RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid
NASA Astrophysics Data System (ADS)
Taylor, Zachariah David
In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.
Power System Information Delivering System Based on Distributed Object
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuji; Tsuchiya, Takehiko; Tamura, Setsuo; Seki, Tomomichi; Kubota, Kenji
In recent years, improvement in computer performance and development of computer network technology or the distributed information processing technology has a remarkable thing. Moreover, the deregulation is starting and will be spreading in the electric power industry in Japan. Consequently, power suppliers are required to supply low cost power with high quality services to customers. Corresponding to these movements the authors have been proposed SCOPE (System Configuration Of PowEr control system) architecture for distributed EMS/SCADA (Energy Management Systems / Supervisory Control and Data Acquisition) system based on distributed object technology, which offers the flexibility and expandability adapting those movements. In this paper, the authors introduce a prototype of the power system information delivering system, which was developed based on SCOPE architecture. This paper describes the architecture and the evaluation results of this prototype system. The power system information delivering system supplies useful power systems information such as electric power failures to the customers using Internet and distributed object technology. This system is new type of SCADA system which monitors failure of power transmission system and power distribution system with geographic information integrated way.
Coordinated control of micro-grid based on distributed moving horizon control.
Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie
2018-05-01
This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zainudin, W. N. R. A.; Ramli, N. A.
2017-09-01
In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
Model-Based Diagnosis in a Power Distribution Test-Bed
NASA Technical Reports Server (NTRS)
Scarl, E.; McCall, K.
1998-01-01
The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
Research on intelligent power distribution system for spacecraft
NASA Astrophysics Data System (ADS)
Xia, Xiaodong; Wu, Jianju
2017-10-01
The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.
Patch Network for Power Allocation and Distribution in Smart Materials
NASA Technical Reports Server (NTRS)
Golembiewski, Walter T.
2000-01-01
The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less
Space Power Management and Distribution Status and Trends
NASA Technical Reports Server (NTRS)
Reppucci, G. M.; Biess, J. J.; Inouye, L.
1984-01-01
An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.
PQScal (Power Quality Score Calculation for Distribution Systems with DER Integration)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power Quality is of great importance to evaluate the “health” of a distribution system, especially when the distributed energy resource (DER) penetration becomes more significant. The individual components that make up power quality, such as voltage magnitude and unbalance, can be measured in simulations or in the field, however, a comprehensive method to incorporate all of these values into a single score doesn't exist. As a result, we propose a methodology to quantify the power quality health using the single number value, named as Power Quality Score (PQS). The PQS is dependent on six metrics that are developed based onmore » both components that directly impact power quality and those are often reference in the context of power quality. These six metrics are named as System Average Voltage Magnitude Violation Index (SAVMVI), System Average Voltage Fluctuation Index (SAVFI), System Average Voltage Unbalance Index (SAVUI), System Control Device Operation Index (SCDOI), System Reactive Power Demand Index (SRPDI) and System Energy Loss Index (SELI). This software tool, PQScal, is developed based on this novel PQS methodology. Besides of traditional distribution systems, PQScal can also measure the power quality for distribution systems with various DER penetrations. PQScal has been tested on two utility distribution feeders with distinct model characteristics and its effectiveness has been proved. In sum, PQScal can help utilities or other parties to measure the power quality of distribution systems with DER integration easily and effectively.« less
Research on Three-phase Four-wire Inverter
NASA Astrophysics Data System (ADS)
Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.
2017-05-01
The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2013-07-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.
2017-09-05
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2014-04-15
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
NASA Astrophysics Data System (ADS)
Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng
2018-02-01
Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.
Analysis and Application of Microgrids
NASA Astrophysics Data System (ADS)
Yue, Lu
New trends of generating electricity locally and utilizing non-conventional or renewable energy sources have attracted increasing interests due to the gradual depletion of conventional fossil fuel energy sources. The new type of power generation is called Distributed Generation (DG) and the energy sources utilized by Distributed Generation are termed Distributed Energy Sources (DERs). With DGs embedded in the distribution networks, they evolve from passive distribution networks to active distribution networks enabling bidirectional power flows in the networks. Further incorporating flexible and intelligent controllers and employing future technologies, active distribution networks will turn to a Microgrid. A Microgrid is a small-scale, low voltage Combined with Heat and Power (CHP) supply network designed to supply electrical and heat loads for a small community. To further implement Microgrids, a sophisticated Microgrid Management System must be integrated. However, due to the fact that a Microgrid has multiple DERs integrated and is likely to be deregulated, the ability to perform real-time OPF and economic dispatch with fast speed advanced communication network is necessary. In this thesis, first, problems such as, power system modelling, power flow solving and power system optimization, are studied. Then, Distributed Generation and Microgrid are studied and reviewed, including a comprehensive review over current distributed generation technologies and Microgrid Management Systems, etc. Finally, a computer-based AC optimization method which minimizes the total transmission loss and generation cost of a Microgrid is proposed and a wireless communication scheme based on synchronized Code Division Multiple Access (sCDMA) is proposed. The algorithm is tested with a 6-bus power system and a 9-bus power system.
NASA Astrophysics Data System (ADS)
Satrio, Reza Indra; Subiyanto
2018-03-01
The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.
Optimal Output of Distributed Generation Based On Complex Power Increment
NASA Astrophysics Data System (ADS)
Wu, D.; Bao, H.
2017-12-01
In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.
Optimizing Power–Frequency Droop Characteristics of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggilam, Swaroop S.; Zhao, Changhong; Dall Anese, Emiliano
This paper outlines a procedure to design power-frequency droop slopes for distributed energy resources (DERs) installed in distribution networks to optimally participate in primary frequency response. In particular, the droop slopes are engineered such that DERs respond in proportion to their power ratings and they are not unfairly penalized in power provisioning based on their location in the distribution network. The main contribution of our approach is that a guaranteed level of frequency regulation can be guaranteed at the feeder head, while ensuring that the outputs of individual DERs conform to some well-defined notion of fairness. The approach we adoptmore » leverages an optimization-based perspective and suitable linearizations of the power-flow equations to embed notions of fairness and information regarding the physics of the power flows within the distribution network into the droop slopes. Time-domain simulations from a differential algebraic equation model of the 39-bus New England test-case system augmented with three instances of the IEEE 37-node distribution-network with frequency-sensitive DERs are provided to validate our approach.« less
This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...
Electric Transport Traction Power Supply System With Distributed Energy Sources
NASA Astrophysics Data System (ADS)
Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.
2016-04-01
The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
CO 2 laser cutting of MDF . 2. Estimation of power distribution
NASA Astrophysics Data System (ADS)
Ng, S. L.; Lum, K. C. P.; Black, I.
2000-02-01
Part 2 of this paper details an experimentally-based method to evaluate the power distribution for both CW and PM cutting. Variations in power distribution with different cutting speeds, material thickness and pulse ratios are presented. The paper also provides information on both the cutting efficiency and absorptivity index for MDF, and comments on the beam dispersion characteristics after the cutting process.
Agent-based power sharing scheme for active hybrid power sources
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.
NASA Astrophysics Data System (ADS)
Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.
2016-08-01
Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.
A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight
NASA Astrophysics Data System (ADS)
Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu
2017-05-01
Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.
Reliable and More Powerful Methods for Power Analysis in Structural Equation Modeling
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun
2017-01-01
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
ERIC Educational Resources Information Center
Texeira, Antonio; Rosa, Alvaro; Calapez, Teresa
2009-01-01
This article presents statistical power analysis (SPA) based on the normal distribution using Excel, adopting textbook and SPA approaches. The objective is to present the latter in a comparative way within a framework that is familiar to textbook level readers, as a first step to understand SPA with other distributions. The analysis focuses on the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Jiang, Huaiguang
With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach is feasible, convenient and effective. Conventionally, wind energy is highly location-dependent. Many desirable wind resources are located in rural areas without direct access to the transmission grid. By connecting MW-scale wind turbines or wind farms to the distributions system of SG, the cost of building long transmission facilities can be avoid and wind power supplied to consumers can be greatly increased. After the effective wide area monitoring (WAM) approach is built, an event-driven control strategy is proposed for renewable energy integration. This approach is based on support vector machine (SVM) predictor and multiple-input and multiple-output (MIMO) model predictive control (MPC) on linear time-invariant (LTI) and linear time-variant (LTV) systems. The voltage condition of the distribution system is predicted by the SVM classifier using synchrophasor measurement data. The controllers equipped with wind turbine generators are triggered by the prediction results. Both transmission level and distribution level are designed based on this proposed approach. Considering economic issues in the power system, a statistical scheduling approach to economic dispatch and energy reserves is proposed. The proposed approach focuses on minimizing the overall power operating cost with considerations of renewable energy uncertainty and power system security. The hybrid power system scheduling is formulated as a convex programming problem to minimize power operating cost, taking considerations of renewable energy generation, power generation-consumption balance and power system security. A genetic algorithm based approach is used for solving the minimization of the power operating cost. In addition, with technology development, it can be predicted that the renewable energy such as wind turbine generators and PV panels will be pervasively located in distribution systems. The distribution system is an unbalanced system, which contains single-phase, two-phase and three-phase loads, and distribution lines. The complex configuration brings a challenge to power flow calculation. A topology analysis based iterative approach is used to solve this problem. In this approach, a self-adaptive topology recognition method is used to analyze the distribution system, and the backward/forward sweep algorithm is used to generate the power flow results. Finally, for the numerical simulations, the IEEE 14-bus, 30-bus, 39-bus and 118-bus systems are studied for fault detection, identification and location. Both transmission level and distribution level models are employed with the proposed control strategy for voltage stability of renewable energy integration. The simulation results demonstrate the effectiveness of the proposed methods. The IEEE 24-bus reliability test system (IEEE-RTS), which is commonly used for evaluating the price stability and reliability of power system, is used as the test bench for verifying and evaluating system performance of the proposed scheduling approach.
