA-ESTEC site in Noordwijk (The Netherlands), from November 8 - 15, 2003 . The climax of the event will be the presentation of the European Science Teaching Awards , in recognition of teaching excellence, inspiration and motivation of young people. Online Resource Archive An online archive of the best teaching materials and practices in Europe will be established, forming a unique 'resource centre', which will make available all of the interesting materials identified through the programme and provide a forum for exchange which will last well beyond the duration of the activity. More information Full information about "Physics on Stage 3" is available at the central website: www.physicsonstage.net From here there is also direct connection to the national websites and the many related activities all over Europe. Be sure to check the site at regular intervals for new information about the developments!

  2. 100th anniversary of the birth of V L Ginzburg (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 5 October 2016)

    NASA Astrophysics Data System (ADS)

    2017-04-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) devoted to the centenary of the birth of V L Ginzburg was held on 5 October 2016 in the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the RAS Physical Sciences Division http://www.gpad.ac.ru comprised the following reports: (1) Ritus V I (Lebedev Physical Institute, RAS, Moscow), "V L Ginzburg and the Atomic project"; (2) Dremin I M (Lebedev Physical Institute, RAS, Moscow), "Unexpected interaction properties between high-energy protons"; (3) Kocharovsky Vl V, Zheleznyakov V V (Institute of Applied Physics, RAS, Nizhny Novgorod), Belyanin A A (Institute of Applied Physics, RAS, Nizhny Novgorod and Texas A \\&M University, USA), Kocharovskaya E R, Kocharovsky V V (Institute of Applied Physics, RAS, Nizhny Novgorod), "Superradiance: the principles of generation and implementation in lasers"; (4) Pudalov V M (Lebedev Physical Institute, RAS, Moscow), "Structure of the superconducting order parameter in high-temperature Fe-based superconductors"; (5) Sadovski M V (Institute of Electrophysics, UB RAS, Ekaterinburg; M N Mikheev Institute of Metal Physics, UB RAS, Ekaterinburg), "High-temperature superconductivity in an FeSe monolayer: Why is T_c so high?" The paper versions of reports 1 and 4 are presented in this Phys. Usp. issue (see pp. 414 and 420, respectively). Report 2, with its content expanded but title unchanged, is to be published as a review paper in Usp. Fiz. Nauk 187 (4) 353 (2017); Phys. Usp. 60 (4) 333 (2017). Report 3, with its content expanded, is to be published as a review paper in Usp. Fiz. Nauk 187 (4) 367 (2017); Phys. Usp. 60 (4) 345 (2017). Report 5, with its content expanded, was published as a review paper in Usp. Fiz. Nauk 186 (10) 1035 (2016); Phys. Usp. 59 (10) 947 (2016). • V L Ginzburg and the Atomic Project, V I Ritus Physics-Uspekhi, 2017, Volume 60, Number 4, Pages 413-418 • On the structure of the superconducting order parameter in high-temperature Fe-based superconductors, T E Kuzmicheva, A V Muratov, S A Kuzmichev, A V Sadakov, Yu A Aleshchenko, V A Vlasenko, V P Martovitsky, K S Pervakov, Yu F Eltsev, V M Pudalov Physics-Uspekhi, 2017, Volume 60, Number 4, Pages 419-429

  3. The fast development of solar terrestrial sciences in Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Jann-Yenq; Chang, Loren Chee-Wei; Chao, Chi-Kuang; Chen, Ming-Quey; Chu, Yen-Hsyang; Hau, Lin-Ni; Huang, Chien-Ming; Kuo, Cheng-Ling; Lee, Lou-Chuang; Lyu, Ling-Hsiao; Lin, Chia-Hsien; Pan, Chen-Jeih; Shue, Jih-Hong; Su, Ching-Lun; Tsai, Lung-Chih; Yang, Ya-Hui; Lin, Chien-Hung; Hsu, Rue-Ron; Su, Han-Tzong

    2016-12-01

    In Taiwan, research and education of solar terrestrial sciences began with a ground-based ionosonde operated by Ministry of Communications in 1952 and courses of ionospheric physics and space physics offered by National Central University (NCU) in 1959, respectively. Since 1990, to enhance both research and education, the Institute of Space Science at NCU has been setting up and operating ground-based observations of micropulsations, very high-frequency radar, low-latitude ionospheric tomography network, high-frequency Doppler sounder, digital ionosondes, and total electron content (TEC) derived from ground-based GPS receivers to study the morphology of the ionosphere for diurnal, seasonal, geophysical, and solar activity variations, as well as the ionosphere response to solar flares, solar wind, solar eclipses, magnetic storms, earthquakes, tsunami, and so on. Meanwhile, to have better understanding on physics and mechanisms, model simulations for the heliosphere, solar wind, magnetosphere, and ionosphere are also introduced and developed. After the 21 September 1999 Mw7.6 Chi-Chi earthquake, seismo-ionospheric precursors and seismo-traveling ionospheric disturbances induced by earthquakes become the most interesting and challenging research topics of the world. The development of solar terrestrial sciences grows even much faster after National Space Origination has been launching a series of FORMOSAT satellites since 1999. ROCSAT-1 (now renamed FORMOSAT-1) measures the ion composition, density, temperature, and drift velocity at the 600-km altitude in the low-latitude ionosphere; FORMOSAT-2 is to investigate lightning-induced transient luminous events, polar aurora, and upper atmospheric airglow, and FORMOSAT-3 probes ionospheric electron density profiles of the globe. In the near future, FORMOSAT-5 and FORMOSAT-7/COSMIC-2 will be employed for studying solar terrestrial sciences. These satellite missions play an important role on the recent development of solar terrestrial sciences in Taiwan.

  4. "If I had to do it, then I would": Understanding early middle school students' perceptions of physics and physics-related careers by gender

    NASA Astrophysics Data System (ADS)

    Dare, Emily A.; Roehrig, Gillian H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This study examined the perceptions of 6th grade middle school students regarding physics and physics-related careers. The overarching goal of this work was to understand similarities and differences between girls' and boys' perceptions surrounding physics and physics-related careers as part of a long-term effort to increase female interest and representation in this particular field of science. A theoretical framework based on the literature of girl-friendly and integrated STEM instructional strategies guided this work to understand how instructional strategies may influence and relate to students' perceptions. This convergent parallel mixed-methods study used a survey and focus group interviews to understand similarities and differences between girls' and boys' perceptions. Our findings indicate very few differences between girls and boys, but show that boys are more interested in the physics-related career of engineering. While girls are just as interested in science class as their male counterparts, they highly value the social aspect that often accompanies hands-on group activities. These findings shed light on how K-12 science reform efforts might help to increase the number of women pursuing careers related to physics.

  5. Physical sciences research plans for the International Space Station.

    PubMed

    Trinh, E H

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  6. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  7. 77 FR 42768 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical... Person: Dr. Morris L. Aizenman, Senior Science Associate, Directorate for Mathematical and Physical...

  8. 77 FR 16076 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... education activities within the Directorate for Mathematical and Physical Sciences. Agenda Update on current... National Science Foundation Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical...

  9. CONFERENCES AND SYMPOSIA Commemoration of the 85th birthday of S I Syrovatskii(Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 May 2010)

    NASA Astrophysics Data System (ADS)

    2010-12-01

    A scientific session of the Physical Sciences Division, Russian Academy of Sciences (RAS), was held on 26 May 2010 at the conference hall of the Lebedev Physical Institute, RAS. The session was devoted to the 85th birthday of S I Syrovatskii. The program announced on the web page of the RAS Physical Sciences Division (www.gpad.ac.ru) contained the following reports: (1) Zelenyi L M (Space Research Institute, RAS, Moscow) "Current sheets and reconnection in the geomagnetic tail"; (2) Frank A G (Prokhorov General Physics Institute, RAS, Moscow) "Dynamics of current sheets as the cause of flare events in magnetized plasmas"; (3) Kuznetsov V D (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "Space research on the Sun"; (4) Somov B V (Shternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Strong shock waves and extreme plasma states"; (5) Zybin K P (Lebedev Physical Institute, RAS, Moscow) "Structure functions for developed turbulence"; (6) Ptuskin V S (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "The origin of cosmic rays." Papers based on reports 1-4 and 6 are published in what follows. • Metastability of current sheets, L M Zelenyi, A V Artemyev, Kh V Malova, A A Petrukovich, R Nakamura Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 933-941 • Dynamics of current sheets underlying flare-type events in magnetized plasmas, A G Frank Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 941-947 • Space research of the Sun, V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 947-954 • Magnetic reconnection in solar flares, B V Somov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 954-958 • The origin of cosmic rays, V S Ptuskin Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 958-961

  10. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    NASA Technical Reports Server (NTRS)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  11. Analysis of Five Junior High School Physics Textbooks Used in China for Representations of Nature of Science

    NASA Astrophysics Data System (ADS)

    Li, Xiying; Tan, Zuyu; Shen, Jiliang; Hu, Weiping; Chen, Yinghe; Wang, Jingying

    2018-04-01

    Based on the analytical framework of nature of science (NOS) in junior school science textbooks, a content analysis method was adopted to analyze the NOS in junior middle school physical textbooks (grade 8) of five editions authorized by the Ministry of Education of China, and the features of NOS were analyzed and compared. It was found that all five textbooks presented poor representations of NOS. None of these five editions were scientifically objective, nor did they include discussions of scientific laws and theories. Furthermore, they rarely presented empirical evidence to support their arguments. The explicit representations of NOS were particularly inadequate.

  12. Contribution to activity: a lens for understanding students' potential and agency in physics education

    NASA Astrophysics Data System (ADS)

    Farhangi, Sanaz

    2017-03-01

    In this paper I argue for using the concept of contribution to activity to understand student engagement with science education and its transformational potential in formal settings. Drawing on transformative activist stance, I explain contribution as how individuals take part in and transform collective practices according to their own life agendas and get transformed themselves. As contribution to science education is a concept based on transformation, not adaptation, it can be especially informative when examining how underrepresented students in science can be more engaged in science education and eventually science. Using survey, interview and group conversations, and field observations in an undergraduate physics course, I put forward Zoey's case to illustrate my argument and show how her contribution to the activities in the course initiated change in the activity among her peers.

  13. Exploration of Epistemological Beliefs in a Summer Science Program for High Achieving Students(1)

    NASA Astrophysics Data System (ADS)

    Cormier, Sebastien; Raia, F.; Steinberg, R.

    2006-12-01

    We will describe changes in epistemology of students in a comprehensive summer science program for high achieving students at City College New York. The program focuses on having students participate in the process of scientific discovery using inquiry based activities such as the astronomy units from Physics by Inquiry(2). Multiple tools were used throughout the program to study student epistemological beliefs about science. We administered a Likert scale survey about how science is done as well as multiple content questions from which student beliefs were inferred. Instructor perspectives on student epistemologies are used in conjunction with these tools to study improvements and correlations between the different measures. (1) Supported in part by the National Science Foundation (2) Physics by Inquiry, L.C. McDermott, John Wiley & Sons, Inc., New York, 1996

  14. From learning science to teaching science: What transfers?

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways that help teachers consider how the content is useful in their classroom may facilitate transfer.

  15. Using Project- and Theme-Based Learning to Encourage Creativity in Science

    ERIC Educational Resources Information Center

    Vaidya, Ashwin

    2015-01-01

    In this article, the authors describe a project that was developed for an introductory-level physics course. The aim of the project was to encourage the creative process in science, as science is seldom mentioned in discussions about creativity. They sought to engage students in the creative process by posing a collective challenge to the class.…

  16. The Effectiveness of CBL Model to Improve Analytical Thinking Skills the Students of Sport Science

    ERIC Educational Resources Information Center

    Sudibyo, Elok; Jatmiko, Budi; Widodo, Wahono

    2016-01-01

    Sport science undergraduate education, one of which purposes is to produce an analyst in sport. However, generally analytical thinking skills of sport science's students is still relatively very low in the context of sport. This study aimed to describe the effectiveness of Physics Learning Model in Sport Context, Context Based Learning (CBL)…

  17. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    ERIC Educational Resources Information Center

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  18. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    ERIC Educational Resources Information Center

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  19. Cross-Discipline Bio-Nanostructured Enhanced Photonic Multimode-Sensor Science

    DTIC Science & Technology

    2017-05-23

    experimental study aimed to combine soft material science with nanotechnology and multi-physics modeling to produce adaptable bio-nanostructure based on...degradation through optical analysis and tracking programs Protein and DNA engineering . - The properties of proteins to be used in sensors were studies

  20. The Impact of Teacher Quality Grants on Long-Term Professional Development of Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Urquhart, Mary L.; Bober, Kendra M.

    2006-02-01

    The Texas Higher Education Coordinating Board Teacher Quality Grants, supported through No Child Left Behind, are intended to ensure that secondary teachers of specific subjects are "highly qualified". Now in their third year, these grants have done much to shape long-term professional development for teachers in the physical sciences at the University of Texas at Dallas (UTD). The grants have also created a suite of challenges and benefits for the UTD Science Education M.A.T. program. Teacher Quality Grants are based on the No Child Left Behind framework that requires teachers to be "highly qualified" as defined by the state. Recruitment is required to be targeted at teachers who are uncertified or teach one or more classes out of their content area and who work in high needs local school districts. Many of the students brought into our program through these grants have incoming content knowledge in physics similar to that typical of undergraduate non-majors, and a large percentage are uncomfortable with basic mathematics as well. How and what we teach has been dramatically impacted by the Teacher Quality Grants, as have our assessments and evaluations. An ongoing challenge has been to implement a Physics Education Research (PER)-based course design while meeting the specific requirements of the Teacher Quality Grant program. The Teacher Quality Grants have also provided a great deal of opportunity to new and existing teachers in our program. A barrier to our teachers, rising tuition costs, has been removed and as a result a mandate has become a doorway of opportunity for physical science teachers.

  1. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    NASA Astrophysics Data System (ADS)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  2. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    DTIC Science & Technology

    2010-09-01

    adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research

  3. The development and validation of Science Learning Inventory (SLI): A conceptual change framework

    NASA Astrophysics Data System (ADS)

    Seyedmonir, Mehdi

    2000-12-01

    A multidimensional theoretical model, Conceptual Change Science Learning (CCSL), was developed based on Standard Model of Conceptual Change and Cognitive Reconstruction of Knowledge Model. The model addresses three main components of science learning, namely the learner's conceptual ecology, the message along with its social context, and the cognitive engagement. A learner's conceptual ecology is organized around three clusters, including epistemological beliefs, existing conceptions, and motivation. Learner's cognitive engagement is represented by a continuum from peripheral processing involving shallow cognitive engagement to central processing involving deep cognitive engagement. Through reciprocal, non-sequential interactions of such constructs, the learners' conceptual change is achieved. Using a quantitative empirical approach, three studies were conducted to investigate the theoretical constructs based on the CCSL Model. The first study reports the development and validation of the hypothesized and factor-analytic scales comprising the instrument, Science Learning Inventory (SLI) intended for college students. The self-report instrument was designed in two parts, SLI-A (conceptual ecology and cognitive engagement) with 48 initial items, and SLI-B (science epistemology) with 49 initial items. The items for SLI-B were based on the tenets of Nature of Science as reflected in the recent reform documents, Science for All Americans (Project 2061) and National Science Education Standards. The results of factor analysis indicated seven factors for SLI-A and four factors for SLI-B. The second study investigated the criterion-related (conceptual change) predictive validity of the SLI in an instructional setting (a college-level physics course). The findings suggested the possibility of different interplay of factors and dynamics depending on the nature of the criterion (gain scores from a three-week intervention versus final course grade). Gain scores were predicted by "self-reflective study behavior" and "science self-efficacy" scales of SLI, whereas the course grade was predicted by "metacognitive engagement" and "dynamic scientific truth," (a factor from science epistemology). The third study investigated the effects of text-based conceptual-change strategy (Enhanced Refutational Text; ERT) on Newtonian Laws of Motion, and the efficacy of the SLI scales in a controlled setting. Also, initial divergent and convergent validity procedures are reported in the study. The results provided partial support for the superiority of ERT over expository text. The ERT was an effective intervention for students with no prior physics background but not for students with prior physics background.

