Sample records for based power devices

  1. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices

    DTIC Science & Technology

    2015-05-01

    Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices Walt Scacchi and Thomas...2015 to 00-00-2015 4. TITLE AND SUBTITLE Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and...architecture (OA) software systems  Emerging challenges in achieving Better Buying Power (BBP) via OA software systems for Web- based and Mobile devices

  2. Power spectrum analysis for defect screening in integrated circuit devices

    DOEpatents

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  3. Piezoelectric-based hybrid reserve power sources for munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Kwok, P.

    2017-04-01

    Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  4. Customized electric power storage device for inclusion in a microgrid

    DOEpatents

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  5. Photoemission-based microelectronic devices

    PubMed Central

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-01-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946

  6. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  7. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  8. Radiology diagnostic devices under emergency electric power at disaster base hospitals during the acute phase of the Great East Japan Earthquake: results of a survey of all disaster base hospitals in Miyagi Prefecture.

    PubMed

    Maezawa, Shota; Kudo, Daisuke; Furukawa, Hajime; Nakagawa, Atsuhiro; Yamanouchi, Satoshi; Matsumura, Takashi; Egawa, Shinichi; Tominaga, Teiji; Kushimoto, Shigeki

    2014-12-01

    This study aimed to clarify the management of emergency electric power and the operation of radiology diagnostic devices after the Great East Japan Earthquake. Timing of electricity restoration, actual emergency electric power generation, and whether radiology diagnostic devices were operational and the reason if not were investigated through a questionnaire submitted to all 14 disaster base hospitals in Miyagi Prefecture in February and March 2013. Commercial electricity supply resumed within 3 days after the earthquake at 13 of 14 hospitals. Actual emergency electric power generation was lower than pre-disaster estimates at most of the hospitals. Only 4 of 11 hospitals were able to generate 60% of the power normally consumed. Under emergency electric power, conventional X-ray and computed tomography (CT) scanners worked in 9 of 14 (64%) and 8 of 14 (57%) hospitals, respectively. The main reason conventional X-ray and CT scanners did not operate was that hospitals had not planned to use these devices under emergency electric power. Only 2 of the 14 hospitals had a pre-disaster plan to allocate emergency electric power, and all devices operated at these 2 hospitals. Pre-disaster plans to allocate emergency electric power are required for disaster base hospitals to effectively operate radiology diagnostic devices after a disaster. (Disaster Med Public Health Preparedness. 2014;8:548-552).

  9. Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems

    NASA Astrophysics Data System (ADS)

    Babaei, Saman

    This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.

  10. Customized electric power storage device for inclusion in a collective microgrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specifiedmore » load parameters in the at least two connected microgrids.« less

  11. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    NASA Astrophysics Data System (ADS)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  12. Power Consumption and Calculation Requirement Analysis of AES for WSN IoT.

    PubMed

    Hung, Chung-Wen; Hsu, Wen-Ting

    2018-05-23

    Because of the ubiquity of Internet of Things (IoT) devices, the power consumption and security of IoT systems have become very important issues. Advanced Encryption Standard (AES) is a block cipher algorithm is commonly used in IoT devices. In this paper, the power consumption and cryptographic calculation requirement for different payload lengths and AES encryption types are analyzed. These types include software-based AES-CB, hardware-based AES-ECB (Electronic Codebook Mode), and hardware-based AES-CCM (Counter with CBC-MAC Mode). The calculation requirement and power consumption for these AES encryption types are measured on the Texas Instruments LAUNCHXL-CC1310 platform. The experimental results show that the hardware-based AES performs better than the software-based AES in terms of power consumption and calculation cycle requirements. In addition, in terms of AES mode selection, the AES-CCM-MIC64 mode may be a better choice if the IoT device is considering security, encryption calculation requirement, and low power consumption at the same time. However, if the IoT device is pursuing lower power and the payload length is generally less than 16 bytes, then AES-ECB could be considered.

  13. Load power device, system and method of load control and management employing load identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  14. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  15. A wearable device for continuous monitoring of heart mechanical function based on impedance cardiography.

    PubMed

    Panfili, G; Piccini, L; Maggi, L; Parini, S; Andreoni, G

    2006-01-01

    In this study we explored the possibility to realize a low power device for Cardiac Output continuous monitoring based on impedance cardiography technique. We assessed the possibility to develop a system able to record data allow an intra-subjective analysis based on the daily variations of this measure. The device was able to acquire and to send signals using a wireless Bluetooth transmission. The electronic circuit was designed in order to minimize power consumption, dimension and weight. The reported results were interesting for what concerns the power consumption and then noise level. In this way was obtained a wearable device that will permit to define specific clinical protocols based on continuous monitoring of the Cardiac Output signal.

  16. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    PubMed

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  17. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  18. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.

    PubMed

    Mei, Henry; Thackston, Kyle A; Bercich, Rebecca A; Jefferys, John G R; Irazoqui, Pedro P

    2017-04-01

    The goal of this paper is to create a large wireless powering arena for powering small devices implanted in freely behaving rodents. We design a cavity resonator based wireless power transfer (WPT) system and utilize our previously developed optimal impedance matching methodology to achieve effective WPT performance for operating sophisticated implantable devices, made with miniature receive coils (<8 mm in diameter), within a large volume (dimensions: 60.96 cm × 60.96 cm × 30 cm). We provide unique cavity design and construction methods which maintains electromagnetic performance of the cavity while promoting its utility as a large animal husbandry environment. In addition, we develop a biaxial receive resonator system to address device orientation insensitivity within the cavity environment. Functionality is demonstrated with chronic experiments involving rats implanted with our custom designed bioelectric recording device. We demonstrate an average powering fidelity of 93.53% over nine recording sessions across nine weeks, indicating nearly continuous device operation for a freely behaving rat within the large cavity resonator space. We have developed and demonstrated a cavity resonator based WPT system for long term experiments involving freely behaving small animals. This cavity resonator based WPT system offers an effective and simple method for wirelessly powering miniaturized devices implanted in freely moving small animals within the largest space.

  19. Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices.

    PubMed

    Song, Soonyong; Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung

    2018-04-17

    Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions.

  20. Low power adder based auditory filter architecture.

    PubMed

    Rahiman, P F Khaleelur; Jayanthi, V S

    2014-01-01

    Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.

  1. Ultralow-frequency PiezoMEMS energy harvester using thin-film silicon and parylene substrates

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Olszewski, Oskar Z.; O'Murchu, Cian; Mathewson, Alan

    2018-01-01

    Developing a self-sustained leadless pacemaker requires the development of an ultralow-frequency energy harvesting system that can fit within the required dimensions. This paper reports on the design and development of two types of PiezoMEMS energy harvesters that fit within the capsule dimensions and have a low resonant frequency between 20 to 30 Hz, which is required for the application. A bullet-shaped mass was designed to maximize the displacement and enhance power density of the devices. In addition, two types of devices were fabricated and compared (i) a silicon-based cantilever and (ii) a parylene-C-based cantilever with a thin aluminum nitride layer. The silicon device demonstrated higher peak power of 29.8 μW compared with the 6.4 μW for the parylene device. However, due to the low duty cycle of the heart rate and the damping factors of the two materials the average power was significantly higher for the parylene device (2.71 μW) compared with the silicon device (1.22 μW) per cantilever. The results demonstrate that a polymer-based energy harvester can increase the average power due to low damping for an impulse-based vibration application.

  2. Switchable Polymer Based Thin Film Coils as a Power Module for Wireless Neural Interfaces.

    PubMed

    Kim, S; Zoschke, K; Klein, M; Black, D; Buschick, K; Toepper, M; Tathireddy, P; Harrison, R; Solzbacher, F

    2007-05-01

    Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro batteries as well as biological micro fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.

  3. Patch Network for Power Allocation and Distribution in Smart Materials

    NASA Technical Reports Server (NTRS)

    Golembiewski, Walter T.

    2000-01-01

    The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

  4. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  5. A novel high-performance self-powered ultraviolet photodetector: Concept, analytical modeling and analysis

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new MSM-UV-photodetector (PD) based on dual wide band-gap material (DM) engineering aspect is proposed to achieve high-performance self-powered device. Comprehensive analytical models for the proposed sensor photocurrent and the device properties are developed incorporating the impact of DM aspect on the device photoelectrical behavior. The obtained results are validated with the numerical data using commercial TCAD software. Our investigation demonstrates that the adopted design amendment modulates the electric field in the device, which provides the possibility to drive appropriate photo-generated carriers without an external applied voltage. This phenomenon suggests achieving the dual role of effective carriers' separation and an efficient reduce of the dark current. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to achieve improved photoelectric behavior at zero bias that can ensure favorable self-powered MSM-based UV-PD. It is found that the proposed design methodology has succeeded in identifying the optimized design that offers a self-powered device with high-responsivity (98 mA/W) and superior ION/IOFF ratio (480 dB). These results make the optimized MSM-UV-DM-PD suitable for providing low cost self-powered devices for high-performance optical communication and monitoring applications.

  6. SSP Technology Investigation of a High-Voltage DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  7. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  8. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    PubMed

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  9. Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices

    PubMed Central

    Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung

    2018-01-01

    Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions. PMID:29673206

  10. A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops

    NASA Astrophysics Data System (ADS)

    Moss, S.; Barry, A.; Powlesland, I.; Galea, S.; Carman, G. P.

    2011-04-01

    The certification of retrofitted structural health monitoring (SHM) systems for use on aircraft raises a number of challenges. One critical issue is determining the optimal means of supplying power to these systems, given that access to the existing aircraft power system is often problematic. Previously, the Australian Defence Science and Technology Organisation has shown that a structural strain-based energy harvesting approach can be used to power a device for SHM of aircraft structure. Acceleration-based power harvesting from airframes can be more demanding than a strain-based approach because the vibration spectrum of an aircraft structure can vary dynamically with flight conditions. A vibration spectrum with varying frequency may severely limit the energy harvested by a single-degree-of-freedom resonance-based device, and hence a frequency agile or (relatively) broadband device is often required to maximize the energy harvested. This paper reports on an investigation into the use of a vibro-impact approach to construct a piezoelectric-based kinetic power harvester that can operate in the approximate frequency range of 29-63 Hz.

  11. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  12. Place-Based Learning and Mobile Technology

    ERIC Educational Resources Information Center

    LaBelle, Chris

    2011-01-01

    When delivered on a mobile device, interpretive tours of a locale afford powerful learning experiences. As mobile devices become more powerful, content for these devices that is individualized and location-specific has become more common. In light of this trend, Oregon State University Extension developed a GPS-enabled iPhone tree tour…

  13. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  14. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  15. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, Faranak; Reynolds, Matthew; Lefton, Scott

    A secure optionally passive RFID tag or sensor system comprises a passive RFID tag having means for receiving radio signals from at least one base station and for transmitting radio signals to at least one base station, where the tag is capable of being powered exclusively by received radio energy, and an external power and data logging device having at least one battery and electronic circuitry including a digital memory configured for storing and recalling data. The external power and data logging device has a means for powering the tag, and also has a means.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilbert; Bennion, Kevin

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components.more » WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.« less

  18. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  19. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices

    DTIC Science & Technology

    2016-02-22

    SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices 22...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web ...Policy Naval Postgraduate School Executive Summary Many people within large enterprises rely on up to four Web -based or mobile devices for their

  20. Stretchable Biofuel Cells as Wearable Textile-based Self-Powered Sensors.

    PubMed

    Jeerapan, Itthipon; Sempionatto, Juliane R; Pavinatto, Adriana; You, Jung-Min; Wang, Joseph

    2016-12-21

    Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm -2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.

  1. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    NASA Astrophysics Data System (ADS)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  2. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different operating temperature.

  3. Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current-voltage characteristics.

    PubMed

    Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng

    2015-07-15

    In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.

  4. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of themore » one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.« less

  5. Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J. (Inventor)

    2017-01-01

    Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.

  6. Resonant Spin-Transfer-Torque Nano-Oscillators

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2017-12-01

    Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.

  7. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  8. Reproducible Growth of High-Quality Cubic-SiC Layers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony

    2004-01-01

    Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  9. Nanoionics-Based Switches for Radio-Frequency Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  10. Energy efficient hybrid computing systems using spin devices

    NASA Astrophysics Data System (ADS)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  11. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  12. Intensity noise properties of a compact laser device based on a miniaturized MOPA system for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Baumgärtner, S.; Juhl, S.; Opalevs, D.; Sahm, A.; Hofmann, J.; Leisching, P.; Paschke, K.

    2018-02-01

    We present a novel compact laser device based on a semiconductor master-oscillator power-amplifier (MOPA) emitting at 772 nm, suitable for quantum optic and spectroscopy. The optical performance of the laser device is characterized. For miniaturized lasers the thermal management is challenging, we therefore perform thermal simulations and measurements. The first demonstrator is emitting more than 3 W optical power with a linewidth below 2lMHz. Using this MOPA design also compact devices for quantum optics (e.g. rubidium atomic clock) and seed lasers for frequency conversion can be realized [1].

  13. Midfield wireless powering of subwavelength autonomous devices.

    PubMed

    Kim, Sanghoek; Ho, John S; Poon, Ada S Y

    2013-05-17

    We obtain an analytical bound on the efficiency of wireless power transfer to a weakly coupled device. The optimal source is solved for a multilayer geometry in terms of a representation based on the field equivalence principle. The theory reveals that optimal power transfer exploits the properties of the midfield to achieve efficiencies far greater than conventional coil-based designs. As a physical realization of the source, we present a slot array structure whose performance closely approaches the theoretical bound.

  14. CMOS-based optical energy harvesting circuit for biomedical and Internet of Things devices

    NASA Astrophysics Data System (ADS)

    Nattakarn, Wuthibenjaphonchai; Ishizu, Takaaki; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Sawan, Mohamad; Ohta, Jun

    2018-04-01

    In this work, we present a novel CMOS-based optical energy harvesting technology for implantable and Internet of Things (IoT) devices. In the proposed system, a CMOS energy-harvesting circuit accumulates a small amount of photoelectrically converted energy in an external capacitor, and intermittently supplies this power to a target device. Two optical energy-harvesting circuit types were implemented and evaluated. Furthermore, we developed a photoelectrically powered optical identification (ID) circuit that is suitable for IoT technology applications.

  15. Fun During Knee Rehabilitation: Feasibility and Acceptability Testing of a New Android-Based Training Device.

    PubMed

    Weber-Spickschen, Thomas Sanjay; Colcuc, Christian; Hanke, Alexander; Clausen, Jan-Dierk; James, Paul Abraham; Horstmann, Hauke

    2017-01-01

    The initial goals of rehabilitation after knee injuries and operations are to achieve full knee extension and to activate quadriceps muscle. In addition to regular physiotherapy, an android-based knee training device is designed to help patients achieve these goals and improve compliance in the early rehabilitation period. This knee training device combines fun in a computer game with muscular training or rehabilitation. Our aim was to test the feasibility and acceptability of this new device. 50 volunteered subjects enrolled to test out the computer game aided device. The first game was the high-striker game, which recorded maximum knee extension power. The second game involved controlling quadriceps muscular power to simulate flying an aeroplane in order to record accuracy of muscle activation. The subjects evaluated this game by completing a simple questionnaire. No technical problem was encountered during the usage of this device. No subjects complained of any discomfort after using this device. Measurements including maximum knee extension power, knee muscle activation and control were recorded successfully. Subjects rated their experience with the device as either excellent or very good and agreed that the device can motivate and monitor the progress of knee rehabilitation training. To the best of our knowledge, this is the first android-based tool available to fast track knee rehabilitation training. All subjects gave very positive feedback to this computer game aided knee device.

  16. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2015-03-20

    Harvesting energy from human motion is an innovative alternative to using batteries as a source of electrical power for portable devices. Yet there are no guidelines as to whether energy harvesting should be preferred over batteries. This paper introduces an approach to determine which source of energy should be preferred. The proposed approach compares the metabolic power while harvesting energy and while using batteries (or any other power supply, e.g., solar panels), which provide equal amount of energy. Energy harvesting is preferred over batteries if the metabolic power required to harvest the energy is lower than that required to carry the batteries. Metabolic power can be experimentally measured. However, for design purposes, it is essential to assess differences in metabolic power as a function of the device parameters. To this end, based on the proposed approach, we develop a mathematical model that considers the following parameters: the device's mass, its location on the human body, the electrical power output, cost of harvesting (COH), walking time, and the specific energy of the battery. We apply the model in two ways. First, we conduct case studies to examine current ankle, knee, and back energy harvesting devices, and assess the walking times that would make these devices preferable over batteries. Second, we conduct a design scenarios analysis, which examines future device developments. The case studies reveal that to be preferred over batteries, current harvesting devices located on the ankle, knee, or back would require walking for 227 hours, 98 hours, or 260 hours, respectively. This would replace batteries weighing 6.81 kg (ankle), 5.88 kg (knee), or 2.6 kg (back). The design scenarios analysis suggests that for harvesting devices to be beneficial with less than 25 walking hours, future development should focus on light harvesting devices (less than 0.2 kg) with low COH (equal or lower than 0). Finally, a comparison with portable commercial solar panels reveals that under ideal sun exposure conditions, solar panels outperform the current harvesting devices. Our model offers a tool for assessing the performance of energy harvesting devices.

  17. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    DOEpatents

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  18. Feasibility and limitations of anti-fuses based on bistable non-volatile switches for power electronic applications

    NASA Astrophysics Data System (ADS)

    Erlbacher, T.; Huerner, A.; Bauer, A. J.; Frey, L.

    2012-09-01

    Anti-fuse devices based on non-volatile memory cells and suitable for power electronic applications are demonstrated for the first time using silicon technology. These devices may be applied as stand alone devices or integrated using standard junction-isolation into application-specific and smart-power integrated circuits. The on-resistance of such devices can be permanently switched by nine orders of magnitude by triggering the anti-fuse with a positive voltage pulse. Extrapolation of measurement data and 2D TCAD process and device simulations indicate that 20 A anti-fuses with 10 mΩ can be reliably fabricated in 0.35 μm technology with a footprint of 2.5 mm2. Moreover, this concept offers distinguished added-values compared to existing mechanical relays, e.g. pre-test, temporary and permanent reset functions, gradual turn-on mode, non-volatility, and extendibility to high voltage capability.

  19. Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-08-01

    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

  20. A Bluetooth-Based Device Management Platform for Smart Sensor Environment

    NASA Astrophysics Data System (ADS)

    Lim, Ivan Boon-Kiat; Yow, Kin Choong

    In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.

  1. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    PubMed

    Guo, Xudong; Ge, Bin; Wang, Wenxing

    2013-08-01

    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  2. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  3. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  4. Experiences with using a pushrim-activated power-assisted wheelchair for community-based occupations: a qualitative exploration.

    PubMed

    Giesbrecht, Ed M; Ripat, Jacquie D; Cooper, Juliette E; Quanbury, Arthur O

    2011-04-01

    Occupational therapists strive to engage individuals in occupation and enhance community access through wheelchair prescription. Previous research with pushrim-activated, power-assisted wheelchairs identifies a reduction in the physical demands of manual wheelchair propulsion but limited evidence exists regarding user evaluation in context. This study explored the experience of using a power-assisted wheelchair in the community. Eight individuals who used both a power and manual device participated in focus groups after trialing a power-assist wheelchair for three weeks. Data were analyzed using a qualitative description approach. Three themes emerged from our analysis: relative advantages and disadvantages; environmental factors that affect accessibility; and evaluation of mobility device. Participants perceived the power-assist as improving performance and accessibility compared with the manual wheelchair, increasing the potential scope of occupations and environments, but not replacing their power mobility device. Sufficient time for adjustment of both user and device was important.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilbert

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  6. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  7. FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets

    NASA Astrophysics Data System (ADS)

    Sharma, Ashwani Kumar; Mittapalli, Ram Kumar; Pal, Yash

    2016-09-01

    In future electricity markets, flexible alternating current transmission system (FACTS) devices will play key role for providing ancillary services. Since huge cost is involved for the FACTS devices placement in the power system, the cost invested has to be recovered in their life time for the replacement of these devices. The FACTS devices in future electricity markets can act as an ancillary services provider and have to be remunerated. The main contributions of the paper are: (1) investment recovery of FACTS devices during congestion management such as static VAR compensator and unified power flow controller along with thyristor controlled series compensator using non-linear bid curves, (2) the impact of ZIP load model on the FACTS cost recovery of the devices, (3) the comparison of results obtained without ZIP load model for both pool and hybrid market model, (4) secure bilateral transactions incorporation in hybrid market model. An optimal power flow based approach has been developed for maximizing social welfare including FACTS devices cost. The optimal placement of the FACTS devices have been obtained based on maximum social welfare. The results have been obtained for both pool and hybrid electricity market for IEEE 24-bus RTS.

  8. Energy efficiency analysis and optimization for mobile platforms

    NASA Astrophysics Data System (ADS)

    Metri, Grace Camille

    The introduction of mobile devices changed the landscape of computing. Gradually, these devices are replacing traditional personal computer (PCs) to become the devices of choice for entertainment, connectivity, and productivity. There are currently at least 45.5 million people in the United States who own a mobile device, and that number is expected to increase to 1.5 billion by 2015. Users of mobile devices expect and mandate that their mobile devices have maximized performance while consuming minimal possible power. However, due to the battery size constraints, the amount of energy stored in these devices is limited and is only growing by 5% annually. As a result, we focused in this dissertation on energy efficiency analysis and optimization for mobile platforms. We specifically developed SoftPowerMon, a tool that can power profile Android platforms in order to expose the power consumption behavior of the CPU. We also performed an extensive set of case studies in order to determine energy inefficiencies of mobile applications. Through our case studies, we were able to propose optimization techniques in order to increase the energy efficiency of mobile devices and proposed guidelines for energy-efficient application development. In addition, we developed BatteryExtender, an adaptive user-guided tool for power management of mobile devices. The tool enables users to extend battery life on demand for a specific duration until a particular task is completed. Moreover, we examined the power consumption of System-on-Chips (SoCs) and observed the impact on the energy efficiency in the event of offloading tasks from the CPU to the specialized custom engines. Based on our case studies, we were able to demonstrate that current software-based power profiling techniques for SoCs can have an error rate close to 12%, which needs to be addressed in order to be able to optimize the energy consumption of the SoC. Finally, we summarize our contributions and outline possible direction for future research in this field.

  9. Apparatus for Controlling Low Power Voltages in Space Based Processing Systems

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor)

    2017-01-01

    A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.

  10. Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes.

    PubMed

    Choi, Jaeyoo; Jung, Yeonsu; Yang, Seung Jae; Oh, Jun Young; Oh, Jinwoo; Jo, Kiyoung; Son, Jeong Gon; Moon, Seung Eon; Park, Chong Rae; Kim, Heesuk

    2017-08-22

    As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl 3 , respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 μW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.