Power management and distribution considerations for a lunar base
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Coleman, Anthony S.
1991-01-01
Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.
Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2017-05-17
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less
Output power distributions of mobile radio base stations based on network measurements
NASA Astrophysics Data System (ADS)
Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.
2013-04-01
In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.
Power conversion distribution system using a resonant high-frequency AC link
NASA Technical Reports Server (NTRS)
Sood, P. K.; Lipo, T. A.
1986-01-01
Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.
Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja
2014-09-09
A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
Downlink power distributions for 2G and 3G mobile communication networks.
Colombi, Davide; Thors, Björn; Persson, Tomas; Wirén, Niklas; Larsson, Lars-Eric; Jonsson, Mikael; Törnevik, Christer
2013-12-01
Knowledge of realistic power levels is key when conducting accurate EMF exposure assessments. In this study, downlink output power distributions for radio base stations in 2G and 3G mobile communication networks have been assessed. The distributions were obtained from network measurement data collected from the Operations Support System, which normally is used for network monitoring and management. Significant amounts of data were gathered simultaneously for large sets of radio base stations covering wide geographical areas and different environments. The method was validated with in situ measurements. For the 3G network, the 90th percentile of the averaged output power during high traffic hours was found to be 43 % of the maximum available power. The corresponding number for 2G, with two or more transceivers installed, was 65 % or below.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias
2016-08-11
This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less
Production, depreciation and the size distribution of firms
NASA Astrophysics Data System (ADS)
Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru
2008-05-01
Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.
Papadatou, Eleni; Del Águila-Carrasco, Antonio J; Esteve-Taboada, José J; Madrid-Costa, David; Cerviño-Expósito, Alejandro
2017-01-01
To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses. Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed. The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about -3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens. In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient's visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.
On the probability distribution of stock returns in the Mike-Farmer model
NASA Astrophysics Data System (ADS)
Gu, G.-F.; Zhou, W.-X.
2009-02-01
Recently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x < 0 and the right part R(x) for x > 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.
Simulation of Distributed PV Power Output in Oahu Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew Samuel
2016-08-01
Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presentedmore » by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.« less
Cumulative Clearness Index Frequency Distributions on the Territory of the Russian Federation
NASA Astrophysics Data System (ADS)
Frid, S. E.; Lisitskaya, N. V.; Popel, O. S.
2018-02-01
Cumulative distributions of clearness index values are constructed for the territory of Russia based on ground observation results and NASA POWER data. The obtained distributions lie close to each other, which means that the NASA POWER data can be used in solar power installations simulation at temperate and high latitudes. Approximation of the obtained distributions is carried out. The values of equation coefficients for the cumulative clearness index distributions constructed for a wide range of climatic conditions are determined. Equations proposed for a tropical climate are used in the calculations, so they can be regarded as universal ones.
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
NASA Astrophysics Data System (ADS)
Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming
2018-01-01
This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Parallel Harmony Search Based Distributed Energy Resource Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin
2015-01-01
This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electricalmore » power distribution systems operation.« less
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yijian; Hong, Mingyi; Dall'Anese, Emiliano
This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less
Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi
This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less
NASA Astrophysics Data System (ADS)
Nhu Y, Do
2018-03-01
Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.
Contribution for Iron Vapor and Radiation Distribution Affected by Current Frequency of Pulsed Arc
NASA Astrophysics Data System (ADS)
Shimokura, Takuya; Mori, Yusuke; Iwao, Toru; Yumoto, Motoshige
Pulsed GTA welding has been used for improvement of stability, weld speed, and heat input control. However, the temperature and radiation power of the pulsed arc have not been elucidated. Furthermore, arc contamination by metal vapor changes the arc characteristics, e.g. by increasing radiation power. In this case, the metal vapor in pulsed GTA welding changes the distribution of temperature and radiation power as a function of time. This paper presents the relation between metal vapor and radiation power at different pulse frequencies. We calculate the Fe vapor distribution of the pulsed current. Results show that the Fe vapor is transported at fast arc velocity during the peak current period. During the base current period, the Fe vapor concentration is low and distribution is diffuse. The transition of Fe vapor distribution does not follow the pulsed current; the radiation power density distribution differs for high frequencies and low frequencies. In addition, the Fe vapor and radiation distribution are affected by the pulsed arc current frequency.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-02-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-01-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654
99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...
99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Optimal placement and sizing of wind / solar based DG sources in distribution system
NASA Astrophysics Data System (ADS)
Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng
2017-06-01
Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Coronel-Brizio, H. F.; Hernández-Montoya, A. R.
2005-08-01
The so-called Pareto-Levy or power-law distribution has been successfully used as a model to describe probabilities associated to extreme variations of stock markets indexes worldwide. The selection of the threshold parameter from empirical data and consequently, the determination of the exponent of the distribution, is often done using a simple graphical method based on a log-log scale, where a power-law probability plot shows a straight line with slope equal to the exponent of the power-law distribution. This procedure can be considered subjective, particularly with regard to the choice of the threshold or cutoff parameter. In this work, a more objective procedure based on a statistical measure of discrepancy between the empirical and the Pareto-Levy distribution is presented. The technique is illustrated for data sets from the New York Stock Exchange (DJIA) and the Mexican Stock Market (IPC).
NASA Astrophysics Data System (ADS)
Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi
2017-05-01
In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
Price Based Local Power Distribution Management System (Local Power Distribution Manager) v1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROWN, RICHARD E.; CZARNECKI, STEPHEN; SPEARS, MICHAEL
2016-11-28
A trans-active energy micro-grid controller is implemented in the VOLTTRON distributed control platform. The system uses the price of electricity as the mechanism for conducting transactions that are used to manage energy use and to balance supply and demand. In order to allow testing and analysis of the control system, the implementation is designed to run completely as a software simulation, while allowing the inclusion of selected hardware that physically manages power. Equipment to be integrated with the micro-grid controller must have an IP (Internet Protocol)-based network connection and a software "driver" must exist to translate data communications between themore » device and the controller.« less
Security attack detection algorithm for electric power gis system based on mobile application
NASA Astrophysics Data System (ADS)
Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan
2017-05-01
Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.
Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit
2016-04-01
This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).
Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...
2017-06-12
Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei
Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
Evaluation model of distribution network development based on ANP and grey correlation analysis
NASA Astrophysics Data System (ADS)
Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong
2018-06-01
The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.
NASA Astrophysics Data System (ADS)
Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.
2017-05-01
The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.
NASA Astrophysics Data System (ADS)
Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi
2018-02-01
The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Network topology and resilience analysis of South Korean power grid
NASA Astrophysics Data System (ADS)
Kim, Dong Hwan; Eisenberg, Daniel A.; Chun, Yeong Han; Park, Jeryang
2017-01-01
In this work, we present topological and resilience analyses of the South Korean power grid (KPG) with a broad voltage level. While topological analysis of KPG only with high-voltage infrastructure shows an exponential degree distribution, providing another empirical evidence of power grid topology, the inclusion of low voltage components generates a distribution with a larger variance and a smaller average degree. This result suggests that the topology of a power grid may converge to a highly skewed degree distribution if more low-voltage data is considered. Moreover, when compared to ER random and BA scale-free networks, the KPG has a lower efficiency and a higher clustering coefficient, implying that highly clustered structure does not necessarily guarantee a functional efficiency of a network. Error and attack tolerance analysis, evaluated with efficiency, indicate that the KPG is more vulnerable to random or degree-based attacks than betweenness-based intentional attack. Cascading failure analysis with recovery mechanism demonstrates that resilience of the network depends on both tolerance capacity and recovery initiation time. Also, when the two factors are fixed, the KPG is most vulnerable among the three networks. Based on our analysis, we propose that the topology of power grids should be designed so the loads are homogeneously distributed, or functional hubs and their neighbors have high tolerance capacity to enhance resilience.
Satellite Power Systems (SPS) Concept Definition Study. Volume 3: SPS Concept Evolution
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
A solar photovoltaic satellite based upon the utilization of a GaAlAs solar cell is defined. Topics covered include silicon-based photovoltaics, solar thermal power conversion, microwave energy transmission, power distribution, structures, attitude control and stationkeeping, thermal, and information management and control.
Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian
2013-01-28
We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.
Chance-Constrained System of Systems Based Operation of Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargarian, Amin; Fu, Yong; Wu, Hongyu
In this paper, a chance-constrained system of systems (SoS) based decision-making approach is presented for stochastic scheduling of power systems encompassing active distribution grids. Based on the concept of SoS, the independent system operator (ISO) and distribution companies (DISCOs) are modeled as self-governing systems. These systems collaborate with each other to run the entire power system in a secure and economic manner. Each self-governing system accounts for its local reserve requirements and line flow constraints with respect to the uncertainties of load and renewable energy resources. A set of chance constraints are formulated to model the interactions between the ISOmore » and DISCOs. The proposed model is solved by using analytical target cascading (ATC) method, a distributed optimization algorithm in which only a limited amount of information is exchanged between collaborative ISO and DISCOs. In this paper, a 6-bus and a modified IEEE 118-bus power systems are studied to show the effectiveness of the proposed algorithm.« less
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
DG Planning with Amalgamation of Operational and Reliability Considerations
NASA Astrophysics Data System (ADS)
Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan
2016-04-01
Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.