  4. Geomorphological Fieldwork

    USGS Publications Warehouse

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  5. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  6. Using Project-Based Data in Physics to Examine Television Viewing in Relation to Student Performance in Science

    NASA Astrophysics Data System (ADS)

    Espinoza, Fernando

    2009-10-01

    Mass media, particularly television, influence public conceptions and attitudes toward learning science. The discovery of an original method that does not rely on self-reported viewing habits to measure the impact of television on students' performance in science arose from a study of a unit on electricity in a Physics course. In determining the number of television sets at home and the number of hours of operation, data emerged that allowed an investigation of associations between each of these variables and student performance in physics. A negative impact on performance was found in its consistent decrease as both the number of sets and the time the sets are on increase. These results provide dramatic independent confirmation of the negative impact of television viewing on achievement determined through meta-analysis of many studies, and are also consistent with those in the literature at large, particularly from the Third International Mathematics and Science Study, and the National Assessment of Educational Progress. Furthermore, the totally `blind' participation of the subjects lends a degree of authenticity rarely found in a classically designed study. The findings impact scientific literacy, since performance in science and conceptions of science and scientists, are all inextricably linked.

  7. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    ERIC Educational Resources Information Center

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  8. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of materials, and present initial assessment data evaluating both content learning and student attitudes.

  9. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  10. Teachers' and Students' Perceptions of Students' Problem-Solving Difficulties in Physics: Implications for Remediation

    ERIC Educational Resources Information Center

    Ogunleye, Ayodele O.

    2009-01-01

    In recent times, science education researchers have identified a lot of instruments for evaluating conceptual understanding as well as students' attitudes and beliefs about physics; unfortunately however, there are no broad based evaluation instruments in the field of problem-solving in physics. This missing tool is an indication of the complexity…

  11. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  12. Differences between Social Science Teachers and Physics Teachers about Beliefs of Competences Model in Mexico

    ERIC Educational Resources Information Center

    Ramirez Díaz, Mario H.; Garcia Trujillo, Luís Antonio; Chávez-Campos, David A.

    2016-01-01

    This paper shows the results of a diagnostic research that evaluates the perception of teaching competencies by physics teachers, in universities and high schools that have experienced curricular change of the mode of competences-based education (EBC). The research was conducted in both physics teachers in high school and college level nationally…

  13. Potential Teachers' Appropriate and Inappropriate Application of Pedagogical Resources in a Model-Based Physics Course: A "Knowledge in Pieces" Perspective on Teacher Learning

    ERIC Educational Resources Information Center

    Harlow, Danielle B.; Bianchini, Julie A.; Swanson, Lauren H.; Dwyer, Hilary A.

    2013-01-01

    We used a "knowledge in pieces" perspective on teacher learning to document undergraduates' pedagogical resources in a model-based physics course for potential teachers. We defined pedagogical resources as small, discrete ideas about teaching science that are applied appropriately or inappropriately in specific contexts. Neither…

  14. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  15. Reconstructing Macroeconomics Based on Statistical Physics

    NASA Astrophysics Data System (ADS)

    Aoki, Masanao; Yoshikawa, Hiroshi

    We believe that time has come to integrate the new approach based on statistical physics or econophysics into macroeconomics. Toward this goal, there must be more dialogues between physicists and economists. In this paper, we argue that there is no reason why the methods of statistical physics so successful in many fields of natural sciences cannot be usefully applied to macroeconomics that is meant to analyze the macroeconomy comprising a large number of economic agents. It is, in fact, weird to regard the macroeconomy as a homothetic enlargement of the representative micro agent. We trust the bright future of the new approach to macroeconomies based on statistical physics.

  16. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    NASA Astrophysics Data System (ADS)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  17. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    NASA Astrophysics Data System (ADS)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  18. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  19. Linear units improve articulation between social and physical constructs: An example from caregiver parameterization for children supported by complex medical technologies

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.; Stanley, T.; Battle, M.; Latty, C.

    2016-11-01

    Despite broad sweeping pronouncements by international research organizations that social sciences are being integrated into global research programs, little attention has been directed toward obstacles blocking productive collaborations. In particular, social sciences routinely implement nonlinear, ordinal measures, which fundamentally inhibit integration with overarching scientific paradigms. The widely promoted general linear model in contemporary social science methods is largely based on untransformed scores and ratings, which are neither objective nor linear. This issue has historically separated physical and social sciences, which this report now asserts is unnecessary. In this research, nonlinear, subjective caregiver ratings of confidence to care for children supported by complex, medical technologies were transformed to an objective scale defined by logits (N=70). Transparent linear units from this transformation provided foundational insights into measurement properties of a social- humanistic caregiving construct, which clarified physical and social caregiver implications. Parameterized items and ratings were also subjected to multivariate hierarchical analysis, then decomposed to demonstrate theoretical coherence (R2 >.50), which provided further support for convergence of mathematical parameterization, physical expectations, and a social-humanistic construct. These results present substantial support for improving integration of social sciences with contemporary scientific research programs by emphasizing construction of common variables with objective, linear units.

  20. The relationship between science classroom facility conditions and ninth grade students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Ford, Angela Y.

    Over half of the school facilities in America are in poor condition. Unsatisfactory school facilities have a negative impact on teaching and learning. The purpose of this correlational study was to identify the relationship between high school science teachers' perceptions of the school science environment (instructional equipment, demonstration equipment, and physical facilities) and ninth grade students' attitudes about science through their expressed enjoyment of science, importance of time spent on science, and boredom with science. A sample of 11,523 cases was extracted, after a process of data mining, from a databank of over 24,000 nationally representative ninth graders located throughout the United States. The instrument used to survey these students was part of the High School Longitudinal Study of 2009 (HSLS:2009). The research design was multiple linear regression. The results showed a significant relationship between the science classroom conditions and students' attitudes. Demonstration equipment and physical facilities were the best predictors of effects on students' attitudes. Conclusions based on this study and recommendations for future research are made.

  1. Grasshopping across the Curriculum.

    ERIC Educational Resources Information Center

    Peterson, Blanche F.

    A writing across the curriculum project at Trumbull High School (Connecticut) is based on a cross section of English, science, and career education courses: advanced composition, science fiction, physics, chemistry, biology, and vocational agriculture. It focuses on writing as a mode of learning; extending and refining the students' processes of…

  2. Medium Velocity Spatter Creation by Mousetraps in a Forensic Science Laboratory

    ERIC Educational Resources Information Center

    Oller, Anna R.

    2006-01-01

    Forensic science courses encompasses the disciplines of biology, chemistry, mathematics, and physics, which provides an opportunity for students to become engaged in all content areas within one course. The inquiry-based learning environment allows visualization of results almost immediately, facilitating student interest. The laboratory…

  3. Making Controlled Experimentation More Informative in Inquiry Investigations

    ERIC Educational Resources Information Center

    McElhaney, Kevin Wei Hong

    2010-01-01

    This dissertation incorporates three studies that examine how the design of inquiry based science instruction, dynamic visualizations, and guidance for experimentation contribute to physics students' understanding of science. I designed a week-long, technology-enhanced inquiry module on car collisions that logs students' interactions with a…

  4. Physics in the Courtroom

    NASA Astrophysics Data System (ADS)

    Vosk, Ted

    2011-10-01

    The principles, methods and technologies of physics can provide a powerful tool for the discovery of truth in the criminal justice system. Accordingly, physics based forensic evidence is relied upon in criminal prosecutions around the country every day. Infrared spectroscopy for the determination of the alcohol concentration of an individual's breath, force, momentum and multi-body dynamics for purposes of accident reconstruction and the basic application of sound metrological (measurement) practices constitute but a few examples. In many cases, a jury's determination of guilt or innocence, upon which the liberty of a Citizen rests, may in fact be determined by such evidence. Society may well place a high degree of confidence in the integrity of verdicts so obtained when ``the physics'' has been applied in a valid manner. Unfortunately, as concluded by the National Academy of Sciences, ``The law's greatest dilemma in its heavy reliance on forensic evidence--concerns the question of whether---and to what extent-- -there is science in any given `forensic science' discipline.'' Even where valid physical principles are relied upon, their improper application by forensic practitioners who have little physics training, background and/or understanding calls into question the validity of results or conclusions obtained. This presentation provides examples of the application of physics in the courtroom, where problems have been discovered and how they can be addressed by the physics community.

  5. In the foot steps of Madame Curie: A cross-case study of female undergraduate physics majors

    NASA Astrophysics Data System (ADS)

    Jaladanki, Vani Savithri

    Females are disproportionately underrepresented in STEM (science, technology, engineering, and mathematics) majors. Further, the number of females who take physics in college has declined. While female students make up 61% of graduates in biological sciences and 50% in chemistry, the proportion of women completing physics degrees is only 21% (Sawtelle, 2011). In order to improve women's access to science and engineering education, research must focus on personal and environmental factors that motivate them to select these fields (AAUW, 2010). The purpose of this study was to explore how the educational experiences of three female undergraduate physics majors contribute to their current dispositions toward, interest in, and pursuit of physics as a major at a large southern research university. This qualitative study employs symbolic interactionism (Blumer, 1969) as its methodological framework and social cognitive career theory (Lent, Brown, & Hackett, 2002) as its theoretical framework. Case study methods (Yin, 2006) were implemented to investigate the experiences of three participants. The primary sources of data included critical incident interviews (Flanagan, 1954), photographs, documents, object elicitations, and the researcher's reflections. Narrative and arts-based techniques were employed to analyze and represent data. Findings are presented as co-constructed narratives of the participants' journeys to becoming undergraduate physics majors. Three major themes emerged from the cross case analysis: carving new spaces, authoring an empowered self, and show me you care and so will I. The direct experiences of engaging with science at a young age and social persuasions of family members, teachers, and peers strongly influenced the participants' interest in and pursuit of physics. Their current dispositions to physics result from vicarious experiences with professors and peers in combination with the social persuasions of the latter. This study informs science educators in general, and physics educators in particular, about how to motivate and enable female students to engage with physics and possibly pursue it as a career choice. Three major implications for practice were suggested: teach science as a vibrant field, enable students to understand failure as an opportunity to succeed, and shift the focus from competition to collaboration.

  6. Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.

    PubMed

    Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C

    2010-01-01

    (1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.

  7. Meta-analysis of the effectiveness of computer-based laboratory versus traditional hands-on laboratory in college and pre-college science instructions

    NASA Astrophysics Data System (ADS)

    Onuoha, Cajetan O.

    The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).

  8. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    PubMed Central

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  9. Establishing Physical and Engineering Science Base to Bridge from ITER to Demo

    NASA Astrophysics Data System (ADS)

    Peng, Y.-K. Martin; Abdou, M.; Gates, D.; Hegna, C.; Hill, D.; Najmabadi, F.; Navratil, G.; Parker, R.

    2007-11-01

    A Nuclear Component Testing (NCT) Discussion Group emerged recently to clarify how ``a lowered-risk, reduced-cost approach can provide a progressive fusion environment beyond the ITER level to explore, discover, and help establish the remaining, critically needed physical and engineering sciences knowledge base for Demo.'' The group, assuming success of ITER and other contemporary projects, identified critical ``gap-filling'' investigations: plasma startup, tritium self-sufficiency, plasma facing surface performance and maintainability, first wall/blanket/divertor materials defect control and lifetime management, and remote handling. Only standard or spherical tokamak plasma conditions below the advanced regime are assumed to lower the anticipated physics risk to continuous operation (˜2 weeks). Modular designs and remote handling capabilities are included to mitigate the risk of component failure and ease replacement. Aspect ratio should be varied to lower the cost, accounting for the contending physics risks and the near-term R&D. Cost and time-effective staging from H-H, D-D, to D-T will also be considered. *Work supported by USDOE.

  10. Out-of-School Experience Categories Influencing Interest in Science of Upper Primary Students by Gender and Locale: Exploration on an Indian Sample

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul; Narayan, Smitha

    2012-01-01

    In view of student shift away from science at advanced levels, and gender and locale based divergence in interest in studying physics, chemistry and biology, this study explores experience categories that significantly contribute to interest in science on a sample of upper primary school students from Kerala, India. A series of multiple regression…

  11. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  12. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  13. News

    NASA Astrophysics Data System (ADS)

    2001-05-01

    LINKS WITH PRIMARY SCIENCE SAD Physics; PHYSICS RESEARCH In a hurry...; PHYSICS COMMUNITY Scottish Stirling Meeting; PHYSICS AT CONGRESS Global warming forecasts rise in skin cancer; EVENTS 2001 SET week; E-MAIL DISCUSSIONS Learning in science; STUDENT ACTIVITY Paperclip Physics; CURRICULUM DEVELOPMENT Perspectives on Science; AWARDS Award for causing chaos; PHYSICS AT CONGRESS Physics and public heath: Do electrical power lines cause cancer? HIGHER EDUCATION First-year course development; INTERSCHOOL COLLABORATION Monitoring geomagnetic storms; CURRICULUM DEVELOPMENT UK course goes international; PHYSICS IN SCIENCE YEAR Website launched

  14. Solving the Shortage of STEM Personnel in Navy Laboratories: Strategic Plan for Navy Investments in STEM Education Targeted at the Navy After Next

    DTIC Science & Technology

    2009-06-01

    mote interactions among K12 school systems; 2- and 4-year colleges and universities; informal science education organizations; . . . to promote... Science Center Proposal As ‘ informal ’ education centers i.e., Science and Technology Centers provide learn- ing outside the classroom that enhances...and complements ‘formal’ (classroom-based) learning. Informal science education uses visual, auditory, physical interactions, and ac- tivities to

  15. The National Cancer Institute's Physical Sciences - Oncology Network

    NASA Astrophysics Data System (ADS)

    Espey, Michael Graham

    In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.

  16. Ilya Mikhailovich Lifshitz — 100th birthday anniversary

    NASA Astrophysics Data System (ADS)

    Grosberg, A. Y.

    2018-01-01

    On 18 January 2017, a scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held at the conference hall of the P N Lebedev Physical Institute, RAS, in honor of the 100th anniversary of the birth of I M Lifshitz. The following reports were put on the session agenda as posted on the PSD website http://www.gpad.ac.ru: (1) Grosberg A Yu (New York University, USA) "Ilya Mikhailovich Lifshitz and physics of biopolymers"; (2) Pastur L A (B I Verkin Institute for Low Temperature Physics \\& Engineering, National Academy of Sciences of Ukraine, Kharkiv) "Disordered fermions"; (3) Volovik G E (L D Landau Institute for Theoretical Physics, RAS, Moscow; Aalto University, Finland) "Exotic Lifshitz transitions in topological materials"; (4) Krapivskii P (Boston University, USA) "Lifshitz-Slyozov-Wagner theory and social dynamics"; (5) Gorsky A S (Institute for Information Transmission Problems, Moscow) "New critical phenomena in random networks and multiparticle localization"; (6) Nechaev S K (P N Lebedev Physical Institute, RAS, Moscow; Interdisciplinary Scientific Center Poncelet, Moscow) "Rare event statistics and hierarchy: from Lifshitz tails to modular invariance". Papers based on oral reports 1, 3, and 6 are given below.