  11. SiC Integrated Circuits for Power Device Drivers Able to Operate in Harsh Environments

    NASA Astrophysics Data System (ADS)

    Godignon, P.; Alexandru, M.; Banu, V.; Montserrat, J.; Jorda, X.; Vellvehi, M.; Schmidt, B.; Michel, P.; Millan, J.

    2014-08-01

    The currently developed SiC electronic devices are more robust to high temperature operation and radiation exposure damage than correspondingly rated Si ones. In order to integrate the existent SiC high power and high temperature electronics into more complex systems, a SiC integrated circuit (IC) technology capable of operation at temperatures substantially above the conventional ones is required. Therefore, this paper is a step towards the development of ICs-control electronics that have to attend the harsh environment power applications. Concretely, we present the development of SiC MESFET-based digital circuitry, able to integrate gate driver for SiC power devices. Furthermore, a planar lateral power MESFET is developed with the aim of its co-integration on the same chip with the previously mentioned SiC digital ICs technology. And finally, experimental results on SiC Schottky-gated devices irradiated with protons and electrons are presented. This development is based on the Tungsten-Schottky interface technology used for the fabrication of stable SiC Schottky diodes for the European Space Agency Mission BepiColombo.

  12. Fun During Knee Rehabilitation: Feasibility and Acceptability Testing of a New Android-Based Training Device

    PubMed Central

    Weber-Spickschen, Thomas Sanjay; Colcuc, Christian; Hanke, Alexander; Clausen, Jan-Dierk; James, Paul Abraham; Horstmann, Hauke

    2017-01-01

    Purpose: The initial goals of rehabilitation after knee injuries and operations are to achieve full knee extension and to activate quadriceps muscle. In addition to regular physiotherapy, an android-based knee training device is designed to help patients achieve these goals and improve compliance in the early rehabilitation period. This knee training device combines fun in a computer game with muscular training or rehabilitation. Our aim was to test the feasibility and acceptability of this new device. Methods: 50 volunteered subjects enrolled to test out the computer game aided device. The first game was the high-striker game, which recorded maximum knee extension power. The second game involved controlling quadriceps muscular power to simulate flying an aeroplane in order to record accuracy of muscle activation. The subjects evaluated this game by completing a simple questionnaire. Results: No technical problem was encountered during the usage of this device. No subjects complained of any discomfort after using this device. Measurements including maximum knee extension power, knee muscle activation and control were recorded successfully. Subjects rated their experience with the device as either excellent or very good and agreed that the device can motivate and monitor the progress of knee rehabilitation training. Conclusion: To the best of our knowledge, this is the first android-based tool available to fast track knee rehabilitation training. All subjects gave very positive feedback to this computer game aided knee device. PMID:29081870

  13. Steerable sound transport in a 3D acoustic network

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  14. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    NASA Astrophysics Data System (ADS)

    Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool

    2015-12-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.

  15. Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Mortazavi, Bobak; Alshurafa, Nabil; Sarrafzadeh, Majid

    2017-03-01

    The objective of this paper is to describe and evaluate an algorithm to reduce power usage and increase battery lifetime for wearable health-monitoring devices. We describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data processing between the wearable device and mobile application as a function of desired classification accuracy. By making the correct offloading decision based on current system parameters, we show that we are able to reduce system power by as much as 20%. We demonstrate that computation offloading can be applied to real-time monitoring systems, and yields significant power savings. Making correct offloading decisions for health monitoring devices can extend battery life and improve adherence.

  16. High-performance wireless powering for peripheral nerve neuromodulation systems.

    PubMed

    Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.

  17. High-performance wireless powering for peripheral nerve neuromodulation systems

    PubMed Central

    Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141

  18. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying

    2017-09-01

    The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.

  19. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    NASA Astrophysics Data System (ADS)

    Es-Sakhi, Azzedin D.

    Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-low-power applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.

  20. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  1. 1 mm3-sized optical neural stimulator based on CMOS integrated photovoltaic power receiver

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Ishizu, Takaaki; Nattakarn, Wuthibenjaphonchai; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Sawan, Mohamad; Ohta, Jun

    2018-04-01

    In this work, we present a simple complementary metal-oxide semiconductor (CMOS)-controlled photovoltaic power-transfer platform that is suitable for very small (less than or equal to 1-2 mm) electronic devices such as implantable health-care devices or distributed nodes for the Internet of Things. We designed a 1.25 mm × 1.25 mm CMOS power receiver chip that contains integrated photovoltaic cells. We characterized the CMOS-integrated power receiver and successfully demonstrated blue light-emitting diode (LED) operation powered by infrared light. Then, we integrated the CMOS chip and a few off-chip components into a 1-mm3 implantable optogenetic stimulator, and demonstrated the operation of the device.

  2. Specifics of Pulsed Arc Welding Power Supply Performance Based On A Transistor Switch

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Kust, T. S.; Krampit, M. A.

    2016-08-01

    Specifics of designing a pulsed arc welding power supply device are presented in the paper. Electronic components for managing large current was analyzed. Strengths and shortcomings of power supply circuits based on thyristor, bipolar transistor and MOSFET are outlined. As a base unit for pulsed arc welding was chosen MOSFET transistor, which is easy to manage. Measures to protect a transistor are given. As for the transistor control device is a microcontroller Arduino which has a low cost and adequate performance of the work. Bead transfer principle is to change the voltage on the arc in the formation of beads on the wire end. Microcontroller controls transistor when the arc voltage reaches the threshold voltage. Thus there is a separation and transfer of beads without splashing. Control strategies tested on a real device and presented. The error in the operation of the device is less than 25 us, it can be used controlling drop transfer at high frequencies (up to 1300 Hz).

  3. Recent advances of high voltage AlGaN/GaN power HFETs

    NASA Astrophysics Data System (ADS)

    Uemoto, Yasuhiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi; Ueda, Daisuke

    2009-02-01

    We review our recent advances of GaN-based high voltage power transistors. These are promising owing to low on-state resistance and high breakdown voltage taking advantages of superior material properties. However, there still remain a couple of technical issues to be solved for the GaN devices to replace the existing Si-based power devices. The most critical issue is to achieve normally-off operation which is strongly desired for the safety operation, however, it has been very difficult because of the built-in polarization electric field. Our new device called GIT (Gate Injection Transistor) utilizing conductivity modulation successfully achieves the normally-off operation keeping low on-state resistance. The fabricated GIT on a Si substrate exhibits threshold voltage of +1.0V. The obtained on-state resistance and off-state breakdown voltage were 2.6mΩ•cm2 and 800V, respectively. Remaining technical issue is to further increase the breakdown voltage. So far, the reported highest off-state breakdown voltage of AlGaN/GaN HFETs has been 1900V. Overcoming these issues by a novel device structure, we have demonstrated the world highest breakdown voltages of 10400V using thick poly-crystalline AlN as a passivation film and Via-holes through sapphire which enable very efficient layout of the lateral HFET array avoiding any undesired breakdown of passivation films. Since conventional wet or dry etching cannot be used for chemically stable sapphire, high power pulsed laser is used to form the via-holes. The presented GaN power devices demonstrate that GaN is advantageous for high voltage power switching applications replacing currently used Si-based power MOSFETs and IGBTs.

  4. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat

    2018-04-01

    The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.

  5. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet typesmore » in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.« less

  6. Low-power, low-cost urinalysis system with integrated dipstick evaluation and microscopic analysis.

    PubMed

    Smith, Gennifer T; Li, Linkai; Zhu, Yue; Bowden, Audrey K

    2018-06-21

    We introduce a coupled dipstick and microscopy device for analyzing urine samples. The device is capable of accurately assessing urine dipstick results while simultaneously imaging the microscopic contents within the sample. We introduce a long working distance, cellphone-based microscope in combination with an oblique illumination scheme to accurately visualize and quantify particles within the urine sample. To facilitate accurate quantification, we couple the imaging set-up with a power-free filtration system. The proposed device is reusable, low-cost, and requires very little power. We show that results obtained with the proposed device and custom-built app are consistent with those obtained with the standard clinical protocol, suggesting the potential clinical utility of the device.

  7. A wireless power transmission system for implantable devices in freely moving rodents.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June

    2014-08-01

    Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.

  8. Development of a biomechanical energy harvester.

    PubMed

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-06-23

    Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost. Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.

  9. Development of a biomechanical energy harvester

    PubMed Central

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-01-01

    Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313

  10. Reliable and energy-efficient communications for wireless biomedical implant systems.

    PubMed

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  11. Design optimization of PVDF-based piezoelectric energy harvesters.

    PubMed

    Song, Jundong; Zhao, Guanxing; Li, Bo; Wang, Jin

    2017-09-01

    Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm 3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.

  12. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGES

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; ...

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 10 13 cm -2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaNmore » P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  13. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  14. Toward Wearable Energy Storage Devices: Paper-Based Biofuel Cells based on a Screen-Printing Array Structure.

    PubMed

    Shitanda, Isao; Momiyama, Misaki; Watanabe, Naoto; Tanaka, Tomohiro; Tsujimura, Seiya; Hoshi, Yoshinao; Itagaki, Masayuki

    2017-10-01

    A novel paper-based biofuel cell with a series/parallel array structure has been fabricated, in which the cell voltage and output power can easily be adjusted as required by printing. The output of the fabricated 4-series/4-parallel biofuel cell reached 0.97±0.02 mW at 1.4 V, which is the highest output power reported to date for a paper-based biofuel cell. This work contributes to the development of flexible, wearable energy storage device.

  15. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  16. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  17. Silicon Carbide Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2006-01-01

    Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.

  18. Lignin biopolymer based triboelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Bao, Yukai; Wang, Ruoxing; Lu, Yunmei; Wu, Wenzhuo

    2017-07-01

    Ongoing research in triboelectric nanogenerators (TENGs) focuses on increasing power generation, but obstacles concerning economical and eco-friendly utilization of TENGs continue to prevail. Being the second most abundant biopolymer on earth, lignin offers a valuable opportunity for low-cost TENG applications in biomedical devices, benefitting from its biodegradability and biocompatibility. Here, we develop for the first time a lignin biopolymer based TENGs for harvesting mechanical energy in the environment, which shows great potential for self-powered biomedical devices among other applications and opens doors to new technologies that utilize otherwise wasted materials for economically feasible and ecologically friendly production of energy devices.

  19. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  20. Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite

    NASA Astrophysics Data System (ADS)

    Lasheras, A.; Gutiérrez, J.; Reis, S.; Sousa, D.; Silva, M.; Martins, P.; Lanceros-Mendez, S.; Barandiarán, J. M.; Shishkin, D. A.; Potapov, A. P.

    2015-06-01

    A flexible, low-cost energy-harvesting device based on the magnetoelectric (ME) effect was designed using Fe64Co17Si7B12 as amorphous magnetostrictive ribbons and polyvinylidene fluoride (PVDF) as the piezoelectric element. A 3 cm-long sandwich-type laminated composite was fabricated by gluing the ribbons to the PVDF with an epoxy resin. A voltage multiplier circuit was designed to produce enough voltage to charge a battery. The power output and power density obtained were 6.4 μW and 1.5 mW cm-3, respectively, at optimum load resistance and measured at the magnetomechanical resonance of the laminate. The effect of the length of the ME laminate on power output was also studied: the power output exhibited decays proportionally with the length of the ME laminate. Nevertheless, good performance was obtained for a 0.5 cm-long device working at 337 KHz within the low radio frequency (LRF) range.

  1. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03487a

  2. Enhanced thermoelectric performance of graphene nanoribbon-based devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md Sharafat, E-mail: hossain@student.unimelb.edu.au; Huynh, Duc Hau; Nguyen, Phuong Duc

    There have been numerous theoretical studies on exciting thermoelectric properties of graphene nano-ribbons (GNRs); however, most of these studies are mainly based on simulations. In this work, we measure and characterize the thermoelectric properties of GNRs and compare the results with theoretical predictions. Our experimental results verify that nano-structuring and patterning graphene into nano-ribbons significantly enhance its thermoelectric power, confirming previous predictions. Although patterning results in lower conductance (G), the overall power factor (S{sup 2}G) increases for nanoribbons. We demonstrate that edge roughness plays an important role in achieving such an enhanced performance and support it through first principles simulations.more » We show that uncontrolled edge roughness, which is considered detrimental in GNR-based electronic devices, leads to enhanced thermoelectric performance of GNR-based thermoelectric devices. The result validates previously reported theoretical studies of GNRs and demonstrates the potential of GNRs for the realization of highly efficient thermoelectric devices.« less

  3. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  4. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond.more » The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.« less

  5. Energy harvesting for the implantable biomedical devices: issues and challenges.

    PubMed

    Hannan, Mahammad A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-06-20

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.

  6. Energy harvesting for the implantable biomedical devices: issues and challenges

    PubMed Central

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  7. Design of Alpha Voltaic Power Source Using Americium 241 (241Am) and Diamond with a Power Density of 10 mW/cm3

    DTIC Science & Technology

    2017-10-19

    GaN) was calculated and compared . Alpha-voltaic energy converters were designed in diamond and GaN based on the energy deposition calculations...Example Power Source Two example device designs are calculated and compared . A diamond device containing 2 charge collection regions (Schottky and p...ARL-TR-8189 ● OCT 2017 US Army Research Laboratory Design of Alpha-Voltaic Power Source Using Americium-241 (241Am) and Diamond

  8. Photovoltaic energy converter as a chipscale high efficiency power source for implanted active microelectronic devices.

    PubMed

    Hwang, N-J; Patterson, W R; Song, Y-K; Atay, T; Nurmikko, A V

    2004-01-01

    We report the development of a microscale photovoltaic energy converter which has been designed and implemented to deliver power to CMOS-based microelectronic chips. The design targets the delivery of voltages on the order of 3V with power levels in excess of 10 mW. The geometry of the prototype device, which has been fabricated and tested, is specifically designed for coupling to an optical fiber, to facilitate remote power delivery in implantable component environment.

  9. High efficiency GaP power conversion for Betavoltaic applications

    NASA Astrophysics Data System (ADS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-09-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  10. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  11. High-power piezoelectric acoustic-electric power feedthru for metal walls

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-03-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall using elastic waves. This approach allows for the elimination of the need for holes through structures for cabling or electrical feed-thrus . The technology supplies power to electric equipment inside sealed containers, vacuum or pressure vessels, etc where holes in the wall are prohibitive or may result in significant performance degradation or requires complex designs. In the our previous work, 100-W of electric power was transferred through a metal wall by a small, piezoelectric device with a simple-structure. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-thru devices were analyzed by finite element modeling. An equivalent circuit model was developed to predict the characteristics of power transfer to different electric loads. Based on the analytical results, a prototype device was designed, fabricated and successfully demonstrated to transfer electric power at a level of 1-kW. Methods of minimizing plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this paper.

  12. Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry

    DOEpatents

    Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.

    2006-03-07

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  13. Apparatus and method for OSL-based, remote radiation monitoring and spectrometry

    DOEpatents

    Smith, Leon Eric [Richland, WA; Miller, Steven D [Richland, WA; Bowyer, Theodore W [Oakton, VA

    2008-05-20

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  14. Power-Factor Controllers: How Safe?

    NASA Technical Reports Server (NTRS)

    Long, K.; Christian, W.; Kovacik, J.; Grazyk, T.

    1985-01-01

    Potential safety problems with power-factor controllers (PFC's) evaluated. Based on study of PFCs in use with appliances, report recommends measures to prevent consumers from misapplying these energy saving devices. Device used on such appliances as refrigerators, sewing machines, pumps, hair dryers, and food processors. When misused, they fail to save energy and may cause damage.

  15. Novel NI-Based Ohmic Contacts To a-SiC for High Temperature and High Power Device Applications

    DTIC Science & Technology

    2002-01-01

    Temperature and High Power Device Applications DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...retained omnicity after 100 h of aging and was found to be chemically and microstructurally stable. These findings indicate that the 1000,’C annealed

  16. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  17. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.

    PubMed

    Ventura, Bruna V; Wang, Li; Ali, Shazia F; Koch, Douglas D; Weikert, Mitchell P

    2015-08-01

    To evaluate and compare the performance of a point-source color light-emitting diode (LED)-based topographer (color-LED) in measuring anterior corneal power and aberrations with that of a Placido-disk topographer and a combined Placido and dual Scheimpflug device. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas USA. Retrospective observational case series. Normal eyes and post-refractive-surgery eyes were consecutively measured using color-LED, Placido, and dual-Scheimpflug devices. The main outcome measures were anterior corneal power, astigmatism, and higher-order aberrations (HOAs) (6.0 mm pupil), which were compared using the t test. There were no statistically significant differences in corneal power measurements in normal and post-refractive surgery eyes and in astigmatism magnitude in post-refractive surgery eyes between the color-LED device and Placido or dual Scheimpflug devices (all P > .05). In normal eyes, there were no statistically significant differences in 3rd-order coma and 4th-order spherical aberration between the color-LED and Placido devices and in HOA root mean square, 3rd-order coma, 3rd-order trefoil, 4th-order spherical aberration, and 4th-order secondary astigmatism between the color-LED and dual Scheimpflug devices (all P > .05). In post-refractive surgery eyes, the color-LED device agreed with the Placido and dual-Scheimpflug devices regarding 3rd-order coma and 4th-order spherical aberration (all P > .05). In normal and post-refractive surgery eyes, all 3 devices were comparable with respect to corneal power. The agreement in corneal aberrations varied. Drs. Wang, Koch, and Weikert are consultants to Ziemer Ophthalmic Systems AG. Dr. Koch is a consultant to Abbott Medical Optics, Inc., Alcon Surgical, Inc., and i-Optics Corp. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Phillips, Wayne (Inventor); Borshchevsky, Alex (Inventor); Kolawa, Elizabeth A. (Inventor); Ryan, Margaret A. (Inventor); Caillat, Thierry (Inventor); Mueller, Peter (Inventor); Snyder, G. Jeffrey (Inventor); Kascich, Thorsten (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  19. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  20. EMTP based stability analysis of space station electric power system in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.

  1. EMTP based stability analysis of Space Station Electric Power System in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.

  2. Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Lin, Shun-Chiu; Wu, Wen-Jong

    2016-10-01

    This paper presents the development of a bimorph microelectromechanical system (MEMS) generator for vibration energy harvesting. The bimorph generator is in cantilever beam structure formed by laminating two lead zirconate titanate thick-film layers on both sides of a stainless steel substrate. Aiming to scavenge vibration energy efficiently from the environment and transform into useful electrical energy, the two piezoelectric layers on the device can be poled for serial and parallel connections to enhance the output voltage or output current respectively. In addition, a tungsten proof mass is bonded at the tip of the device to adjust the resonance frequency. The experimental result shows superior performance the generator. At the 0.5 g base excitation acceleration level, the devices pooled for serial connection and the device poled for parallel connection possess an open-circuit output voltage of 11.6 VP-P and 20.1 VP-P, respectively. The device poled for parallel connection reaches a maximum power output of 423 μW and an output voltage of 15.2 VP-P at an excitation frequency of 143.4 Hz and an externally applied based excitation acceleration of 1.5 g, whereas the device poled serial connection achieves a maximum power output of 413 μW and an output voltage of 33.0 VP-P at an excitation frequency of 140.8 Hz and an externally applied base excitation acceleration of 1.5 g. To demonstrate the feasibility of the MEMS generator for real applications, we finished the demonstration of a self-powered Bluetooth low energy wireless temperature sensor sending readings to a smartphone with only the power from the MEMS generator harvesting from vibration.

  3. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices. Electronic supplementary information (ESI) available: FE-SEM images of ZnO NFs grown on textile and FTO/glass substrates, XRD patterns of synthesized ZnO NFs, nitrogen adsorption isotherms for ZnO NWs and ZnO NFs, effect of different coating layers on ZnO NFNGs, P(VDF-TrFE) coating on ZnO NFs, output open-circuit voltages of a textile electrostatic NG based on P(VDF-TrFE) coated on ZnO NFs and a textile ZnO NFNG without an insulating layer generated by a sonic wave, NG-based triboelectric effects and PDMS-coated ZnO NF-based NGs grown on an ITO/PET substrate. See DOI: 10.1039/c5nr08324a

  4. A Micro grid design for a kind of household energy efficiency management system based on high permeability

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang

    2017-05-01

    After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.

  5. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    PubMed

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  6. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid

    PubMed Central

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-01-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654

  7. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm.

    PubMed

    Schäfer, C A; Uehara, H; Konishi, D; Hattori, S; Matsukuma, H; Murakami, M; Shimizu, S; Tokita, S

    2018-05-15

    A side-pump coupler made of fluoride fibers was fabricated and tested. The tested device had a coupling efficiency of 83% and was driven with an incident pump power of up to 83.5 W, demonstrating high-power operation. Stable laser output of 15 W at a wavelength of around 2.8 μm was achieved over 1 h when using an erbium-doped double-clad fiber as the active medium. To the best of our knowledge, this is the first time a fluoride-glass-fiber-based side-pump coupler has been developed. A test with two devices demonstrated further power scalability.

  8. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  9. Theoretical and experimental study of a wireless power supply system for moving low power devices in ferromagnetic and conductive medium

    NASA Astrophysics Data System (ADS)

    Safour, Salaheddine; Bernard, Yves

    2017-10-01

    This paper focuses on the design of a wireless power supply system for low power devices (e.g. sensors) located in harsh electromagnetic environment with ferromagnetic and conductive materials. Such particular environment could be found in linear and rotating actuators. The studied power transfer system is based on the resonant magnetic coupling between a fixed transmitter coil and a moving receiver coil. The technique was utilized successfully for rotary machines. The aim of this paper is to extend the technique to linear actuators. A modeling approach based on 2D Axisymmetric Finite Element model and an electrical lumped model based on the two-port network theory is introduced. The study shows the limitation of the technique to transfer the required power in the presence of ferromagnetic and conductive materials. Parametric and circuit analysis were conducted in order to design a resonant magnetic coupler that ensures good power transfer capability and efficiency. A design methodology is proposed based on this study. Measurements on the prototype show efficiency up to 75% at a linear distance of 20 mm.

  10. Ultra Low Power Datalogger

    NASA Astrophysics Data System (ADS)

    Holik, Michael

    2010-01-01

    The article describes a design and the test of the datalogger unit. Main demands on the datalogger were to achieve the power consumption as low as possible and the ability to capture short-time events. The datalogger is based on a programmable logic device FPGA. VHDL language is used to design the architecture fitted into the FPGA. The results of the test confirmed low power consumption feature of the device as well as proper functionality of the unit.

  11. Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface.