An understanding of human dynamics in urban subway traffic from the Maximum Entropy Principle
NASA Astrophysics Data System (ADS)
Yong, Nuo; Ni, Shunjiang; Shen, Shifei; Ji, Xuewei
2016-08-01
We studied the distribution of entry time interval in Beijing subway traffic by analyzing the smart card transaction data, and then deduced the probability distribution function of entry time interval based on the Maximum Entropy Principle. Both theoretical derivation and data statistics indicated that the entry time interval obeys power-law distribution with an exponential cutoff. In addition, we pointed out the constraint conditions for the distribution form and discussed how the constraints affect the distribution function. It is speculated that for bursts and heavy tails in human dynamics, when the fitted power exponent is less than 1.0, it cannot be a pure power-law distribution, but with an exponential cutoff, which may be ignored in the previous studies.
NASA Astrophysics Data System (ADS)
Tan, Jun; Dang, Haizheng
2017-03-01
The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter
2016-07-26
This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less
Competition and Cooperation of Distributed Generation and Power System
NASA Astrophysics Data System (ADS)
Miyake, Masatoshi; Nanahara, Toshiya
Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less
NASA Astrophysics Data System (ADS)
Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth
2017-04-01
In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
A simple marriage model for the power-law behaviour in the frequency distributions of family names
NASA Astrophysics Data System (ADS)
Wu, Hao-Yun; Chou, Chung-I.; Tseng, Jie-Jun
2011-01-01
In many countries, the frequency distributions of family names are found to decay as a power law with an exponent ranging from 1.0 to 2.2. In this work, we propose a simple marriage model which can reproduce this power-law behaviour. Our model, based on the evolution of families, consists of the growth of big families and the formation of new families. Preliminary results from the model show that the name distributions are in good agreement with empirical data from Taiwan and Norway.
RF model of the distribution system as a communication channel, phase 2. Volume 2: Task reports
NASA Technical Reports Server (NTRS)
Rustay, R. C.; Gajjar, J. T.; Rankin, R. W.; Wentz, R. C.; Wooding, R.
1982-01-01
Based on the established feasibility of predicting, via a model, the propagation of Power Line Frequency on radial type distribution feeders, verification studies comparing model predictions against measurements were undertaken using more complicated feeder circuits and situations. Detailed accounts of the major tasks are presented. These include: (1) verification of model; (2) extension, implementation, and verification of perturbation theory; (3) parameter sensitivity; (4) transformer modeling; and (5) compensation of power distribution systems for enhancement of power line carrier communication reliability.
Space station automation of common module power management and distribution
NASA Technical Reports Server (NTRS)
Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.
1989-01-01
The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.
Zhang, Lei; Zhang, Jing
2017-08-07
A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users' private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes.
Zhang, Lei; Zhang, Jing
2017-01-01
A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users’ private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes. PMID:28783122
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.
Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua
2018-05-08
The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.
NASA Astrophysics Data System (ADS)
Liou, L. L.; Jenkins, T.; Huang, C. I.
1997-06-01
The d.c. power limitation of a conventional HBT with dot geometry was studied theoretically using combined electro-thermal and transmission line models. In most cases, the thermal runaway occurs at a power level lower than that set by the intrinsic electronic property of the device. The dependence of the d.c. thermal runaway threshold power density, Pmax, on the emitter dot radius and emitter ballast resistance was calculated. Increasing emitter dot radius lowers Pmax. Although ballast resistance increases Pmax, the effect reduces as the emitter dot radius increases. This is caused by the non-uniform potential distribution in the base layer. When thermal runaway is considered, the nonuniform base-emitter potential offsets the improvement of the power handling capability by the physical ballast resistance. Conventional HBTs with a large radius (greater than 4 μm) exhibit a small Pmax caused by thermal effect. This threshold power density can be increased drastically by using the thermal shunt technique.
Statistical dynamics of regional populations and economies
NASA Astrophysics Data System (ADS)
Huo, Jie; Wang, Xu-Ming; Hao, Rui; Wang, Peng
Quantitative analysis of human behavior and social development is becoming a hot spot of some interdisciplinary studies. A statistical analysis on the population and GDP of 150 cities in China from 1990 to 2013 is conducted. The result indicates the cumulative probability distribution of the populations and that of the GDPs obeying the shifted power law, respectively. In order to understand these characteristics, a generalized Langevin equation describing variation of population is proposed, which is based on the correlations between population and GDP as well as the random fluctuations of the related factors. The equation is transformed into the Fokker-Plank equation to express the evolution of population distribution. The general solution demonstrates a transition of the distribution from the normal Gaussian distribution to a shifted power law, which suggests a critical point of time at which the transition takes place. The shifted power law distribution in the supercritical situation is qualitatively in accordance with the practical result. The distribution of the GDPs is derived from the well-known Cobb-Douglas production function. The result presents a change, in supercritical situation, from a shifted power law to the Gaussian distribution. This is a surprising result-the regional GDP distribution of our world will be the Gaussian distribution one day in the future. The discussions based on the changing trend of economic growth suggest it will be true. Therefore, these theoretical attempts may draw a historical picture of our society in the aspects of population and economy.
Improved quasi parton distribution through Wilson line renormalization
Chen, Jiunn-Wei; Ji, Xiangdong; Zhang, Jian-Hui
2016-12-09
Some recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. Here, we show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improvedmore » such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we also present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.« less
Improved quasi parton distribution through Wilson line renormalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiunn-Wei; Ji, Xiangdong; Zhang, Jian-Hui
Some recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. Here, we show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improvedmore » such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we also present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.« less
Power System Simulation for Policymaking and Making Policymakers
NASA Astrophysics Data System (ADS)
Cohen, Michael Ari
Power system simulation is a vital tool for anticipating, planning for and ultimately addressing future conditions on the power grid, especially in light of contemporary shifts in power generation, transmission and use that are being driven by a desire to utilize more environmentally responsible energy sources. This dissertation leverages power system simulation and engineering-economic analysis to provide initial answers to one open question about future power systems: how will high penetrations of distributed (rooftop) solar power affect the physical and economic operation of distribution feeders? We find that the overall impacts of distributed solar power (both positive and negative) on the feeders we modeled are minor compared to the overall cost of energy, but that there is on average a small net benefit provided by distributed generation. We then describe an effort to make similar analyses more accessible to a non-engineering (high school) audience by developing an educational video game called "Griddle" that is based on the same power system simulation techniques used in the first study. We describe the design and evaluation of Griddle and find that it demonstrates potential to provide students with insights about key power system learning objectives.
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.
2017-06-01
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.
Novel NI-Based Ohmic Contacts To a-SiC for High Temperature and High Power Device Applications
2002-01-01
Temperature and High Power Device Applications DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...retained omnicity after 100 h of aging and was found to be chemically and microstructurally stable. These findings indicate that the 1000,’C annealed
Description of the SSF PMAD DC testbed control system data acquisition function
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Mackin, Michael; Wright, Theodore
1992-01-01
The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.
Power system voltage stability and agent based distribution automation in smart grid
NASA Astrophysics Data System (ADS)
Nguyen, Cuong Phuc
2011-12-01
Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and negotiation. Communication latency is modeled using a user-defined probability density function. Failure-tolerant communication strategies are developed for agent communications. Major elements of advanced DA are developed in a completely distributed way and successfully tested for several IEEE standard systems, including: Fault Detection, Location, Isolation, and Service Restoration (FLISR); Coordination of Distributed Energy Storage Systems (DES); Distributed Power Flow (DPF); Volt-VAR Control (VVC); and Loss Reduction (LR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, D. G.; Arent, D. J.; Johnson, L.
2006-06-01
This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources tomore » provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.« less
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-03-16
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.
NASA Astrophysics Data System (ADS)
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-03-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.
Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2015-01-01
Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns. PMID:25779306
Micro-Power Sources Enabling Robotic Outpost Based Deep Space Exploration
NASA Technical Reports Server (NTRS)
West, W. C.; Whitacre, J. F.; Ratnakumar, B. V.; Brandon, E. J.; Studor, G. F.
2001-01-01
Robotic outpost based exploration represents a fundamental shift in mission design from conventional, single spacecraft missions towards a distributed risk approach with many miniaturized semi-autonomous robots and sensors. This approach can facilitate wide-area sampling and exploration, and may consist of a web of orbiters, landers, or penetrators. To meet the mass and volume constraints of deep space missions such as the Europa Ocean Science Station, the distributed units must be fully miniaturized to fully leverage the wide-area exploration approach. However, presently there is a dearth of available options for powering these miniaturized sensors and robots. This group is currently examining miniaturized, solid state batteries as candidates to meet the demand of applications requiring low power, mass, and volume micro-power sources. These applications may include powering microsensors, battery-backing rad-hard CMOS memory and providing momentary chip back-up power. Additional information is contained in the original extended abstract.
Distribution automation applications of fiber optics
NASA Technical Reports Server (NTRS)
Kirkham, Harold; Johnston, A.; Friend, H.
1989-01-01
Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined.
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2012-09-01
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
Evaluation of all-electric secondary power for transport aircraft
NASA Technical Reports Server (NTRS)
Murray, W. E.; Feiner, L. J.; Flores, R. R.
1992-01-01
This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.
Evaluation of all-electric secondary power for transport aircraft
NASA Astrophysics Data System (ADS)
Murray, W. E.; Feiner, L. J.; Flores, R. R.
1992-01-01
This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.
14 CFR 171.49 - Installation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... power, either from a power distribution system or locally generated. A determination by the Administrator as to whether a facility will be required to have stand-by power for the localizer, glide slope and monitor accessories to supplement the primary power, will be made for each airport based upon...
14 CFR 171.49 - Installation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... power, either from a power distribution system or locally generated. A determination by the Administrator as to whether a facility will be required to have stand-by power for the localizer, glide slope and monitor accessories to supplement the primary power, will be made for each airport based upon...
14 CFR 171.49 - Installation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... power, either from a power distribution system or locally generated. A determination by the Administrator as to whether a facility will be required to have stand-by power for the localizer, glide slope and monitor accessories to supplement the primary power, will be made for each airport based upon...