  17. 70th anniversary of the E K Zavoisky Kazan Physical-Technical Institute, Kazan Scientific Center of the Russian Academy of Sciences (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 4 February 2016)

    NASA Astrophysics Data System (ADS)

    2016-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held on 4 February 2016 at the E K Zavoisky Kazan Physical-Technical Institute, Kazan Scientific Center (KSC), RAS, devoted to the 70th anniversary of the E K Zavoisky Kazan Physical-Technical Institute, KSC RAS. The agenda posted on the website of the Physical Sciences Division RAS http://www.gpad.ac.ru comprised the following reports: (1) Demishev S V (Prokhorov General Physics Institute, RAS, Moscow) "Quantum phase transitions in spiral magnets without an inversion center"; (2) Smirnov A I (Kapitza Institute for Physical Problems, RAS, Moscow) "Magnetic resonance of spinons in quantum magnets"; (3) Ryazanov V V (Institute of Solid State Physics, RAS, Chernogolovka, Moscow region) "Coherent and nonequilibrium phenomena in superconductor- and ferromagnet-based structures"; (4) Mel'nikov A S (Institute for Physics of Microstructures, RAS, Nizhny Novgorod) "Mechanisms of long-range proximity effects in superconducting spintronics"; (5) Fel'dman E B (Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region) "Magnus expansion paradoxes in the study of equilibrium magnetization and entanglement in multi-pulse spin locking"; (6) Fraerman A A (Institute for Physics of Microstructures, RAS, Nizhny Novgorod) "Features of the motion of spin-1/2 particles in a noncoplanar magnetic field"; (7) Salikhov K M (E K Zavoisky Kazan Physical-Technical Institute, KSC, RAS, Kazan) "Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences"; (8) Vinogradov E A (Institute for Spectroscopy, RAS, Troitsk, Moscow) "Ultrathin film characterization using far-field surface polariton spectroscopy"; (9) Glyavin M Yu (Institute of Applied Physics, RAS, Nizhny Novgorod) "High-power terahertz sources for spectroscopy and material diagnostics"; (10) Soltamov V A (Ioffe Institute, RAS, Saint Petersburg) "Radio spectroscopy of the optically aligned spin states of color centers in silicon carbide"; (11) Kalachev A A (E K Zavoisky Kazan Physical-Technical Institute, KSC, RAS, Kazan) "Long-range quantum communication. Basic devices and prospects for development"; (12) Kuznetsov D (Bruker Corporation, Moscow) "Recent magnetic resonance hardware advances at the Bruker Corporation". Papers based on talks 1, 2, 4-7, 9, and 10 are presented below. • Quantum phase transitions in spiral magnets without an inversion center, S V Demishev, V V Glushkov, S V Grigoriev, M I Gilmanov, I I Lobanova, A N Samarin, A V Semeno, N E Sluchanko Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 559-563 • Magnetic resonance of spinons in quantum magnets, A I Smirnov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 564-570 • Long-range ballistic transport mechanisms in superconducting spintronics, A V Samokhvalov, A S Mel'nikov, A I Buzdin Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 571-576 • Magnus expansion paradoxes in the study of equilibrium magnetization and entanglement in multi-pulse spin locking, E I Kuznetsova, E B Fel'dman, D E Feldman Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 577-582 • Features of the motion of spin-1/2 particles in a noncoplanar magnetic field, D A Tatarskiy, A V Petrenko, S N Vdovichev, O G Udalov, Yu V Nikitenko, A A Fraerman Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 583-587 • Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences, K M Salikhov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 588-594 • High power terahertz sources for spectroscopy and material diagnostics, M Yu Glyavin, G G Denisov, V E Zapevalov, M A Koshelev, M Yu Tretyakov, A I Tsvetkov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 595-604 • Radio spectroscopy of the optically aligned spin states of color centers in silicon carbide, V A Soltamov, P G Baranov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 605-610

  18. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  19. The New Big Science: What's New, What's Not, and What's the Difference

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2016-03-01

    This talk will start with a brief recap of the development of the ``Big Science'' epitomized by high energy physics, that is, the science that flourished after WWII based on accelerators, teams, and price tags that grew ever larger. I will then explain the transformation that started in the 1980s and culminated in the 1990s when the Cold War ended and the next big machine needed to advance high energy physics, the multi-billion dollar Superconducting Supercollider (SSC), was cancelled. I will go on to outline the curious series of events that ushered in the New Big Science, a form of research well suited to a post-Cold War environment that valued practical rather than esoteric projects. To show the impact of the New Big Science I will describe how decisions were ``set into concrete'' during the development of experimental equipment at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia.

  20. Fender Bender Physics.

    ERIC Educational Resources Information Center

    Bevin, Roy Q.; Raudebaugh, Robert A.

    This book is based on an integrated approach to science and technology and targets middle schools students. Each unit includes a teacher's guide and eight science activities. Units include: (1) "The Mousetrap Car"; (2) "The CO2 Car"; and (3) "The Space Frame Vehicle". Supplemental materials consist of seven readings including: (1) "Brainstorming";…

  1. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

    ERIC Educational Resources Information Center

    Herrington, Deborah G.

    2011-01-01

    A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

  2. Developing a Repertoire of Activities for Teaching Physical Science.

    ERIC Educational Resources Information Center

    Cain, Peggy W.

    This activity manual is divided into 15 units which focus on: the nature of science; metric measurements; properties of matter; energy; atomic structure; chemical reactions; acids, bases, and salts; temperature and heat; readioactivity; mechanics; wave motion, sound, and light; static charges and current electricity magnetism and electromagnetism;…

  3. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  4. What if physics is wrong?

    NASA Astrophysics Data System (ADS)

    Tu, Zhoudunming

    2011-11-01

    Physics, an experiment-based science, seems to be the most appropriate subject in how to explain the inner workings of the world. We respect physics because it is based on facts that are perceived by our observations. However, what if we are not seeing the entire truth we seek? What if our observations are founded on sandy foundations? As humans, we desire to know what the truth is. Rene Descartes, a mathematician, philosopher, and physicist asked this question: what is the absolute truth in our universe? I want to solve the same puzzle. Many people believe that physics will reveal the truth of our universe. But, what if physics is wrong?

  5. Recostructing the Physics Teaching Didactic based on Marzano’s Learning Dimension on Training the Scientific Literacies

    NASA Astrophysics Data System (ADS)

    Karim, S.; Prima, E. C.; Utari, S.; Saepuzaman, D.; Nugaha, M. G.

    2017-02-01

    Scientific literacy is currently considered as an important aspect supporting an useful citizenship ability for civilians inhabiting highly developed countries as well as developing countries. Consequently, certain countries recommended this scientific literacy to be applied at a national curricula. The PISA study showed the Indonesian scientific literacy level of 1, which means as just simple science phenomenon that could be exactly descibed by a student. This condition indicates that common science teachings do not optimally facillitate students to guide the scientific literacy. By proposing this research, the science didactic reconstruction will be offered in order to gain the students’ scientific literacy evaluated from the qualitative analysis of the action research and the students’ respons during learning science. The qualitative evaluation was developed based on the Marzano’s learning dimension about the scientific literacy. This research, involving 29 students as participants, analyzed the improved physics teaching didactic as described in the following sentences. The teaching reconstruction concerned a high attention to the development of the structural knowledge. The knowledge was acquired from a real phenomenon followed by giving the instructed questions as the second learning dimension. The third dimension of learning reconstruction aimed to provide the knowledge repetition on an appropriate science context. At the fourth dimension, the reconstruction should be improved in order to find the best treatment for the students. Hopefully, they can control the physical parameter and evaluate the result of their investigation related to the given science problems. It can be concluded that most of the students were interested in learning science. However, the productive learning didn’t accompany students to the Marzano’s second, third, and fourth learning dimensions.

  6. Teaching the Teachers: Physical Science for the Non-Scientific

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.

    2004-12-01

    The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.

  7. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  8. Multi-Level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    ERIC Educational Resources Information Center

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-01-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective,…

  9. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    ERIC Educational Resources Information Center

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  10. An exploration of gender participation patterns in science competitions

    NASA Astrophysics Data System (ADS)

    Arámbula Greenfield, Teresa

    This study investigated participation in a state-level science competition over most of its 35-year history. Issues examined included whether different gender patterns occurred with respect to entry rate, project topic (life science, physical science, earth science, and math), and project type (research or display). The study also examined to what extent the identified patterns reflected or contradicted nationwide patterns of girls' academic performance in science over roughly the same time period. It was found that although girls initially participated in the fair less frequently than boys, for the past 20 years their participation rate has been greater than that of boys. Examination of topic preferences over the years indicates that both girls and boys have traditionally favored life science; however, boys have been and continue to be more likely to prepare physical, earth, and math/computer science projects than girls. Another gender difference is that girls are generally less likely than boys to prepare projects based on experimental research as opposed to library research. The study provides some suggestions for teachers and teacher educators for addressing these disparities.Received: 4 February 1994; Revised: 12 January 1995;

  11. 46 CFR 310.6 - Entrance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... obligated to (i) complete the Naval Science curriculum (ii) take all necessary and positive steps to obtain...) Meet the physical standards specified by the United States Coast Guard for original licensing as a merchant marine officer. The written certification of the Superintendent of the school, based on a physical...

  12. 46 CFR 310.6 - Entrance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... obligated to (i) complete the Naval Science curriculum (ii) take all necessary and positive steps to obtain...) Meet the physical standards specified by the United States Coast Guard for original licensing as a merchant marine officer. The written certification of the Superintendent of the school, based on a physical...

  13. 46 CFR 310.6 - Entrance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... obligated to (i) complete the Naval Science curriculum (ii) take all necessary and positive steps to obtain...) Meet the physical standards specified by the United States Coast Guard for original licensing as a merchant marine officer. The written certification of the Superintendent of the school, based on a physical...

  14. What are the Effects of Implementing Learning-Focused Strategies in Biology and Physical Science Classrooms?

    NASA Astrophysics Data System (ADS)

    Simmons, Robin

    The objective of this study was to determine if Learning-Focused Strategies (LFS) implemented in high school science courses would affect student achievement and the pass rate of biology and physical science Common District Assessments (CDAs). The LFS, specific teaching strategies contained in the Learning-Focused Strategies Model (LFSM) Program were researched in this study. The LFSM Program provided a framework for comprehensive school improvement to those schools that implemented the program. The LFSM Program provided schools with consistent training in the utilization of exemplary practices and instruction. A high school located in the suburbs of Atlanta, Georgia was the focus of this investigation. Twelve high school science classrooms participated in the study: six biology and six physical science classes. Up-to-date research discovered that the strategies contained in the LFSM Program were research-based and highly effective for elementary and middle school instruction. Research on its effectiveness in high school instruction was the main focus of this study. This investigation utilized a mixed methods approach, in which data were examined qualitatively and quantitatively. Common District Assessment (CDA) quantitative data were collected and compared between those science classrooms that utilized LFS and those using traditional instructional strategies. Qualitative data were generated through classroom observations, student surveys, and teacher interviews. Individual data points were triangulated to determine trends of information reflecting the effects of implementing LFS. Based on the data collected in the research study, classrooms utilizing LFS were more successful academically than the classrooms using traditional instructional methods. Derived from the quantitative data, students in LFS classrooms were more proficient on both the biology and physical science Unit 1 CDAs, illustrating the effectiveness of LFS in the science classroom. Key terms: Cognitive teaching strategies, College readiness, Common District Assessments (CDAs), Concept maps, Constructivism, Curriculum, Differentiated Instruction, Instruction, Formative assessments, Learning-Focused Strategies (LFS), Learning-Focused Strategies Model (LFSM), No Child Left Behind (NCLB), Post-secondary institution, Remediation courses, School improvement grant, School reform, Secondary institution, Traditional instructional strategies.

  15. Web-Based Mindfulness Interventions for People With Physical Health Conditions: Systematic Review

    PubMed Central

    Toivonen, Kirsti I; Zernicke, Kristin

    2017-01-01

    Background Mindfulness-based interventions (MBIs) are becoming increasingly popular for helping people with physical health conditions. Expanding from traditional face-to-face program delivery, there is growing interest in Web-based application of MBIs, though Web-based MBIs for people with physical health conditions specifically have not been thoroughly reviewed to date. Objective The objective of this paper was to review Web-based MBIs for people with physical health conditions and to examine all outcomes reported (eg, efficacy or effectiveness for physical changes or psychological changes; feasibility). Methods Databases PubMed, PsycINFO, Science Direct, CINAHL Plus, and Web of Science were searched. Full-text English papers that described any Web-based MBI, examining any outcome, for people with chronic physical health conditions were included. Randomized, nonrandomized, controlled, and uncontrolled trials were all included. Extracted data included intervention characteristics, population characteristics, outcomes, and quality indicators. Intervention characteristics (eg, synchronicity and guidance) were examined as potential factors related to study outcomes. Results Of 435 publications screened, 19 published papers describing 16 studies were included. They examined Web-based MBIs for people with cancer, chronic pain or fibromyalgia, irritable bowel syndrome (IBS), epilepsy, heart disease, tinnitus, and acquired brain injury. Overall, most studies reported positive effects of Web-based MBIs compared with usual care on a variety of outcomes including pain acceptance, coping measures, and depressive symptoms. There were mixed results regarding the effectiveness of Web-based MBIs compared with active control treatment conditions such as cognitive behavioral therapy. Condition-specific symptoms (eg, cancer-related fatigue and IBS symptoms) targeted by treatment had the largest effect size improvements following MBIs. Results are inconclusive regarding physical variables. Conclusions Preliminary evidence suggests that Web-based MBIs may be helpful in alleviating symptom burden that those with physical health conditions can experience, particularly when interventions are tailored for specific symptoms. There was no evidence of differences between synchronous versus asynchronous or facilitated versus self-directed Web-based MBIs. Future investigations of Web-based MBIs should evaluate the effects of program adherence, effects on mindfulness levels, and whether synchronous or asynchronous, or facilitated or self-directed interventions elicit greater improvements. PMID:28860106

  16. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  17. Celebrating 50 years of the laser (Scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences, 13 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-08-01