    PubMed

    Qian, Min; Pan, Yiming; Liu, Fengyuan; Wang, Miao; Shen, Haoliang; He, Daowei; Wang, Baigeng; Shi, Yi; Miao, Feng; Wang, Xinran

    2014-05-28

    Memristive devices based on vertical heterostructures of graphene and TiOx show a significant power reduction that is up to ∼10(3) times smaller than that of conventional structures. This power reduction arises as a result of a tunneling barrier at the interface. The barrier is tunable, opening up the possibility of engineering several key memory characteristics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred

    This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less

  13. Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices

    DOE PAGES

    Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...

    2017-01-19

    This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less

  14. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    PubMed

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  15. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  16. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.

  17. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  18. Development of Multi-Functional Voltage Restore System

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Ueda, Yoshinobu; Koganezawa, Takehisa; Ogihara, Yoshinori; Mori, Kenjiro; Fukazu, Naoaki

    Recently, with the dawn of the electric deregulation, the installation of distributed generation with power electronics device has grown. This current causes a greater concern of power quality, primarily voltage disturbance for power companies, and their interest in power quality is peaking. Utilities are also interested in keeping their customers satisfied, as well as keeping them on-line and creating more revenue for the utility. As a countermeasure against the above surroundings, a variety type of devices based on power electronics has been developed to protect customers' load from power line voltage disturbance. One of them is the series type voltage restore. The series device is an active device, designed to provide a pure sinusoidal load voltage at all times, correcting voltage disturbance. Series type device compensates for voltage anomalies by inserting the ‘missing’ voltage onto the line through insertion transformer and inverter. This paper shows the setting guideline of target level to compensate voltage disturbance, that is, voltage dip, voltage harmonics, voltage imbalance and voltage flicker, and the design approach of the prototype of series voltage restores to accomplish the required compensation level. The prototype system gives satisfactory compensation performance through evaluation tests, which confirm the validity and effectiveness of the system.

  19. Comparison of microtweezers based on three lateral thermal actuator configurations

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-06-01

    Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.

  20. High-efficiency robust perovskite solar cells on ultrathin flexible substrates

    PubMed Central

    Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang

    2016-01-01

    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664

  1. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    NASA Astrophysics Data System (ADS)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  2. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.

    PubMed

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan

    2017-12-21

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  3. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    PubMed Central

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Youn, Inchan

    2017-01-01

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time. PMID:29267230

  4. Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices

    PubMed Central

    Edla, Damodar Reddy; Kuppili, Venkatanareshbabu; Dharavath, Ramesh; Beechu, Nareshkumar Reddy

    2017-01-01

    Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues. PMID:28868148

  5. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting.

    PubMed

    Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin

    2017-04-25

    Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.

  6. A Novel Nanoionics-Based Switch for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Lee, Richard Q.; Mueller, Carl H.; Kozicki, Michael N.; Ren, Minghan; Morse, Jacki

    2008-01-01

    This paper reports the development and characterization of a novel switching device for use in microwave systems. The device utilizes a switching mechanism based on nanoionics, in which mobile ions within a solid electrolyte undergo an electrochemical process to form and remove a conductive metallic "bridge" to define the change of state. The nanoionics-based switch has demonstrated an insertion loss of approx.0.5dB, isolation of >30dB, low voltage operation (1V), low power (approx. micro-W) and low energy (approx. nJ) consumption, and excellent linearity up to 6 GHz. The switch requires fewer bias operations (due to non-volatile nature) and has a simple planar geometry allowing for novel device structures and easy integration into microwave power distribution circuits.

  7. Array of Synchronized Nano-Oscillators Based on Repulsion between Domain Wall and Skyrmion

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Wang, Jianbo; Wang, Weiwei; Song, Chengkun; Wang, Jinshuai; Xia, Haiyan; Liu, Qingfang

    2018-04-01

    Spin-transfer nano-oscillators (STNOs) are nanosized microwave signal generators based on spin-transfer torque and the magnetoresistance effect. So far, the low output power of STNOs is one of the key restrictive factors. Fabrication and synchronization of a multiple STNO array in one device is a promising way to increase the output power. However, previous studies have shown that only a limited number of STNOs achieve synchronization due to the complex coupling mechanism. In this work, we propose an alternative structure of STNOs based on the repulsion between the domain wall and the Skyrmion. It is found that the frequency tunability of this kind of STNO reaches up to 1.9 GHz. Moreover, we numerically demonstrate that the integrated arrays of STNOs can export synchronous signals, which is promising to potentially increase their total power. Our results provide alternatives for designing of Skyrmion-based devices and further improving the output power of STNOs.

  8. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  9. Oil leakage detection for electric power equipment based on ultraviolet fluorescence effect

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Jian-hui; Xu, Bin; Huang, Zhi-dong; Huang, Lan-tao

    2018-03-01

    This paper presents a method to detect the oil leakage of high voltage power equipment based on ultraviolet fluorescence effect. The method exploits the principle that the insulating oil has the fluorescent effect under the irradiation of specific ultraviolet light. The emission spectrum of insulating oil under excitation light with different wavelengths is measured and analyzed first. On this basis, a portable oil leakage detective device for high voltage power equipment is designed and developed with a selected 365 nm ultraviolet as the excitation light and the low light level camera as the fluorescence image collector. Then, the feasibility of the proposed method and device in different conditions is experimentally verified in the laboratory environment. Finally, the developed oil leakage detective device is applied to 500 kV Xiamen substation and Quanzhou substation. And the results show that the device can detect the oil leakage of high voltage electrical equipment quickly and conveniently even under the condition of a slight oil leakage especially in the low light environment.

  10. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  11. Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau

    2018-05-01

    Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.

  12. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  13. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  14. Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks

    PubMed Central

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971

  15. Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

    PubMed

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

  16. High-Frequency Switching Transients and Power Loss Estimation in Electric Drive Systems that Utilize Wide-Bandgap Semiconductors

    NASA Astrophysics Data System (ADS)

    Fulani, Olatunji T.

    Development of electric drive systems for transportation and industrial applications is rapidly seeing the use of wide-bandgap (WBG) based power semiconductor devices. These devices, such as SiC MOSFETs, enable high switching frequencies and are becoming the preferred choice in inverters because of their lower switching losses and higher allowable operating temperatures. Due to the much shorter turn-on and turn-off times and correspondingly larger output voltage edge rates, traditional models and methods previously used to estimate inverter and motor power losses, based upon a triangular power loss waveform, are no longer justifiable from a physical perspective. In this thesis, more appropriate models and a power loss calculation approach are described with the goal of more accurately estimating the power losses in WBG-based electric drive systems. Sine-triangle modulation with third harmonic injection is used to control the switching of the inverter. The motor and inverter models are implemented using Simulink and computer studies are shown illustrating the application of the new approach.

  17. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.

    PubMed

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-10-12

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.

  18. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic

    PubMed Central

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-01-01

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency. PMID:27754315

  19. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.

    PubMed

    Luo, Cheng; Hofmann, Heath F

    2011-07-01

    In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.

  20. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  1. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  2. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  3. Nanostructured Silicon Used for Flexible and Mobile Electricity Generation.

    PubMed

    Sun, Baoquan; Shao, Mingwang; Lee, Shuitong

    2016-12-01

    The use of nanostructured silicon for the generation of electricity in flexible and mobile devices is reviewed. This field has attracted widespread interest in recent years due to the emergence of plastic electronics. Such developments are likely to alter the nature of power sources in the near future. For example, flexible photovoltaic cells can supply electricity to rugged and collapsible electronics, biomedical devices, and conformable solar panels that are integrated with the curved surfaces of vehicles or buildings. Here, the unique optical and electrical properties of nanostructured silicon are examined, with regard to how they can be exploited in flexible photovoltaics, thermoelectric generators, and piezoelectric devices, which serve as power generators. Particular emphasis is placed on organic-silicon heterojunction photovoltaic devices, silicon-nanowire-based thermoelectric generators, and core-shell silicon/silicon oxide nanowire-based piezoelectric devices, because they are flexible, lightweight, and portable. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz.

    PubMed

    Schmid, Gernot; Uberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-09-07

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 microW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely.

  5. Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption

    NASA Astrophysics Data System (ADS)

    Hadiyawarman; Budiman, Faisal; Goldianto Octensi Hernowo, Detiza; Pandey, Reetu Raj; Tanaka, Hirofumi

    2018-03-01

    The advanced progress of electronic-based devices for artificial neural networks and recent trends in neuromorphic engineering are discussed in this review. Recent studies indicate that the memristor and transistor are two types of devices that can be implemented as neuromorphic devices. The electrical switching characteristics and physical mechanism of neuromorphic devices based on metal oxide, metal sulfide, silicon, and carbon materials are broadly covered in this review. Moreover, the switching performance comparison of several materials mentioned above are well highlighted, which would be useful for the further development of memristive devices. Recent progress in synaptic devices and the application of a switching device in the learning process is also discussed in this paper.

  6. Modelling of cantilever based on piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Rahim, N. F.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Recent technology allows devices to become smaller and with more functions. However, the battery size remained the same and for some devices, the battery must be larger in order to accommodate the greater power demands by the portable device. Piezoelectric energy harvester has been suggested as a substitute for the batteries in coming future. In this paper, a cantilever based piezoelectric energy harvester was modelled and simulated using COMSOL software. The analysis focused on the mechanical part of the harvesting system such as output power, output voltage and vibration frequency. Results of the simulations proved that flexible piezoelectric energy harvesters using nano-materials had remarkable strength under the large strain. However, although the large strain was induced on the flexible energy harvesters, the output power was still lower than the bulk and MEMS piezoelectric energy harvesters that operated at the resonance frequency. The off-resonance operation and very lower packing density of the active piezoelectric materials of the flexible energy harvesters resulted in a low output power.

  7. Efficiency limits of laser power converters for optical power transfer applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  8. Death by a Thousand Cuts: Micro-Air Vehicles (MAV) in the Service of Air Force Missions

    DTIC Science & Technology

    2001-04-01

    25 Microjets ...based designs need to overcome high operating temperature limitations.67 Microjets A promising, but technically difficult, propulsion and/or power...source is the microjet , a micro-electromechanical system based device about the size of a dime. These devices are based on micro-turbines that are

  9. Hey you! Shut the refrigerator door!

    NASA Astrophysics Data System (ADS)

    Fay, Sarah; Portenga, Angela

    1998-09-01

    The note discusses electrical power and energy and includes possible labs to be used in a physics classroom. It is based on our experimentation with a new device called the Watt-Watt/Hour Meter, which displays instantaneous power and cumulative energy readings of household electrical devices. Our experiments utilized this meter in conjunction with various appliances and focused primarily on its use with a refrigerator.

  10. A simple microbial fuel cell model for improvement of biomedical device powering times.

    PubMed

    Roxby, Daniel N; Tran, Nham; Nguyen, Hung T

    2014-01-01

    This study describes a Matlab based Microbial Fuel Cell (MFC) model for a suspended microbial population, in the anode chamber for the use of the MFC in powering biomedical devices. The model contains three main sections including microbial growth, microbial chemical uptake and secretion and electrochemical modeling. The microbial growth portion is based on a Continuously Stirred Tank Reactor (CSTR) model for the microbial growth with substrate and electron acceptors. Microbial stoichiometry is used to determine chemical concentrations and their rates of change and transfer within the MFC. These parameters are then used in the electrochemical modeling for calculating current, voltage and power. The model was tested for typically exhibited MFC characteristics including increased electrode distances and surface areas, overpotentials and operating temperatures. Implantable biomedical devices require long term powering which is the main objective for MFCs. Towards this end, our model was tested with different initial substrate and electron acceptor concentrations, revealing a four-fold increase in concentrations decreased the power output time by 50%. Additionally, the model also predicts that for a 35.7% decrease in specific growth rate, a 50% increase in power longevity is possible.

  11. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  12. Bluetooth Communication for Battery Powered Medical Devices

    NASA Astrophysics Data System (ADS)

    Babušiak, Branko; Borik, Štefan

    2016-01-01

    wireless communication eliminates obtrusive cables associated with wearable sensors and considerably increases patient comfort during measurement and collection of medical data. Wireless communication is very popular in recent years and plays a significant role in telemedicine and homecare applications. Bluetooth technology is one of the most commonly used wireless communication types in medicine. This paper describes the design of a universal wireless communication device with excellent price/performance ratio. The said device is based on the low-cost RN4020 Bluetooth module with Microchip Low-energy Data Profile (MLDP) and due to low-power consumption is especially suitable for the transmission of biological signals (ECG, EMG, PPG, etc.) from wearable medical/personal health devices. A unique USB dongle adaptor was developed for wireless communication via UART interface and power consumption was evaluated under various conditions.

  13. An optimal design of magnetostrictive material (MsM) based energy harvester

    NASA Astrophysics Data System (ADS)

    Hu, Jingzhen; Yuan, Fuh-Gwo; Xu, Fujun; Huang, Alex Q.

    2010-04-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) has been designed to power the Wireless Intelligent Sensor Platform (WISP), developed at North Carolina State University. A linear MsM energy harvesting device has been modeled and optimized to maximize the power output. The effects of number of MsM layers and glue layers, and load matching on the output power of the MsM energy harvester have been analyzed. From the measurement, the open circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the 2nd natural frequency 324 Hz. The AC output power is 0.97 mW, giving power density 279 μW/cm3. Since the MsM device has low open circuit output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device has been implemented using a discontinuous conduction mode (DCM) buck-boost converter. The maximum output power after the voltage quadrupler is now 705 μW and power density reduces to 202.4 μW/cm3, which is comparable to the piezoelectric energy harvesters given in the literature. The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.

  14. Analysis of PMN-PT and PZT circular diaphragm energy harvesters for use in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mo, Changki; Radziemski, Leon J.; Clark, William W.

    2007-04-01

    This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.

  15. Resonant tunnelling diode terahertz sources for broadband wireless communications

    NASA Astrophysics Data System (ADS)

    Wasige, Edward; Alharbi, Khalid H.; Al-Khalidi, Abdullah; Wang, Jue; Khalid, Ata; Rodrigues, Gil C.; Figueiredo, José

    2017-02-01

    This paper will discuss resonant tunnelling diode (RTD) sources being developed on a European project iBROW (ibrow.project.eu) to enable short-range multi-gigabit wireless links and microwave-photonic interfaces for seamless links to the optical fibre backbone network. The practically relevant output powers are at least 10 mW at 90 GHz, 5 mW at 160 GHz and 1 mW at 300 GHz and simulation and some experimental results show that these are feasible in RTD technology. To date, 75 - 315 GHz indium phosphide (InP) based RTD oscillators with relatively high output powers in the 0.5 - 1.1 mW range have been demonstrated on the project. They are realised in various circuit topologies including those that use a single RTD device, 2 RTD devices and up to 4 RTD devices for increasingly higher output power. The oscillators are realised using only photolithography by taking advantage of the large micron-sized but broadband RTD devices. The paper will also describe properties of RTD devices as photo-detectors which makes this a unified technology that can be integrated into both ends of a wireless link, namely consumer portable devices and fibre-optic supported base-stations (since integration with laser diodes is also possible).

  16. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    NASA Astrophysics Data System (ADS)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  17. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  18. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  19. Thermal modeling of wide bandgap semiconductor devices for high frequency power converters

    NASA Astrophysics Data System (ADS)

    Sharath Sundar Ram, S.; Vijayakumari, A.

    2018-02-01

    The emergence of wide bandgap semiconductors has led to development of new generation semiconductor switches that are highly efficient and scalable. To exploit the advantages of GaNFETs in power converters, in terms of reduction in the size of heat sinks and filters, a thorough understanding of the thermal behavior of the device is essential. This paper aims to establish a thermal model for wideband gap semiconductor GaNFETs commercially available, which will enable power electronic designers to obtain the thermal characteristics of the device more effectively. The model parameters is obtained from the manufacturer’s data sheet by adopting an exponential curve fitting technique and the thermal model is validated using PSPICE simulations. The model was developed based on the parametric equivalence that exists between the thermal and electrical components, such that it responds for transient thermal stresses. A suitable power profile has been generated to evaluate the GaNFET model under different power dissipation scenarios. The results were compared with a Silicon MOSFETs to further highlight the advantages of the GaN devices. The proposed modeling approach can be extended for other GaN devices and can provide a platform for the thermal study and heat sink optimization.

  20. A Sub-millimeter, Inductively Powered Neural Stimulator

    PubMed Central

    Freeman, Daniel K.; O'Brien, Jonathan M.; Kumar, Parshant; Daniels, Brian; Irion, Reed A.; Shraytah, Louis; Ingersoll, Brett K.; Magyar, Andrew P.; Czarnecki, Andrew; Wheeler, Jesse; Coppeta, Jonathan R.; Abban, Michael P.; Gatzke, Ronald; Fried, Shelley I.; Lee, Seung Woo; Duwel, Amy E.; Bernstein, Jonathan J.; Widge, Alik S.; Hernandez-Reynoso, Ana; Kanneganti, Aswini; Romero-Ortega, Mario I.; Cogan, Stuart F.

    2017-01-01

    Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3) is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS) to ~0.25–0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3–0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response. PMID:29230164

  1. Ultralow Power Consumption Flexible Biomemristors.

    PubMed

    Kim, Min-Kyu; Lee, Jang-Sik

    2018-03-28

    Low power consumption is the important requirement in memory devices for saving energy. In particular, improved energy efficiency is essential in implantable electronic devices for operation under a limited power supply. Here, we demonstrate the use of κ-carrageenan (κ-car) as the resistive switching layer to achieve memory that has low power consumption. A carboxymethyl (CM) group is introduced to the κ-car to increase its ionic conductivity. Ag was doped in CM:κ-car to improve the resistive switching properties of the devices. Memory devices based on Ag-doped CM:κ-car showed electroforming-free resistive switching. This device exhibited low reset voltage (∼0.05 V), fast switching speed (50 ns), and high on/off ratio (>10 3 ) under low compliance current (10 -5 A). Its power consumption (∼0.35 μW) is much lower than those of the previously reported biomemristors. The resistive switching may be a result of an electrochemical redox process and Ag filament formation in the CM:κ-car under an electric field. This biopolymer memory can also be fabricated on flexible substrate. This study verifies the feasibility of using biopolymers for applications to future implantable and biocompatible nanoelectronics.

  2. Collaborative designing and job satisfaction of airplane manufacturing engineers: A case study

    NASA Astrophysics Data System (ADS)

    Johnson, Michael David, Sr.

    The group III-nitride system of materials has had considerable commercial success in recent years in the solid state lighting (SSL) and power electronics markets. The need for high efficient general lighting applications has driven research into InGaN based blue light emitting diodes (LEDs), and demand for more efficient power electronics for telecommunications has driven research into AlGaN based high electron mobility transistors (HEMTs). However, the group III-nitrides material properties make them attractive for several other applications that have not received as much attention. This work focuses on developing group III-nitride based devices for novel applications. GaN is a robust, chemically inert, piezoelectric material, making it an ideal candidate for surface acoustic wave (SAW) devices designed for high temperature and/or harsh environment sensors. In this work, SAW devices based on GaN are developed for use in high temperature gas or chemical sensor applications. To increase device sensitivity, while maintaining a simple one-step photolithography fabrication process, devices were designed to operate at high harmonic frequencies. This allows for GHz regime operation without sub-micron fabrication. One potential market for this technology is continuous emissions monitoring of combustion gas vehicles. In addition to SAW devices, high electron mobility transistors (HEMTs) were developed. The epitaxial structure was characterized and the 2-D electron gas concentrations were simulated and compared to experimental results. Device fabrication processes were developed and are outlined. Fabricated devices were electrically measured and device performance is discussed.

  3. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  4. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yuan; Gan, Ruyi, E-mail: 2471390146@qq.com; Wan, Shalang

    This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3 V under an acceleration of 1 g at 292.11 Hz of frequency, and the output power can be up to 0.155 mW under the load of 0.4 MΩ. The power density is calculated as 496.79 μWmm{sup −3}. Besides that, itmore » is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.« less

  5. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.

    PubMed

    Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R

    2013-12-26

    We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.

  6. Nano-electromechanical switch-CMOS hybrid technology and its applications.

    PubMed

    Lee, B H; Hwang, H J; Cho, C H; Lim, S K; Lee, S Y; Hwang, H

    2011-01-01

    Si-based CMOS technology is facing a serious challenge in terms of power consumption and variability. The increasing costs associated with physical scaling have motivated a search for alternative approaches. Hybridization of nano-electromechanical (NEM)-switch and Si-based CMOS devices has shown a theoretical feasibility for power management, but a huge technical gap must be bridged before a nanoscale NEM switch can be realized due to insufficient material development and the limited understanding of its reliability characteristics. These authors propose the use of a multilayer graphene as a nanoscale cantilever material for a nanoscale NEM switchwith dimensions comparable to those of the state-of-the-art Si-based CMOS devices. The optimal thickness for the multilayer graphene (about five layers) is suggested based on an analytical model. Multilayer graphene can provide the highest Young's modulus among the known electrode materials and a yielding strength that allows more than 15% bending. Further research on material screening and device integration is needed, however, to realize the promises of the hybridization of NEM-switch and Si-based CMOS devices.

  7. High power ultraviolet light emitting diodes based on GaN /AlGaN quantum wells produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.

    2006-11-01

    In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.

  8. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  9. Around Marshall

    NASA Image and Video Library

    1995-07-08

    Marshall researchers, in the Astrionics lab, study rotating unbalanced mass devices. These require less power, and are lighter than current devices used for scanning images, a slice at a time. They have a wide range of space-based applications.

  10. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  11. 77 FR 25151 - Notice of Intent To Grant Exclusive Patent Licenses to TroCept Micro Ltd. L.L.C.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... based composite Ohmic contact to n-SiC for high temperature and high power device applications;'' July 6... increase the voltage blocked in the off state of a high power semiconductor device;'' December 4, 2007. 7... fifteen (15) days from the date of this published notice, the U.S. Army Research Laboratory receives...

  12. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  13. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    NASA Astrophysics Data System (ADS)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  14. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  15. Development of a spectrofluorimetry-based device for determining the acetylene content in the oils of power transformers.

    PubMed

    Quintella, Cristina M; Meira, Marilena; Silva, Weidson Leal; Filho, Rogério G D; Araújo, André L C; Júnior, Elias T S; Sales, Lindolfo J O

    2013-12-15

    Power transformers are essential for a functioning electrical system and therefore require special attention by maintenance programs because a fault can harm both the company and society. The temperature inside a power transformer and the dissolved gases, which are primarily composed of acetylene, are the two main parameters monitored when detecting faults. This paper describes the development of a device for analyzing the acetylene content in insulating oil using spectrofluorimetry. Using this device introduces a new methodology for the maintaining and operating power transformers. The prototype is currently operating in a substation. The results presented by this system were satisfactory; when compared to chromatographic data, the errors did not exceed 15%. This prototype may be used to confirm the quality of an insulating oil sample to detect faults in power transformers. © 2013 Elsevier B.V. All rights reserved.