NASA Astrophysics Data System (ADS)
Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang
2017-05-01
After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.
Random distributed feedback fiber laser at 2.1 μm.
Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-11-01
We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.
Bayesian inference on earthquake size distribution: a case study in Italy
NASA Astrophysics Data System (ADS)
Licia, Faenza; Carlo, Meletti; Laura, Sandri
2010-05-01
This paper is focused on the study of earthquake size statistical distribution by using Bayesian inference. The strategy consists in the definition of an a priori distribution based on instrumental seismicity, and modeled as a power law distribution. By using the observed historical data, the power law is then modified in order to obtain the posterior distribution. The aim of this paper is to define the earthquake size distribution using all the seismic database available (i.e., instrumental and historical catalogs) and a robust statistical technique. We apply this methodology to the Italian seismicity, dividing the territory in source zones as done for the seismic hazard assessment, taken here as a reference model. The results suggest that each area has its own peculiar trend: while the power law is able to capture the mean aspect of the earthquake size distribution, the posterior emphasizes different slopes in different areas. Our results are in general agreement with the ones used in the seismic hazard assessment in Italy. However, there are areas in which a flattening in the curve is shown, meaning a significant departure from the power law behavior and implying that there are some local aspects that a power law distribution is not able to capture.
Comparison of Sample Size by Bootstrap and by Formulas Based on Normal Distribution Assumption.
Wang, Zuozhen
2018-01-01
Bootstrapping technique is distribution-independent, which provides an indirect way to estimate the sample size for a clinical trial based on a relatively smaller sample. In this paper, sample size estimation to compare two parallel-design arms for continuous data by bootstrap procedure are presented for various test types (inequality, non-inferiority, superiority, and equivalence), respectively. Meanwhile, sample size calculation by mathematical formulas (normal distribution assumption) for the identical data are also carried out. Consequently, power difference between the two calculation methods is acceptably small for all the test types. It shows that the bootstrap procedure is a credible technique for sample size estimation. After that, we compared the powers determined using the two methods based on data that violate the normal distribution assumption. To accommodate the feature of the data, the nonparametric statistical method of Wilcoxon test was applied to compare the two groups in the data during the process of bootstrap power estimation. As a result, the power estimated by normal distribution-based formula is far larger than that by bootstrap for each specific sample size per group. Hence, for this type of data, it is preferable that the bootstrap method be applied for sample size calculation at the beginning, and that the same statistical method as used in the subsequent statistical analysis is employed for each bootstrap sample during the course of bootstrap sample size estimation, provided there is historical true data available that can be well representative of the population to which the proposed trial is planning to extrapolate.
117. VIEW OF CABINETS ON EAST SIDE OF LANDLINE INSTRUMENTATION ...
117. VIEW OF CABINETS ON EAST SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). FEATURES LEFT TO RIGHT: ALTERNATING CURRENT POWER DISTRIBUTION RELAY BOX, AIRBORNE BEACON ELECTRONIC TEST SYSTEM (ABETS), AUTOPILOT CHECKOUT CONTROLS, POWER DISTRIBUTION UNITS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Zhuravska, Iryna M.; Koretska, Oleksandra O.; Musiyenko, Maksym P.; Surtel, Wojciech; Assembay, Azat; Kovalev, Vladimir; Tleshova, Akmaral
2017-08-01
The article contains basic approaches to develop the self-powered information measuring wireless networks (SPIM-WN) using the distribution of tasks within multicore processors critical applying based on the interaction of movable components - as in the direction of data transmission as wireless transfer of energy coming from polymetric sensors. Base mathematic model of scheduling tasks within multiprocessor systems was modernized to schedule and allocate tasks between cores of one-crystal computer (SoC) to increase energy efficiency SPIM-WN objects.
Enterprise Management Network Architecture Distributed Knowledge Base Support
1990-11-01
Advantages Potentially, this makes a distributed system more powerful than a conventional, centralized one in two ways: " First, it can be more reliable...does not completely apply [35]. The grain size of the processors measures the individual problem-solving power of the agents. In this definition...problem-solving power amounts to the conceptual size of a single action taken by an agent visible to the other agents in the system. If the grain is coarse
Galileo spacecraft power management and distribution system
NASA Technical Reports Server (NTRS)
Detwiler, R. C.; Smith, R. L.
1990-01-01
The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.
NASA Astrophysics Data System (ADS)
Madhikar, Pratik Ravindra
The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.
Hu, Jianqiang; Li, Yaping; Yong, Taiyou; Cao, Jinde; Yu, Jie; Mao, Wenbo
2014-01-01
Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper.
Li, Yaping; Yong, Taiyou; Yu, Jie; Mao, Wenbo
2014-01-01
Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper. PMID:25243199
Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG
NASA Astrophysics Data System (ADS)
Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu
2016-12-01
Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.
Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.
El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K
2011-01-15
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.
Quantitative description of realistic wealth distributions by kinetic trading models
NASA Astrophysics Data System (ADS)
Lammoglia, Nelson; Muñoz, Víctor; Rogan, José; Toledo, Benjamín; Zarama, Roberto; Valdivia, Juan Alejandro
2008-10-01
Data on wealth distributions in trading markets show a power law behavior x-(1+α) at the high end, where, in general, α is greater than 1 (Pareto’s law). Models based on kinetic theory, where a set of interacting agents trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets.
Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM
NASA Astrophysics Data System (ADS)
Liang, Zijun; Lin, Shunjiang; Liu, Mingbo
2017-05-01
Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.
NASA Astrophysics Data System (ADS)
Xu, Li; Liu, Lanlan; Niu, Jie; Tang, Li; Li, Jinliang; Zhou, Zhanfan; Long, Chenhai; Yang, Qi; Yi, Ziqi; Guo, Hao; Long, Yang; Fu, Yanyi
2017-05-01
As social requirement of power supply reliability keeps rising, distribution network working with power uninterrupted has been widely carried out, while the high - temperature operating environment in summer can easily lead to physical discomfort for the operators, and then lead to safety incidents. Aiming at above problem, air-conditioning suit for distribution network working with power uninterrupted has been putted forward in this paper, and the structure composition and cooling principle of which has been explained, and it has been ultimately put to on-site application. The results showed that, cooling effect of air-conditioning suits was remarkable, and improved the working environment for the operators effectively, which is of great significance to improve Chinese level of working with power uninterrupted, reduce the probability of accidents and enhance the reliability of power supply.
Vehicle-to-Grid Automatic Load Sharing with Driver Preference in Micro-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yubo; Nazaripouya, Hamidreza; Chu, Chi-Cheng
Integration of Electrical Vehicles (EVs) with power grid not only brings new challenges for load management, but also opportunities for distributed storage and generation. This paper comprehensively models and analyzes distributed Vehicle-to-Grid (V2G) for automatic load sharing with driver preference. In a micro-grid with limited communications, V2G EVs need to decide load sharing based on their own power and voltage profile. A droop based controller taking into account driver preference is proposed in this paper to address the distributed control of EVs. Simulations are designed for three fundamental V2G automatic load sharing scenarios that include all system dynamics of suchmore » applications. Simulation results demonstrate that active power sharing is achieved proportionally among V2G EVs with consideration of driver preference. In additional, the results also verify the system stability and reactive power sharing analysis in system modelling, which sheds light on large scale V2G automatic load sharing in more complicated cases.« less
NASA Astrophysics Data System (ADS)
Li, Peng; Olmi, Claudio; Song, Gangbing
2010-04-01
Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data transmission between wireless sensor and the wireless coordinator, which in turn reduced the power consumption of the overall system.
Enhanced High Performance Power Compensation Methodology by IPFC Using PIGBT-IDVR
Arumugom, Subramanian; Rajaram, Marimuthu
2015-01-01
Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies. PMID:26613101
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Chiang, Ming-Feng; Shih, Fu-Yuan; Pan, Ci-Ling
2011-09-01
In a wavelength division multiplexed-passive optical network (WDM-PON), different fiber lengths and optical components would introduce different power budgets to different optical networking units (ONUs). Besides, the power decay of the distributed optical carrier from the optical line terminal owing to aging of the optical transmitter could also reduce the injected power into the ONU. In this work, we propose and demonstrate a carrier distributed WDM-PON using a reflective semiconductor optical amplifier-based ONU that can adjust its upstream data rate to accommodate different injected optical powers. The WDM-PON is evaluated at standard-reach (25 km) and long-reach (100 km). Bit-error rate measurements at different injected optical powers and transmission lengths show that by adjusting the upstream data rate of the system (622 Mb/s, 1.25 and 2.5 Gb/s), error-free (<10-9) operation can still be achieved when the power budget drops.
DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backhaus, Scott N.; Swift, Gregory William; Chatzivasileiadis, Spyridon
Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applicationsmore » may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?« less
Predictability of depression severity based on posterior alpha oscillations.