    A scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) dedicated to the 50th anniversary of the creation of lasers was held in the Conference Hall of the Lebedev Physical Institute, RAS, on 13 December 2010. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A, Bagaev S N Opening speech; (2) Bratman V L, Litvak A G, Suvorov E V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Mastering the terahertz domain: sources and applications"; (3) Balykin V I (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Ultracold atoms and atom optics"; (4) Ledentsov N N (Ioffe Physical Technical Institute, RAS, St. Petersburg) "New-generation surface-emitting lasers as the key element of the computer communication era"; (5) Krasil'nik Z F (Institute for the Physics of Microstructures, RAS, Nizhny Novgorod) "Lasers for silicon optoelectronics"; (6) Shalagin A M (Institute of Automation and Electrometry, Siberian Branch, RAS, Novosibirsk) "High-power diode-pumped alkali metal vapor lasers"; (7) Kul'chin Yu N (Institute for Automation and Control Processes, Far Eastern Branch, RAS, Vladivostok) "Photonics of self-organizing biomineral nanostructures"; (8) Kolachevsky N N (Lebedev Physical Institute, RAS, Moscow) "Laser cooling of rare-earth atoms and precision measurements". The papers written on the basis of reports 2-4, 7, and 8 are published below.Because the paper based on report 6 was received by the Editors late, it will be published in the October issue of Physics-Uspekhi together with the material related to the Scientific Session of the Physical Sciences Division, RAS, of 22 December 2010. • Mastering the terahertz domain: sources and applications, V L Bratman, A G Litvak, E V Suvorov Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 837-844 • Ultracold atoms and atomic optics, V I Balykin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 844-852 • New-generation vertically emitting lasers as a key factor in the computer communication era, N N Ledentsov, J A Lott Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 853-858 • The photonics of self-organizing biomineral nanostructures, Yu N Kulchin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 858-863 • Laser cooling of rare-earth atoms and precision measurements, N N Kolachevsky Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 863-870

  18. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  19. Perspectives of women of color in science-based education and careers. Summary of the conference on diversity in science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    Research on inequality or stratification in science and engineering tends to concentrate on black/white or male/female difference; very few studies have discussions of both race and gender. Consequently, very little is known about the exact course that women of color take in science-based education and employment or about the course that steers them out of science-based careers. Questions abound: What are the environmental factors that affect the choices in education and science-based careers of women of color? What has influenced women of color who currently are in science-based careers? Is critical mass important and, if so, what are the keysmore » to increasing it? What recommendations can be made to colleges and universities, faculty members, employers, the federal government, women of color themselves, and to improve the conditions and numbers of women of color in science-based careers? These questions prompted the National Research Council`s Committee on Women in Science and Engineering (CWSE) to convene a conference on Diversity in Science: Perspectives on the Retention of Minority Women in Science, Engineering, and Health-Care Professions, held on October 21--23, 1995. Confronting the problem of the lack of knowledge about the journey of women of color in science-based education and career, the conference offered opportunities for these women to describe the paths that they have taken and to identify strategies for success. Their perspectives ground this report. For purposes of this document, women of color include women in the following racial or ethnic groups: Hispanics, African-Americans, Asian and Pacific Islanders, and American Indians and Alaskan Natives. Science-based careers include those in the physical sciences and mathematics, life sciences, social sciences, and engineering.« less

  20. Physics teachers' perspectives on factors that affect urban physics participation and accessibility

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2013-06-01

    The accessibility of secondary physics in U.S. urban school districts is a complex issue. Many schools do not offer a physics option, and for those that do, access is often restricted by various school policies and priorities that do not promote physics participation for all. To analyze this problem in greater depth, I adopted a qualitative phenomenological methodology to explore urban physics teachers’ views on school- and district-based conditions that may marginalize traditionally underrepresented students. Teachers from three large urban districts shared concerns and suggestions regarding administrative commitment, student preparedness for physics, reform initiatives and testing mandates, promoting physics enrollments, and implementing high quality instruction. Data from interviews and focus groups provided contextual insights into ways in which physics study may be improved and encouraged for urban youth. Teachers believed expanding access could be facilitated with differentiated levels of physics, incorporating mathematical applications with multiple representations, educating students and counselors on the ramifications of choosing or not choosing elective sciences, well-designed grant-funded initiatives, and flexibility with prerequisites and science course sequencing. Teachers experienced frustration with standardized testing, lack of curricular autonomy, shifting administrative directives, and top-down reforms that did not incorporate their feedback in the decision-making processes. Data from this study revealed that physics teacher networks, often housed at local universities, have been a key resource for establishing supportive professional communities to share best practices that may influence school-based reforms that promote physics participation in urban schools.

  1. Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis

    2006-01-01

    This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.

  2. A physical sciences network characterization of non-tumorigenic and metastatic cells.

    PubMed

    Agus, David B; Alexander, Jenolyn F; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E; Austin, Robert H; Backman, Vadim; Bethel, Kelly J; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C; Curley, Steven A; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C W; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A; Geng, Yue; Gerecht, Sharon; Gillies, Robert J; Godin, Biana; Grady, William M; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L; Hielscher, Abigail; Hillis, W Daniel; Holland, Eric C; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H; Joo, Ahyoung; Katz, Jonathan E; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N; Lambert, Guillaume; Liao, David; Licht, Jonathan D; Liphardt, Jan T; Liu, Liyu; Lloyd, Mark C; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J T; Meldrum, Deirdre R; Michor, Franziska; Mumenthaler, Shannon M; Nandakumar, Vivek; O'Halloran, Thomas V; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J; Philips, Kevin G; Poultney, Christopher S; Rana, Kuldeepsinh; Reinhart-King, Cynthia A; Ros, Robert; Semenza, Gregg L; Senechal, Patti; Shuler, Michael L; Srinivasan, Srimeenakshi; Staunton, Jack R; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D; Tormoen, Garth W; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S; Wan, Jenny C; Weaver, Valerie M; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun

    2013-01-01

    To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.

  3. The Tie That Binds:. A Fundamental Unit of `Change' in Space and Time

    NASA Astrophysics Data System (ADS)

    Beichler, James E.

    2013-09-01

    Why, despite all efforts to the contrary, have attempts at unification based on the supposedly more fundamental quantum theory failed miserably? The truth is that the essential idea or concept of the quantum itself has never been fully understood. What is the quantum, or rather, what is its ultimate nature? Science may be able to work adequately with the quantum; in a sense science is quite articulate in the language of the quantum, i.e., its mathematical interpretation of the quantum mechanics, but science has no idea of the true physical nature of the quantum. Scientists and philosophers have wasted energy and efforts on irrelevant issues such as the debate over determinism and indeterminism instead of carefully analyzing the physical source of the quantum. Only with a true understanding of the physical nature of the quantum will the unification of the quantum and relativity ever become a reality.

  4. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  5. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  6. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  7. The Discovery of the Tau Lepton and the Changes in Elementary Particle Physics in 40 Years

    DOE R&D Accomplishments Database

    Perl, M.

    2003-10-22

    This is a history of my discovery of the tau lepton in the 1970s for which I was awarded the Nobel Prize in Physics. I have previously described some aspects of the discovery. In 1996 in my collection of papers entitled, ''Reflections on Experimental Science,'' I gave a straightforward account of the experimental method and the physics involved in the discovery as an introduction to the collection. In a 2002 paper written with Mary A. Meyer published in the journal ''Theoria et Historia Scientiarum'' I used the story of the discovery to outline my thoughts on the practice of experimental science. That 2002 paper was written primarily for young women and men who are beginning their lives in science and it was based on a lecture given at Los Alamos National Laboratory. Some of the historical material in this paper has appeared in those two earlier papers.

  8. Peculiarities of organization of project and research activity of students in computer science, physics and technology

    NASA Astrophysics Data System (ADS)

    Stolyarov, I. V.

    2017-01-01

    The author of this article manages a project and research activity of students in the areas of computer science, physics, engineering and biology, basing on the acquired experience in these fields. Pupils constantly become winners of competitions and conferences of different levels, for example, three of the finalists of Intel ISEF in 2013 in Phoenix (Arizona, USA) and in 2014 in Los Angeles (California, USA). In 2013 A. Makarychev received the "Small Nobel prize" in Computer Science section and special award sponsors - the company's CAST. Scientific themes and methods suggested by the author and developed in joint publications of students from Russia, Germany and Austria are the patents for invention and certificates for registration in the ROSPATENT. The article presents the results of the implementation of specific software and hardware systems in physics, engineering and medicine.

  9. A physical sciences network characterization of non-tumorigenic and metastatic cells

    NASA Astrophysics Data System (ADS)

    Physical Sciences-Oncology Centers Network; Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O'Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun

    2013-04-01

    To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.

  10. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    NASA Astrophysics Data System (ADS)

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-10-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning effectiveness of the programme. A total of around 200 students from nine local secondary schools participated in both the physics programme and its subsequent evaluation which consists of a combination of research and assessment tools, including pre- and post-multiple-choice tests, a questionnaire survey and an interview as specifically developed for this programme, or adopted from some well-accepted research instruments. Based on the evaluation of students' academic performance, there are two educationally significant findings on enhancing the students' physics learning: (a) traditionally large gender differences in physics performance and interest of learning are mostly eliminated; and (b) a less-exciting ride called the aviator (instead of the most exciting roller-coaster ride) can induce the largest learning effect (or gain in academic performance) amongst teenagers. Besides, findings from the questionnaire survey and interviews of participants are reported to reveal their views, perceptions, positive and negative comments or feedback on this programme which could provide valuable insights for future development of other similar community-based programmes.

  11. Reviews

    NASA Astrophysics Data System (ADS)

    2002-07-01

    BOOK REVIEWS (353) Dr Dyer's Academy Further Advanced Physics Physics 11-14, with Biology 11-14 and Chemistry 11-14 Nelson Modular Science: Books 1 and 2 Key Science: Physics, 3rd Edition Nelson Science: Physics, 2nd Edition Physics for AQA: Separate Award, Coordinated Award Physical Processes: A Visual Approach WEB WATCH (359) Physics Favourites: John Miller's selection

  12. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    NASA Astrophysics Data System (ADS)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  13. Physical Activity as Cause and Cure of Muscular Pain: Evidence of Underlying Mechanisms

    PubMed Central

    Søgaard, Karen; Sjøgaard, Gisela

    2017-01-01

    Work-related physical activity (PA), in terms of peak loads and sustained and/or repetitive contractions, presents risk factors for the development of muscular pain and disorders. However, PA as a training tailored to the employee’s work exposure, health, and physical capacity offers prevention and rehabilitation. We suggest the concept of “Intelligent Physical Exercise Training” relying on evidence-based sports science training principles. PMID:28418998

  14. Ohio Teacher Professional Development in the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Cervenec, Jason; Harper, Kathleen A.

    2006-02-01

    An in-service teacher program held during the summers of 2004 and 2005 is described. This program, sponsored with state funds, drew a varied group of participants to learn Modeling Instruction in physics. The workshop leaders used the state science proficiency standards and physics education research (PER) results to guide many of the workshop's activities. In 2004, the participants experienced the Modeling mechanics curriculum while pretending to be students; in 2005, the teachers worked in small teams to develop Modeling-consistent units in other areas, often utilizing PER-based materials. Indications are that the experience was valuable to the teachers and that the workshop series should be offered for a new cohort.

  15. VERAIn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Srdjan

    2015-02-16

    CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less

  16. Science Community Interface

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.

    1991-01-01

    The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.

  17. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    NASA Astrophysics Data System (ADS)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  18. Fermilab Science Education Office - Field Trips, Study Units and Workshops

    Science.gov Websites

    World - Life Sciences (K-5) Phriendly Physics Program - Blog - Physical Sciences (3-5) The Prairie - Our Heartland - Life Sciences 6-9 (6-8) Energy and Ecosystems - Life Sciences (6-9) Beauty and Charm - Physical

  19. Teaching and Learning Physics in a 1:1 Laptop School

    NASA Astrophysics Data System (ADS)

    Zucker, Andrew A.; Hug, Sarah T.

    2008-12-01

    1:1 laptop programs, in which every student is provided with a personal computer to use during the school year, permit increased and routine use of powerful, user-friendly computer-based tools. Growing numbers of 1:1 programs are reshaping the roles of teachers and learners in science classrooms. At the Denver School of Science and Technology, a public charter high school where a large percentage of students come from low-income families, 1:1 laptops are used often by teachers and students. This article describes the school's use of laptops, the Internet, and related digital tools, especially for teaching and learning physics. The data are from teacher and student surveys, interviews, classroom observations, and document analyses. Physics students and teachers use an interactive digital textbook; Internet-based simulations (some developed by a Nobel Prize winner); word processors; digital drop boxes; email; formative electronic assessments; computer-based and stand-alone graphing calculators; probes and associated software; and digital video cameras to explore hypotheses, collaborate, engage in scientific inquiry, and to identify strengths and weaknesses of students' understanding of physics. Technology provides students at DSST with high-quality tools to explore scientific concepts and the experiences of teachers and students illustrate effective uses of digital technology for high school physics.

  20. Sex, Class, and Physical Science Educational Attainment: Portions due to Achievement Versus Recruitment

    NASA Astrophysics Data System (ADS)

    Simon, Richard M.; Farkas, George

    Nationally representative data from the National Education Longitudinal Study are used to investigate why males (rather than females) and children of parents with advanced degrees (rather than those from less-educated parents) are more highly represented among physical science bachelor's degrees and graduate students. Parental education is measured by three categories: neither parent has a bachelor's degree, at least one parent has a bachelor's degree, or at least one parent has a degree beyond the bachelor's. Physical science is defined as students majoring in physics, engineering, mathematics, or computer science. The effects of mathematics achievement and effects not accounted for by mathematics achievement (what the authors call "recruitment" effects) are isolated for parental education categories and for sex, allowing inequality in physical science degree attainment to be decomposed into portions due to achievement and portions due to recruitment. Additionally, the results from logistic regressions predicting the attainment of a bachelor's degree in physical science as well as the pursuit of a graduate degree in physical science are presented. It is found that for parental education categories, the gaps in physical science educational attainment are nearly entirely accounted for by differences in mathematics achievement, suggesting that if achievement could be equalized, physical science educational attainment differences among parental education categories would disappear. However, the sex gap in physical science educational attainment operates almost entirely independent of achievement effects, suggesting that if the mathematics achievement distributions of males and females were identical, the sex gap in physical science educational attainment would be unchanged from what it is today.

  1. PEOPLE IN PHYSICS: David Bohm and the implicate order: a new paradigm for physics teachers

    NASA Astrophysics Data System (ADS)

    Bettany, Laurence

    1998-11-01

    David Bohm (1917-93) was a highly original and individual physicist. His novel ideas and profound intuition extended not only to the physical world but also to the nature of consciousness and society. Bohm regarded science as having become essentially fragmented in its approach to understanding physical reality and sought a more holistic physics based on order, transformation and flowing movement. His notion of an implicate order provides an unusual and exciting challenge for both teachers and students alike.

  2. Tie Goes to the Runner: The Physics and Psychology of a Close Play

    NASA Astrophysics Data System (ADS)

    Starling, David J.; Starling, Sarah J.

    2017-04-01

    Since physics is often a service course for college students, it is important to incorporate everyday examples in the curriculum that inspire students of diverse backgrounds and interests. In this regard, baseball has been a workhorse for the physics classroom for a long time, taking the form of demonstrations and example problems. Here, we discuss how baseball can help bridge the physical and social sciences in an introductory physics course by analyzing a close play at first base.

  3. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    NASA Astrophysics Data System (ADS)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  4. Scientific Research in British Universities and Colleges 1969-70, Volume I, Physical Sciences.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    This annual publication (1969-1970) contains brief statements about current research in the physical sciences being conducted at British universities and colleges. Areas included are chemistry, physics, engineering, biochemistry, biometry, biophysics, physical geography, mathematics, computing science, and history and philosophy of science. (CP)

  5. The Psychology of Physical Science

    NASA Astrophysics Data System (ADS)

    Feist, Gregory J.