  16. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  17. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray

    1994-01-01

    Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.

  18. A Comprehensive Study on Energy Efficiency and Performance of Flash-based SSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seon-Yeon; Kim, Youngjae; Urgaonkar, Bhuvan

    2011-01-01

    Use of flash memory as a storage medium is becoming popular in diverse computing environments. However, because of differences in interface, flash memory requires a hard-disk-emulation layer, called FTL (flash translation layer). Although the FTL enables flash memory storages to replace conventional hard disks, it induces significant computational and space overhead. Despite the low power consumption of flash memory, this overhead leads to significant power consumption in an overall storage system. In this paper, we analyze the characteristics of flash-based storage devices from the viewpoint of power consumption and energy efficiency by using various methodologies. First, we utilize simulation tomore » investigate the interior operation of flash-based storage of flash-based storages. Subsequently, we measure the performance and energy efficiency of commodity flash-based SSDs by using microbenchmarks to identify the block-device level characteristics and macrobenchmarks to reveal their filesystem level characteristics.« less

  19. A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater.

    PubMed

    Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun

    2016-11-15

    We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Is it possible to design a portable power generator based on micro-solid oxide fuel cells? A finite volume analysis

    NASA Astrophysics Data System (ADS)

    Pla, D.; Sánchez-González, A.; Garbayo, I.; Salleras, M.; Morata, A.; Tarancón, A.

    2015-10-01

    The inherent limited capacity of current battery technology is not sufficient for covering the increasing power requirements of widely extended portable devices. Among other promising alternatives, recent advances in the field of micro-Solid Oxide Fuel Cells (μ-SOFCs) converted this disruptive technology into a serious candidate to power next generations of portable devices. However, the implementation of single cells in real devices, i.e. μ-SOFC stacks coupled to the required balance-of-plant elements like fuel reformers or post combustors, still remains unexplored. This work aims addressing this system-level research by proposing a new compact design of a vertically stacked device fuelled with ethanol. The feasibility and design optimization for achieving a thermally self-sustained regime and a rapid and low-power consuming start-up is studied by finite volume analysis. An optimal thermal insulation strategy is defined to maintain the steady-state operation temperature of the μ-SOFC at 973 K and an external temperature lower than 323 K. A hybrid start-up procedure, based on heaters embedded in the μ-SOFCs and heat released by chemical reactions in the post-combustion unit, is analyzed allowing start-up times below 1 min and energy consumption under 500 J. These results clearly demonstrate the feasibility of high temperature μ-SOFC power systems fuelled with hydrocarbons for portable applications, therefore, anticipating a new family of mobile and uninterrupted power generators.

  1. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  2. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo; Lee, Seung Ryul; Chang, Man; Hur, Ji Hyun; Kim, Young-Bae; Kim, Chang-Jung; Seo, David H.; Seo, Sunae; Chung, U.-In; Yoo, In-Kyeong; Kim, Kinam

    2011-08-01

    Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

  3. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips

    NASA Astrophysics Data System (ADS)

    Huang, Peihua; Heon, Min; Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Gogotsi, Yury; Lofland, Samuel; Hettinger, Jeffrey D.; Simon, Patrice

    2013-03-01

    Interdigitated on-chip micro-supercapacitors based on Carbide Derived Carbon (CDC) films were fabricated and tested. A titanium carbide (TiC) film was patterned and treated with chlorine to obtain a TiC derived carbon (TiC-CDC) film, followed by the deposition of two types of current collectors (Ti/Au and Al) using standard micro-fabrication processes. CDC based micro-supercapacitors were electrochemically characterized by cyclic voltammetry and impedance spectroscopy using a 1 M tetraethylammonium tetrafluoroborate, NEt4BF4, in propylene carbonate (PC) electrolyte. A capacitance of 0.78 mF for the device and 1.5 mF cm-2 as the specific capacitance for the footprint of the device was measured for a 2 V potential range at 100 mV s-1. A specific energy of 3.0 mJ cm-2 and a specific power of 84 mW cm-2 were calculated for the devices. These devices provide a pathway for fabricating pure carbon-based micro-supercapacitors by micro-fabrication, and can be used for powering micro-electromechanical systems (MEMS) and electronic devices.

  4. An Instantaneous Low-Cost Point-of-Care Anemia Detection Device

    PubMed Central

    Punter-Villagrasa, Jaime; Cid, Joan; Páez-Avilés, Cristina; Rodríguez-Villarreal, Ivón; Juanola-Feliu, Esteve; Colomer-Farrarons, Jordi; Miribel-Català, Pere Ll.

    2015-01-01

    We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 μL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%. PMID:25690552

  5. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber.

    PubMed

    Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B

    2005-09-19

    We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.

  6. Analysis and design of high-power and efficient, millimeter-wave power amplifier systems using zero degree combiners

    NASA Astrophysics Data System (ADS)

    Tai, Wei; Abbasi, Mortez; Ricketts, David S.

    2018-01-01

    We present the analysis and design of high-power millimetre-wave power amplifier (PA) systems using zero-degree combiners (ZDCs). The methodology presented optimises the PA device sizing and the number of combined unit PAs based on device load pull simulations, driver power consumption analysis and loss analysis of the ZDC. Our analysis shows that an optimal number of N-way combined unit PAs leads to the highest power-added efficiency (PAE) for a given output power. To illustrate our design methodology, we designed a 1-W PA system at 45 GHz using a 45 nm silicon-on-insulator process and showed that an 8-way combined PA has the highest PAE that yields simulated output power of 30.6 dBm and 31% peak PAE.

  7. Power Electronics Thermal Management Research: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilberto

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on invertermore » components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.« less

  8. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  9. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less

  10. Combined Euler column vibration isolation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  11. Environmentally friendly power generator based on moving liquid dielectric and double layer effect.

    PubMed

    Huynh, D H; Nguyen, T C; Nguyen, P D; Abeyrathne, C D; Hossain, Md S; Evans, R; Skafidas, E

    2016-06-03

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(10(8)μW)/(mm(2)HzV(2)) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting.

  12. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  13. GaN Initiative for Grid Applications (GIGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -evenmore » for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.« less

  14. Flexible piezoelectric energy harvesting from jaw movements

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2014-10-01

    Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.

  15. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    NASA Astrophysics Data System (ADS)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  16. [Wireless device for monitoring the patients with chronic disease].

    PubMed

    Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A

    2008-01-01

    Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.

  17. A Wirelessly Powered and Controlled Device for Optical Neural Control of Freely-Behaving Animals

    PubMed Central

    Wentz, Christian T.; Bernstein, Jacob G.; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward S.

    2011-01-01

    Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists’ capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted LED, tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the high-frequency pulse trains often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 grams capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2W of power to the LEDs in steady state, and 4.3W in bursts. We also present an optional radio transceiver module (1 gram) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be simultaneously controlled from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control. PMID:21701058

  18. Measurement technology of RF interference current in high current system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  19. Monitoring the health of power transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirtley, J.L. Jr.; Hagman, W.H.; Lesieutre, B.C.

    This article reviews MIT`s model-based system which offers adaptive, intelligent surveillance of transformers, and summons attention to anomalous operation through paging devices. Failures of large power transformers are problematic for four reasons. Generally, large transformers are situated so that failures present operational problems to the system. In addition, large power transformers are encased in tanks of flammable and environmentally hazardous fluid. Failures are often accompanied by fire and/or spillage of this fluid. This presents hazards to people, other equipment and property, and the local environment. Finally, large power transformers are costly devices. There is a clear incentive for utilities tomore » keep track of the health of their power transformers. Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent, monitoring system for large power transformers. Four large transformers on the Boston Edison system are under continuous surveillance by this system, which can summon attention to anomalous operation through paging devices. The monitoring system offers two advantages over more traditional (not adaptive) methods of tracking transformer operation.« less

  20. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  1. An Efficient Power Harvesting Mobile Phone-Based Electrochemical Biosensor for Point-of-Care Health Monitoring

    PubMed Central

    Sun, Alexander C.; Yao, Chengyang; Venkatesh, A. G.; Hall, Drew A.

    2016-01-01

    Cellular phone penetration has grown continually over the past two decades with the number of connected devices rapidly approaching the total world population. Leveraging the worldwide ubiquity and connectivity of these devices, we developed a mobile phone-based electrochemical biosensor platform for point-of-care (POC) diagnostics and wellness tracking. The platform consists of an inexpensive electronic module (< $20) containing a low-power potentiostat that interfaces with and efficiently harvests power from a wide variety of phones through the audio jack. Active impedance matching improves the harvesting efficiency to 79%. Excluding loses from supply rectification and regulation, the module consumes 6.9 mW peak power and can measure < 1 nA bidirectional current. The prototype was shown to operate within the available power budget set by mobile devices and produce data that matches well with that of an expensive laboratory grade instrument. We demonstrate that the platform can be used to track the concentration of secretory leukocyte protease inhibitor (SLPI), a biomarker for monitoring lung infections in cystic fibrosis patients, in its physiological range via an electrochemical sandwich assay on disposable screen-printed electrodes with a 1 nM limit of detection. PMID:27725788

  2. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  3. Bacteria-powered battery on paper.

    PubMed

    Fraiwan, Arwa; Choi, Seokheun

    2014-12-21

    Paper-based devices have recently emerged as simple and low-cost paradigms for fluid manipulation and analytical/clinical testing. However, there are significant challenges in developing paper-based devices at the system level, which contain integrated paper-based power sources. Here, we report a microfabricated paper-based bacteria-powered battery that is capable of generating power from microbial metabolism. The battery on paper showed a very short start-up time relative to conventional microbial fuel cells (MFCs); paper substrates eliminated the time traditional MFCs required to accumulate and acclimate bacteria on the anode. Only four batteries connected in series provided desired values of current and potential to power an LED for more than 30 minutes. The battery featured (i) a low-cost paper-based proton exchange membrane directly patterned on commercially available parchment paper and (ii) paper reservoirs for holding the anolyte and the catholyte for an extended period of time. Based on this concept, we also demonstrate the use of paper-based test platforms for the rapid characterization of electricity-generating bacteria. This paper-based microbial screening tool does not require external pumps/tubings and represents the most rapid test platform (<50 min) compared with the time needed by using traditional screening tools (up to 103 days) and even recently proposed MEMS arrays (< 2 days).

  4. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  5. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  6. High-speed Si/GeSi hetero-structure Electro Absorption Modulator.

    PubMed

    Mastronardi, L; Banakar, M; Khokhar, A Z; Hattasan, N; Rutirawut, T; Bucio, T Domínguez; Grabska, K M; Littlejohns, C; Bazin, A; Mashanovich, G; Gardes, F Y

    2018-03-19

    The ever-increasing demand for integrated, low power interconnect systems is pushing the bandwidth density of CMOS photonic devices. Taking advantage of the strong Franz-Keldysh effect in the C and L communication bands, electro-absorption modulators in Ge and GeSi are setting a new standard in terms of device footprint and power consumption for next generation photonics interconnect arrays. In this paper, we present a compact, low power electro-absorption modulator (EAM) Si/GeSi hetero-structure based on an 800 nm SOI overlayer with a modulation bandwidth of 56 GHz. The device design and fabrication tolerant process are presented, followed by the measurement analysis. Eye diagram measurements show a dynamic ER of 5.2 dB at a data rate of 56 Gb/s at 1566 nm, and calculated modulator power is 44 fJ/bit.

  7. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    NASA Astrophysics Data System (ADS)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  8. An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems.

    PubMed

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2012-12-27

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network-a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices.

  9. An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems

    PubMed Central

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2013-01-01

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network—a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices. PMID:23271602

  10. Engineering model of the electric drives of separation device for simulation of automatic control systems of reactive power compensation by means of serially connected capacitors

    NASA Astrophysics Data System (ADS)

    Juromskiy, V. M.

    2016-09-01

    It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.

  11. The creation of high-temperature superconducting cables of megawatt range in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and developmentmore » of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.« less

  12. The creation of high-temperature superconducting cables of megawatt range in Russia

    NASA Astrophysics Data System (ADS)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  13. Elastic Fiber Supercapacitors for Wearable Energy Storage.

    PubMed

    Qin, Si; Seyedin, Shayan; Zhang, Jizhen; Wang, Zhiyu; Yang, Fangli; Liu, Yuqing; Chen, Jun; Razal, Joselito M

    2018-05-17

    The development of wearable devices such as smart watches, intelligent garments, and wearable health-monitoring devices calls for suitable energy storage devices which have matching mechanical properties and can provide sufficient power for a reasonable duration. Stretchable fiber-based supercapacitors are emerging as a promising candidates for this purpose because they are lightweight, flexible, have high energy and power density, and the potential for easy integration into traditional textile processes. An important characteristic that is oftentimes ignored is stretchability-fiber supercapacitors should be able to accommodate large elongation during use, endure a range of bending motions, and then revert to its original form without compromising electrical and electrochemical performance. This article summarizes the current research progress on stretchable fiber-based supercapacitors and discusses the existing challenges on material preparation and fiber-based device fabrication. This article aims to help researchers in the field to better understand the challenges related to material design and fabrication approaches of fiber-based supercapacitors, and to provide insights and guidelines toward their wearability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Achieving Better Buying Power Through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices

    DTIC Science & Technology

    2015-04-30

    mobile devices used within academic, business , or government enterprises. Acquisition personnel in such enterprises will increasingly be called on to...Graduate School of Business & Public Policy at the Naval Postgraduate School. To request defense acquisition research, to become a research sponsor, or to...address challenges in the acquisition of software systems for Web-based or mobile devices used within academic, business , or government enterprises

  15. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  16. Micro- and nano-scale optical devices for high density photonic integrated circuits at near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rohit

    In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device fabrication and measurement techniques to demonstrate for the first time a "superlens" for the technologically important near infrared wavelength ranges with the opportunity to scale down further to visible wavelengths. The observed resolution is 0.47lambda, clearly smaller than the diffraction limit of 0.61lambda and is supported by detailed theoretical analyses and comprehensive numerical simulations. Importantly, we clearly show for the first time this subdiffraction limit imaging is due to the resonant excitation of surface slab modes, permitting amplification of evanescent waves. The demonstrated "superlens" has the largest figure of merit ever reported till date both theoretically and experimentally. The techniques and devices described in this thesis can be further applied to develop new devices with different functionalities. In Chapter 6 we describe two examples using these ideas. First, we experimentally demonstrate the use of the nanomechanical proximity perturbation technique to develop a phase retarder for on-chip all state polarization control. Next, we use the negative refraction photonic crystals described in Chapter 5 to achieve a special kind of bandgap called the zero-n¯ bandgap having unique properties.

  17. A dual channel three-terminal np-LDMOS with both majorities for conduction

    NASA Astrophysics Data System (ADS)

    Kong, Moufu; Yi, Bo; Zhang, Bingke

    2018-02-01

    A novel dual channel three-terminal np-LDMOS power device with both electrons and holes for conduction is proposed in this paper. Based on a new approach of inducing a large-signal which is processed by a simple circuit for controlling the gate of p-LDMOS inside the device, the new np-LDMOS only requires one external gate controlling voltage signal that can be performed as an n-LDMOS device. The SOA of the new device is improved in comparison with the n-LDMOS device, since the counteracting of electric flux density produced by the both type of carriers' currents. Furthermore, the specific on-resistance of the np-LDMOS device is reduced by about 19% when comparing with that of the conventional one. The control method and performances of the proposed power device are investigated and authenticated by numerical simulations.

  18. An implantable thermoresponsive drug delivery system based on Peltier device.

    PubMed

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2018-02-01

    Corundum-structured oxides have been attracting much attention as next-generation power device materials. A corundum-structured α-Ga2O3 successfully demonstrated power device operations of Schottky barrier diodes (SBDs) with the lowest on-resistance of 0.1 mΩ cm2. The SBDs as a mounting device of TO220 also showed low switching-loss properties with a capacitance of 130 pF. Moreover, the thermal resistance was 13.9 °C/W, which is comparable to that of the SiC TO220 device (12.5 °C/W). On the other hand, corundum-structured α-(Rh,Ga)2O3 showed p-type conductivity, which was confirmed by Hall effect measurements. The Hall coefficient, carrier density, and mobility were 8.22 cm3/C, 7.6 × 1017/cm3, and 1.0 cm2 V-1 s-1, respectively. These values were acceptable for the p-type layer of pn diodes based on α-Ga2O3.

  20. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  1. IECEC '83; Proceedings of the Eighteenth Intersociety Energy Conversion Engineering Conference, Orlando, FL, August 21-26, 1983. Volume 1 - Thermal energy systems

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055

  2. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    NASA Astrophysics Data System (ADS)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  3. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  4. Millimeterwave and digital applications of InP-based MBE grown HEMTs and HBTs

    NASA Astrophysics Data System (ADS)

    Greiling, Paul

    1997-05-01

    Microwave and millimeterwave devices grown by MBE have significantly advanced the state of the art for RF device performance with respect to noise figure, power output, power added efficiency and extended the clock frequency of digital circuits into the millimeterwave regime. Ober the last 10-15 years, military systems have greatly benefited from the superior performance of MBE grown devices. In order to have a similar impact on the commercial marketplace, MBE growers will have to focus their efforts on a different set of performance criteria; i.e. cost, uniformity and reproducibility. This paper discusses outstanding performance achieved by MBE grown devices and outlines the criteria for commercial applications.

  5. MRI-powered biomedical devices.

    PubMed

    Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-16

    Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.

  6. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated temperatures during high reverse gate bias indicated that device failure is due to the breakdown of an unintentional gate oxide. RF stress of AlGaN/GaN HEMTs showed comparable critical voltage breakdown regime as that of similar devices stressed under dc conditions. Though RF device characteristics showed stability up to a drain bias of 20 V, Schottky diode characteristics degraded substantially at all voltages investigated. Results from both dc and RF stress conditions, under several bias regimes, confirm that the primary root for stress induced degradation was due to the Schottky contact. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  7. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics.

    PubMed

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-05-16

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.

  8. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics

    NASA Astrophysics Data System (ADS)

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-05-01

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.

  9. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics

    PubMed Central

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-01-01

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications. PMID:28508862

  10. A Novel Type of Battery-Supercapacitor Hybrid Device with Highly Switchable Dual Performances Based on a Carbon Skeleton/Mg2Ni Free-Standing Hydrogen Storage Electrode.

    PubMed

    Li, Na; Du, Yi; Feng, Qing-Ping; Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2017-12-27

    The sharp proliferation of high power electronics and electrical vehicles has promoted growing demands for power sources with both high energy and power densities. Under these circumstances, battery-supercapacitor hybrid devices are attracting considerable attention as they combine the advantages of both batteries and supercapacitors. Here, a novel type of hybrid device based on a carbon skeleton/Mg 2 Ni free-standing electrode without the traditional nickel foam current collector is reported, which has been designed and fabricated through a dispersing-freeze-drying method by employing reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) as a hybrid skeleton. As a result, the Mg 2 Ni alloy is able to deliver a high discharge capacity of 644 mAh g -1 and, more importantly, a high cycling stability with a retention of over 78% after 50 charge/discharge cycles have been achieved, which exceeds almost all the results ever reported on the Mg 2 Ni alloy. Simultaneously, the electrode could also exhibit excellent supercapacitor performances including high specific capacities (296 F g -1 ) and outstanding cycling stability (100% retention after 100 cycles). Moreover, the hybrid device can switch between battery and supercapacitor modes immediately as needed during application. These features make the C skeleton/alloy electrode a highly promising candidate for battery-supercapacitor hybrid devices with high power/energy density and favorable cycling stability.

  11. Design of a high particle flux hydrogen helicon plasma source for used in plasma materials interaction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, R. H.; Chen, G.; Meitner, S.

    2009-11-26

    Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n{sub e}{>=}10{sup 19} m{sup -3}, T{sub e} = 4-10 eV, particle flux {gamma}{sub p}>10{sup 23}m{sup -3} s{sup -1}, and magnetic field strength |B| up to 1 T inmore » the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10-26 MHz, and power levels up to {approx}100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.« less

  12. Low Insertion Loss and Highly Sensitive SH-SAW Sensors Based on 36° YX LiTaO 3 Through the Incorporation of Filled Microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Mandek; Sankaranarayanan, Subramanian K. R. S.; Bhethanabotla, Venkat R.

    2015-02-01

    Reduction in power consumption and improvement in mass sensitivity are important considerations for surface acoustic wave (SAW) devices used in various sensing applications. Detection of minute quantities of a particular species (clinical sensing) and power requirements (wireless sensing) are two key metrics that must be optimized. In this paper, a 3-D finite element model (FEM) was employed to compare insertion loss (IL) and mass sensitivity of SAW sensors having microcavities filled with ZnO and nanocrystalline diamond to a standard two-port SAW design. Initial simulation results show that ZnO filled cavities (depth = 5 mu m) were most effective at reducingmore » power loss Delta IL = (6.03 dB) by increasing particle displacement (acousto-electric to mechanical transduction) at the output transducer. A 100-pg/cm(2) load was applied to the sensing area of each device to evaluate mass sensitivity. Our simulations suggest that ZnO filled cavities with shallow depth (2.5 mu m) have the greatest sensitivity. The FEM simulations are used to understand the acoustic wave propagation in microcavity-based SAW sensors. The observed enhancement in mass sensitivity and power transfer is attributed to waveguiding effects and constructive interference of the scattered acoustic waves from the microcavities. Devices fabricated with microcavities similar to 1 mu m deep decreased IL by 3.306 dB compared with a standard SAW device. Additional simulations were conducted for each device configuration using the same depth in order to make a direct comparison between measured and simulated results. Our findings offer encouraging prospects for designing low IL highly sensitive microcavity-based SAW biosensors.« less

  13. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  14. Applications and research on nano power electronics: an adventure beyond quantum electronics

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arindam; Emadi, Ali

    2005-06-01

    This paper is a roadmap to the exhaustive role of the newly emerging field of nanotechnology in various application and research areas. Some of the today's important topics are plasma, dielectric layer semiconductor, and carbon nanoparticle based technologies. Carbon nanotubes are very useful for the purpose of fabricating nano opto power devices. The basic concept behind tunneling of electrons has been utilized to define another scope of this technology, and thus came many quantum scale tunneling devices and elements. Fabrication of crystal semiconductors of high quality along with oxides of nano aspect would give rise to superior device performance and find applications such as LEDs, LASER, VLSI technology and also in highly efficient solar cells. Many nano-research based organizations are fully devoted to develop nano power cells, which would give birth to new battery cells, tunneling devises, with high power quality, longer lives, and higher activation rates. Different electronics industries as well as the military organizations would be largely benefited due to this major component and system design ideas of 'Smart Power' technologies. The contribution of nano scale power electronics would be realized in various fields like switching devices, electromechanical systems and quantum science. Such a sophisticated technology will have great impact on the modernization of robotics; space systems, automotive systems and many other fields. The highly emerging field of nanomedicine according to specialists would bring a dramatic revolution in the present century. However nanomedicine is nothing but an integration of biology, medicine and technology. Thermoelectric materials as been referred earlier also are used in case of implantable medical equipments for generation of electric power sufficient for those equipments.