Jiang, H; Popov, T; Jylänki, P; Bi, K; Yao, Z; Lu, Q; Jensen, O; van Gerven, M A J
2016-04-01
We aimed to integrate neural data and an advanced machine learning technique to predict individual major depressive disorder (MDD) patient severity. MEG data was acquired from 22 MDD patients and 22 healthy controls (HC) resting awake with eyes closed. Individual power spectra were calculated by a Fourier transform. Sources were reconstructed via beamforming technique. Bayesian linear regression was applied to predict depression severity based on the spatial distribution of oscillatory power. In MDD patients, decreased theta (4-8 Hz) and alpha (8-14 Hz) power was observed in fronto-central and posterior areas respectively, whereas increased beta (14-30 Hz) power was observed in fronto-central regions. In particular, posterior alpha power was negatively related to depression severity. The Bayesian linear regression model showed significant depression severity prediction performance based on the spatial distribution of both alpha (r=0.68, p=0.0005) and beta power (r=0.56, p=0.007) respectively. Our findings point to a specific alteration of oscillatory brain activity in MDD patients during rest as characterized from MEG data in terms of spectral and spatial distribution. The proposed model yielded a quantitative and objective estimation for the depression severity, which in turn has a potential for diagnosis and monitoring of the recovery process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Abrahamyan, Lusine; Li, Chuan Silvia; Beyene, Joseph; Willan, Andrew R; Feldman, Brian M
2011-03-01
The study evaluated the power of the randomized placebo-phase design (RPPD)-a new design of randomized clinical trials (RCTs), compared with the traditional parallel groups design, assuming various response time distributions. In the RPPD, at some point, all subjects receive the experimental therapy, and the exposure to placebo is for only a short fixed period of time. For the study, an object-oriented simulation program was written in R. The power of the simulated trials was evaluated using six scenarios, where the treatment response times followed the exponential, Weibull, or lognormal distributions. The median response time was assumed to be 355 days for the placebo and 42 days for the experimental drug. Based on the simulation results, the sample size requirements to achieve the same level of power were different under different response time to treatment distributions. The scenario where the response times followed the exponential distribution had the highest sample size requirement. In most scenarios, the parallel groups RCT had higher power compared with the RPPD. The sample size requirement varies depending on the underlying hazard distribution. The RPPD requires more subjects to achieve a similar power to the parallel groups design. Copyright © 2011 Elsevier Inc. All rights reserved.
AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Chowdhury, Badrul H.
2005-01-01
ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side redundancies and including emergency generators on both ac and dc sides is proposed. The generation frequency is 400 Hz mostly because of the technology maturity at this frequency in the aerospace industry. Power will be distributed to several ac load distribution buses through solid state variable speed, constant frequency converters on the ac side. A segmented dc ring bus supplied from ac/dc converters and with the capability of connecting/disconnecting the segments will supply power to multiple de load distribution buses. The system will have the capability of reverse flow from dc to ac side in the case of an extreme emergency on the main ac generation side.
Knowledge-based commodity distribution planning
NASA Technical Reports Server (NTRS)
Saks, Victor; Johnson, Ivan
1994-01-01
This paper presents an overview of a Decision Support System (DSS) that incorporates Knowledge-Based (KB) and commercial off the shelf (COTS) technology components. The Knowledge-Based Logistics Planning Shell (KBLPS) is a state-of-the-art DSS with an interactive map-oriented graphics user interface and powerful underlying planning algorithms. KBLPS was designed and implemented to support skilled Army logisticians to prepare and evaluate logistics plans rapidly, in order to support corps-level battle scenarios. KBLPS represents a substantial advance in graphical interactive planning tools, with the inclusion of intelligent planning algorithms that provide a powerful adjunct to the planning skills of commodity distribution planners.
Entropy-based goodness-of-fit test: Application to the Pareto distribution
NASA Astrophysics Data System (ADS)
Lequesne, Justine
2013-08-01
Goodness-of-fit tests based on entropy have been introduced in [13] for testing normality. The maximum entropy distribution in a class of probability distributions defined by linear constraints induces a Pythagorean equality between the Kullback-Leibler information and an entropy difference. This allows one to propose a goodness-of-fit test for maximum entropy parametric distributions which is based on the Kullback-Leibler information. We will focus on the application of the method to the Pareto distribution. The power of the proposed test is computed through Monte Carlo simulation.
Distribution System Reliability Analysis for Smart Grid Applications
NASA Astrophysics Data System (ADS)
Aljohani, Tawfiq Masad
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
Research on the Orientation and Application of Distributed Energy Storage in Energy Internet
NASA Astrophysics Data System (ADS)
Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe
2018-01-01
Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.
Recent Trend of New Type Power Delivery System and its Demonstrative Project in Japan
NASA Astrophysics Data System (ADS)
Morozumi, Satoshi; Nara, Koichi
Recently many such distributed generating systems as co-generation, photovoltaic, wind, fuel cells etc. are introduced into power distribution system, and the power system must cope with the situation with distributed generators. Moreover, such industries as IT request reliable and high quality power to preserve their businesses, and some other electric energy based industries request less reliable but cheaper electricity. From these backgrounds, several new type power delivery systems are emerging where lots of distributed generators (DGs) can be connected and many benefits offered by DGs can be realized without affecting the existing power system. They are referred to various names. In U.S.A., Microgrid, Power Park and Virtual Utilities, etc. are proposed. In Europe, DISPOWER or Smart Grid is under developing. In Japan, FRIENDS and Demand Area Network System etc. are proposed and tested in real sites. In this paper, first, general concepts of such new type power delivery systems and new businesses expected to be created by using DGs are introduced. Then, recent research activities in this area in Japan are introduced so as to stimulate new business opportunities. In the later part of this paper, related NEDO's demonstrative projects are introduced. NEDO is the largest public R&D management organization and promoting several projects regarding grid connecting issues on the power system. Those projects were planned to solve several problems on the power system where distributed renewable energy resources are installed.
A study of operational cycle of terminal distributed power supply based on Big-data
NASA Astrophysics Data System (ADS)
Nie, Erbao; Liu, Zhoubin; He, Jinhong; Li, Chao
2018-01-01
In China, the distributed power supply industry enjoys a rapid development trend. For the users’ side of the distributed power mode of operation, there are various types. This paper, take rural as an example, mainly studies the all round life cycle operation mode of rural distributed solar power plant, including the feasibility study plan and investment suggestion of the initial construction of the rural power station, and the operation and maintenance in the middle period. China’s vast rural areas, areas per capita is large, average households have independent housing and courtyards, available building area is no problem. Compared with the urban areas, the return rate of investment is low, the investment options is rare, the collective is strong, the risk tolerance is weak and so on. Aiming at the characteristics of the rural areas in the above rural areas, three kinds of investment schemes of rural distributed photovoltaic power plants are put forward, and their concrete implementation plans are analyzed in detail. Especially the second option, for the farmers to consider the risk of investment, given their principal security, which greatly reduces the farmers into the power plant loss of funds risk. At the same time, according to the respective risk of farmers, given the corresponding investment advice. Rural income is generally low, the expected benefits of distributed photovoltaic power plant can significantly improve the income of farmers, improve the quality of life of farmers, coupled with the strong rural collective farmers, rural distributed photovoltaic power plants will mushroom, which On China’s photovoltaic construction and even the supply of clean energy is of great significance, so as to truly benefit the national energy strategy and rural construction.
NASA Astrophysics Data System (ADS)
Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui
2017-09-01
In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.
A study on reliability of power customer in distribution network
NASA Astrophysics Data System (ADS)
Liu, Liyuan; Ouyang, Sen; Chen, Danling; Ma, Shaohua; Wang, Xin
2017-05-01
The existing power supply reliability index system is oriented to power system without considering actual electricity availability in customer side. In addition, it is unable to reflect outage or customer’s equipment shutdown caused by instantaneous interruption and power quality problem. This paper thus makes a systematic study on reliability of power customer. By comparing with power supply reliability, reliability of power customer is defined and extracted its evaluation requirements. An indexes system, consisting of seven customer indexes and two contrast indexes, are designed to describe reliability of power customer from continuity and availability. In order to comprehensively and quantitatively evaluate reliability of power customer in distribution networks, reliability evaluation method is proposed based on improved entropy method and the punishment weighting principle. Practical application has proved that reliability index system and evaluation method for power customer is reasonable and effective.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.
Power quality analysis based on spatial correlation
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli
2018-03-01
With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.
Distributed topology control algorithm for multihop wireless netoworks
NASA Technical Reports Server (NTRS)
Borbash, S. A.; Jennings, E. H.
2002-01-01
We present a network initialization algorithmfor wireless networks with distributed intelligence. Each node (agent) has only local, incomplete knowledge and it must make local decisions to meet a predefined global objective. Our objective is to use power control to establish a topology based onthe relative neighborhood graph which has good overall performance in terms of power usage, low interference, and reliability.
A mechanism producing power law etc. distributions
NASA Astrophysics Data System (ADS)
Li, Heling; Shen, Hongjun; Yang, Bin
2017-07-01
Power law distribution is playing an increasingly important role in the complex system study. Based on the insolvability of complex systems, the idea of incomplete statistics is utilized and expanded, three different exponential factors are introduced in equations about the normalization condition, statistical average and Shannon entropy, with probability distribution function deduced about exponential function, power function and the product form between power function and exponential function derived from Shannon entropy and maximal entropy principle. So it is shown that maximum entropy principle can totally replace equal probability hypothesis. Owing to the fact that power and probability distribution in the product form between power function and exponential function, which cannot be derived via equal probability hypothesis, can be derived by the aid of maximal entropy principle, it also can be concluded that maximal entropy principle is a basic principle which embodies concepts more extensively and reveals basic principles on motion laws of objects more fundamentally. At the same time, this principle also reveals the intrinsic link between Nature and different objects in human society and principles complied by all.
RF-based power distribution system for optogenetic experiments
NASA Astrophysics Data System (ADS)
Filipek, Tomasz A.; Kasprowicz, Grzegorz H.
2017-08-01
In this paper, the wireless power distribution system for optogenetic experiment was demonstrated. The design and the analysis of the power transfer system development is described in details. The architecture is outlined in the context of performance requirements that had to be met. We show how to design a wireless power transfer system using resonant coupling circuits which consist of a number of receivers and one transmitter covering the entire cage area with a specific power density. The transmitter design with the full automated protection stage is described with detailed consideration of the specification and the construction of the transmitting loop antenna. In addition, the design of the receiver is described, including simplification of implementation and the minimization of the impact of component tolerances on the performance of the distribution system. The conducted analysis has been confirmed by calculations and measurement results. The presented distribution system was designed to provide 100 mW power supply to each of the ten possible receivers in a limited 490 x 350 mm cage space while using a single transmitter working at the coupling resonant frequency of 27 MHz.