    2006-12-01

    Who becomes a physical scientist is not completely a coincidence. People with spatial talent and who are thing-oriented are most likely to be attracted to physical science, including astronomy. Additional lessons from the psychology of science suggest that compared with non-scientists and social scientists, physical scientists are most likely to be introverted, independent, self-confident, and yet somewhat arrogant. Understanding the physical and inanimate world is part of what physical scientists do, and understanding those who understand the physical world is part of what psychologists of science do.

  6. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  7. Science Sampler: Enhancing Student Understanding of Physical and Chemical Changes

    ERIC Educational Resources Information Center

    McIntosh, Julie; White, Sandra; Suter, Robert

    2009-01-01

    Students within the Findlay, Ohio, City School District, as well as students across the country, struggle with understanding physical and chemical changes. Therefore, in this article, the authors suggest some standards-based activities to clarify misconceptions and provide formative assessments to measure your students' progress as they determine…

  8. Physics Curriculum Guide. Bulletin 1661.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a physics course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…

  9. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    ERIC Educational Resources Information Center

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  10. Impact of the Second Semester University Modeling Instruction Course on Students' Representation Choices

    ERIC Educational Resources Information Center

    McPadden, Daryl; Brewe, Eric

    2017-01-01

    Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…

  11. NewsMars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

  12. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  13. Reviews

    NASA Astrophysics Data System (ADS)

    2006-01-01

    WE RECOMMEND GLX Xplorer Datalogger This hand-held device offers great portability and robustness. Theoretical Concepts in Physics A first-rate reference tool for physics teachers. Do Your Ears Pop in Space? This little gem gives a personal insight into space travel. Full Moon A collection of high-quality photographs from the Apollo missions. The Genius of Science A collection of memories from leading 20th-century physicists. The Simple Science of Flight An excellent source of facts and figures about flight. SUREHigherPhysics This simulation-based software complies with Higher physics. Interactive Physics A programme that makes building simulations quick and easy. WORTH A LOOK Astronomical Enigmas This guide to enigmas could be a little shorter. HANDLE WITH CARE Standing-wave machine This is basically a standing-wave generator with a built-in strobe. WEB WATCH Sounds Amazing is a fantastic site, aimed at Key Stage 4 pupils, for learning about sound and waves.

  14. Reflections on Gibbs: From Statistical Physics to the Amistad V3.0

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2014-07-01

    This note is based upon a talk given at an APS meeting in celebration of the achievements of J. Willard Gibbs. J. Willard Gibbs, the younger, was the first American physical sciences theorist. He was one of the inventors of statistical physics. He introduced and developed the concepts of phase space, phase transitions, and thermodynamic surfaces in a remarkably correct and elegant manner. These three concepts form the basis of different areas of physics. The connection among these areas has been a subject of deep reflection from Gibbs' time to our own. This talk therefore celebrated Gibbs by describing modern ideas about how different parts of physics fit together. I finished with a more personal note. Our own J. Willard Gibbs had all his many achievements concentrated in science. His father, also J. Willard Gibbs, also a Professor at Yale, had one great non-academic achievement that remains unmatched in our day. I describe it.

  15. Comparing Design Constraints to Support Learning in Technology-Guided Inquiry Projects

    ERIC Educational Resources Information Center

    Applebaum, Lauren R.; Vitale, Jonathan M.; Gerard, Elizabeth; Linn, Marcia C.

    2017-01-01

    Physical design projects are a way to motivate and engage students in authentic science and engineering practices. Web-based tools can support design projects to ensure that students address and reflect upon critical science concepts during the course of the project. In addition, by specifying challenging design goals that require students to…

  16. A Photovoltaics Module for Incoming Science, Technology, Engineering and Mathematics Undergraduates

    ERIC Educational Resources Information Center

    Dark, Marta L.

    2011-01-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and…

  17. Physically Handicapped in Science: Final Project Report.

    ERIC Educational Resources Information Center

    O'Brien, Maureen B.; And Others

    A two-year project was conducted by St. Mary's Junior College to improve the science literacy of visually-impaired students (VIS) through the adaptation of instructional methods and materials. A four-step process was used: (1) learning materials were reviewed to identify problem areas; (2) preliminary adaptations were made based on the review; (3)…

  18. Does Constructivist Approach Applicable through Concept Maps to Achieve Meaningful Learning in Science?

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2012-01-01

    This study deals with the application of constructivist approach through individual and cooperative modes of spider and hierarchical concept maps to achieve meaningful learning on science concepts (e.g. acids, bases & salts, physical and chemical changes). The main research questions were: Q (1): is there any difference in individual and…

  19. Also a Centennial Year for Ernest Orlando Lawrence

    Science.gov Websites

    research with multidisciplinary teams of scientists and engineers-the team-based approach to modern science should be remembered as the inventor of the modern way of doing science," said Lawrence team member Revolutionary Idea that Changed Modern Physics A Few Important Events in Lawrence's Life E.O. Lawrence

  20. Design of a Food Chemistry-Themed Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Bell, Patrice

    2014-01-01

    The physical science curriculum design at Georgia Gwinnett College requires a theme-based course (lecture and group work, and laboratory) for nonscience majors. Increased student engagement is anticipated when science topics are taught in the context of a topic of which students can select during course registration. This paper presents the course…

  1. Teaching Physics to In-Service Primary School Teachers in the Context of the History of Science: The Case of Falling Bodies

    NASA Astrophysics Data System (ADS)

    Kokkotas, Panos; Piliouras, Panagiotis; Malamitsa, Katerina; Stamoulis, Efthymios

    2009-05-01

    Our paper presents an in-service primary school teachers’ training program which is based on the idea that the history of science can play a vital role in promoting the learning of physics. This training program has been developed in the context of Comenius 2.1 which is a European Union program. This program that we have developed in the University of Athens is based on socioconstructivist and sociocultural learning principles with the intention of helping teachers to appropriate the basic knowledge on the issue of falling bodies. Moreover, it has the aim to make explicit through the exploitation of authentic historical science events, on the above topic (Aristotle’s, Galileo’s and Newton’s theories on falling bodies) the Nature of Science (NoS), the Nature of Learning (NoL) and the Nature of Teaching (NoT). During the implementation of the program we have used a variety of teaching strategies (e.g. group work, making of posters, making of concept maps, simulations) that utilize historical scientific materials on the issue of falling bodies.

  2. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  3. The space physics analysis network

    NASA Astrophysics Data System (ADS)

    Green, James L.

    1988-04-01

    The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.

  4. COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.

    2012-12-01

    The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;

  5. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  6. Physics Bus: An Innovative Model for Public Engagement

    NASA Astrophysics Data System (ADS)

    Fox, Claire

    The Physics Bus is about doing science for fun. It is an innovative model for science outreach whose mission is to awaken joy and excitement in physics for all ages and walks of life - especially those underserved by science enrichment. It is a mobile exhibition of upcycled appliances-reimagined by kids-that showcase captivating physics phenomena. Inside our spaceship-themed school bus, visitors will find: a microwave ionized-gas disco-party, fog rings that shoot from a wheelbarrow tire, a tv whose electron beam is controlled by a toy keyboard, and over 20 other themed exhibits. The Physics Bus serves a wide range of public in diverse locations from local neighborhoods, urban parks and rural schools, to cross-country destinations. Its approachable, friendly and relaxed environment allows for self-paced and self-directed interactions, providing a positive and engaging experience with science. We believe that this environment enriches lives and inspires people. In this presentation we will talk about the nuts and bolts that make this model work, how the project got started, and the resources that keep it going. We will talk about the advantages of being a grassroots and community-based organization, and how programs like this can best interface with universities. We will explain the benefits of focusing on direct interactions and why our model avoids ``teaching'' physics content with words. Situating our approach within a body of research on the value of informal science we will discuss our success in capturing and engaging our audience. By the end of this presentation we hope to broaden your perception of what makes a successful outreach program and encourage you to value and support alternative outreach models such as this one. In Collaboration with: Eva Luna, Cornell University; Erik Herman, Cornell University; Christopher Bell, Ithaca City School District.

  7. IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

    NASA Astrophysics Data System (ADS)

    Ferrario, M.; Alesini, D.; Alessandroni, M.; Anania, M. P.; Andreas, S.; Angelone, M.; Arcovito, A.; Arnesano, F.; Artioli, M.; Avaldi, L.; Babusci, D.; Bacci, A.; Balerna, A.; Bartalucci, S.; Bedogni, R.; Bellaveglia, M.; Bencivenga, F.; Benfatto, M.; Biedron, S.; Bocci, V.; Bolognesi, M.; Bolognesi, P.; Boni, R.; Bonifacio, R.; Boscherini, F.; Boscolo, M.; Bossi, F.; Broggi, F.; Buonomo, B.; Calo, V.; Catone, D.; Capogni, M.; Capone, M.; Cassou, K.; Castellano, M.; Castoldi, A.; Catani, L.; Cavoto, G.; Cherubini, N.; Chirico, G.; Cestelli-Guidi, M.; Chiadroni, E.; Chiarella, V.; Cianchi, A.; Cianci, M.; Cimino, R.; Ciocci, F.; Clozza, A.; Collini, M.; Colo, G.; Compagno, A.; Contini, G.; Coreno, M.; Cucini, R.; Curceanu, C.; Curciarello, F.; Dabagov, S.; Dainese, E.; Davoli, I.; Dattoli, G.; De Caro, L.; De Felice, P.; De Leo, V.; Dell Agnello, S.; Della Longa, S.; Delle Monache, G.; De Spirito, M.; Di Cicco, A.; Di Donato, C.; Di Gioacchino, D.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Dodaro, A.; Doria, A.; Dosselli, U.; Drago, A.; Dupraz, K.; Escribano, R.; Esposito, A.; Faccini, R.; Ferrari, A.; Filabozzi, A.; Filippetto, D.; Fiori, F.; Frasciello, O.; Fulgentini, L.; Gallerano, G. P.; Gallo, A.; Gambaccini, M.; Gatti, C.; Gatti, G.; Gauzzi, P.; Ghigo, A.; Ghiringhelli, G.; Giannessi, L.; Giardina, G.; Giannini, C.; Giorgianni, F.; Giovenale, E.; Giulietti, D.; Gizzi, L.; Guaraldo, C.; Guazzoni, C.; Gunnella, R.; Hatada, K.; Iannone, M.; Ivashyn, S.; Jegerlehner, F.; Keeffe, P. O.; Kluge, W.; Kupsc, A.; Labate, L.; Levi Sandri, P.; Lombardi, V.; Londrillo, P.; Loreti, S.; Lorusso, A.; Losacco, M.; Lukin, A.; Lupi, S.; Macchi, A.; Magazù, S.; Mandaglio, G.; Marcelli, A.; Margutti, G.; Mariani, C.; Mariani, P.; Marzo, G.; Masciovecchio, C.; Masjuan, P.; Mattioli, M.; Mazzitelli, G.; Merenkov, N. P.; Michelato, P.; Migliardo, F.; Migliorati, M.; Milardi, C.; Milotti, E.; Milton, S.; Minicozzi, V.; Mobilio, S.; Morante, S.; Moricciani, D.; Mostacci, A.; Muccifora, V.; Murtas, F.; Musumeci, P.; Nguyen, F.; Orecchini, A.; Organtini, G.; Ottaviani, P. L.; Pace, C.; Pace, E.; Paci, M.; Pagani, C.; Pagnutti, S.; Palmieri, V.; Palumbo, L.; Panaccione, G. C.; Papadopoulos, C. F.; Papi, M.; Passera, M.; Pasquini, L.; Pedio, M.; Perrone, A.; Petralia, A.; Petrarca, M.; Petrillo, C.; Petrillo, V.; Pierini, P.; Pietropaolo, A.; Pillon, M.; Polosa, A. D.; Pompili, R.; Portoles, J.; Prosperi, T.; Quaresima, C.; Quintieri, L.; Rau, J. V.; Reconditi, M.; Ricci, A.; Ricci, R.; Ricciardi, G.; Ricco, G.; Ripani, M.; Ripiccini, E.; Romeo, S.; Ronsivalle, C.; Rosato, N.; Rosenzweig, J. B.; Rossi, A. A.; Rossi, A. R.; Rossi, F.; Rossi, G.; Russo, D.; Sabatucci, A.; Sabia, E.; Sacchetti, F.; Salducco, S.; Sannibale, F.; Sarri, G.; Scopigno, T.; Sekutowicz, J.; Serafini, L.; Sertore, D.; Shekhovtsova, O.; Spassovsky, I.; Spadaro, T.; Spataro, B.; Spinozzi, F.; Stecchi, A.; Stellato, F.; Surrenti, V.; Tenore, A.; Torre, A.; Trentadue, L.; Turchini, S.; Vaccarezza, C.; Vacchi, A.; Valente, P.; Venanzoni, G.; Vescovi, S.; Villa, F.; Zanotti, G.; Zema, N.; Zobov, M.; Zomer, F.

    2014-03-01

    This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.

  8. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  9. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  10. From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science (Alfred Wegener Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2017-04-01

    Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.

  11. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    NASA Astrophysics Data System (ADS)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  12. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  13. Self-directed learning: A heretical experiment in teaching physics

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    1995-06-01

    An account is given of the instruction of university-level introductory physics courses according to an educational framework in which (1) curiosity-driven inquiry is recognized as an essential activity of both science and science teaching; (2) the principal role of the instructor is to provide students the incentive to learn science through their pursuit of personally meaningful questions; (3) the commission of errors is regarded as a natural concomitant to learning and is not penalized; (4) emphasis is placed on laboratory investigations that foster minimally restrictive free exploration rather than prescriptive adherence to formal procedure; (5) research skills are developed through out-of-class projects that involve literature search, experiment, and the modeling of real-world physical phenomena: (6) the precise and articulate use of language is regarded as seminal to communication in science (as it is in the humanities) and is promoted through activities that help develop written and oral language skills; (7) the evaluation of student performance is based on a portfolio of accomplished work rather than on the outcome of formal testing.

  14. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  15. A case study of successful e-learning: a web-based distance course in medical physics held for school teachers of the upper secondary level.

    PubMed

    Jönsson, Bo-Anders

    2005-09-01

    Learning activities and course design in the new context of e-learning, such as in web-based courses involves a change both for teachers and students. The paper discusses factors important for e-learning to be successful. The development of an online course in medical physics and technology for high school teachers of physics, details of the course, and experience gained in connection with it are described. The course syllabus includes basics of radiation physics, imaging techniques using ionizing or non-ionizing radiation, and external and internal radiation therapy. The course has a highly didactic approach. The final task is for participants to design a course of their own centered on some topic of medical physics on the basis of the knowledge they have acquired. The aim of the course is to help the teachers integrate medical physics into their own teaching. This is seen as enhancing the interest of high school students in later studying physics, medical physics or some other branch of science at the university level, and as increasing the knowledge that they and people generally have of science. It is suggested that the basic approach taken can also have applicability to the training of medical, nursing or engineering students, and be used for continuing professional development in various areas.

  16. GaAs-based micro/nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi

    2017-10-01

    Micro/nanomechanical resonators have been extensively studied both for device applications, such as high-performance sensors and high-frequency devices, and for fundamental science, such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor heterostructures include improved mechanical properties through strain engineering, highly controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and hybridization with quantum low-dimensional structures. This article reviews our recent activities, as well as those of other groups, on the physics and applications of mechanical resonators fabricated using GaAs-based heterostructures.