  15. A screen-printed circular-type paper-based glucose/O2 biofuel cell

    NASA Astrophysics Data System (ADS)

    Shitanda, Isao; Nohara, Saki; Hoshi, Yoshinao; Itagaki, Masayuki; Tsujimura, Seiya

    2017-08-01

    The printable paper-based enzymatic biofuel cell (PBFC) to directly power small devices is an important objective for realizing cost-effective and disposable energy harvesting devices. In the present study, a screen-printed circular-type PBFC, composed of a series of 5 individual cells, was constructed. The PBFC exhibited the open circuit potential of 2.65 V and maximum power of 350 μW at 1.55 V, which were sufficient to illuminate an LED without requiring a booster circuit. The output voltage of this PBFC can also be easily adjusted as required.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less

  17. Decoupling energy and power

    NASA Astrophysics Data System (ADS)

    Grattieri, Matteo; Minteer, Shelley D.

    2018-01-01

    Biological photovoltaic devices (BPVs) use photosynthetic microorganisms to produce electricity, but low photocurrent generation impedes their application. Now, a micro-scale flow-based BPV system is reported with power density outputs similar to that of large-scale biofuels.

  18. Integration of OLEDs in biomedical sensor systems: design and feasibility analysis

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.

    2010-04-01

    Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.

  19. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    PubMed

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  1. Implementation methodology for interoperable personal health devices with low-voltage low-power constraints.

    PubMed

    Martinez-Espronceda, Miguel; Martinez, Ignacio; Serrano, Luis; Led, Santiago; Trigo, Jesús Daniel; Marzo, Asier; Escayola, Javier; Garcia, José

    2011-05-01

    Traditionally, e-Health solutions were located at the point of care (PoC), while the new ubiquitous user-centered paradigm draws on standard-based personal health devices (PHDs). Such devices place strict constraints on computation and battery efficiency that encouraged the International Organization for Standardization/IEEE11073 (X73) standard for medical devices to evolve from X73PoC to X73PHD. In this context, low-voltage low-power (LV-LP) technologies meet the restrictions of X73PHD-compliant devices. Since X73PHD does not approach the software architecture, the accomplishment of an efficient design falls directly on the software developer. Therefore, computational and battery performance of such LV-LP-constrained devices can even be outperformed through an efficient X73PHD implementation design. In this context, this paper proposes a new methodology to implement X73PHD into microcontroller-based platforms with LV-LP constraints. Such implementation methodology has been developed through a patterns-based approach and applied to a number of X73PHD-compliant agents (including weighing scale, blood pressure monitor, and thermometer specializations) and microprocessor architectures (8, 16, and 32 bits) as a proof of concept. As a reference, the results obtained in the weighing scale guarantee all features of X73PHD running over a microcontroller architecture based on ARM7TDMI requiring only 168 B of RAM and 2546 B of flash memory.

  2. Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers

    NASA Astrophysics Data System (ADS)

    Hwang, Hayoung; Lee, Kang Yeol; Shin, Dongjoon; Shin, Jungho; Kim, Sangtae; Choi, Wonjoon

    2018-06-01

    We demonstrate a metal-free triboelectric energy harvester consisted of MWCNT mesh film and PDMS layer. Upon touch from a finger, the single electrode-mode energy harvester generates up to 27.0 W/m2 output power at 10 MΩ matched impedance. The device generates stable power upon touch by bare fingers or gloved fingers. Using copper counter electrode results in decreased power output, due to the weaker tendency in triboelectrification. The power output also scales with the pressure applied by the finger. The intertwined, condensed MWCNT network acts as a flexible yet effective current collector, with resistance across the device less than 10 Ω. This current collector possesses strong corrosion resistance and stability against potential oxidation, while its metal counterpart may undergo oxidation over extended exposure to air or frequent fracture upon straining. The flexible device form may be applied to various curved or irregular surfaces that undergo frequent human touches.

  3. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  4. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered direct-contact temperature measurement... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct...

  5. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered direct-contact temperature measurement... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct...

  6. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered direct-contact temperature measurement... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct...

  7. PREFACE: Focus section on superconducting power systems Focus section on superconducting power systems

    NASA Astrophysics Data System (ADS)

    Cardwell, D. A.; Amemiya, N.; Fair, R.

    2012-01-01

    This focus section of Superconductor Science and Technology looks at the properties, technology and applications of (RE)BCO and MgB2 based superconductors for power engineering systems. Both bulk and conductor forms of material are addressed, including elements of materials fabrication and processing, and the measurement of their applied properties for various levels of system application. The areas of research include ac losses in type II materials in power devices, cables and coated conductors, the development of high current dc cables and the application of superconductors in levitation devices, motors and fault current limiters. This focus section presents a broad cross-section of contemporary issues, that represent state-of-the-art for power applications of superconductors, and highlights the areas that require further development if commercial applications of these rapidly emerging materials are to be realised. It contains papers from some of the major groups in the field, including contributions from Europe, the USA and Japan, and describes devices that are relatively close to market.

  8. Cooling Concepts for High Power Density Magnetic Devices

    NASA Astrophysics Data System (ADS)

    Biela, Juergen; Kolar, Johann W.

    In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.

  9. Environmentally friendly power generator based on moving liquid dielectric and double layer effect

    PubMed Central

    Huynh, D. H.; Nguyen, T. C.; Nguyen, P. D.; Abeyrathne, C. D.; Hossain, Md. S.; Evans, R.; Skafidas, E.

    2016-01-01

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(108μW)/(mm2HzV2) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting. PMID:27255577

  10. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    NASA Astrophysics Data System (ADS)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  11. Passive temperature control based on a phase change metasurface.

    PubMed

    Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming

    2018-05-16

    In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.

  12. Athermal and wavelength-trimmable photonic filters based on TiO₂-cladded amorphous-SOI.

    PubMed

    Lipka, Timo; Moldenhauer, Lennart; Müller, Jörg; Trieu, Hoc Khiem

    2015-07-27

    Large-scale integrated silicon photonic circuits suffer from two inevitable issues that boost the overall power consumption. First, fabrication imperfections even on sub-nm scale result in spectral device non-uniformity that require fine-tuning during device operation. Second, the photonic devices need to be actively corrected to compensate thermal drifts. As a result significant amount of power is wasted if no athermal and wavelength-trimmable solutions are utilized. Consequently, in order to minimize the total power requirement of photonic circuits in a passive way, trimming methods are required to correct the device inhomogeneities from manufacturing and athermal solutions are essential to oppose temperature fluctuations of the passive/active components during run-time. We present an approach to fabricate CMOS backend-compatible and athermal passive photonic filters that can be corrected for fabrication inhomogeneities by UV-trimming based on low-loss amorphous-SOI waveguides with TiO2 cladding. The trimming of highly confined 10 μm ring resonators is proven over a free spectral range retaining athermal operation. The athermal functionality of 2nd-order 5 μm add/drop microrings is demonstrated over 40°C covering a broad wavelength interval of 60 nm.

  13. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    NASA Astrophysics Data System (ADS)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  14. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section 878.4780...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be...

  15. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    PubMed

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  17. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  18. Markov chain algorithms: a template for building future robust low-power systems

    PubMed Central

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  19. Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography.

    PubMed

    Huang, H W; Lin, C H; Yu, C C; Lee, B D; Chiu, C H; Lai, C F; Kuo, H C; Leung, K M; Lu, T C; Wang, S C

    2008-05-07

    Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.

  20. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.

    PubMed

    Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun

    2016-05-15

    In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai

    2010-01-01

    This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).

  2. Noise-margin limitations on gallium-arsenide VLSI

    NASA Technical Reports Server (NTRS)

    Long, Stephen I.; Sundaram, Mani

    1988-01-01

    Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.

  3. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    PubMed Central

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142

  4. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    NASA Astrophysics Data System (ADS)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  5. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation.

    PubMed

    Shen, Daozhi; Xiao, Ming; Zou, Guisheng; Liu, Lei; Duley, Walter W; Zhou, Y Norman

    2018-05-01

    Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO 2 ) nanowire networks, can yield an output power density of up to 4 µW cm -2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.

    PubMed

    Bernardi, Michael P; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-06-26

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses.

  7. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    PubMed Central

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  8. Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption.

    PubMed

    Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M; Wang, Gunuk

    2017-10-04

    A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method for fabricating selector-less memristor arrays using an engineered nanoporous Ta 2 O 5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (∼2.7 × 10 -6 W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta 2 O 5-x layer. Our results, on the basis of the structural engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor arrays with acceptable device uniformity and low power consumption without the need for additional addressing selectors.

  9. A Compound Algorithm for Maximum Power Point Tracking Used in Laser Power Beaming

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liu, Qiang; Gao, Shan; Teng, Yun; Cheng, Lin; Yu, Chengtao; Peng, Kai

    2018-03-01

    With the high voltage intelligent substation developing in a pretty high speed, more and more artificial intelligent techniques have been incorporated into the power devices to meet the automation needs. For the sake of the line maintenance staff’s safety, the high voltage isolating switch draws great attention among the most important power devices because of its capability of connecting and disconnecting the high voltage circuit. However, due to the very high level voltage of the high voltage isolating switch’s working environment, the power supply system of the surveillance devices could suffer from great electromagnetic interference. Laser power beaming exhibits its merits in such situation because it can provide steady power from a distance despite the day or the night. Then the energy conversion efficiency arises as a new concern. To make as much use of the laser power as possible, our work mainly focuses on extracting maximum power from the photovoltaic (PV) panel. In this paper, we proposed a neural network based algorithm which relates both the intrinsic and the extrinsic features of the PV panel to the proportion of the voltage at the maximum power point (MPP) to the open circuit voltage of the PV panel. Simulations and experiments were carried out to verify the validness of our algorithm.

  10. 25.5 Betavoltaic Power Cells

    DTIC Science & Technology

    2006-01-01

    Conference Paper POSTPRINT 3. DATES COVERED (From - To) 2004 - 2006 4. TITLE AND SUBTITLE 25.5 Betavoltaic Power Cells 5a. CONTRACT NUMBER FA9453-04...Sources Conference, 12-15 Jun 06, Philadelphia, PA Government Purpose Rights 14. ABSTRACT Betavoltaic power cells utilize beta-emitting...radioisotopes and semiconductor devices to produce long-lived power in a variety of small form factors. Qynergy is developing betavoltaic power cells based on

  11. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions. PMID:25382898

  12. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-11-16

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.

  13. A novel thermal acoustic device based on porous graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Liu, Ying; Tian, He; Ju, Zhen-Yi; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    A thermal acoustic (TA) device was fabricated by laser scribing technology. Polyimide (PI) can be converted into patterned porous graphene (PG) by laser's irradiation in one step. The sound pressure level (SPL) of such TA device is related to laser power. The theoretical model of TA effect was established to analyze the relationship between the SPL and laser power. The theoretical results are in good agreement with experiment results. It was found that PG has a flat frequency response in the range of 5-20 kHz. This novel TA device has the advantages of one-step procedure, high flexibility, no mechanical vibration, low cost and so on. It can open wide applications in speakers, multimedia, medical, earphones, consumer electronics and many other aspects.

  14. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, E. V., E-mail: E.Kouzntsov@tcen.ru; Shemyakin, A. V.

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceiversmore » for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).« less

  15. Magnetic Amplifier-Based Power-Flow Controller

    DOE PAGES

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  16. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Chen, Miao; Liu, Wei; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-03-25

    Nearly 100% triplet harvesting in conventional fluorophor-based organic light-emitting devices is realized through energy transfer from exciplex. The best C545T-doped device using the exciplex host exhibits a maximum current efficiency of 44.0 cd A(-1) , a maximum power efficiency of 46.1 lm W(-1) , and a maximum external quantum efficiency of 14.5%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-Sensitivity Conjugated Polymer/Nanoparticle Nanocomposites for Infrared Sensor Applications

    DTIC Science & Technology

    2011-03-03

    Performances of Photovoltaic devices base d on Thieno[3,4-c] pyrrole -4,6-dione-Based Donor-Acceptor Conjugated Polymers and CdSe Tetrapods Abstract: We...2-yl)thieno[3,2-b] thiophene and thieno[3,4-c] pyrrole -4,6-dione units. The AM1.5 power conversion efficiency of a photovoltaic device containing...photovoltaic devices because of their readily tunable electronic properties. The electron-deficient thieno[3,4-c] pyrrole -4,6-dione (TPD) moiety exhibits a

  18. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is a...

  19. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  20. 75 FR 30794 - Notice of Intent To Grant Exclusive Patent License; AmberWave Systems Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ..., power transistor devices, and power devices in the United States, the Government-owned inventions... amplifiers, radio frequency power transistor devices, and power devices and their use for the fabrication of...

  1. Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue).

    PubMed

    Zhang, Hui; Yu, You; Zhang, Lingling; Zhai, Yiwen; Dong, Shaojun

    2016-11-01

    Stimuli-responsive (such as voltage and/or light) fluorescence display systems have attracted particular attention in their promising fields of application. However, there are few examples of self-powered fluorescence display devices. Here we designed and fabricated a self-powered fluorescence display device based on a fast-charging/recharging battery. The specially designed battery was composed of a Prussian blue (PB) cathode and a magnesium metal anode with a high theoretical redox potential difference (∼2.8 V). Moreover, smartly adding a trace amount of NaClO in the electrolyte could realize oxidizing PW to PB ∼480 times faster than when oxidizing without NaClO, leading to the fast self-charging and high power density (maximum power density of 13.34 mW cm -2 , about two to three orders of magnitude larger than previous bio-fuel cells) of the Mg/PB battery. Most importantly, PB was used as not only the cathodic catalyst but also as an electrochromic material, making it possible to construct a self-powered and rechargeable electrochromic fluorescence display with only two electrodes. Besides, fluorescent [Ru(bpy) 3 ] 2+ -doped silica nanoparticles (Ru@SiO 2 ), were selected as the fluorescence resonance energy transfer (FRET) donor to match PB (FRET acceptor). To the best of our knowledge, we demonstrated a self-powered and rechargeable electrochromic fluorescence display with only two electrodes for the first time.

  2. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (5th)

    DTIC Science & Technology

    1994-10-07

    Characterisation and Modelling WEDNESDAY 5th OCTOBER Session C Hot Carriers Session D Oxide States Session E Power Devices Workshop 2 Power Devices Session F...Medium Enterprises .......... 17 W2 Power Devices Workshop "Reliability of Power Semiconductors for Traction Applications...New Mexico, USA Sandia National Laboratories, Albuquerque, New Mexico, USA SESSION E Power Devices El Reliability Issues in New Technology

  3. Highly Flexible Self-Powered Organolead Trihalide Perovskite Photodetectors with Gold Nanowire Networks as Transparent Electrodes.

    PubMed

    Bao, Chunxiong; Zhu, Weidong; Yang, Jie; Li, Faming; Gu, Shuai; Wang, Yangrunqian; Yu, Tao; Zhu, Jia; Zhou, Yong; Zou, Zhigang

    2016-09-14

    Organolead trihalide perovskites (OTPs) such as CH3NH3PbI3 (MAPbI3) have attracted much attention as the absorbing layer in solar cells and photodetectors (PDs). Flexible OTP devices have also been developed. Transparent electrodes (TEs) with higher conductivity, stability, and flexibility are necessary to improve the performance and flexibility of flexible OTP devices. In this work, patterned Au nanowire (AuNW) networks with high conductivity and stability are prepared and used as TEs in self-powered flexible MAPbI3 PDs. These flexible PDs show peak external quantum efficiency and responsivity of 60% and 321 mA/W, which are comparable to those of MAPbI3 PDs based on ITO TEs. The linear dynamic range and response time of the AuNW-based flexible PDs reach ∼84 dB and ∼4 μs, respectively. Moreover, they show higher flexibility than ITO-based devices, around 90%, and 60% of the initial photocurrent can be retained for the AuNW-based flexible PDs when bent to radii of 2.5 and 1.5 mm. This work suggests a high-performance, highly flexible, and stable TE for OTP flexible devices.

  4. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    PubMed

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.

    PubMed

    Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua

    2016-12-01

    State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    NASA Astrophysics Data System (ADS)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2017-02-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  7. Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.

    PubMed

    Pu, Xiong; Li, Linxuan; Liu, Mengmeng; Jiang, Chunyan; Du, Chunhua; Zhao, Zhenfu; Hu, Weiguo; Wang, Zhong Lin

    2016-01-06

    A novel and scalable self-charging power textile is realized by combining yarn supercapacitors and fabric triboelectric nanogenerators as energy-harvesting devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  9. Microwave Plasma Based Single-Step Method for Generation of Carbon Nanostructures

    DTIC Science & Technology

    2013-07-01

    Técnico, Technical University of Lisbon, Portugal 2 Mechanical and Aerospace Engeneering , Naval Postgraduate School, Monterey, CA 93943, U.S.A...Plasma environments constitute powerful tools in materials science due to their operation as thermal and chemical reactors. A microwave, atmospheric...applications include electronic devices, transparent conductive films, mechanical devices, chemical sensors, spintronic devices. Moreover, it shows enormous

  10. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  11. Laser-machined piezoelectric cantilevers for mechanical energy harvesting.

    PubMed

    Kim, HyunUk; Bedekar, Vishwas; Islam, Rashed Adnan; Lee, Woo-Ho; Leo, Don; Priya, Shashank

    2008-09-01

    In this study, we report results on a piezoelectric- material-based mechanical energy-harvesting device that was fabricated by combining laser machining with microelectronics packaging technology. It was found that the laser-machining process did not have significant effect on the electrical properties of piezoelectric material. The fabricated device was tested in the low-frequency regime of 50 to 1000 Hz at constant force of 8 g (where g = 9.8 m/s(2)). The device was found to generate continuous power of 1.13 microW at 870 Hz across a 288.5 kOmega load with a power density of 301.3 microW/cm(3).

  12. 21 CFR 878.4683 - Non-Powered suction apparatus device intended for negative pressure wound therapy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Non-Powered suction apparatus device intended for... Surgical Devices § 878.4683 Non-Powered suction apparatus device intended for negative pressure wound therapy. (a) Identification. A non-powered suction apparatus device intended for negative pressure wound...

  13. Low power energy harvesting and storage techniques from ambient human powered energy sources

    NASA Astrophysics Data System (ADS)

    Yildiz, Faruk

    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source.

  14. Hardening measures for bipolar transistors against microwave-induced damage

    NASA Astrophysics Data System (ADS)

    Chai, Chang-Chun; Ma, Zhen-Yang; Ren, Xing-Rong; Yang, Yin-Tang; Zhao, Ying-Bo; Yu, Xin-Hai

    2013-06-01

    In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.

  15. Atomic-scale investigations of current and future devices: from nitride-based transistors to quantum computing

    NASA Astrophysics Data System (ADS)

    Gordon, Luke

    Our era is defined by its technology, and our future is dependent on its continued evolution. Over the past few decades, we have witnessed the expansion of advanced technology into all walks of life and all industries, driven by the exponential increase in the speed and power of semiconductor-based devices. However, as the length scale of devices reaches the atomic scale, a deep understanding of atomistic theory and its application is increasingly crucial. In order to illustrate the power of an atomistic approach to understanding devices, we will present results and conclusions from three interlinked projects: n-type doping of III-nitride semiconductors, defects for quantum computing, and macroscopic simulations of devices. First, we will study effective n-type doping of III-nitride semiconductors and their alloys, and analyze the barriers to effective n-type doping of III-nitrides and their alloys. In particular, we will study the formation of DX centers, and predict alloy composition onsets for various III-nitride alloys. In addition, we will perform a comprehensive study of alternative dopants, and provide potential alternative dopants to improve n-type conductivity in AlN and wide-band-gap nitride alloys. Next, we will discuss how atomic-scale defects can act as a curse for the development of quantum computers by contributing to decoherence at an atomic scale, specifically investigating the effect of two-level state defects (TLS) systems in alumina as a source of decoherence in superconducting qubits based on Josephson junctions; and also as a blessing, by allowing the identification of wholly new qubits in different materials, specifically showing calculations on defects in SiC for quantum computing applications. Finally, we will provide examples of recent calculations we have performed for devices using macrosopic device simulations, largely in conjunction with first-principles calculations. Specifically, we will discuss the power of using a multi-scale approach to accurately model oxide and nitride-based heterostructures, and thereby illustrate our ability to predict device performance on scales unreachable using a purely first-principles approach.

  16. Distributed solid state programmable thermostat/power controller

    NASA Technical Reports Server (NTRS)

    Smith, Dennis A. (Inventor); Alexander, Jane C. (Inventor); Howard, David E. (Inventor)

    2008-01-01

    A self-contained power controller having a power driver switch, programmable controller, communication port, and environmental parameter measuring device coupled to a controllable device. The self-contained power controller needs only a single voltage source to power discrete devices, analog devices, and the controlled device. The programmable controller has a run mode which, when selected, upon the occurrence of a trigger event changes the state of a power driver switch and wherein the power driver switch is maintained by the programmable controller at the same state until the occurrence of a second event.

  17. Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys

    DOE PAGES

    Coltrin, Michael E.; Baca, Albert G.; Kaplar, Robert J.

    2017-10-26

    In this paper, predicted lateral power device performance as a function of alloy composition is characterized by a standard lateral device figure-of-merit (LFOM) that depends on mobility, critical electric field, and sheet carrier density. The paper presents calculations of AlGaN electron mobility in lateral devices such as HEMTs across the entire alloy composition range. Alloy scattering and optical polar phonon scattering are the dominant mechanisms limiting carrier mobility. Due to the significant degradation of mobility from alloy scattering, at room temperature Al fractions greater than about 85% are required for improved LFOM relative to GaN using a conservative sheet chargemore » density of 1 × 10 13 cm –2. However, at higher temperatures at which AlGaN power devices are anticipated to operate, this “breakeven” composition decreases to about 65% at 500 K, for example. For high-frequency applications, the Johnson figure-of-merit (JFOM) is the relevant metric to compare potential device performance across materials platforms. At room temperature, the JFOM for AlGaN alloys is predicted to surpass that of GaN for Al fractions greater than about 40%.« less

  18. Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, Michael E.; Baca, Albert G.; Kaplar, Robert J.