NASA Astrophysics Data System (ADS)
Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.
2018-03-01
According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.
Ji, Haoran; Wang, Chengshan; Li, Peng; ...
2017-09-20
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haoran; Wang, Chengshan; Li, Peng
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
A distributed control approach for power and energy management in a notional shipboard power system
NASA Astrophysics Data System (ADS)
Shen, Qunying
The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability of power supply (in terms of quality of service) is developed. This module can supply uninterruptible power to the mission critical loads. In addition, a multi-agent system (MAS) based framework is proposed to implement the PCON based PEMS through a hardware setup that is composed of MAMBA boards and FPGA interface. Agents are implemented using Java Agent DEvelopment Framework (JADE). Various test scenarios were tested to validate the approach.
Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data
Qin, Xinyan; Wu, Gongping; Fan, Fei
2018-01-01
Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from “layer” to “block” according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection. PMID:29690560
Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data.
Qin, Xinyan; Wu, Gongping; Lei, Jin; Fan, Fei; Ye, Xuhui
2018-04-22
Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from "layer" to "block" according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection.
NASA Astrophysics Data System (ADS)
Zhang, Zhong
In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry.
Impact of distributed energy resources on the reliability of a critical telecommunications facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.
2006-03-01
This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power inmore » the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.« less
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
Power-law tails in the distribution of order imbalance
NASA Astrophysics Data System (ADS)
Zhang, Ting; Gu, Gao-Feng; Xu, Hai-Chuan; Xiong, Xiong; Chen, Wei; Zhou, Wei-Xing
2017-10-01
We investigate the probability distribution of order imbalance calculated from the order flow data of 43 Chinese stocks traded on the Shenzhen Stock Exchange. Two definitions of order imbalance are considered based on the order number and the order size. We find that the order imbalance distributions of individual stocks have power-law tails. However, the tail index fluctuates remarkably from stock to stock. We also investigate the distributions of aggregated order imbalance of all stocks at different timescales Δt. We find no clear trend in the tail index with respect Δt. All the analyses suggest that the distributions of order imbalance are asymmetric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea
This paper develops an online optimization method to maximize operational objectives of distribution-level distributed energy resources (DERs), while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power flows, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying convex optimization problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea
This paper develops an online optimization method to maximize the operational objectives of distribution-level distributed energy resources (DERs) while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying optimization problem.« less
Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald
2011-12-01
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.
Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald
2011-12-01
Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].
Coordinated distribution network control of tap changer transformers, capacitors and PV inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin
A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less
Coordinated distribution network control of tap changer transformers, capacitors and PV inverters
Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin
2017-06-08
A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less
Power-Laws and Scaling in Finance: Empirical Evidence and Simple Models
NASA Astrophysics Data System (ADS)
Bouchaud, Jean-Philippe
We discuss several models that may explain the origin of power-law distributions and power-law correlations in financial time series. From an empirical point of view, the exponents describing the tails of the price increments distribution and the decay of the volatility correlations are rather robust and suggest universality. However, many of the models that appear naturally (for example, to account for the distribution of wealth) contain some multiplicative noise, which generically leads to non universal exponents. Recent progress in the empirical study of the volatility suggests that the volatility results from some sort of multiplicative cascade. A convincing `microscopic' (i.e. trader based) model that explains this observation is however not yet available. We discuss a rather generic mechanism for long-ranged volatility correlations based on the idea that agents constantly switch between active and inactive strategies depending on their relative performance.
NASA Technical Reports Server (NTRS)
Aucoin, B. M.; Heller, R. P.
1990-01-01
An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano
Past works that focused on addressing power-quality and reliability concerns related to renewable energy resources (RESs) operating with business-as-usual practices have looked at the design of Volt/VAr and Volt/Watt strategies to regulate real or reactive powers based on local voltage measurements, so that terminal voltages are within acceptable levels. These control strategies have the potential of operating at the same time scale of distribution-system dynamics, and can therefore mitigate disturbances precipitated fast time-varying loads and ambient conditions; however, they do not necessarily guarantee system-level optimality, and stability claims are mainly based on empirical evidences. On a different time scale, centralizedmore » and distributed optimal power flow (OPF) algorithms have been proposed to compute optimal steady-state inverter setpoints, so that power losses and voltage deviations are minimized and economic benefits to end-users providing ancillary services are maximized. However, traditional OPF schemes may offer decision making capabilities that do not match the dynamics of distribution systems. Particularly, during the time required to collect data from all the nodes of the network (e.g., loads), solve the OPF, and subsequently dispatch setpoints, the underlying load, ambient, and network conditions may have already changed; in this case, the DER output powers would be consistently regulated around outdated setpoints, leading to suboptimal system operation and violation of relevant electrical limits. The present work focuses on the synthesis of distributed RES-inverter controllers that leverage the opportunities for fast feedback offered by power-electronics interfaced RESs. The overarching objective is to bridge the temporal gap between long-term system optimization and real-time control, to enable seamless RES integration in large scale with stability and efficiency guarantees, while congruently pursuing system-level optimization objectives. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. The proposed controllers enable an update of the power outputs at a time scale that is compatible with the underlying dynamics of loads and ambient conditions, and continuously drive the system operation towards OPF-based solutions.« less
The distribution of first-passage times and durations in FOREX and future markets
NASA Astrophysics Data System (ADS)
Sazuka, Naoya; Inoue, Jun-ichi; Scalas, Enrico
2009-07-01
Possible distributions are discussed for intertrade durations and first-passage processes in financial markets. The view-point of renewal theory is assumed. In order to represent market data with relatively long durations, two types of distributions are used, namely a distribution derived from the Mittag-Leffler survival function and the Weibull distribution. For the Mittag-Leffler type distribution, the average waiting time (residual life time) is strongly dependent on the choice of a cut-off parameter tmax, whereas the results based on the Weibull distribution do not depend on such a cut-off. Therefore, a Weibull distribution is more convenient than a Mittag-Leffler type if one wishes to evaluate relevant statistics such as average waiting time in financial markets with long durations. On the other hand, we find that the Gini index is rather independent of the cut-off parameter. Based on the above considerations, we propose a good candidate for describing the distribution of first-passage time in a market: The Weibull distribution with a power-law tail. This distribution compensates the gap between theoretical and empirical results more efficiently than a simple Weibull distribution. It should be stressed that a Weibull distribution with a power-law tail is more flexible than the Mittag-Leffler distribution, which itself can be approximated by a Weibull distribution and a power-law. Indeed, the key point is that in the former case there is freedom of choice for the exponent of the power-law attached to the Weibull distribution, which can exceed 1 in order to reproduce decays faster than possible with a Mittag-Leffler distribution. We also give a useful formula to determine an optimal crossover point minimizing the difference between the empirical average waiting time and the one predicted from renewal theory. Moreover, we discuss the limitation of our distributions by applying our distribution to the analysis of the BTP future and calculating the average waiting time. We find that our distribution is applicable as long as durations follow a Weibull law for short times and do not have too heavy a tail.
NASA Technical Reports Server (NTRS)
Patton, Jeff A.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Model-based reasoning for power system management using KATE and the SSM/PMAD
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian
1993-01-01
The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.
Managing autonomy levels in the SSM/PMAD testbed. [Space Station Power Management and Distribution
NASA Technical Reports Server (NTRS)
Ashworth, Barry R.
1990-01-01
It is pointed out that when autonomous operations are mixed with those of a manual nature, concepts concerning the boundary of operations and responsibility become clouded. The space station module power management and distribution (SSM/PMAD) automation testbed has the need for such mixed-mode capabilities. The concept of managing the SSM/PMAD testbed in the presence of changing levels of autonomy is examined. A knowledge-based approach to implementing autonomy management in the distributed SSM/PMAD utilizing a centralized planning system is presented. Its knowledge relations and system-wide interactions are discussed, along with the operational nature of the currently functioning SSM/PMAD knowledge-based systems.
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less
A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations
NASA Technical Reports Server (NTRS)
Mulrooney, Mark K.; Matney, Mark J.
2008-01-01
We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.
Development of Light Powered Sensor Networks for Thermal Comfort Measurement
Lee, Dasheng
2008-01-01
Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877
Effect of LED-LCU light irradiance distribution on mechanical properties of resin based materials.
Magalhães Filho, T R; Weig, K M; Costa, M F; Werneck, M M; Barthem, R B; Costa Neto, C A
2016-06-01
The objective of this study is to analyze the light power distribution along the tip end of the light guide of three LED-LCUs (Light Curing Units) and to evaluate its effect on the mechanical properties of a polymer based dental composite. Firstly, the light power distribution over the whole area of LED-LCU light guide surface was analyzed by three methods: visual projection observation, spectral measurement and optical spectral analysis (OSA). The light power distribution and the total irradiance were different for the three LEDs used, but the wavelength was within the camphorquinone absorption spectrum. The use of a blank sheet was quite on hand to make a qualitative analysis of a beam, and it is costless. Secondly, specimens of a hybrid composite with approximately 8mm diameter and 2mm thickness were produced and polymerized by 20s exposition time to each LED-LCU. Thirdly, the elastic modulus (E) and hardness (HV) were measured throughout the irradiated area by instrumented micro-indentation test (IIT), allowing to correlate localized power and mechanical properties. Both E and HV showed to be very sensitive to local power and wavelength dependent, but they followed the beam power profile. It was also shown that the mechanical properties could be directly correlated to the curing process. Very steep differences in mechanical properties over very short distances may impair the material performance, since residual stresses can easily be built over it. Copyright © 2016 Elsevier B.V. All rights reserved.