  17. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  18. [The Nobel Prize database as an indicator of the internationalization of Brazilian science from 1901 to 1966].

    PubMed

    Pittella, José Eymard Homem

    2018-01-01

    Working with the Nobel Prize database, covering 1901-1966, the article examines the analytical potential of the participation of Brazilians both as nominees for the world's most prestigious award in science, the Nobel Prize, and also as invited nominators. Of the 18 Brazilians nominated for the Nobel, nine were in the category Peace, four in Literature, four in Physiology or Medicine, and one in Physics. The article comments on the nominations of Brazilian scientists in the categories of Physics and Physiology or Medicine, as well as on nominations by Brazilian nominators in these same two categories. It also discusses the process of science evaluation, based on the information attained through analysis of these data on the Nobel award.

  19. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  20. Sciences literacy on nutrition program for improving public wellness

    NASA Astrophysics Data System (ADS)

    Rochman, C.; Nasrudin, D.; Helsy, I.; Rokayah; Kusbudiah, Y.

    2018-05-01

    Increased wellness for a person becomes a necessity now and for the future. Various ways people do to get fit include following and understanding nutrition. This review will inventory the concepts of science involved to understand the nutritional program and its impact on fitness levels. The method used is a quantitative and qualitative descriptive mixed method based on treatment to a number of nutrition group participants in a nutrition group in Bandung. The concepts of science that are the subject of study are the concepts of physics, chemistry, and biology. The results showed that the ability of science literacy and respondent's wellness level varies and there is a relationship between science literacy with one's wellness level. The implications of this research are the need for science literacy and wellness studies for community based on educational level and more specific scientific concepts.

  1. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  2. Modeling an integrative physical examination program for the Departments of Defense and Veterans Affairs.

    PubMed

    Goodrich, Scott G

    2006-10-01

    Current policies governing the Departments of Defense and Veterans Affairs physical examination programs are out of step with current evidence-based medical practice. Replacing periodic and other routine physical examination types with annual preventive health assessments would afford our service members additional health benefit at reduced cost. Additionally, the Departments of Defense and Veterans Affairs repeat the physical examination process at separation and have been unable to reconcile their respective disability evaluation systems to reduce duplication and waste. A clear, coherent, and coordinated strategy to improve the relevance and utility of our physical examination programs is long overdue. This article discusses existing physical examination programs and proposes a model for a new integrative physical examination program based on need, science, and common sense.

  3. Cognitive-based approach in teaching 1st year Physics for Life Sciences, including Atmospheric Physics and Climate Change components

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-12-01

    Most 1st year students who take the service course in Physics - Physics for Life Sciences - in Australia encounter numerous problems caused by such factors as no previous experience with this subject; general perception that Physics is hard and only very gifted people are able to understand it; lack of knowledge of elementary mathematics; difficulties encountered by lecturers in teaching university level Physics to a class of nearly 200 students with no prior experience, diverse and sometime disadvantageous backgrounds, different majoring areas, and different learning abilities. As a result, many students either drop, or fail the subject. In addition, many of those who pass develop a huge dislike towards Physics, consider the whole experience as time wasted, and spread this opinion among their peers and friends. The above issues were addressed by introducing numerous changes to the curriculum and modifying strategies and approaches in teaching Physics for Life Sciences. Instead of a conventional approach - teaching Physics from simple to complicated, topic after topic, the students were placed in the world of Physics in the same way as a newborn child is introduced to this world - everything is seen all the time and everywhere. That created a unique environment where a bigger picture and all details were always present and interrelated. Numerous concepts of classical and modern physics were discussed, compared, and interconnected all the time with “Light” being a key component. Our primary field of research is Atmospheric Physics, in particular studying the atmospheric composition and structure using various satellite and ground-based data. With this expertise and also inspired by an increasing importance of training a scientifically educated generation who understands the challenges of the modern society and responsibilities that come with wealth, a new section on environmental physics has been developed. It included atmospheric processes and the greenhouse effect, climate change, stratospheric ozone depletion, skin cancer, ets. This new section has been greatly appreciated by the students, and adding more material on this was requested.

  4. Kids crash and burn: An analysis of freshmen failing science end of course exams

    NASA Astrophysics Data System (ADS)

    Godfrey, Tanya N.

    The purpose of this study was to determine how various factors influence student achievement on the physical science EOCE so that students are provided every opportunity to be successful. An understanding of influences such as the type of mathematics course students are taking, participating in block scheduling, participating in freshmen academies, and the year students took the science course and the science EOCE should provide insight into its relationship on the physical science EOCE achievement level. The final goal was to find which factors correlate to high achievement on the physical science EOCE so that South Carolina can implement these factors. This was done by obtaining historical data on students who took physical science and determine which factors are associated with the high failure rates on the physical science EOCE. Correlational values were determined, when possible. An independent-samples t-test was used to determine the strength and directionality for each relationship. A five-way ANOVA was used to determine if there were any interaction effects between the variables. The first finding was that students who took algebra prior to physical science had higher achievement on the EOCE than students without algebra. Students had increased EOCE scores when they took physical science in a block class. More students were successful outside of a freshmen academy on the physical science EOCE. These results are important to educators and administrators that want to help students become more successful on the physical science EOCE. The findings of this study can lead to a positive change within schools and school districts when it comes to providing an atmosphere that helps students increase their science skills and knowledge.

  5. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    ERIC Educational Resources Information Center

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  6. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    PubMed

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  7. Exploring the Relationship between the Engineering and Physical Sciences and the Health and Life Sciences by Advanced Bibliometric Methods

    PubMed Central

    Waltman, Ludo; van Raan, Anthony F. J.; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the ‘EPS-HLS interface’ is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade. PMID:25360616

  8. The material co-construction of hard science fiction and physics

    NASA Astrophysics Data System (ADS)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  9. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    ERIC Educational Resources Information Center

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  10. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    NASA Astrophysics Data System (ADS)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  11. Convective Aggregation, Climate Sensitivity, and the Importance of Radiation Physics in Weather and Climate

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2015-12-01

    Since the revolutionary work of Vilhelm Bjerknes, Jule Charney, and Eric Eady, geophysical fluid dynamics has dominated weather research and continues to play an important in climate dynamics. Although the physics of radiative transfer is central to understanding climate, it has played a far smaller role in weather research and is given only rudimentary attention in most educational programs in meteorology. Yet key contemporary problems in atmospheric science, such as the Madden-Julian Oscillation and the self-aggregation of moist convection, do not appear to have been solved by approaches based strictly on fluid dynamics and moist adiabatic thermodynamics. Here I will argue that many outstanding problems in meteorology and climate science involve a nontrivial coupling of circulation and radiation physics. In particular, the phenomenon of self-aggregation of moist convection depends on the interaction of radiation with time-varying water vapor and clouds, with strong implications for such diverse problems as the Madden-Julian Oscillation, tropical cyclones, and the relative insensitivity of tropical climate to radiative forcing. This argues for an augmentation of radiative transfer physics in graduate curricula in atmospheric sciences.

  12. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    NASA Astrophysics Data System (ADS)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  13. Education for sustainable development - Resources for physics and sciences teachers

    NASA Astrophysics Data System (ADS)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  14. Undergraduate Students' Perceptions of an Inquiry-Based Physics Course

    NASA Astrophysics Data System (ADS)

    Ballone Duran, Lena; McArthur, Julia; van Hook, Stephen

    2004-04-01

    The purpose of this study was to examine middle childhood students'' perceptions of the learning environment in a reform-based physics course. A lecture-style, introductory physics course was modified into an inquiry-based course designed for preservice middle childhood teachers through the collaborative efforts of faculty in the Colleges of Education and Arts and Sciences. Focus group interviews were conducted to examine students'' perceptions. The results suggested that the students initially felt a level of frustration with a new constructivist experience; however, they were able to embrace the inquiry method and expressed a desire for additional specialized content courses for preservice teachers.

  15. Secondary Implementation of Interactive Engagement Teaching Techniques: Choices and Challenges in a Gulf Arab Context

    ERIC Educational Resources Information Center

    Hitt, G. W.; Isakovic, A. F.; Fawwaz, O.; Bawa'aneh, M. S.; El-Kork, N.; Makkiyil, S.; Qattan, I. A.

    2014-01-01

    We report on efforts to design the "Collaborative Workshop Physics" (CWP) instructional strategy to deliver the first interactive engagement (IE) physics course at Khalifa University of Science, Technology and Research (KU), United Arab Emirates (UAE). To our knowledge, this work reports the first calculus-based, introductory mechanics…

  16. Professionalising Physics Teachers in Doing Experimental Work

    ERIC Educational Resources Information Center

    Haagen-Schutzenhofer, Claudia; Joham, Birgit

    2018-01-01

    It is commonly agreed that experiments play a central role in teaching and learning physics. Recently, Inquiry-Based Learning (IBL) has been introduced into science teaching in many countries, thus giving another boost for experiments. From a didactical point of view, experiments can serve a number of different goals in teaching and learning…

  17. Setting and Within-Class Ability Grouping: A Survey of Practices in Physical Education

    ERIC Educational Resources Information Center

    Wilkinson, Shaun; Penney, Dawn; Allin, Linda

    2016-01-01

    Within the United Kingdom and internationally, the practice of separating pupils by ability endures as a characteristic feature of mathematics and science classrooms. Although there is extensive international research literature on ability grouping within classroom-based subjects, limited research exists in the context of physical education (PE).…

  18. Designing for Enhanced Conceptual Understanding in an Online Physics Course

    ERIC Educational Resources Information Center

    Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.

    2009-01-01

    The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…

  19. "Slow Science": Building Scientific Concepts in Physics in High School

    ERIC Educational Resources Information Center

    Bigozzi, Lucia; Tarchi, Christian; Falsini, Paola; Fiorentini, Carlo

    2014-01-01

    In this study, a progressive-learning approach to physics, based on knowledge-building pedagogy, was compared to a content-centered approach in which explanations, experiments, and discussions are centered on the transmission of knowledge. Forty-six students attending the first year of high school participated in this study over a whole school…

  20. Inquiry-Based Learning Approach in Physical Education: Stimulating and Engaging Students in Physical and Cognitive Learning

    ERIC Educational Resources Information Center

    Østergaard, Lars Domino

    2016-01-01

    Inquiry is an approach that promotes engagement, motivation and learning, and which involves use of cognitive knowledge, bodily experience and communicative skills. Usually the inquiry method with skills like observations, planning, investigations, experimenting and drawing conclusions is related to natural sciences, but this paper describes an…

  1. Interactive Online Physics Labs Increase High School Students' Interest

    ERIC Educational Resources Information Center

    Gryczka, Patrick; Klementowicz, Edward; Sharrock, Chappel; Montclare, Jin Kim

    2016-01-01

    Here we describe the incorporation of a web-based application focusing on circuits for the physics high school classroom as part of an outreach program. The program involves college mentors creating and implementing science lessons in collaboration with the classroom teacher. Focusing on the challenge of understanding circuit design, a technology…

  2. Exploring teachers' perspectives on the impact of out-of-school science-based programs for secondary level physics classrooms in Nebraska

    NASA Astrophysics Data System (ADS)

    Baquerizo-Birth, Marisol

    This exploratory phenomenological study investigates the lived experiences of six high school physics teachers in Nebraska regarding their perceptions on the impact of participating in a science-based out-of-school program. By exploring the research question, we discover how this experience relates to these teachers' self-concept and professional growth. Open-ended, semi-structured, one-on-one interviews are used as the data collection method to explore teachers' perceptions. Responses reveal that teachers participating in the Cosmic Ray Observatory Project (CROP) as a means of exploring advanced, extracurricular physics projects perceive their participation as an opportunity for enrichment, collaboration, helping their students, and empowerment. Intertwined in the presented narratives, teachers refer to their schools' limited administrative support as a source of struggle tied to the challenge of balancing school and teaching responsibilities with CROP participants' responsibilities. This study proposes teachers must feel confident with their specific subject area to achieve a progressive view of self, and that supplemental professional development opportunities are crucial to physics teaching.

  3. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  4. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  5. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    NASA Astrophysics Data System (ADS)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  6. Workshop II: Physics Education

    NASA Astrophysics Data System (ADS)

    Horton, Renee; Milner-Bolotin, Marina

    2015-12-01

    Participants in the Physics Education Workshop at the 5th IUPAP International Conference on Women in Physics heard about, among other topics, a study exploring why students have difficulty with concepts related to magnetism (and whether explicitly evoking gender affects the results), work in Europe to develop materials to help teachers implement inquiry-based science education, and the use of peer instruction and online collaboration to help teacher-candidates develop questioning skills.

  7. Academic Excellence: The Role of Research in the Physical Sciences at Undergraduate Institutions.

    ERIC Educational Resources Information Center

    Doyle, Michael P., Ed.

    Chapters of this collection show that students benefit from a research-based teaching environment, and that students who have the opportunity for research complete their science programs in greater numbers than those who do not. The chapters of section 1, "Achieving Excellence," are: (1) "The Role of Research at Undergraduate Institution: Why Is…

  8. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    ERIC Educational Resources Information Center

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  9. Seeking Missing Pieces in Science Concept Assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch Analysis

    ERIC Educational Resources Information Center

    Ding, Lin

    2014-01-01

    Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses.…

  10. Astronomy Resources for Intercurricular Elementary Science (ARIES): Exploring Motion and Forces. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "ARIES: Exploring Motion and Forces" is a physical science curriculum for students in grades 5-8 that employs 18 inquiry-centered, hands-on lessons called "explorations." The curriculum draws upon students' curiosity to explore phenomena, allowing for a discovery-based learning process. Group-centered lab work is designed to…

  11. How Teaching Practices Are Connected to Student Intention to Enrol in Upper Secondary School Physics Courses

    ERIC Educational Resources Information Center

    Juuti, Kalle; Lavonen, Jari

    2016-01-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine…

  12. Developing a Construct-Based Assessment to Examine Students' Analogical Reasoning around Physical Models in Earth Science

    ERIC Educational Resources Information Center

    Rivet, Ann E.; Kastens, Kim A.

    2012-01-01

    In recent years, science education has placed increasing importance on learners' mastery of scientific reasoning. This growing emphasis presents a challenge for both developers and users of assessments. We report on our effort around the conceptualization, development, and testing the validity of an assessment of students' ability to reason around…

  13. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  14. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    ERIC Educational Resources Information Center

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  15. Space School

    ERIC Educational Resources Information Center

    Fitzgerald, Victoria

    2012-01-01

    Part of the School of Physical Sciences mission and plan is to deliver an effective outreach programme to the community and South East regions to stimulate interest, both in school pupils and the general public, in science. To do this, it offers many activities that are school-based and aimed at students in Key stages 3, 4 and 5 (ages 11-18).…

  16. How Learning and Cognitive Science Can Improve Student Outcomes. Middle School Matters Program No. 1

    ERIC Educational Resources Information Center

    Graesser, Art; Rodriguez, Gina; Brasiel, Sarah J.

    2013-01-01

    There are research-based principles and practices from the learning and cognitive sciences that can be applied to all content areas in middle grades education to improve student outcomes. Even teachers of courses like Physical Education can consider these strategies for assisting students in remembering rules of sports, different sports…

  17. First-year Pre-service Teachers in Taiwan—Do they enter the teacher program with satisfactory scientific literacy and attitudes toward science?