    In this paper, predicted lateral power device performance as a function of alloy composition is characterized by a standard lateral device figure-of-merit (LFOM) that depends on mobility, critical electric field, and sheet carrier density. The paper presents calculations of AlGaN electron mobility in lateral devices such as HEMTs across the entire alloy composition range. Alloy scattering and optical polar phonon scattering are the dominant mechanisms limiting carrier mobility. Due to the significant degradation of mobility from alloy scattering, at room temperature Al fractions greater than about 85% are required for improved LFOM relative to GaN using a conservative sheet chargemore » density of 1 × 10 13 cm –2. However, at higher temperatures at which AlGaN power devices are anticipated to operate, this “breakeven” composition decreases to about 65% at 500 K, for example. For high-frequency applications, the Johnson figure-of-merit (JFOM) is the relevant metric to compare potential device performance across materials platforms. At room temperature, the JFOM for AlGaN alloys is predicted to surpass that of GaN for Al fractions greater than about 40%.« less

  19. Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz.

    PubMed

    Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin

    2012-08-31

    Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min(-1) and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.

  20. Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz

    NASA Astrophysics Data System (ADS)

    Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin

    2012-08-01

    Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min-1 and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.

  1. Auxiliary power unit for moving a vehicle

    DOEpatents

    Akasam, Sivaprasad [Peoria, IL; Johnson, Kris W [Peoria, IL; Johnson, Matthew D [Peoria, IL; Slone, Larry M [Washington, IL; Welter, James Milton [Chillicothe, IL

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  2. Output Devices, Computation, and the Future of Mathematical Crafts.

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2002-01-01

    The advent of powerful, affordable output devices offers the potential for a vastly expanded landscape of computationally-enriched mathematical craft activities in education. Craft activities have both intellectual and emotional affordances that are relatively lacking in "traditional" computer-based education. Describes three software applications…

  3. CHARGING OF DEVICES BY MICROWAVE POWER BEAMING

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A system for providing wireless, charging power and/or primary power to electronic/electrical devices is described whereby microwave energy is employed. Microwave energy is focused by a power transmitter comprising one or more adaptively-phased microwave array emitters onto a device to be charged. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power. A locator signal generated by the device to be charged is analyzed by the system to determine the location of the device to be charged relative to the microwave array emitters, permitting thc microwave energy to be directly specifically towards the device to be charged. Backscatter detectors respond to backscatter energy reflected off of any obstacle between the device to be charged and the microwave array emitters. Power to any obstructed microwave array emitter is reduced until the obstruction is removed. Optionally, data can be modulated onto microwave energy beams produced by the array emitter and demodulated by the device, thereby providing means of data communication from the power transmitter to the device. Similarly, data can be modulated onto the locator signal and demodulated in the power transmitter, thereby providing means of data communication from the device to the power transmitter.

  4. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications

    NASA Astrophysics Data System (ADS)

    Tiwat, Pongthavornkamol; Lei, Pang; Xinhua, Wang; Sen, Huang; Guoguo, Liu; Tingting, Yuan; Xinyu, Liu

    2015-07-01

    An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented. Project supported by the National Natural Science Foundation of China (No. 61204086).

  5. Faraday instability-based micro droplet ejection for inhalation drug delivery

    PubMed Central

    Tsai, C.S.; Mao, R.W.; Lin, S.K.; Zhu, Y.; Tsai, S.C.

    2014-01-01

    We report here the technology and the underlying science of a new device for inhalation (pulmonary) drug delivery which is capable of fulfilling needs unmet by current commercial devices. The core of the new device is a centimeter-size clog-free silicon-based ultrasonic nozzle with multiple Fourier horns in resonance at megahertz (MHz) frequency. The dramatic resonance effect among the multiple horns and high growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range (2–5 µm) at low electrical drive power (<1.0 W). The small nozzle requiring low drive power has enabled realization of a pocket-size (8.6 × 5.6 × 1.5 cm3) ultrasonic nebulizer. A variety of common pulmonary drugs have been nebulized using the pocket-size unit with desirable aerosol sizes and output rate. These results clearly provide proof-of-principle for the new device and confirm its potential for commercialization. PMID:25045720

  6. Secure Communications in CIoT Networks with a Wireless Energy Harvesting Untrusted Relay.

    PubMed

    Hu, Hequn; Gao, Zhenzhen; Liao, Xuewen; Leung, Victor C M

    2017-09-04

    The Internet of Things (IoT) represents a bright prospect that a variety of common appliances can connect to one another, as well as with the rest of the Internet, to vastly improve our lives. Unique communication and security challenges have been brought out by the limited hardware, low-complexity, and severe energy constraints of IoT devices. In addition, a severe spectrum scarcity problem has also been stimulated by the use of a large number of IoT devices. In this paper, cognitive IoT (CIoT) is considered where an IoT network works as the secondary system using underlay spectrum sharing. A wireless energy harvesting (EH) node is used as a relay to improve the coverage of an IoT device. However, the relay could be a potential eavesdropper to intercept the IoT device's messages. This paper considers the problem of secure communication between the IoT device (e.g., sensor) and a destination (e.g., controller) via the wireless EH untrusted relay. Since the destination can be equipped with adequate energy supply, secure schemes based on destination-aided jamming are proposed based on power splitting (PS) and time splitting (TS) policies, called intuitive secure schemes based on PS (Int-PS), precoded secure scheme based on PS (Pre-PS), intuitive secure scheme based on TS (Int-TS) and precoded secure scheme based on TS (Pre-TS), respectively. The secure performances of the proposed schemes are evaluated through the metric of probability of successfully secure transmission ( P S S T ), which represents the probability that the interference constraint of the primary user is satisfied and the secrecy rate is positive. P S S T is analyzed for the proposed secure schemes, and the closed form expressions of P S S T for Pre-PS and Pre-TS are derived and validated through simulation results. Numerical results show that the precoded secure schemes have better P S S T than the intuitive secure schemes under similar power consumption. When the secure schemes based on PS and TS polices have similar P S S T , the average transmit power consumption of the secure scheme based on TS is lower. The influences of power splitting and time slitting ratios are also discussed through simulations.

  7. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and remove...

  8. Possibility of controlling nonregulated prices in the electricity market by means of varying the parameters of a power system

    NASA Astrophysics Data System (ADS)

    Vaskovskaya, T. A.

    2014-12-01

    This paper offers a new approach to the analysis of price signals from the wholesale electricity and capacity market that is based on the analysis of the influence exerted by input data used in the problem of optimization of the power system operating conditions, namely: parameters of a power grid and power-receiving equipment that might vary under the effect of control devices. It is shown that it would be possible to control nonregulated prices for electricity in the wholesale electricity market by varying the parameters of control devices and energy-receiving equipment. An increase in the effectiveness of power transmission and the cost-effective use of fuel-and-energy resources (energy saving) can become an additional effect of controlling the nonregulated prices.

  9. Device for timing and power level setting for microwave applications

    NASA Astrophysics Data System (ADS)

    Ursu, M.-P.; Buidoş, T.

    2016-08-01

    Nowadays, the microwaves are widely used for various technological processes. The microwaves are emitted by magnetrons, which have strict requirements concerning power supplies for anode and filament cathodes, intensity of magnetic field, cooling and electromagnetic shielding. The magnetrons do not tolerate any alteration of their required voltages, currents and magnetic fields, which means that their output microwave power is fixed, so the only way to alter the power level is to use time-division, by turning the magnetron on and off by repetitive time patterns. In order to attain accurate and reproducible results, as well as correct and safe operation of the microwave device, all these requirements must be fulfilled. Safe, correct and reproducible operation of the microwave appliance can be achieved by means of a specially built electronic device, which ensures accurate and reproducible exposure times, interlocking of the commands and automatic switch off when abnormal operating conditions occur. This driving device, designed and realized during the completion of Mr.Ursu's doctoral thesis, consists of a quartz time-base, several programmable frequency and duration dividers, LED displays, sensors and interlocking gates. The active and passive electronic components are placed on custom-made PCB's, designed and made by means of computer-aided applications and machines. The driving commands of the electronic device are delivered to the magnetron power supplies by means of optic zero-passing relays. The inputs of the electronic driving device can sense the status of the microwave appliance. The user is able to enter the total exposure time, the division factor that sets the output power level and, as a novelty, the clock frequency of the time divider.

  10. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks.

    PubMed

    Kim, Ki-Wook; Han, Youn-Hee; Min, Sung-Gi

    2017-09-21

    Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism.

  11. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks

    PubMed Central

    Han, Youn-Hee; Min, Sung-Gi

    2017-01-01

    Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism. PMID:28934152

  12. A Hybrid Power Management (HPM) Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  13. Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si(111)

    NASA Astrophysics Data System (ADS)

    Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Wang, Zilong; Bruno, Annalisa; Soci, Cesare; Lihuang, Tng; Kian Siong, Ang

    2016-09-01

    GaN Schottky metal-semiconductor-metal (MSM) UV photodetectors were fabricated on a 600 nm thick GaN layer, grown on 100 mm Si (111) substrate using an ammonia-MBE growth technique. In this report, the effect of device dimensions, applied bias and input power on the linearity of the GaN Schottky-based MSM photodetectors on Si substrate were investigated. Devices with larger interdigitated spacing, ‘S’ of 9.0 μm between the fingers resulted in good linearity and flat responsivity characteristics as a function of input power with an external quantum efficiency (EQE) of ˜33% at an applied bias of 15 V and an input power of 0.8 W m-2. With the decrease of ‘S’ to 3.0 μm, the EQE was found to increase to ˜97%. However, devices showed non linearity and drop in responsivity from flatness at higher input power. Moreover, the position of dropping from flatter responsivity was found to shift to lower powers with increased bias. The drop in the responsivity was attributed to the modulation of conductance in the MSM due to the trapping of electrons at the dislocations, resulting in the formation of depletion regions around them. In devices with lower ‘S’, both the image force reduction and the enhanced collection efficiency increased the photocurrent as well as the charging of the dislocations. This resulted in the increased depletion regions around the dislocations leading to the modulation of conductance and non-linearity.

  14. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshabini, Aicha; Barlow, Fred D.

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achievedmore » is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.« less

  15. Ultra-low input power long-wavelength GaSb type-I laser diodes at 2.7-3.0 μm

    NASA Astrophysics Data System (ADS)

    Vizbaras, Augustinas; Greibus, Mindaugas; Dvinelis, Edgaras; Trinkūnas, Augustinas; Kovalenkovas, Deividas; Šimonytė, Ieva; Vizbaras, Kristijonas

    2014-02-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, environmental and defense applications. Major requirement for these applications is the availability of laser sources in this spectral window. Type-I GaSb-based laser diodes are ideal candidates for these applications being compact, electrically pumped, power efficient and able to operate at room temperature in continuous-wave. Moreover, due to the nature of type-I transition; these devices have a characteristic low operation voltage, typically below 1 V, resulting in low power consumption, and high-temperature of operation. In this work, we present recent progress of 2.7 μm - 3.0 μm wavelength single-spatial mode GaSb type-I laser diode development at Brolis Semiconductors. Experimental device structures were grown by solid-source multi-wafer MBE, consisting of an active region with 2 compressively strained (~1.3 %-1.5 %) GaInAsSb quantum wells with GaSb barriers for 2.7 μm devices and quinternary AlGaInAsSb barriers for 3.0 μm devices. Epi-wafers were processed into a narrow-ridge (2-4 μm) devices and mounted p-side up on CuW heatsink. Devices exhibited very low CW threshold powers of < 100 mW, and single spatial mode (TE00) operation with room-temperature output powers up to 40 mW in CW mode. Operating voltage was as low as 1.2 V at 1.2 A. As-cleaved devices worked CW up to 50 deg C.

  16. New device architecture of a thermoelectric energy conversion for recovering low-quality heat

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Park, Sung-Geun; Jung, Buyoung; Hwang, Junphil; Kim, Woochul

    2014-03-01

    Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, /W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.

  17. Characterization of Single-Event Burnout in Power MOSFET Using Backside Laser Testing

    NASA Astrophysics Data System (ADS)

    Miller, F.; Luu, A.; Prud'homme, F.; Poirot, P.; Gaillard, R.; Buard, N.; Carrire, T.

    2006-12-01

    This paper presents a new methodology based upon backside laser irradiations to characterize the sensitivity of power devices towards Single-Event Burnout. It is shown that this technique can be used to define the safe operating area

  18. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes

    PubMed Central

    Muñoz, Pablo; R-Moreno, María D.; F. Barrero, David

    2017-01-01

    Wireless Sensor Networks (WSNs) are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN). Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer) and an external microcontroller (Cortex M0+) in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA. PMID:28937660

  19. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes.

    PubMed

    Vaquerizo-Hdez, Daniel; Muñoz, Pablo; R-Moreno, María D; F Barrero, David

    2017-09-22

    Wireless Sensor Networks (WSNs) are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN). Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer) and an external microcontroller (Cortex M0+) in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA.

  20. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.

    PubMed

    Davalos, Rafael V; McGraw, Gregory J; Wallow, Thomas I; Morales, Alfredo M; Krafcik, Karen L; Fintschenko, Yolanda; Cummings, Eric B; Simmons, Blake A

    2008-02-01

    Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric microfluidic devices with surfactant coatings provide an affordable engineering strategy for selective particle enrichment and sorting.

  1. Index-based reactive power compensation scheme for voltage regulation

    NASA Astrophysics Data System (ADS)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute to optimal utilization of compensation devices and available transfer capability as well as reduce system outages through better regulation of power operating voltages.

  2. Fiber-based three-dimensional multi-mode interference device as efficient power divider and vector curvature sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin

    2018-03-01

    Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.

  3. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  4. Image processing for navigation on a mobile embedded platform

    NASA Astrophysics Data System (ADS)

    Preuss, Thomas; Gentsch, Lars; Rambow, Mark

    2006-02-01

    Mobile computing devices such as PDAs or cellular phones may act as "Personal Multimedia Exchanges", but they are limited in their processing power as well as in their connectivity. Sensors as well as cellular phones and PDAs are able to gather multimedia data, e. g. images, but leak computing power to process that data on their own. Therefore, it is necessary, that these devices connect to devices with more performance, which provide e.g. image processing services. In this paper, a generic approach is presented that connects different kinds of clients with each other and allows them to interact with more powerful devices. This architecture, called BOSPORUS, represents a communication framework for dynamic peer-to-peer computing. Each peer offers and uses services in this network and communicates loosely coupled and asynchronously with the others. These features make BOSPORUS a service oriented network architecture (SONA). A mobile embedded system, which uses external services for image processing based on the BOSPORUS Framework is shown as an application of the BOSPORUS framework.

  5. The effect of coolants on the performance of magnetic micro-refrigerators.

    PubMed

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  6. Anatomy of Ag/Hafnia-Based Selectors with 10 10 Nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midya, Rivu; Wang, Zhongrui; Zhang, Jiaming

    We developed a novel Ag/oxide-based threshold switching device with attractive features including ≈10 10 nonlinearity. Furthermore, in a high-resolution transmission electron microscopic analysis of the nanoscale crosspoint device it is suggested that elongation of an Ag nanoparticle under voltage bias followed by spontaneous reformation of a more spherical shape after power off, is responsible for the observed threshold switching.

  7. Anatomy of Ag/Hafnia-Based Selectors with 10 10 Nonlinearity

    DOE PAGES

    Midya, Rivu; Wang, Zhongrui; Zhang, Jiaming; ...

    2017-01-30

    We developed a novel Ag/oxide-based threshold switching device with attractive features including ≈10 10 nonlinearity. Furthermore, in a high-resolution transmission electron microscopic analysis of the nanoscale crosspoint device it is suggested that elongation of an Ag nanoparticle under voltage bias followed by spontaneous reformation of a more spherical shape after power off, is responsible for the observed threshold switching.

  8. A novel thermal acoustic device based on porous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi

    2016-01-15

    A thermal acoustic (TA) device was fabricated by laser scribing technology. Polyimide (PI) can be converted into patterned porous graphene (PG) by laser’s irradiation in one step. The sound pressure level (SPL) of such TA device is related to laser power. The theoretical model of TA effect was established to analyze the relationship between the SPL and laser power. The theoretical results are in good agreement with experiment results. It was found that PG has a flat frequency response in the range of 5-20 kHz. This novel TA device has the advantages of one-step procedure, high flexibility, no mechanical vibration,more » low cost and so on. It can open wide applications in speakers, multimedia, medical, earphones, consumer electronics and many other aspects.« less

  9. Design of a handheld infrared imaging device based on uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Sun, Xianzhong; Li, Junwei; Zhang, Yazhou

    2017-02-01

    This paper, we introduced the system structure and operation principle of the device, and discussed our solutions for image data acquisition and storage, operating states and modes control and power management in detail. Besides, we proposed a algorithm of pseudo color for thermal image and applied it to the image processing module of the device. The thermal images can be real time displayed in a 1.8 inches TFT-LCD. The device has a compacted structure and can be held easily by one hand. It also has a good imaging performance with low power consumption, thermal sensitivity is less than 150mK. At last, we introduced one of its applications for fault diagnosis in electronic circuits, the test shows that: it's a good solution for fast fault detection.

  10. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  11. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  12. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  13. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  14. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  15. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  16. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  17. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  18. 21 CFR 886.1810 - Tangent screen (campimeter).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...

  19. 21 CFR 886.1810 - Tangent screen (campimeter).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...

  20. 21 CFR 886.1810 - Tangent screen (campimeter).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...

  1. 21 CFR 886.1810 - Tangent screen (campimeter).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...

  2. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  3. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  4. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  5. 21 CFR 874.3375 - Battery-powered artificial larynx.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Battery-powered artificial larynx. 874.3375... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3375 Battery-powered artificial larynx. (a) Identification. A battery-powered artificial larynx is an externally applied device...

  6. Home Use Devices: How to Prepare for and Handle Power Outages for Medical Devices That Require Electricity

    MedlinePlus

    ... Handle Power Outages for Medical Devices that Require Electricity Center for De CDRH vices and Rad lth ... Handle Power Outages for Medical Devices that Require Electricity As a home medical device user, it is ...

  7. A fully implantable pacemaker for the mouse: from battery to wireless power.

    PubMed

    Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.

  8. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  9. The RTE inversion on FPGA aboard the solar orbiter PHI instrument

    NASA Astrophysics Data System (ADS)

    Cobos Carrascosa, J. P.; Aparicio del Moral, B.; Ramos Mas, J. L.; Balaguer, M.; López Jiménez, A. C.; del Toro Iniesta, J. C.

    2016-07-01

    In this work we propose a multiprocessor architecture to reach high performance in floating point operations by using radiation tolerant FPGA devices, and under narrow time and power constraints. This architecture is used in the PHI instrument that carries out the scientific analysis aboard the ESA's Solar Orbiter mission. The proposed architecture, in a SIMD flavor, is aimed to be an accelerator within the Data Processing Unit (it is composed by a main Leon processor and two FPGAs) for carrying out the RTE inversion on board the spacecraft using a relatively slow FPGA device - Xilinx XQR4VSX55-. The proposed architecture squeezes the FPGA resources in order to reach the computational requirements and improves the ground-based system performance based on commercial CPUs regarding time and power consumption. In this work we demonstrate the feasibility of using this FPGA devices embedded in the SO/PHI instrument. With that goal in mind, we perform tests to evaluate the scientific results and to measure the processing time and power consumption for carrying out the RTE inversion.

  10. CarbAl Heat Transfer Material

    NASA Technical Reports Server (NTRS)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  11. A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors.

    PubMed

    Dong, Kai; Wang, Yi-Cheng; Deng, Jianan; Dai, Yejing; Zhang, Steven L; Zou, Haiyang; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin

    2017-09-26

    Rapid advancements in stretchable and multifunctional wearable electronics impose a challenge on corresponding power devices that they should have comparable portability and stretchability. Here, we report a highly stretchable and washable all-yarn-based self-charging knitting power textile that enables both biomechanical energy harvesting and simultaneously energy storing by hybridizing triboelectrical nanogenerator (TENG) and supercapacitor (SC) into one fabric. With the weft-knitting technique, the power textile is qualified with high elasticity, flexibility, and stretchability, which can adapt to complex mechanical deformations. The knitting TENG fabric is able to generate electric energy with a maximum instantaneous peak power density of ∼85 mW·m -2 and light up at least 124 light-emitting diodes. The all-solid-state symmetrical yarn SC exhibits lightweight, good capacitance, high flexibility, and excellent mechanical and long-term stability, which is suitable for wearable energy storage devices. The assembled knitting power textile is capable of sustainably driving wearable electronics (for example, a calculator or temperature-humidity meter) with energy converted from human motions. Our work provides more opportunities for stretchable multifunctional power sources and potential applications in wearable electronics.

  12. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    PubMed

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  13. New nanocomposite surfaces and thermal interface materials based on mesoscopic microspheres, polymers and graphene flakes

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alex A.; Dmitriev, Alex S.; Makarov, Petr; Mikhailova, Inna

    2018-04-01

    In recent years, there has been a great interest in the development and creation of new functional energy mate-rials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and data centers). In this paper, the technology of obtaining new nanocomposites based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphene flakes of different volumetric concentration using epoxy polymers, as well as the addition of monodisperse microspheres are described. Data are given on the measurement of the contact angle and thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  14. Secure Communications in CIoT Networks with a Wireless Energy Harvesting Untrusted Relay

    PubMed Central

    Hu, Hequn; Liao, Xuewen

    2017-01-01

    The Internet of Things (IoT) represents a bright prospect that a variety of common appliances can connect to one another, as well as with the rest of the Internet, to vastly improve our lives. Unique communication and security challenges have been brought out by the limited hardware, low-complexity, and severe energy constraints of IoT devices. In addition, a severe spectrum scarcity problem has also been stimulated by the use of a large number of IoT devices. In this paper, cognitive IoT (CIoT) is considered where an IoT network works as the secondary system using underlay spectrum sharing. A wireless energy harvesting (EH) node is used as a relay to improve the coverage of an IoT device. However, the relay could be a potential eavesdropper to intercept the IoT device’s messages. This paper considers the problem of secure communication between the IoT device (e.g., sensor) and a destination (e.g., controller) via the wireless EH untrusted relay. Since the destination can be equipped with adequate energy supply, secure schemes based on destination-aided jamming are proposed based on power splitting (PS) and time splitting (TS) policies, called intuitive secure schemes based on PS (Int-PS), precoded secure scheme based on PS (Pre-PS), intuitive secure scheme based on TS (Int-TS) and precoded secure scheme based on TS (Pre-TS), respectively. The secure performances of the proposed schemes are evaluated through the metric of probability of successfully secure transmission (PSST), which represents the probability that the interference constraint of the primary user is satisfied and the secrecy rate is positive. PSST is analyzed for the proposed secure schemes, and the closed form expressions of PSST for Pre-PS and Pre-TS are derived and validated through simulation results. Numerical results show that the precoded secure schemes have better PSST than the intuitive secure schemes under similar power consumption. When the secure schemes based on PS and TS polices have similar PSST, the average transmit power consumption of the secure scheme based on TS is lower. The influences of power splitting and time slitting ratios are also discussed through simulations. PMID:28869540

  15. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    NASA Astrophysics Data System (ADS)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure based on design for reliability. To have a perfect relation between structure, and their modification, and temperature, FEM simulations are performed using COMSOL software. In this case, we can understand the impact of structure on the isothermal distribution and then reveal the sensitive zones in the diode laser. To validate the simulation, we compare the simulation results to the experimental one and develop an analytical model to determine the different contributions of the thermal heating. This paper reports on the development laser structure and the process techniques required to write the gratings. Performances are particularly characterized in terms of experimental electro-optical characterization and spectral response. The extraction of thermal resistance (Rth) is particularly difficult, because of the implicit low value (Rth ≈ 2𝐾/𝑊) and the multimodal nature of the diode laser. In such a context, thermal resistance has been measured using a dedicated equipment namely T3STER©. The results have been compared with those given by the well-known technique achieved from the spectrum of the diode laser (central wavelength variations vs temperature) that is more difficult to apply for multimodal diodes laser. The last section deals with thermal simulations based on finite elements method (FEM) modeling in order to estimate junction temperature . This study represent a significant part of the general Design for Reliability (DfR) effort carried out on such devices to produce efficient and reliable high power devices at the industrial level.