A computer assisted intelligent storm outage evaluator for power distribution systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishnan, R.; Pahwa, A.
1990-07-01
The lower voltage part of the power distribution system (primary and secondary sub-systems) does not have the provision for real-time status feedback, and as a result evaluation of outages is an extremely difficult task, especially during system emergencies caused by tornadoes and ice-storms. In this paper, a knowledge based approach is proposed for evaluation of storm related outages in the distribution systems. At the outset, binary voltage sensors capable of transmitting the real-time voltage on/off symptoms are recommended to be installed at strategic locations in the distribution system.
NASA Technical Reports Server (NTRS)
Jorgensen, Leland H; Perkins, Edward W
1958-01-01
For a body consisting of a fineness-ratio-3 ogival nose tangent to a cylindrical afterbody 7.3 diameters long, pitot-pressure distributions in the flow field, pressure distributions over the body, and downwash distributions along a line through the vortex centers have been measured for angles of attack to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10 to the 6th power and 0.44 x 10 to the 6th power. Comparisons of computed and measured vortex paths and downwash distributions are made. (author)
Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan
2008-12-01
Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.
RnaSeqSampleSize: real data based sample size estimation for RNA sequencing.
Zhao, Shilin; Li, Chung-I; Guo, Yan; Sheng, Quanhu; Shyr, Yu
2018-05-30
One of the most important and often neglected components of a successful RNA sequencing (RNA-Seq) experiment is sample size estimation. A few negative binomial model-based methods have been developed to estimate sample size based on the parameters of a single gene. However, thousands of genes are quantified and tested for differential expression simultaneously in RNA-Seq experiments. Thus, additional issues should be carefully addressed, including the false discovery rate for multiple statistic tests, widely distributed read counts and dispersions for different genes. To solve these issues, we developed a sample size and power estimation method named RnaSeqSampleSize, based on the distributions of gene average read counts and dispersions estimated from real RNA-seq data. Datasets from previous, similar experiments such as the Cancer Genome Atlas (TCGA) can be used as a point of reference. Read counts and their dispersions were estimated from the reference's distribution; using that information, we estimated and summarized the power and sample size. RnaSeqSampleSize is implemented in R language and can be installed from Bioconductor website. A user friendly web graphic interface is provided at http://cqs.mc.vanderbilt.edu/shiny/RnaSeqSampleSize/ . RnaSeqSampleSize provides a convenient and powerful way for power and sample size estimation for an RNAseq experiment. It is also equipped with several unique features, including estimation for interested genes or pathway, power curve visualization, and parameter optimization.
Multi-kw dc power distribution system study program
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1974-01-01
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.
NASA Astrophysics Data System (ADS)
Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng
2018-04-01
Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2017-04-01
Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.
Excimer laser annealing for low-voltage power MOSFET
NASA Astrophysics Data System (ADS)
Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim
2016-08-01
Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.
A 25-kW Series-Resonant Power Converter
NASA Technical Reports Server (NTRS)
Frye, R. J.; Robson, R. R.
1986-01-01
Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.
Autonomous Power System intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Autonomous power system intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation betweenmore » ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.« less
Description of a MIL-STD-1553B Data Bus Ada Driver for the LeRC EPS Testbed
NASA Technical Reports Server (NTRS)
Mackin, Michael A.
1995-01-01
This document describes the software designed to provide communication between control computers in the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of electrical power are controlled by a network of six control computers. Data and control messages are passed between the computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC), controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers. These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.
Lahham, Adnan; Alkbash, Jehad Abu; ALMasri, Hussien
2017-04-20
Theoretical assessments of power density in far-field conditions were used to evaluate the levels of environmental electromagnetic frequencies from selected GSM900 macrocell base stations in the West Bank and Gaza Strip. Assessments were based on calculating the power densities using commercially available software (RF-Map from Telstra Research Laboratories-Australia). Calculations were carried out for single base stations with multiantenna systems and also for multiple base stations with multiantenna systems at 1.7 m above the ground level. More than 100 power density levels were calculated at different locations around the investigated base stations. These locations include areas accessible to the general public (schools, parks, residential areas, streets and areas around kindergartens). The maximum calculated electromagnetic emission level resulted from a single site was 0.413 μW cm-2 and found at Hizma town near Jerusalem. Average maximum power density from all single sites was 0.16 μW cm-2. The results of all calculated power density levels in 100 locations distributed over the West Bank and Gaza were nearly normally distributed with a peak value of ~0.01% of the International Commission on Non-Ionizing Radiation Protection's limit recommended for general public. Comparison between calculated and experimentally measured value of maximum power density from a base station showed that calculations overestimate the actual measured power density by ~27%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kato, Takeyoshi; Minagata, Atsushi; Suzuoki, Yasuo
This paper discusses the influence of mass installation of a home co-generation system (H-CGS) using a polymer electrolyte fuel cell (PEFC) on the voltage profile of power distribution system in residential area. The influence of H-CGS is compared with that of photovoltaic power generation systems (PV systems). The operation pattern of H-CGS is assumed based on the electricity and hot-water demand observed in 10 households for a year. The main results are as follows. With the clustered H-CGS, the voltage of each bus is higher by about 1-3% compared with the conventional system without any distributed generators. Because H-CGS tends to increase the output during the early evening, H-CGS contributes to recover the voltage drop during the early evening, resulting in smaller voltage variation of distribution system throughout a day. Because of small rated power output about 1kW, the influence on voltage profile by the clustered H-CGS is smaller than that by the clustered PV systems. The highest voltage during the day time is not so high as compared with the distribution system with the clustered PV systems, even if the reverse power flow from H-CGS is allowed.
Understanding human dynamics in microblog posting activities
NASA Astrophysics Data System (ADS)
Jiang, Zhihong; Zhang, Yubao; Wang, Hui; Li, Pei
2013-02-01
Human activity patterns are an important issue in behavior dynamics research. Empirical evidence indicates that human activity patterns can be characterized by a heavy-tailed inter-event time distribution. However, most researchers give an understanding by only modeling the power-law feature of the inter-event time distribution, and those overlooked non-power-law features are likely to be nontrivial. In this work, we propose a behavior dynamics model, called the finite memory model, in which humans adaptively change their activity rates based on a finite memory of recent activities, which is driven by inherent individual interest. Theoretical analysis shows a finite memory model can properly explain various heavy-tailed inter-event time distributions, including a regular power law and some non-power-law deviations. To validate the model, we carry out an empirical study based on microblogging activity from thousands of microbloggers in the Celebrity Hall of the Sina microblog. The results show further that the model is reasonably effective. We conclude that finite memory is an effective dynamics element to describe the heavy-tailed human activity pattern.
Stability analysis of spacecraft power systems
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.
1990-01-01
The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.
Distributed energy storage systems on the basis of electric-vehicle fleets
NASA Astrophysics Data System (ADS)
Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.
2015-01-01
Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).
Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors
NASA Technical Reports Server (NTRS)
Kirkham, Harold
1996-01-01
Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.
State-of-the art of dc components for secondary power distribution of Space Station Freedom
NASA Technical Reports Server (NTRS)
Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.
1991-01-01
120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.
Statistical Tests Black swans or dragon-kings? A simple test for deviations from the power law★
NASA Astrophysics Data System (ADS)
Janczura, J.; Weron, R.
2012-05-01
We develop a simple test for deviations from power law tails. Actually, from the tails of any distribution. We use this test - which is based on the asymptotic properties of the empirical distribution function - to answer the question whether great natural disasters, financial crashes or electricity price spikes should be classified as dragon-kings or `only' as black swans.
Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites
NASA Astrophysics Data System (ADS)
2002-03-01
Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.
Geographically distributed real-time digital simulations using linear prediction
Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...
2016-07-04
Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less
Geographically distributed real-time digital simulations using linear prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank
Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less
A design of wireless sensor networks for a power quality monitoring system.
Lim, Yujin; Kim, Hak-Man; Kang, Sanggil
2010-01-01
Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation. PMID:22164047
Bounds of memory strength for power-law series.
Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao
2017-05-01
Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α. By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α, which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1<α≤3, as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α>3, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.
Bounds of memory strength for power-law series
NASA Astrophysics Data System (ADS)
Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao
2017-05-01
Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α . By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α , which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1 <α ≤3 , as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α >3 , the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.
Continuation Power Flow Analysis for PV Integration Studies at Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiyu; Zhu, Xiangqi; Lubkeman, David L.
2017-10-30
This paper presents a method for conducting continuation power flow simulation on high-solar penetration distribution feeders. A load disaggregation method is developed to disaggregate the daily feeder load profiles collected in substations down to each load node, where the electricity consumption of residential houses and commercial buildings are modeled using actual data collected from single family houses and commercial buildings. This allows the modeling of power flow and voltage profile along a distribution feeder on a continuing fashion for a 24- hour period at minute-by-minute resolution. By separating the feeder into load zones based on the distance between the loadmore » node and the feeder head, we studied the impact of PV penetration on distribution grid operation in different seasons and under different weather conditions for different PV placements.« less
Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2016-03-01
The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.
NASA Technical Reports Server (NTRS)
Ashworth, Barry R.
1989-01-01
A description is given of the SSM/PMAD power system automation testbed, which was developed using a systems engineering approach. The architecture includes a knowledge-based system and has been successfully used in power system management and fault diagnosis. Architectural issues which effect overall system activities and performance are examined. The knowledge-based system is discussed along with its associated automation implications, and interfaces throughout the system are presented.
Artificial intelligence and space power systems automation
NASA Technical Reports Server (NTRS)
Weeks, David J.
1987-01-01
Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.
A distributed data base management system. [for Deep Space Network
NASA Technical Reports Server (NTRS)
Bryan, A. I.