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Chin

    2005-10-01

    Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.

  18. Physics Guided Data Science in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.

    2017-12-01

    Even as the geosciences are becoming relatively data-rich owing to remote sensing and archived model simulations, established physical understanding and process knowledge cannot be ignored. The ability to leverage both physics and data-intensive sciences may lead to new discoveries and predictive insights. A principled approach to physics guided data science, where physics informs feature selection, output constraints, and even the architecture of the learning models, is motivated. The possibility of hybrid physics and data science models at the level of component processes is discussed. The challenges and opportunities, as well as the relations to other approaches such as data assimilation - which also bring physics and data together - are discussed. Case studies are presented in climate, hydrology and meteorology.

  19. Workshop Report on a Future Information Infrastructure for the Physical Sciences. The Facts of the Matter: Finding, Understanding, and Using Information about out Physical World Held at the National Academy of Sciences on May 30-31, 2000

    DTIC Science & Technology

    2000-05-31

    Grey Literature Network Service ( Farace , Dominic,1997) as, “that which is produced on all levels of government, academics, business and industry in... literature is available, on-line, to scientific workers throughout the world, for a world scientific database.” These reports served as the base to begin...all the world’s formal scientific literature is available, on-line, to scientific workers throughout the world, for a world scientific database

  20. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  1. Investigating a redesigned physics course for future elementary teachers

    NASA Astrophysics Data System (ADS)

    Fracchiolla, Claudia

    There is a growing concern that the number of students graduating with a STEM major in the U.S. is insufficient to fill the growing demand in STEM careers. In order to fulfill that demand, it is important to increase student retention in STEM majors and also to attract more students to pursue careers in those areas. Previous research has indicated that children start losing interest in science at the elementary level because science is taught with a focus on learning vocabulary and ideas rather than learning through inquiry-based techniques. A factor that affects the quality of science education at the elementary level is the preparation of elementary teachers. Many elementary teachers feel unprepared to teach science because they lack adequate content knowledge as well as the pedagogical content knowledge (PCK) for teaching the subject. Previous studies of teacher preparation in science identified some areas with which pre-service teachers need assistance. One of these areas is understanding children's ideas of science. To address that issue, this dissertation investigates whether the use of an instructional approach that teaches physics phenomena along with an understanding of how children think about the physical phenomena promotes changes in students' knowledge of children's ideas and use of those ideas in instructional and assessment strategies. Results indicated that students who were explicitly exposed to knowledge of children's ideas more often incorporated those ideas into their own microteaching and demonstrated higher levels of sophistication of knowledge of children's ideas, instructional strategies, and assessment strategies that incorporated those ideas. This research explores an instructional model for blending physics content and pedagogical content knowledge.

  2. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    ERIC Educational Resources Information Center

    Klinkenborg, Ann Maria

    2011-01-01

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one…

  3. PREFACE: Correlated Electrons (Japan)

    NASA Astrophysics Data System (ADS)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states and superconductivity of SCES and related research fields, and the prospects of SCES physics. I hope that it will give an insight into the fascination of SCES research and a feeling for the advances made in the past years.

  4. Promoting science through science fiction and pseudoscience.

    NASA Astrophysics Data System (ADS)

    Roslund, C.

    1986-11-01

    A great deal of physics can be learned from reading good science fiction. Many writers of this genre have shown great talent in explaining the laws of physics in language that is both lucid and accessible. Their writings can readily be used by the science teacher to enhance and to stimulate student understanding of physics and science.

  5. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  6. News Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics

  7. Ultrastrong light fields (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 October 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    On 29 October 2014, the scientific session "Super strong light fields" of the Physical Sciences Division (PSD), Russian Academy of Sciences (RAS), was held at the conference hall of the Lebedev Physical Institute, RAS.The agenda of the session announced on the website http://www.gpad.ac.ru of the PSD RAS contains the reports: (1) Bychenkov V Yu (Lebedev Physical Institute, RAS, Moscow) "Laser acceleration of ions: New results and prospects for applications"; (2) Kostyukov I Yu (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Plasma methods for electron acceleration: the state of the art and outlook"; (3) Zheltikov A M (Lomonosov Moscow State University, Moscow) "Nonlinear optics of mid-IR ultrashort pulses"; (4) Narozhnyi N B, Fedotov A M (Moscow Engineering Physics Institute, Nuclear Research University, Moscow) "Quantum electrodynamics cascades in intense laser fields."Papers written on the basis of oral presentations 1-4 are published below. • Laser acceleration of ions: recent results and prospects for applications, V Yu Bychenkov, A V Brantov, E A Govras, V F Kovalev Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 71-81 • Plasma-based methods for electron acceleration: current status and prospects, I Yu Kostyukov, A M Pukhov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 81-88 • Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields, A V Mitrofanov, D A Sidorov-Biryukov, A A Voronin, A Pugžlys, G Andriukaitis, E A Stepanov, S Ališauskas, T Flöri, A B Fedotov, V Ya Panchenko, A Baltuška, A M Zheltikov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 89-94 • Quantum-electrodynamic cascades in intense laser fields, N B Narozhny, A M Fedotov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 95-102

  8. Design-Based Research: Case of a Teaching Sequence on Mechanics

    ERIC Educational Resources Information Center

    Tiberghien, Andree; Vince, Jacques; Gaidioz, Pierre

    2009-01-01

    Design-based research, and particularly its theoretical status, is a subject of debate in the science education community. In the first part of this paper, a theoretical framework drawn up to develop design-based research will be presented. This framework is mainly based on epistemological analysis of physics modelling, learning and teaching…

  9. Complex network problems in physics, computer science and biology

    NASA Astrophysics Data System (ADS)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe lattice at zero temperature and then we apply this formalism to the K-SAT problem defined in Chapter 1. The phase transition which physicists study often corresponds to a change in the computational complexity of the corresponding computer science problem. Chapter 3 presents phase transitions which are specific to the problems discussed in Chapter 1 and also known results for the K-SAT problem. We discuss the replica method and experimental evidences of replica symmetry breaking. The physics approach to hard problems is based on replica methods which are difficult to understand. In Chapter 4 we develop novel methods for studying hard problems using methods similar to the message passing techniques that were discussed in Chapter 2. Although we concentrated on the symmetric case, cavity methods show promise for generalizing our methods to the un-symmetric case. As has been highlighted by John Hopfield, several key features of biological systems are not shared by physical systems. Although living entities follow the laws of physics and chemistry, the fact that organisms adapt and reproduce introduces an essential ingredient that is missing in the physical sciences. In order to extract information from networks many algorithm have been developed. In Chapter 5 we apply polynomial algorithms like minimum spanning tree in order to study and construct gene regulatory networks from experimental data. As future work we propose the use of algorithms like min-cut/max-flow and Dijkstra for understanding key properties of these networks.

  10. Training Undergraduate Physics Peer Tutors

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Jacob, A. T.

    2004-05-01

    The University of Wisconsin's Physics Peer Mentor Tutor Program matches upper level undergraduate physics students in small study groups with students studying introductory algebra-based physics. We work with students who are potentially at-risk for having academic trouble with the course. They include students with a low exam score, learning disabilities, no high school physics, weak math backgrounds, and/or on academic probation. We also work with students from groups under represented in the sciences and who may be feeling isolated or marginal on campus such as minority, returning adult, and international students. The tutors provide a supportive learning environment, extra practice problems, and an overview of key concepts. In so doing, they help our students to build confidence and problem solving skills applicable to physics and other areas of their academic careers. The Physics Peer Mentor Tutor Program is modeled after a similar program for chemistry created by the University of Wisconsin's Chemistry Learning Center. Both programs are now run in collaboration. The tutors are chosen for their academic strength and excellent communication skills. Our tutors are majoring in physics, math, and secondary-level science education. The tutors receive ongoing training and supervision throughout the year. They attend weekly discipline-specific meetings to discuss strategies for teaching the content currently being discussed in the physics course. They also participate in a weekly teaching seminar with science tutors from chemistry and biochemistry to discuss teaching methods, mentoring, and general information relating to the students with whom we work. We will describe an overview of the Physics Peer Mentor Tutor Program with a focus on the teacher training program for our undergraduate tutors.

  11. Integrating Physics and Literacy Learning in a Physics Course for Prospective Elementary and Middle School Teachers

    NASA Astrophysics Data System (ADS)

    van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam

    2013-06-01

    The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course, involving collaboration among physics, science education, and literacy faculty members and two graduate assistants. Meeting twice a week for 10 weeks, the course emphasized questioning, predicting, exploring, observing, discussing, writing, and reading in physical science contexts. We report common themes about aspects that fostered or hindered science and literacy learning, changes in views about science teaching and learning, and positive shifts in interest in science and intended teaching practices.

  12. Professional Development Graduate Courses and a Masters of Arts in Physics Education with Web Based Course Components

    NASA Astrophysics Data System (ADS)

    Lindgren, Richard; Thornton, Stephen

    2010-02-01

    Professional development courses offered in physical/Earth science and physics by the Department of Physics are delivered by different venues to accommodate the needs of the K-12 teaching community. The majority of teachers take our courses off-site or through our distance-learning web-based program on the Internet for endorsement or recertification, but with a gradually increasing number enrolling in our 30 credit Masters of Arts in Physics Education degree (MAPE) program. The purpose of the Masters program is to provide increased physics content to those teachers who feel inadequately prepared to teach high school physics. The increase in numbers and success of this program is partly due to the convenience of taking online web-based courses which is made possible by using the latest communication technologies on the high speed internet. There is also a residential component of the MAPE program, which requires the candidates to earn 14 credits of calculus-based core physics in residence in the summer at the University. We have graduated a total of 91 teachers since the program began in 2000. )

  13. University Programme Preferences of High School Science Students in Singapore and Reasons that Matter in their Preferences: A Rasch analysis

    NASA Astrophysics Data System (ADS)

    Oon, Pey-Tee; Subramaniam, R.

    2015-01-01

    This study explored an under-researched area in science education-the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of subjects, participated in this study. A survey method was adopted and the Rasch model was used to analyse the data. Overall, Business Studies was ranked as the predominant choice; nonetheless, scientific programmes such as Science, Engineering, and Mathematics are generally still well liked by the students. When gender differences were examined, we found that students largely followed gender-typical programme preferences, in which males tend to incline towards Engineering while females tend to incline towards Arts and Social Sciences. Students prefer a university programme based on their individual interest and ability, with career aspiration and remuneration coming next. Interestingly, females place greater emphasis on career aspiration than males. Some implications of the study are discussed.

  14. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  15. Web-Based Mindfulness Interventions for People With Physical Health Conditions: Systematic Review.

    PubMed

    Toivonen, Kirsti I; Zernicke, Kristin; Carlson, Linda E

    2017-08-31

    Mindfulness-based interventions (MBIs) are becoming increasingly popular for helping people with physical health conditions. Expanding from traditional face-to-face program delivery, there is growing interest in Web-based application of MBIs, though Web-based MBIs for people with physical health conditions specifically have not been thoroughly reviewed to date. The objective of this paper was to review Web-based MBIs for people with physical health conditions and to examine all outcomes reported (eg, efficacy or effectiveness for physical changes or psychological changes; feasibility). Databases PubMed, PsycINFO, Science Direct, CINAHL Plus, and Web of Science were searched. Full-text English papers that described any Web-based MBI, examining any outcome, for people with chronic physical health conditions were included. Randomized, nonrandomized, controlled, and uncontrolled trials were all included. Extracted data included intervention characteristics, population characteristics, outcomes, and quality indicators. Intervention characteristics (eg, synchronicity and guidance) were examined as potential factors related to study outcomes. Of 435 publications screened, 19 published papers describing 16 studies were included. They examined Web-based MBIs for people with cancer, chronic pain or fibromyalgia, irritable bowel syndrome (IBS), epilepsy, heart disease, tinnitus, and acquired brain injury. Overall, most studies reported positive effects of Web-based MBIs compared with usual care on a variety of outcomes including pain acceptance, coping measures, and depressive symptoms. There were mixed results regarding the effectiveness of Web-based MBIs compared with active control treatment conditions such as cognitive behavioral therapy. Condition-specific symptoms (eg, cancer-related fatigue and IBS symptoms) targeted by treatment had the largest effect size improvements following MBIs. Results are inconclusive regarding physical variables. Preliminary evidence suggests that Web-based MBIs may be helpful in alleviating symptom burden that those with physical health conditions can experience, particularly when interventions are tailored for specific symptoms. There was no evidence of differences between synchronous versus asynchronous or facilitated versus self-directed Web-based MBIs. Future investigations of Web-based MBIs should evaluate the effects of program adherence, effects on mindfulness levels, and whether synchronous or asynchronous, or facilitated or self-directed interventions elicit greater improvements. ©Kirsti I Toivonen, Kristin Zernicke, Linda E Carlson. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.08.2017.

  16. The practice of problem-based investigative teaching reform in semiconductor physics course

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  17. OSSA Space Station Freedom science utilization plans

    NASA Astrophysics Data System (ADS)

    Cressy, Philip J.

    Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.

  18. Preparing perservice teachers to teach elementary school science

    NASA Astrophysics Data System (ADS)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  19. OSSA Space Station Freedom science utilization plans

    NASA Technical Reports Server (NTRS)

    Cressy, Philip J.

    1992-01-01

    Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.

  20. P.H.Y.S.I.C.S. Can Be Done!

    ERIC Educational Resources Information Center

    Spangler, Lois

    2004-01-01

    P.H.Y.S.I.C.S. (Physics Headstart Yearlong Science Inquiry at Central School) is a series of inquiry investigations and science activities designed to motivate students and teachers and develop a love of physics in our rural agricultural community. The program?s approach infuses physics into the science curriculum while capitalizing on our…

  1. Gender Differences in Introductory University Physics Performance: The Influence of High School Physics Preparation and Affective Factors

    ERIC Educational Resources Information Center

    Hazari, Zahra; Tai, Robert H.; Sadler, Philip M.

    2007-01-01

    The attrition of females studying physics after high school is a growing concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is usually necessary for students to progress to higher levels of science study. Success also influences attitudes;…

  2. The Challenges and Success of Implementing Climate Studies Lessons for Pre-Professional Teachers at a Small Historically Black College to Engage Student Teaching of Science Pedagogy and Content Skill Based Learning.

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Wider-Lewis, F.; Miller-Jenkins, A.

    2017-12-01

    This poster is a description of the challenges and success of implementing climate studies lessons for pre-service teachers to engage student teaching pedagogy and content skill based learning. Edward Waters College is a historical black college with an elementary education teacher program focused on urban elementary school teaching and learning. Pre-Service Elementary Educator Students often have difficulty with science and mathematics content and pedagogy. This poster will highlight the barriers and successes of using climate studies lessons to develop and enhance pre-service teachers' knowledge of elementary science principles particularly related to climate studies, physical and earth space science.

  3. Theme: Physical Science in Agriscience--The New Ag Mech.

    ERIC Educational Resources Information Center

    Buriak, Phil; And Others

    1992-01-01

    Seven theme articles discuss strategies for teaching mechanics, physical sciences in the study of foods, scientific principles in the agricultural curriculum, environmental issues in agriculture, and applied physical sciences. (SK)

  4. The Cutting Edge in Physical Education and Exercise Science Research. American Academy of Physical Education Papers No. 20. Papers Presented at the Annual Meeting of the American Academy of Physical Education (58th, Cincinnati, Ohio, April 7-8, 1986).