  16. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  17. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.

    2016-01-01

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286

  18. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  19. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  20. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  1. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  2. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  3. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  4. Power Electronics Design Laboratory Exercise for Final-Year M.Sc. Students

    ERIC Educational Resources Information Center

    Max, L.; Thiringer, T.; Undeland, T.; Karlsson, R.

    2009-01-01

    This paper presents experiences and results from a project task in power electronics for students at Chalmers University of Technology, Goteborg, Sweden, based on a flyback test board. The board is used in the course Power Electronic Devices and Applications. In the project task, the students design snubber circuits, improve the control of the…

  5. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  6. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    PubMed

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  7. Investigation of resistive switching behaviours in WO3-based RRAM devices

    NASA Astrophysics Data System (ADS)

    Li, Ying-Tao; Long, Shi-Bing; Lü, Hang-Bing; Liu, Qi; Wang, Qin; Wang, Yan; Zhang, Sen; Lian, Wen-Tai; Liu, Su; Liu, Ming

    2011-01-01

    In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.

  8. Design and Implementation of Pointer-Type Multi Meters Intelligent Recognition Device Based on ARM Platform

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu

    2018-01-01

    This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.

  9. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  10. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less

  11. Optically tuned terahertz modulator based on annealed multilayer MoS2.

    PubMed

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-03-08

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilberto

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  13. Simulation Study of Single-Event Burnout in Power Trench ACCUFETs

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Hao; Wang, Ying; Fei, Xin-Xing; Cao, Fei

    2016-10-01

    This paper presents 2-D numerical simulation results of single-event burnout (SEB) in power trench accumulation mode field effect transistor (ACCUFET) for the first time. In this device, a p+ base region is used to deplete the n- base region to achieve a low leakage current density, and the blocking voltage is supported by the n- drift region. We find that the depth of the p+ base region determines both the leakage current density and SEB performance, as a result, there is a tradeoff relationship between the two characteristics. The 60 V hardened power ACCUFET shown in this paper could demonstrate much better SEB performance without sacrificing the current handling capability compared with the standard UMOSFET. The hardened structure mentioned in this paper indicates that an n buffer layer is added between the epitaxial layer and substrate layer based on a basic power device. As a result, the safe operating area (SOA) of the 60 V, 80 V and 100 V hardened ACCUFET discussed in this paper could reach the value of breakdown voltage when the buffer layer is over a certain value, that can realize safety operation throughout entire LET range.

  14. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  15. High thermoelectricpower factor in graphene/hBN devices

    PubMed Central

    Duan, Junxi; Wang, Xiaoming; Lai, Xinyuan; Li, Guohong; Taniguchi, Takashi; Zebarjadi, Mona; Andrei, Eva Y.

    2016-01-01

    Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene’s extraordinary heat conduction, active cooling has not been considered feasible due to graphene’s low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2. We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m−1⋅K−1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m−1⋅K−1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m−1⋅K−1, in MoS2. We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices. PMID:27911824

  16. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  17. Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing.

    PubMed

    Liu, Ruiyuan; Kuang, Xiao; Deng, Jianan; Wang, Yi-Cheng; Wang, Aurelia C; Ding, Wenbo; Lai, Ying-Chih; Chen, Jun; Wang, Peihong; Lin, Zhiqun; Qi, H Jerry; Sun, Baoquan; Wang, Zhong Lin

    2018-02-01

    Growing demand in portable electronics raises a requirement to electronic devices being stretchable, deformable, and durable, for which functional polymers are ideal choices of materials. Here, the first transformable smart energy harvester and self-powered mechanosensation sensor using shape memory polymers is demonstrated. The device is based on the mechanism of a flexible triboelectric nanogenerator using the thermally triggered shape transformation of organic materials for effectively harvesting mechanical energy. This work paves a new direction for functional polymers, especially in the field of mechanosensation for potential applications in areas such as soft robotics, biomedical devices, and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical-to-Electricity Carbon: Water Device.

    PubMed

    He, Sisi; Zhang, Yueyu; Qiu, Longbin; Zhang, Longsheng; Xie, Yun; Pan, Jian; Chen, Peining; Wang, Bingjie; Xu, Xiaojie; Hu, Yajie; Dinh, Cao Thang; De Luna, Phil; Banis, Mohammad Norouzi; Wang, Zhiqiang; Sham, Tsun-Kong; Gong, Xingao; Zhang, Bo; Peng, Huisheng; Sargent, Edward H

    2018-05-01

    The ability to release, as electrical energy, potential energy stored at the water:carbon interface is attractive, since water is abundant and available. However, many previous reports of such energy converters rely on either flowing water or specially designed ionic aqueous solutions. These requirements restrict practical application, particularly in environments with quiescent water. Here, a carbon-based chemical-to-electricity device that transfers the chemical energy to electrical form when coming into contact with quiescent deionized water is reported. The device is built using carbon nanotube yarns, oxygen content of which is modulated using oxygen plasma-treatment. When immersed in water, the device discharges electricity with a power density that exceeds 700 mW m -2 , one order of magnitude higher than the best previously published result. X-ray absorption and density functional theory studies support a mechanism of operation that relies on the polarization of sp 2 hybridized carbon atoms. The devices are incorporated into a flexible fabric for powering personal electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-performance shape-engineerable thermoelectric painting

    PubMed Central

    Park, Sung Hoon; Jo, Seungki; Kwon, Beomjin; Kim, Fredrick; Ban, Hyeong Woo; Lee, Ji Eun; Gu, Da Hwi; Lee, Se Hwa; Hwang, Younghun; Kim, Jin-Sang; Hyun, Dow-Bin; Lee, Sukbin; Choi, Kyoung Jin; Jo, Wook; Son, Jae Sung

    2016-01-01

    Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm−2. This approach paves the way to designing materials and devices that can be easily transferred to other applications. PMID:27834369

  20. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter

    NASA Astrophysics Data System (ADS)

    Akimchenko, Alina; Chepurnov, Victor; Dolgopolov, Mikhail; Gurskaya, Albina; Kuznetsov, Oleg; Mashnin, Alikhan; Radenko, Vitaliy; Radenko, Alexander; Surnin, Oleg; Zanin, George

    2017-10-01

    The miniature and low-power devices with long service life in hard operating conditions like the Carbon-14 beta-decay energy converters indeed as eternal resource for integrated MEMS and NEMS are considered. Authors discuss how to create the power supply for MEMS/NEMS devices, based on porous SiC/Si structure, which are tested to be used as the beta-decay energy converters of radioactive C-14 into electrical energy. This is based on the silicon carbide obtaining by self-organizing mono 3C-SiC endotaxy on the Si substrate. The new idea is the C-14 atoms including in molecules in the silicon carbide porous structure by this technology, which will increase the efficiency of the converter due to the greater intensity of electron-hole pairs generation rate in the space charge region. The synthesis of C-14 can be also performed by using the electronically controlled magneto-optic chamber.

  1. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  2. Fast Risetime Reverse Bias Pulse Failures in SiC PN Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian; Parsons, James D.

    1996-01-01

    SiC-based high temperature power devices are being developed for aerospace systems which will require high reliability. One behavior crucial to power device reliability. To date, it has necessarily been assumed to date is that the breakdown behavior of SiC pn junctions will be similar to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous unreliable reverse breakdown behavior in moderately doped (2-3 x 10(exp 17) cm(exp -3)) small-area 4H- and 6H-SiC pn junction diodes at temperatures ranging from 298 K (25 C) to 873 K (600 C). We propose a mechanism in which carrier emission from un-ionized dopants and deep level defects leads to this unstable behavior. The fundamental instability mechanism is applicable to all wide bandgap semiconductors whose dopants are significantly un-ionized at typical device operating temperatures.

  3. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Simon, Patrice; Fabre, Norbert; Mesnilgrente, Fabien; Conédéra, Véronique; Durou, Hugo

    Carbon-based micro-supercapacitors dedicated to energy storage in self-powered modules were fabricated with inkjet printing technology on silicon substrate. An ink was first prepared by mixing an activated carbon powder with a PTFE polymer binder in ethylene glycol stabilized with a surfactant then deposited by inkjet on patterned gold current collectors with the substrate heated at 140 °C in order to assure a good homogeneity. Electrochemical micro-capacitors with electrodes in an interdigital configuration were fabricated, and characterized using electrochemical techniques in 1 M Et 4NBF 4 propylene carbonate electrolyte. These micro-devices show an excellent capacitive behavior over a wide potential range of 2.5 V for a cell capacitance of 2.1 mF cm -2. The newly developed technology will allow the integration of the storage device as close as possible to the MEMS-based energy harvesting device, minimizing power losses through connections.

  4. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals.

    PubMed

    Ren, Bo; Or, Siu Wing; Wang, Feifei; Zhao, Xiangyong; Luo, Haosu; Li, Xiaobing; Zhang, Qinhui; Di, Wenning; Zhang, Yaoyao

    2010-06-01

    In this paper we theoretically and experimentally present a nonresonant vibration energy harvesting device based on the shear mode of 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals. The electrical properties of the energy harvesting device were evaluated using an analytical method. Good consistency was obtained between the analytical and experimental results. Under a mass load of 200 g, a peak voltage of 11.3 V and maximum power of 0.70 mW were obtained at 500 Hz when connecting a matching load resistance of 91 komega. A high output could always be obtained within a very wide frequency range. The results demonstrate the potential of the device in energy harvesting applied to low-power portable electronics and wireless sensors.

  5. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    PubMed Central

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  6. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  7. Creating compact and microscale features in paper-based devices by laser cutting.

    PubMed

    Mahmud, Md Almostasim; Blondeel, Eric J M; Kaddoura, Moufeed; MacDonald, Brendan D

    2016-11-14

    In this work we describe a fabrication method to create compact and microscale features in paper-based microfluidic devices using a CO 2 laser cutting/engraving machine. Using this method we are able to produce the smallest features with the narrowest barriers yet reported for paper-based microfluidic devices. The method uses foil backed paper as the base material and yields inexpensive paper-based devices capable of using small fluid sample volumes and thus small reagent volumes, which is also suitable for mass production. The laser parameters (power and laser head speed) were adjusted to minimize the width of hydrophobic barriers and we were able to create barriers with a width of 39 ± 15 μm that were capable of preventing cross-barrier bleeding. We generated channels with a width of 128 ± 30 μm, which we found to be the physical limit for small features in the chromatography paper we used. We demonstrate how miniaturizing of paper-based microfluidic devices enables eight tests on a single bioassay device using only 2 μL of sample fluid volume.

  8. Design and implementation of power efficient 10-bit dual port SRAM on 28 nm technology

    NASA Astrophysics Data System (ADS)

    Gulati, Anmol; Gupta, Ashutosh; Murgai, Shruti; Bhaskar, Lala

    2016-03-01

    In this paper, 10 bit synchronous clock gated Dual port RAM has been designed. The negative latch based clock gating technique has been employed to optimize the power of the design. The design has been implemented on XV7K70T device, -3 speed grade, and kintex 7 FPGA family on Xilinx ISE Design Suite 14.7 using 28 nm technology. The design has been synthesized using Verilog HDL. We have been successful in achieving approximately 55 % reduction in total clock power, 81.55% reduction in BRAM power, 82.65%, 0.07%, 1.04% and 11.31% reduction in static power, 72.32%, 38.60%, 68.74% and 71.97%, reduction in dynamic power and 72.44%, 16.96%, 60.88% and 71.06% reduction in total supply power at 1 THz, 1GHz, 100 GHz and 1000 GHz frequency respectively. The power of the device has been calculated using XPower Analyzer tool of Xilinx ISE Design Suite 14.7.

  9. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  10. A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power

    PubMed Central

    Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832

  11. 21 CFR 872.4465 - Gas-powered jet injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-powered jet injector. 872.4465 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4465 Gas-powered jet injector. (a) Identification. A gas-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is...

  12. 21 CFR 872.4465 - Gas-powered jet injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-powered jet injector. 872.4465 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4465 Gas-powered jet injector. (a) Identification. A gas-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is...

  13. 21 CFR 886.5120 - Low-power binocular loupe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-power binocular loupe. 886.5120 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5120 Low-power binocular loupe. (a) Identification. A low-power binocular loupe is a device that consists of two eyepieces, each with a lens or lens...

  14. Improvements to tapered semiconductor MOPA laser design and testing

    NASA Astrophysics Data System (ADS)

    Beil, James A.; Shimomoto, Lisa; Swertfeger, Rebecca B.; Misak, Stephen M.; Campbell, Jenna; Thomas, Jeremy; Renner, Daniel; Mashanovitch, Milan; Leisher, Paul O.; Liptak, Richard W.

    2018-02-01

    This paper expands on previous work in the field of high power tapered semiconductor amplifiers and integrated master oscillator power amplifier (MOPA) devices. The devices are designed for watt-class power output and single-mode operation for free-space optical communication. This paper reports on improvements to the fabrication of these devices resulting in doubled electrical-to-optical efficiency, improved thermal properties, and improved spectral properties. A newly manufactured device yielded a peak power output of 375 mW continuous-wave (CW) at 3000 mA of current to the power amplifier and 300 mA of current to the master oscillator. This device had a peak power conversion efficiency of 11.6% at 15° C, compared to the previous device, which yielded a peak power conversion efficiency of only 5.0% at 15° C. The new device also exhibited excellent thermal and spectral properties, with minimal redshift up to 3 A CW on the power amplifier. The new device shows great improvement upon the excessive self-heating and resultant redshift of the previous device. Such spectral improvements are desirable for free-space optical communications, as variation in wavelength can degrade signal quality depending on the detectors being used and the medium of propagation.

  15. 77 FR 32642 - Medical Devices; Exemption From Premarket Notification: Powered Patient Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ...] Medical Devices; Exemption From Premarket Notification: Powered Patient Transport AGENCY: Food and Drug... transport devices commonly known as stairlifts. These devices are used to assist transfers of a mobility... behalf of Bruno Independent Living Aids, Inc., for powered patient transport devices (commonly known as...

  16. 75 FR 70112 - Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered Suction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Suction Apparatus Device Intended for Negative Pressure Wound Therapy AGENCY: Food and Drug Administration...- powered suction apparatus device intended for negative pressure wound therapy (NPWT) into class II... ``Class II Special Controls Guidance Document: Non-Powered Suction Apparatus Device Intended for Negative...

  17. Low-loss ultracompact optical power splitter using a multistep structure.

    PubMed

    Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad

    2010-04-01

    We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.

  18. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  19. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  20. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  1. Knowledge Distribution and Power Relations in HIV-Related Education and Prevention for Gay Men: An Application of Bernstein to Australian Community-Based Pedagogical Devices

    ERIC Educational Resources Information Center

    McInnes, David; Murphy, Dean

    2011-01-01

    This paper seeks to make a theoretical and analytic intervention into the field of HIV-related education and prevention by applying the pedagogy framework of Basil Bernstein to a series of pedagogical devices developed and used in community-based programmes targeting gay men in Australia. The paper begins by outlining why it is such an…

  2. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  3. Concentrated solar power generation using solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  4. Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj

    2010-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.

  5. Finger-Powered Electro-Digital-Microfluidics.

    PubMed

    Peng, Cheng; Ju, Y Sungtaek

    2017-01-01

    Portable microfluidic devices are promising for point-of-care (POC) diagnosis and bio- and environmental surveillance in resource-constrained or non-laboratory environments. Lateral-flow devices, some built off paper or strings, have been widely developed but the fixed layouts of their underlying wicking/microchannel structures limit their flexibility and present challenges in implementing multistep reactions. Digital microfluidics can circumvent these difficulties by addressing discrete droplets individually. Existing approaches to digital microfluidics, however, often require bulky power supplies/batteries and high voltage circuits. We present a scheme to drive digital microfluidic devices by converting mechanical energy of human fingers to electrical energy using an array of piezoelectric elements. We describe the integration our scheme into two promising digital microfluidics platforms: one based on the electro-wetting-on-dielectric (EWOD) phenomenon and the other on the electrophoretic control of droplet (EPD). Basic operations of droplet manipulations, such as droplet transport, merging and splitting, are demonstrated using the finger-powered digital-microfluidics.

  6. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  7. Fully solution-processed, transparent organic power-generating polarizer

    NASA Astrophysics Data System (ADS)

    Chou, Wei-Yu; Hsu, Fang-Chi; Chen, Yang-Fang

    2017-03-01

    We fabricate transparent organic power-generating polarizer by all solution process. Based on the conventional indium-tin-oxide-coated glass as the bottom cathode, the subsequent layers are prepared by a combination of solution processing methods. Sprayed silver nanowires film serves as the top anode and can transmit greater than 80% of the visible light with sheet resistance of 16 Ω/□. By adopting the quasi-bilayer structure for the photoactive layer composed of rubbed polymer donors to produce anisotropic optical property underneath fullerene acceptors, the finished device demonstrates a power conversion efficiency of 1.36% with unpolarized light, a dichroic ratio of 3.2, and a high short circuit current ratio of 2.6 with polarized light. Our proposed fabrication procedures of devices take into account not only the cost-effective production, but also the flexibility of devices for applying in flexible, scalable circuits to advance the development of future technology.

  8. A Systematic Review of Tablet Computers and Portable Media Players as Speech Generating Devices for Individuals with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Lorah, Elizabeth R.; Parnell, Ashley; Whitby, Peggy Schaefer; Hantula, Donald

    2015-01-01

    Powerful, portable, off-the-shelf handheld devices, such as tablet based computers (i.e., iPad®; Galaxy®) or portable multimedia players (i.e., iPod®), can be adapted to function as speech generating devices for individuals with autism spectrum disorders or related developmental disabilities. This paper reviews the research in this new and rapidly…

  9. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  10. Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch

    NASA Astrophysics Data System (ADS)

    Rizal, C. S.; Niraula, B.

    2018-03-01

    A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.

  11. GaN-based superluminescent diodes with long lifetime

    NASA Astrophysics Data System (ADS)

    Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.

    2016-02-01

    We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.

  12. GaN-on-Silicon - Present capabilities and future directions

    NASA Astrophysics Data System (ADS)

    Boles, Timothy

    2018-02-01

    Gallium Nitride, in the form of epitaxial HEMT transistors on various substrate materials, is the newest and most promising semiconductor technology for high performance devices in the RF, microwave, and mmW arenas. This is particularly true for GaN-on-Silicon based devices and MMIC's which enable both state-of-the-art high frequency functionality and the ability to scale production into large wafer diameter CMOS foundries. The design and development of GaN-on-Silicon structures and devices will be presented beginning with the basic material parameters, growth of the required epitaxial construction, and leading to the fundamental operational theory of high frequency, high power HEMTs. In this discussion comparisons will be made with alternative substrate materials with emphasis on contrasting the inherent advantages of a silicon based system. Theory of operation of microwave and mmW high power HEMT devices will be presented with special emphasis on fundamental limitations of device performance including inherent frequency limiting transit time analysis, required impedance transformations, internal and external parasitic reactance, thermal impedance optimization, and challenges improved by full integration into monolithic MMICs. Lastly, future directions for implementing GaN-on-Silicon into mainstream CMOS silicon semiconductor technologies will be discussed.

  13. A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.

    PubMed

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-04-15

    The integration of supercapacitors with enzymatic biofuel cells (BFCs) can be used to prepare hybrid devices in order to harvest significantly higher power output. In this study, a supercapacitor/biofuel cell hybrid device was prepared by the immobilisation of redox enzymes with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer [Os(2,2'-bipyridine) 2 (polyvinylimidazole) 10 Cl] +/2+ (Os(bpy) 2 PVI) on dealloyed nanoporous gold. The thickness of the deposition layer can be easily controlled by tuning the deposition conditions. Once charged by the internal BFC, the device can be discharged as a supercapacitor at a current density of 2mAcm -2 providing a maximum power density of 608.8μWcm -2 , an increase of a factor of 468 when compared to the power output from the BFC itself. The hybrid device exhibited good operational stability for 50 charge/discharge cycles and ca. 7h at a discharge current density of 0.2mAcm -2 . The device could be used as a pulse generator, mimicking a cardiac pacemaker delivering pulses of 10μA for 0.5ms at a frequency of 0.2Hz. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Wide-Bandgap CIAS Thin-film Photovoltaics with Transparent Back Contacts for Next-Generation Single and Multijunction Devices

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine

    2005-01-01

    Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.

  15. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  16. Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks

    PubMed Central

    Leon-Gil, Jesus A.; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J.; Tovar-Padilla, Marco; Cardona-Castro, M. Antonia; Alvarez-Quintana, Jaime

    2018-01-01

    Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft–Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations. PMID:29510482

  17. Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.

    PubMed

    Leon-Gil, Jesus A; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J; Tovar-Padilla, Marco; Cardona-Castro, M Antonia; Morales-Sánchez, Alfredo; Alvarez-Quintana, Jaime

    2018-03-03

    Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.

  18. Low Power Wireless Smoke Alarm System in Home Fires

    PubMed Central

    Luis, Juan Aponte; Galán, Juan Antonio Gómez; Espigado, Javier Alcina

    2015-01-01

    A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects. PMID:26307994

  19. Low Power Wireless Smoke Alarm System in Home Fires.

    PubMed

    Aponte Luis, Juan; Gómez Galán, Juan Antonio; Alcina Espigado, Javier

    2015-08-21

    A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects.

  20. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  1. ECG R-R peak detection on mobile phones.

    PubMed

    Sufi, F; Fang, Q; Cosic, I

    2007-01-01

    Mobile phones have become an integral part of modern life. Due to the ever increasing processing power, mobile phones are rapidly expanding its arena from a sole device of telecommunication to organizer, calculator, gaming device, web browser, music player, audio/video recording device, navigator etc. The processing power of modern mobile phones has been utilized by many innovative purposes. In this paper, we are proposing the utilization of mobile phones for monitoring and analysis of biosignal. The computation performed inside the mobile phone's processor will now be exploited for healthcare delivery. We performed literature review on RR interval detection from ECG and selected few PC based algorithms. Then, three of those existing RR interval detection algorithms were programmed on Java platform. Performance monitoring and comparison studies were carried out on three different mobile devices to determine their application on a realtime telemonitoring scenario.

  2. Method and system for a gas tube-based current source high voltage direct current transmission system

    DOEpatents

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  3. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  4. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical transport properties since such systems are halfmetallic in nature and promise the possibilities of spin injection and detection. The study was extended to dilute magnetic semiconducting nanowire system of Cd1-xMnxTe which possess both magnetic and semiconducting properties. In summary, the studies made in this thesis will offer a new understanding of spin transport behavior for future technology.

  5. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  6. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  7. Towards Scalable Graph Computation on Mobile Devices.

    PubMed

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2014-10-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.

  8. Towards Scalable Graph Computation on Mobile Devices

    PubMed Central

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  9. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  10. A chiral-based magnetic memory device without a permanent magnet

    PubMed Central

    Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081

  11. A chiral-based magnetic memory device without a permanent magnet.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.

  12. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, F.D.; Elshabini, A.

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics requiredmore » by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.« less

  13. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  14. Fabrication and testing of unileg oxide thermoelectric device

    NASA Astrophysics Data System (ADS)

    Sharma, Jyothi; Purohit, R. D.; Prakash, Deep; Sinha, P. K.

    2017-05-01

    A prototype of oxide thermoelectric unileg device was fabricated. This device was based on only n-legs made of La doped calcium manganate. The powder was synthesized, characterised and consolidated in rectangular thermoelements. A 3×3 device was fabricated by fitting 9 rectangular bars in alumina housing and connected by silver strips. The device has been tested under large temperature difference (ΔT=480°C) using an indegenous system. An open circuit voltage of 468 mV was obtained for a nine leg `unileg' device. The device exhibits a internal resistance of ˜1Ω. The maximum power output for this nine leg device reached upto 50 mW in these working condition.

  15. THz semiconductor-based front-end receiver technology for space applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Siegel, Peter

    2004-01-01

    Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.

  16. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers.

    PubMed

    Chen, Xi; Xu, Shiyou; Yao, Nan; Shi, Yong

    2010-06-09

    Energy harvesting technologies that are engineered to miniature sizes, while still increasing the power delivered to wireless electronics, (1, 2) portable devices, stretchable electronics, (3) and implantable biosensors, (4, 5) are strongly desired. Piezoelectric nanowire- and nanofiber-based generators have potential uses for powering such devices through a conversion of mechanical energy into electrical energy. (6) However, the piezoelectric voltage constant of the semiconductor piezoelectric nanowires in the recently reported piezoelectric nanogenerators (7-12) is lower than that of lead zirconate titanate (PZT) nanomaterials. Here we report a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 microm, were aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 microW, respectively.

  17. LASER BIOLOGY AND MEDICINE: Medical instruments based on high-power diode and fibre lasers

    NASA Astrophysics Data System (ADS)

    Gapontsev, V. P.; Minaev, V. P.; Savin, V. I.; Samartsev, I. E.

    2002-11-01

    The characteristics and possible applications of scalpels based on diode and fibre lasers emitting at 0.97, 1.06, 1.56, and 1.9 μm, which are produced and developed by the IRE-Polyus Co., are presented. The advantages of such devices and the possibilities for increasing their output power and extending their spectral range are shown.

  18. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    PubMed

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  19. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  20. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    NASA Technical Reports Server (NTRS)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  1. Multifunctional Device based on phosphor-piezoelectric PZT: lighting, speaking, and mechanical energy harvesting.

    PubMed

    Lee, Sunghoon; Kang, Taewook; Lee, Wunho; Afandi, Mohammad M; Ryu, Jongho; Kim, Jongsu

    2018-01-10

    We demonstrated the tri-functional device based on all powder-processing methods by using ZnS powder as phosphor layer and piezoelectric material as dielectric layer. The fabricated device generated the electroluminescent (EL) light from phosphor and the sound from piezoelectric sheet under a supply of external electric power, and additionally harvested the reverse-piezoelectric energy to be converted into EL light. Under sinusoidal applied voltage, EL luminances were exponentially increased with a maximum luminous efficiency of 1.3 lm/W at 40 V and 1,000 Hz, and sound pressure levels (SPLs) were linearly increased. The EL luminances were linearly dependent on applied frequency while the SPLs showed the parabolic increase behavior below 1,000 Hz and then the flat response. The temperature dependence on EL luminances and SPLs was demonstrated; the former was drastically increased and the latter was slightly decreased with the increase of temperature. Finally, as an energy harvesting application, the piezoelectric-induced electroluminescence effect was demonstrated by applying only mechanical pressure to the device without any external electric power.

  2. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  3. Lateral power MOSFETs in silicon carbide

    NASA Astrophysics Data System (ADS)

    Spitz, Jan

    2001-07-01

    Because of its large bandgap, its high critical electric field, and its high quality native SiO2, silicon carbide is considered to be the material of choice for power switching electronics in the future. Until 1997 the maximum thickness of commercially available epilayers serving as the drift region for power devices has been limited to 10--15 mum, limiting the maximum blocking voltage to 1500 V for vertical power devices in silicon carbide. In this study, we present the first lateral power devices on a semi-insulating vanadium doped substrate of silicon carbide. The first generation of lateral DMOSFETs in 4H-SiC yielded a blocking voltage of 2.6 kV---more than twice what was previously reported for any SiC MOSFETs---but suffered from low MOS channel mobility caused by the high anneal temperatures (≥1600°C) required to activate the p-type ion-implant. Combining the high blocking-voltage of the vanadium-doped substrate with the higher MOS mobility previously achieved by an epitaxially-grown accumulation channel leads us to the LACCUFET device: No p-type implant is necessary. This device shows a blocking voltage of 2.7 kV unmatched by any SiC transistor until February 2000 combined with a much lower specific on-resistance of 3.6 O•cm2. The ability to combine long-channel test MOSFETs with high channel mobility of 27 cm2/(volt·sec) in 4H-SiC with power devices of 13 cm2/(volt·sec) on the same chip has been demonstrated. The Figure of Merit Vblock 2/Ron,sp for this new NON-RESURF LDMOSFET in 4H-SiC is close to the theoretical limit for vertical power devices made of silicon. The specific on-resistance can be reduced by factor 2.5 by forward-biasing the p-base to source junction by 2 to 3 volts. Basic operation in Static Induction Injection Accumulation FET (SIAFET) mode has been demonstrated. Lateral (Non-Punch-Through) Insulated Gate Bipolar Transistors (LIGBT) have been presented for the first time showing similar on-resistance and blocking voltages but significantly higher on-currents for both 4H and 6H-SiC devices compared to their MOSFET counterparts. Test p-i-n diodes show lower on-resistance by carrier injection into the drift region.

  4. Silicon, germanium, and III-V-based tunneling devices for low-power applications

    NASA Astrophysics Data System (ADS)

    Smith, Joshua T.

    While the scaling of transistor dimensions has kept pace with Moore's Law, the voltages applied to these devices have not scaled in tandem, giving rise to ever-increasing power/heating challenges in state-of-the-art integrated circuits. A primary reason for this scaling mismatch is due to the thermal limit---the 60 mV minimum required at room temperature to change the current through the device by one order of magnitude. This voltage scaling limitation is inherent in devices that rely on the mechanism of thermal emission of charge carriers over a gate-controlled barrier to transition between the ON- and OFF-states, such as in the case of conventional CMOS-based technologies. To overcome this voltage scaling barrier, several steep-slope device concepts have been pursued that have experimentally demonstrated sub-60-mV/decade operation since 2004, including the tunneling-field effect transistor (TFET), impact ionization metal-oxide-semiconductor (IMOS), suspended-gate FET (SG-FET), and ferroelectric FET (Fe-FET). These reports have excited strong efforts within the semiconductor research community toward the realization of a low-power device that will support continued scaling efforts, while alleviating the heating issues prevalent in modern computer chips. Literature is replete with claims of sub-60-mV/decade operation, but often with neglect to other voltage scaling factors that offset this result. Ideally, a low-power device should be able to attain sub-60-mV/decade inverse subthreshold slopes (S) employing low supply and gate voltages with a foreseeable path toward integration. This dissertation describes the experimental development and realization of CMOS-compatible processes to enhance tunneling efficiency in Si and Si/Ge nanowire (NW) TFETs for improved average S (S avg) and ON-currents (ION), and a novel, III-V-based tunneling device alternative is also proposed. After reviewing reported efforts on the TFET, IMOS, and SG-FET, the TFET is highlighted as the most promising low-power device candidate, owing to its potential to operate within small supply and gate voltage windows. In a critical analysis of the TFET, the advantages of 1-D systems, such as NWs, that can potentially access the so-called quantum capacitance limit (QCL) are discussed, and the remaining challenges for TFETs, such as source/channel doping abruptness, and material tradeoffs are considered. To this end, substantial performance improvements, as measured by Savg and ION, are experimentally realized in top-down fabricated Si NW-TFET arrays by systematically varying the annealing process used to enhance doping abruptness at the source/channel junction---a critical feature for maximizing tunneling efficiency. A combination of excimer laser annealing (ELA) and a low-temperature rapid thermal anneal (LT-RTA) are identified as an optimum choice, resulting in a 36% decrease in Savg as well as ˜500% improvement in ION over the conventional RTA approach. Extrapolation of these results with simulation shows that sub-60-mV/decade operation is possible on a Si-based platform for aggressively scaled, yet realistic, NW-TFET devices. Back-gated NW-FET measurements are also presented to assess the material quality of Ge/Si core/shell NW heterostructures with an n+-doped shell, and these NWs are found to be suitable building blocks for the fabrication of more efficient TFET systems, owing to the very abrupt doping profile at the shell/core (source/channel) interface and smaller bandgap/effective mass of the Ge channel. Finally, low current levels in conventional TFETs have recently led researchers to re-examine III-V heterostructures, particularly those with a broken-gap band alignment to allow a tunneling probability near unity. Along these lines, a novel tunnel-based alternative is presented---the broken-gap tunnel MOS---that enables a constant S < 60 mV/decade. The proposed device permits the use of 2-D device architectures without degradation of S given the source-controlled operation mechanism, while simultaneously avoiding undesirable nonlinearities in the output characteristics.

  5. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    NASA Astrophysics Data System (ADS)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  6. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  7. Seismic isolation device having charging function by a transducer

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki

    2016-04-01

    In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.

  8. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.

    2014-05-01

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  9. Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices.

    PubMed

    Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo

    2017-02-20

    We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

  10. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  11. Integrated fiber-coupled launcher for slow plasmon-polariton waves.

    PubMed

    Della Valle, Giuseppe; Longhi, Stefano

    2012-01-30

    We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.

  12. Benzocyclobutene-based electric micromachines supported on microball bearings: Design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Modafe, Alireza

    This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.

  13. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-06-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  14. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  15. Estimation and harvesting of human heat power for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Dziurdzia, P.; Brzozowski, I.; Bratek, P.; Gelmuda, W.; Kos, A.

    2016-01-01

    The paper deals with the issue of self-powered wearable electronic devices that are capable of harvesting free available energy dissipated by the user in the form of human heat. The free energy source is intended to be used as a secondary power source supporting primary battery in a sensor bracelet. The main scope of the article is a presentation of the concept for a measuring setup used to quantitative estimation of heat power sources in different locations over the human body area. The crucial role in the measurements of the human heat plays a thermoelectric module working in the open circuit mode. The results obtained during practical tests are confronted with the requirements of the dedicated thermoelectric generator. A prototype design of a human warmth energy harvester with an ultra-low power DC-DC converter based on the LTC3108 circuit is analysed.

  16. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  17. Influence of TCSC Devices on Congestion Management in a Deregulated Power System Using Evolutionary Programming Technique

    NASA Astrophysics Data System (ADS)

    Ananthichristy, A., Dr.; Elanthirayan, R.; Brindha, R., Dr.; Siddhiq, M. S.; Venkatesh, N.; Harshit, M. V.; Nikhilreddy, M.

    2018-04-01

    Congestion management is one of the technical challenges in power system deregulation. In deregulated electricity market it may always not be possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. Transmission congestion occurs when there is insufficient transmission capacity to simultaneously accommodate all constraints for transmission of a line. Flexible Alternative Current Transmission System (FACTS) devices can be an alternative to reduce the flows in the heavily loaded lines, resulting in an increased loadability, low system loss, improved stability of the network, reduced cost of production and fulfilled contractual requirement by controlling the power flow in the network. A method to determine the optimal location of FACTS has been suggested based on reduction of total system VAR power losses. The simulation was done on IEEE 14 bus system and results were obtained.

  18. Thermal and Power Challenges in High Performance Computing Systems

    NASA Astrophysics Data System (ADS)

    Natarajan, Venkat; Deshpande, Anand; Solanki, Sudarshan; Chandrasekhar, Arun

    2009-05-01

    This paper provides an overview of the thermal and power challenges in emerging high performance computing platforms. The advent of new sophisticated applications in highly diverse areas such as health, education, finance, entertainment, etc. is driving the platform and device requirements for future systems. The key ingredients of future platforms are vertically integrated (3D) die-stacked devices which provide the required performance characteristics with the associated form factor advantages. Two of the major challenges to the design of through silicon via (TSV) based 3D stacked technologies are (i) effective thermal management and (ii) efficient power delivery mechanisms. Some of the key challenges that are articulated in this paper include hot-spot superposition and intensification in a 3D stack, design/optimization of thermal through silicon vias (TTSVs), non-uniform power loading of multi-die stacks, efficient on-chip power delivery, minimization of electrical hotspots etc.

  19. Simulation study of a high power density rectenna array for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  20. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.; Kuball, Martin

    2015-12-01

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  1. High thermal stability fluorene-based hole-injecting material for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Li, Lu; Jiao, Bo; Li, Sanfeng; Ma, Lin; Yu, Yue; Wu, Zhaoxin

    2016-03-01

    Novel N1,N3,N5-tris(9,9-diphenyl-9H-fluroen-2-yl)-N1,N3,N5-triphenylbenzene-1,3,5-triamine (TFADB) was synthesized and characterized as a hole-injecting material (HIM) for organic light-emitting devices (OLEDs). By incorporating fluorene group TFADB shows a high glass-transition temperature Tg > 168 °C, indicative of excellent thermal stability. TFADB-based devices exhibited the highest performance in terms of the maximum current efficiency (6.0 cd/A), maximum power efficiency (4.0 lm/W), which is improved than that of the standard device based on 4-4‧-4″Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (2T-NATA) (5.2 cd/A, 3.6 lm/W). This material could be a promising hole-injecting material, especially for the high temperature applications of OLEDs and other organic electronic devices.

  2. Marine and Hydrokinetic Research | Water Power | NREL

    Science.gov Websites

    . Resource Characterization and Maps NREL develops measurement systems, simulation tools, and web-based models and tools to evaluate the economic potential of power-generating devices for all technology Acceleration NREL analysts study the potential impacts that developing a robust MHK market could have on

  3. 21 CFR 872.6865 - Powered toothbrush.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... remove adherent plaque and food debris from the teeth to reduce tooth decay. (b) Classification. Class I... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6865 Powered toothbrush. (a) Identification. A powered...

  4. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-11-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  5. Silicon-compatible high-hole-mobility transistor with an undoped germanium channel for low-power application

    NASA Astrophysics Data System (ADS)

    Cho, Seongjae; Man Kang, In; Rok Kim, Kyung; Park, Byung-Gook; Harris, James S.

    2013-11-01

    In this work, Ge-based high-hole-mobility transistor with Si compatibility is designed, and its performance is evaluated. A 2-dimensional hole gas is effectively constructed by a AlGaAs/Ge/Si heterojunction with a sufficiently large valence band offset. Moreover, an intrinsic Ge channel is exploited so that high hole mobility is preserved without dopant scattering. Effects of design parameters such as gate length, Ge channel thickness, and aluminum fraction in the barrier material on device characteristics are thoroughly investigated through device simulations. A high on-current above 30 μA/μm along with a low subthreshold swing was obtained from an optimized planar device for low-power applications.

  6. 760 nm high-performance VCSEL growth and characterization

    NASA Astrophysics Data System (ADS)

    Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer

    2006-04-01

    High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.

  7. Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Miranda, Felix Antonio (Inventor)

    2007-01-01

    A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.

  8. Wireless power and data transmission strategies for next-generation capsule endoscopes

    NASA Astrophysics Data System (ADS)

    Puers, R.; Carta, R.; Thoné, J.

    2011-05-01

    Capsular endoscopy is becoming increasingly popular as an alternative to traditional gastro-intestinal (GI) examination techniques. However, the breakthrough of these devices is hindered by the limited amount of power that can be stored in a tiny pill. Most commercial devices use two watch batteries that can only provide an average power of 25 mW for about 6 h, certainly not sufficient for advanced robotic features. A dedicated inductive powering system, operating at 1 MHz to limit the human body absorption, has been developed which was proven to support the transfer of over 300 mW. The system relies on a condensed set of orthogonal ferrite coils, embedded in the capsule, and an external unit based on a Helmholtz coil driven by a class E amplifier. Control data can be sent through the inductive link by modulating the power carrier, whereas a dedicated high data rate RF link is used to transfer the images from the capsule to the base station. Besides evaluating the compatibility with radio transmission, several demonstrators were assembled combining the wireless powering system with various locomotion strategies and LED illumination. This paper describes the design and implementation of the inductive powering system, its combination with data transmission techniques and the testing activity with other capsule-dedicated modules.

  9. Gallium nitride vertical power devices on foreign substrates: a review and outlook

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás

    2018-07-01

    Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.

  10. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  11. Model experiments to evaluate vortex dissipation devices proposed for installation on or near aircraft runways

    NASA Technical Reports Server (NTRS)

    Kohl, R. E.

    1973-01-01

    The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.

  12. Thin-Film Solar Cells on Polymer Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Hepps, A. F.; McNatt, Jeremiah; Morel, D. L.; Ferckides, C. S.; Jin, M. H.; Orbey, N.; Cushman, M.; Birkmire, R. W.; Shafarman, W. N.; Newton, R.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. Solar cells based on thin-film materials offer the promise of much higher MSP and much lower cost. However, for many space applications, a 20% or greater AM0 efficiency (eta) may be required. The leading thin-film materials, amorphous Si, CuInSe, and CdTe have seen significant advances in efficiency over the last decade but will not achieve the required efficiency in the near future. Several new technologies are herein described to maximize both device eta and MSP. We will discuss these technologies in the context of space exploration and commercialization. One novel approach involves the use of very lightweight polyimide substrates. We describe efforts to enable this advance including materials processing and device fabrication and characterization. Another approach involves stacking two cells on top of each other. These tandem devices more effectively utilize solar radiation by passing through non-absorbed longer wavelength light to a narrow-bandgap bottom cell material. Modeling of current devices in tandem format indicates that AM0 efficiencies near 20% can be achieved with potential for 25% in the near future. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Recent advances will be stressed.

  13. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed. This cellular system implements entirely distributed control, and achieves performance levels unattainable with an equivalent single converter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. Understanding nonlinear vibration behaviours in high-power ultrasonic surgical devices

    PubMed Central

    Mathieson, Andrew; Cardoni, Andrea; Cerisola, Niccolò; Lucas, Margaret

    2015-01-01

    Ultrasonic surgical devices are increasingly used in oral, craniofacial and maxillofacial surgery to cut mineralized tissue, offering the surgeon high accuracy with minimal risk to nerve and vessel tissue. Power ultrasonic devices operate in resonance, requiring their length to be a half-wavelength or multiple-half-wavelength. For bone surgery, devices based on a half-wavelength have seen considerable success, but longer multiple-half-wavelength endoscopic devices have recently been proposed to widen the range of surgeries. To provide context for these developments, some examples of surgical procedures and the associated designs of ultrasonic cutting tips are presented. However, multiple-half-wavelength components, typical of endoscopic devices, have greater potential to exhibit nonlinear dynamic behaviours that have a highly detrimental effect on device performance. Through experimental characterization of the dynamic behaviour of endoscopic devices, it is demonstrated how geometrical features influence nonlinear dynamic responses. Period doubling, a known route to chaotic behaviour, is shown to be significantly influenced by the cutting tip shape, whereas the cutting tip has only a limited effect on Duffing-like responses, particularly the shape of the hysteresis curve, which is important for device stability. These findings underpin design, aiming to pave the way for a new generation of ultrasonic endoscopic surgical devices. PMID:27547081

  15. 46 CFR 62.25-25 - Programable systems and devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM... range of the equipment. (b) Operating programs for microprocessor-based or computer-based vital control... power resumption. (c) If a microprocessor-based or computer-based system serves both vital and non-vital...

  16. 46 CFR 62.25-25 - Programable systems and devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM... range of the equipment. (b) Operating programs for microprocessor-based or computer-based vital control... power resumption. (c) If a microprocessor-based or computer-based system serves both vital and non-vital...

  17. 46 CFR 62.25-25 - Programable systems and devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM... range of the equipment. (b) Operating programs for microprocessor-based or computer-based vital control... power resumption. (c) If a microprocessor-based or computer-based system serves both vital and non-vital...

  18. 46 CFR 62.25-25 - Programable systems and devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM... range of the equipment. (b) Operating programs for microprocessor-based or computer-based vital control... power resumption. (c) If a microprocessor-based or computer-based system serves both vital and non-vital...

  19. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    PubMed

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self-powered and intelligent aptasensors for the logic detection. We have developed biocomputing keypad lock security systems which can be also used for intelligent medical diagnostics. BECI engineering provides a simple but effective approach toward the design and fabrication of EC-biosensors, BFCs, and self-powered logic biosensors, which will make essential contributions in the development of creative and practical bioelectronic devices. The exploration of novel interface engineering applications and the creation of new fabrication concepts or methods merit further attention.

  20. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

Top