    ERIC Educational Resources Information Center

    American Academy of Physical Education, Washington, DC.

    Ten papers that address the theoretical advances being made in various areas of specialization in physical education and exercise science are included in this volume of American Academy of Physical Education Papers. General trends are reviewed in selected areas, including the social sciences, the biological sciences, motor learning, curriculum and…

  5. Science Curriculum Guide, Level 3.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The third of four levels in a K-12 science curriculum is outlined. In Level 3 (grades 6-8), science areas include life science, earth science, and physical science (physics and chemistry). Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area (i.e., life science, animals, genetics)…

  6. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  7. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    NASA Astrophysics Data System (ADS)

    Seker, Hayati; Guney, Burcu G.

    2012-05-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in the light of the facilitator model on the use of history of science in science teaching, and to expose possible difficulties in preparing historical materials. For this purpose, qualitative content analysis method was employed. Codes and themes were defined beforehand, with respect to levels and their sublevels of the model. The analysis revealed several problems with the alignment of historical sources for the physics curriculum: limited information about scientists' personal lives, the difficulty of linking with content knowledge, the lack of emphasis on scientific process in the physics curriculum, differences between chronology and sequence of topics, the lack of information about scientists' reasoning. Based on the findings of the analysis, it would be difficult to use original historical sources; educators were needed to simplify historical knowledge within a pedagogical perspective. There is a need for historical sources, like Harvard Case Histories in Experimental Science, since appropriate historical information to the curriculum objectives can only be obtained by simplifying complex information at the origin. The curriculum should leave opportunities for educators interested in history of science, even historical sources provides legitimate amount of information for every concepts in the curriculum.

  8. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    ERIC Educational Resources Information Center

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  9. Gender differences in teacher-student interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Wheatley, Jack

    1990-12-01

    Thirty physical science and 30 chemistry classes, which contained a total of 1332 students, were observed using the Brophy-Good Teacher-Child Dyadic Interaction System. Classroom interactions were examined for gender differences that may contribute to the underrepresentation of women in physics and engineering courses and subsequent careers. The Brophy-Good coding process allows for examination of patterns of interactions for individuals and groups of pupils. An analysis of variance of the data yielded a significant main effect for teacher praise, call outs, procedural questions, and behavioral warnings based on the sex of the student and a significant teacher-sex main effect for direct questions. Significant two-way interactions were found for the behavioral warning variable for teacher sex and subject by student sex. Female teachers warned male students significantly more than female students. Male teachers warned both genders with similar frequency. Male students also received significantly more behavioral warnings in physical science classes than female students. In chemistry classes, both male and female students received approximately the same number of behavioral warnings.

  10. Physics First: Impact on SAT Math Scores

    NASA Astrophysics Data System (ADS)

    Bouma, Craig E.

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.

  11. Software Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Reviewed are seven computer software packages for IBM and/or Apple Computers. Included are "Windows on Science: Volume 1--Physical Science"; "Science Probe--Physical Science"; "Wildlife Adventures--Grizzly Bears"; "Science Skills--Development Programs"; "The Clean Machine"; "Rock Doctor";…

  12. The Physics Learning Program at the University of Wisconsin-Madison

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Watson, L.; Huesmann, A.; Jacob, A.; Fretz, J.; Clarke, M.

    2006-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides a supportive learning environment for students studying physics. We pair staff and upper level physics and secondary science education majors in small study groups with students studying introductory physics. Approximately 33-50% of our students are from racial and ethnic groups underrepresented in the sciences. In addition, students participating in our program include others who may be feeling isolated such as first-generation college students, returning adults, students with disabilities, international students, and students from small rural schools; as well as students with weak math and physics preparation and/or who are struggling with the course. The Physics Learning Program is run in conjunction with similar programs for chemistry and biochemistry. During the past year with a move to a new building we obtained a dedicated space for the Physics Learning Program, facilitating students to form their own study groups. We also began a pilot program for students in the calculus-based physics sequence. We will discuss these additions, as well as recruitment, pedagogy, teacher training, and mentoring practices that we use with the aim of creating an inclusive learning environment.

  13. Rockets: Physical science teacher's guide with activities

    NASA Astrophysics Data System (ADS)

    Vogt, Gregory L.; Rosenberg, Carla R.

    1993-07-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  14. Rockets: Physical science teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  15. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  16. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  17. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  18. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  19. Assessment of practical and experimental work in physics through OCEA (Oxford Certificate of Educational Achievement)

    NASA Astrophysics Data System (ADS)

    Josephy, Richard

    1986-07-01

    For some years there has been a growing recognition of the need for changes in assessment patterns in school science. These changes include a move towards criterion-based assessment linking to objectives and an increased emphasis on the assessment of practical and experimental skills. These changes are, to a significant extent, embodied in the new GCSE assessment schemes and will thus affect all students and teachers of physics from September (1986). At least 20% of the total assessment in GCSE physics examinations must be of practical and experimental skills, and at least half of this must be carried out in the laboratory environment. One development which addresses the needs and problems outlined above is the science component of OCEA, the Oxford Certificate of Educational Achievement. Because this covers a much wider field than assessment of practical and experimental skills in physics, a brief description of the whole project is given.

  20. Quantum physics meets biology

    PubMed Central

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-01-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806

  1. Intertwining evidence- and model-based reasoning in physics sensemaking: An example from electrostatics

    NASA Astrophysics Data System (ADS)

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-12-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.

  2. Quantum physics meets biology.

    PubMed

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  3. Young Children's Learning of Water Physics by Constructing Working Systems

    ERIC Educational Resources Information Center

    Levy, Sharona T.

    2013-01-01

    The present study explored young 5-6-year old children's design-based learning of science through building working physical systems and examined their evolving conceptions of water flow. Fifteen children in an experimental group individually built water-pipe systems during four sessions that included end-of-session interviews. In addition,…

  4. The Use of Physical and Virtual Manipulatives in an Undergraduate Mechanical Engineering (Dynamics) Course

    ERIC Educational Resources Information Center

    Pan, Edward A.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…

  5. A Qualitative Study Comparing the Instruction on Vectors between a Physics Course and a Trigonometry Course

    ERIC Educational Resources Information Center

    James, Wendy Michelle

    2013-01-01

    Science and engineering instructors often observe that students have difficulty using or applying prerequisite mathematics knowledge in their courses. This qualitative project uses a case-study method to investigate the instruction in a trigonometry course and a physics course based on a different methodology and set of assumptions about student…

  6. Teaching Reciprocal Space to Undergraduates via Theory and Code Components of an IPython Notebook

    ERIC Educational Resources Information Center

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffrey D.

    2016-01-01

    In this technology report, a tool is provided for teaching reciprocal space to undergraduates in physical chemistry and materials science courses. Reciprocal space plays a vital role in understanding a material's electronic structure and physical properties. Here, we provide an example based on previous work in the "Journal of Chemical…

  7. Biotic-Abiotic Nanoscale Interactions in Biological Fuel Cells

    DTIC Science & Technology

    2014-03-28

    oneidensis MR-1 bacterial nanowires are lipid-based extensions of the outer- membrane and periplasmic electron transport proteins, Science Magazine ...Minnesota Biotechnology Institute Seminar 2013 California State University, Long Beach Physics Colloquium 2014 Okayama University, Japan. Mini...Investigator Program Award 2012 Selected by Popular Science Magazine as one of the “Brilliant 10” of 2012 2013 USC Dornsife Raubenheimer award for

  8. The Interplay of Representations and Patterns of Classroom Discourse in Science Teaching Sequences

    ERIC Educational Resources Information Center

    Tang, Kok-Sing

    2016-01-01

    The purpose of this study is to examines the relationship between the communicative approach of classroom talk and the modes of representations used by science teachers. Based on video data from two physics classrooms in Singapore, a recurring pattern in the relationship was observed as the teaching sequence of a lesson unfolded. It was found that…

  9. Toward Solutions: The Work of the Chemistry Action-Research Group. Learning in Science Project. Working Paper No. 35.

    ERIC Educational Resources Information Center

    Osborne, Roger; And Others

    In the action-research phase of the Learning in Science Project, four groups of people worked on problems identified in the project's second (in-depth) phase. The Chemistry Action-Research Group considered problems related to the teaching and learning of ideas associated with particles and physical/chemical changes. Based on findings during the…

  10. Do Facilitate, Don’t Demonstrate: Meaningful Engagement for Science Outreach

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard

    2017-01-01

    We are encouraged to hand over the learning experience to the students who must do the learning. After the 1957 launch of Sputnik it seemed that learning by discovery would replace lectures and other forms of learning by rote. The innovative Physical Science Study Committee (PSSC), Chemical Education Materials Study (ChEMS), and Biological Sciences Curriculum Study (BSCS) provided teachers with hands-on, activity-based curriculum materials emphasizing problem solving, process skills, and creativity. Our current reforms, based on the Next Generation Science Standards, stress that learner-centered strategies need to become commonplace throughout the classrooms of our formal education system. In this presentation, we share tips on how to double check your style of interactions for science outreach, to ensure the audience is working with a facilitator rather than simply enjoying an expert’s entertaining demonstration.

  11. Theoretical studies on sRNA-mediated regulation in bacteria

    NASA Astrophysics Data System (ADS)

    Chang, Xiao-Xue; Xu, Liu-Fang; Shi, Hua-Lin

    2015-12-01

    Small RNA(sRNA)-mediated post-transcriptional regulation differs from protein-mediated regulation. Through base-pairing, sRNA can regulate the target mRNA in a catalytic or stoichiometric manner. Some theoretical models were built for comparison of the protein-mediated and sRNA-mediated modes in the steady-state behaviors and noise properties. Many experiments demonstrated that a single sRNA can regulate several mRNAs, which causes crosstalk between the targets. Here, we focus on some models in which two target mRNAs are silenced by the same sRNA to discuss their crosstalk features. Additionally, the sequence-function relationship of sRNA and its role in the kinetic process of base-pairing have been highlighted in model building. Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), the National Natural Science Foundation of China (Grant Nos. 11121403 and 11274320), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y4KF171CJ1), the National Natural Science Foundation for Young Scholar of China (Grant No. 11304115), and the China Postdoctoral Science Foundation (Grant No. 2013M541282).

  12. An Evaluation of the Particle Physics Masterclass as a Context for Student Learning about the Nature of Science

    ERIC Educational Resources Information Center

    Wadness, Michael J.

    2010-01-01

    This dissertation addresses the research question: To what extent do secondary school science students attending the U.S. Particle Physics Masterclass change their view of the nature of science (NOS)? The U.S. Particle Physics Masterclass is a physics outreach program run by QuarkNet, a national organization of secondary school physics teachers…

  13. The Physics Learning Center at the University of Wisconsin-Madison

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.

    2013-03-01

    The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors

  14. Documenting the conversion from traditional to Studio Physics formats at the Colorado School of Mines: Process and early results

    NASA Astrophysics Data System (ADS)

    Kohl, Patrick B.; Kuo, H. Vincent; Ruskell, Todd G.

    2008-10-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Over the past year we have converted the second semester of our calculus-based introductory physics course (Physics II) to a Studio Physics format, starting from a traditional lecture-based format. In this paper, we document the early stages of this conversion in order to better understand which features succeed and which do not, and in order to develop a model for switching to Studio that keeps the time and resource investment manageable. We describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), solicited student comments, failure rates, and exam scores.

  15. Studio Physics at the Colorado School of Mines: A model for iterative development and assessment

    NASA Astrophysics Data System (ADS)

    Kohl, Patrick; Kuo, Vincent

    2009-05-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Based on this previous success, over the past 18 months we have converted the second semester of our traditional calculus-based introductory physics course (Physics II) to a Studio Physics format. In this talk, we describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), failure rates, and exam scores. We also report on recent attempts to involve students in the department's Senior Design program with our course. Our ultimate goal is to construct one possible model for a practical and successful transition from a lecture course to a Studio (or Studio-like) course.

  16. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  17. EDITORIAL: Materially speaking!

    NASA Astrophysics Data System (ADS)

    Cornwall, Malcolm G.

    1997-05-01

    We live in a highly materialistic age. This is true not only for our spiritual outlook - or lack of it - but undeniably so for the physical world in which we live. Materials, which are the feature of this special issue, provide literally the fabric on which the modern world is built. Materials science is the systematic study of the physical properties and behaviour of solids with practical applications and importance (if the utility of the material is not explicit or important we are probably in the realm of solid state physics!). Materials in this sense are the stuff of which cars and computers, jet aircraft and washing machines, tower blocks and saucepans, bridges and golf clubs are made. The science of materials therefore encompasses most of the things that form the infrastructure of modern life. But perhaps it is its very ubiquity that removes the mystique, the glamour, the 'zing' from the subject. In contrast, anything cosmological, astronomical or 'fundamental' (as in 'particle'), i.e. of little or no practical significance to our day-to-day lives, excites the curiosity of many able young people. Witness the profusion of books about galaxies and black holes, and quarks and GUTs which strain the popular science shelves of the bookshops. I'm probably being heretical, but perhaps the over-hyping of the very large and the very small has indeed attracted the able few into the serious study of physics, but because of its inherent mathematical complexity and esoteric remoteness maybe it has put off the average youngster who would nevertheless enjoy and succeed in physics-based higher education (and, not incidentally, help fill the seriously depleted lecture theatres in many university physics - and engineering - departments). Materials science on the other hand deals with an intermediate range of things which, give or take an order of magnitude or three, are person-sized as well as person useful. It is - therefore? - undoubtedly one of the less glamorous of the areas of physics-based science and technology. Can materials science be made intellectually more exciting and mind-stretching for our students? In this special issue we present several articles by researchers in less-than-familiar but important areas of materials science and technology. Following a review by Mathew Philip of some of the basic atomic theory which underlies materials science, Jose Silva looks at how artificial diamonds can be made and at how we can apply this exotic material (other than on fingers and around necks). Alan Piercy reviews the field of giant magnetostrictive materials, which, when magnetized, change dimensions hundreds or even thousands of times more than traditional ferromagnetics. David Pettifor provides a nicely interdisciplinary overview of how computer simulations, from the subatomic to the macroscopic level, can be used to help in the design of new materials for such things as turbine blades. Adrian Rennie offers a much-requested written version of the entertaining 1995/6 IOP Schools Lecture on the physics of polymers. (We had hoped to include an article by Professor Colin Gough of Birmingham University on High Temperatue Superconductors, but for technical reasons this has had to be postponed until a future issue.) Finally, there are two articles describing an initiative which will have a direct practical impact on the teaching and learning of `Materials' in the UK. Karen Davies describes the exciting new Materials Gallery due to be opened at the Science Museum as this issue goes to press in May 1997 (no coincidence!), and David Sang provides details of how the new gallery has been linked directly with the GNVQ curriculum, and can certainly be exploited more widely in our physics and technology teaching. Perhaps this can help provide the missing 'zing' that materials science at present seems to lack.

  18. Teaching Vectors Through an Interactive Game Based Laboratory

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Sirokman, Gergely

    2014-03-01

    In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.

  19. 1976 annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.

  20. The journey from forensic to predictive materials science using density functional theory

    DOE PAGES

    Schultz, Peter A.

    2017-09-12

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

Top