1975-01-01
Major system design features of a distributed data management system for the NASA Deep Space Network (DSN) designed for continuous two-way deep space communications are described. The reasons for which the distributed data base utilizing third-generation minicomputers is selected as the optimum approach for the DSN are threefold: (1) with a distributed master data base, valid data is available in real-time to support DSN management activities at each location; (2) data base integrity is the responsibility of local management; and (3) the data acquisition/distribution and processing power of a third-generation computer enables the computer to function successfully as a data handler or as an on-line process controller. The concept of the distributed data base is discussed along with the software, data base integrity, and hardware used. The data analysis/update constraint is examined.
NASA Astrophysics Data System (ADS)
Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya
The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.
Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage
NASA Technical Reports Server (NTRS)
Hoffman, David; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.
2001-01-01
This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photo-voltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.
Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.
2001-01-01
This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photovoltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.
Data-Centric Situational Awareness and Management in Intelligent Power Systems
NASA Astrophysics Data System (ADS)
Dai, Xiaoxiao
The rapid development of technology and society has made the current power system a much more complicated system than ever. The request for big data based situation awareness and management becomes urgent today. In this dissertation, to respond to the grand challenge, two data-centric power system situation awareness and management approaches are proposed to address the security problems in the transmission/distribution grids and social benefits augmentation problem at the distribution-customer lever, respectively. To address the security problem in the transmission/distribution grids utilizing big data, the first approach provides a fault analysis solution based on characterization and analytics of the synchrophasor measurements. Specically, the optimal synchrophasor measurement devices selection algorithm (OSMDSA) and matching pursuit decomposition (MPD) based spatial-temporal synchrophasor data characterization method was developed to reduce data volume while preserving comprehensive information for the big data analyses. And the weighted Granger causality (WGC) method was investigated to conduct fault impact causal analysis during system disturbance for fault localization. Numerical results and comparison with other methods demonstrate the effectiveness and robustness of this analytic approach. As more social effects are becoming important considerations in power system management, the goal of situation awareness should be expanded to also include achievements in social benefits. The second approach investigates the concept and application of social energy upon the University of Denver campus grid to provide management improvement solutions for optimizing social cost. Social element--human working productivity cost, and economic element--electricity consumption cost, are both considered in the evaluation of overall social cost. Moreover, power system simulation, numerical experiments for smart building modeling, distribution level real-time pricing and social response to the pricing signals are studied for implementing the interactive artificial-physical management scheme.
Fast Grid Frequency Support from Distributed Inverter-Based Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson F
This presentation summarizes power hardware-in-the-loop testing performed to evaluate the ability of distributed inverter-coupled generation to support grid frequency on the fastest time scales. The research found that distributed PV inverters and other DERs can effectively support the grid on sub-second time scales.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
Design and implementation of co-operative control strategy for hybrid AC/DC microgrids
NASA Astrophysics Data System (ADS)
Mahmud, Rasel
This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation.
Wireless electricity (Power) transmission using solar based power satellite technology
NASA Astrophysics Data System (ADS)
Maqsood, M.; Nauman Nasir, M.
2013-06-01
In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 - 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.
Smart intimation and location of faults in distribution system
NASA Astrophysics Data System (ADS)
Hari Krishna, K.; Srinivasa Rao, B.
2018-04-01
Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.
Microwave-Driven Multifunctional Capability of Membrane Structures
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.
2002-01-01
A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.
Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter
NASA Astrophysics Data System (ADS)
Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun
2018-03-01
The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chin-Yao; Zhang, Wei
This paper presents a new distributed control framework to coordinate inverter-interfaced distributed energy resources (DERs) in island microgrids. We show that under bounded load uncertainties, the proposed control method can steer the microgrid to a desired steady state with synchronized inverter frequency across the network and proportional sharing of both active and reactive powers among the inverters. We also show that such convergence can be achieved while respecting constraints on voltage magnitude and branch angle differences. The controller is robust under various contingency scenarios, including loss of communication links and failures of DERs. The proposed controller is applicable to lossymore » mesh microgrids with heterogeneous R/X distribution lines and reasonable parameter variations. Simulations based on various microgrid operation scenarios are also provided to show the effectiveness of the proposed control method.« less
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.
A framework for building real-time expert systems
NASA Technical Reports Server (NTRS)
Lee, S. Daniel
1991-01-01
The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.
Status of a Power Processor for the Prometheus-1 Electric Propulsion System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph
2006-01-01
NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-06-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-03-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
Decentralized control of units in smart grids for the support of renewable energy supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenschein, Michael, E-mail: Michael.Sonnenschein@Uni-Oldenburg.DE; Lünsdorf, Ontje, E-mail: Ontje.Luensdorf@OFFIS.DE; Bremer, Jörg, E-mail: Joerg.Bremer@Uni-Oldenburg.DE
Due to the significant environmental impact of power production from fossil fuels and nuclear fission, future energy systems will increasingly rely on distributed and renewable energy sources (RES). The electrical feed-in from photovoltaic (PV) systems and wind energy converters (WEC) varies greatly both over short and long time periods (from minutes to seasons), and (not only) by this effect the supply of electrical power from RES and the demand for electrical power are not per se matching. In addition, with a growing share of generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually replaced bymore » a bottom-up power supply. This altogether leads to new problems regarding the safe and reliable operation of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. The inherent flexibilities, i.e. the set of feasible power schedules, of distributed power units have to be controlled in order to support demand–supply matching as well as stable grid operation. Controllable power units are e.g. combined heat and power plants, power storage systems such as batteries, and flexible power consumers such as heat pumps. By controlling the flexibilities of these units we are particularly able to optimize the local utilization of RES feed-in in a given power grid by integrating both supply and demand management measures with special respect to the electrical infrastructure. In this context, decentralized systems, autonomous agents and the concept of self-organizing systems will become key elements of the ICT based control of power units. In this contribution, we first show how a decentralized load management system for battery charging/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large sets of appliances, dynamic clustering of these appliances into uniformly controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.« less
EMTP based stability analysis of space station electric power system in a test bed environment
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.
1992-01-01
The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.
EMTP based stability analysis of Space Station Electric Power System in a test bed environment
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.
1992-01-01
The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.
Comprehensive evaluation of impacts of distributed generation integration in distribution network
NASA Astrophysics Data System (ADS)
Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu
2018-04-01
All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.
ERIC Educational Resources Information Center
Wu, Wentao
2012-01-01
The objective of this thesis is two-fold: (1) to investigate the degree distribution property of community-based social networks (CSNs) and (2) to provide solutions to a pertinent problem, the Key Player Problem. In the first part of this thesis, we consider a growing community-based network in which the ability of nodes competing for links to new…
Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network
Zhu, Zhenshan; Liu, Dichen; Liao, Qingfen; ...
2018-01-26
With the great increase of renewable generation as well as the DC loads in the distribution network; DC distribution technology is receiving more attention; since the DC distribution network can improve operating efficiency and power quality by reducing the energy conversion stages. This paper presents a new architecture for the medium voltage AC/DC hybrid distribution network; where the AC and DC subgrids are looped by normally closed AC soft open point (ACSOP) and DC soft open point (DCSOP); respectively. The proposed AC/DC hybrid distribution systems contain renewable generation (i.e., wind power and photovoltaic (PV) generation); energy storage systems (ESSs); softmore » open points (SOPs); and both AC and DC flexible demands. An energy management strategy for the hybrid system is presented based on the dynamic optimal power flow (DOPF) method. The main objective of the proposed power scheduling strategy is to minimize the operating cost and reduce the curtailment of renewable generation while meeting operational and technical constraints. The proposed approach is verified in five scenarios. The five scenarios are classified as pure AC system; hybrid AC/DC system; hybrid system with interlinking converter; hybrid system with DC flexible demand; and hybrid system with SOPs. Results show that the proposed scheduling method can successfully dispatch the controllable elements; and that the presented architecture for the AC/DC hybrid distribution system is beneficial for reducing operating cost and renewable generation curtailment.« less
Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhenshan; Liu, Dichen; Liao, Qingfen
With the great increase of renewable generation as well as the DC loads in the distribution network; DC distribution technology is receiving more attention; since the DC distribution network can improve operating efficiency and power quality by reducing the energy conversion stages. This paper presents a new architecture for the medium voltage AC/DC hybrid distribution network; where the AC and DC subgrids are looped by normally closed AC soft open point (ACSOP) and DC soft open point (DCSOP); respectively. The proposed AC/DC hybrid distribution systems contain renewable generation (i.e., wind power and photovoltaic (PV) generation); energy storage systems (ESSs); softmore » open points (SOPs); and both AC and DC flexible demands. An energy management strategy for the hybrid system is presented based on the dynamic optimal power flow (DOPF) method. The main objective of the proposed power scheduling strategy is to minimize the operating cost and reduce the curtailment of renewable generation while meeting operational and technical constraints. The proposed approach is verified in five scenarios. The five scenarios are classified as pure AC system; hybrid AC/DC system; hybrid system with interlinking converter; hybrid system with DC flexible demand; and hybrid system with SOPs. Results show that the proposed scheduling method can successfully dispatch the controllable elements; and that the presented architecture for the AC/DC hybrid distribution system is beneficial for reducing operating cost and renewable generation curtailment.« less
NASA Astrophysics Data System (ADS)
Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.
2017-11-01
In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.
Dynamic ADMM for Real-Time Optimal Power Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearization of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of noncontrollable resources. Optimality and convergence of the proposed algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less
Dynamic ADMM for Real-Time Optimal Power Flow: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less
Progress in space power technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.
1980-01-01
The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.
A Direction Finding Method with A 3-D Array Based on Aperture Synthesis
NASA Astrophysics Data System (ADS)
Li, Shiwen; Chen, Liangbing; Gao, Zhaozhao; Ma, Wenfeng
2018-01-01
Direction finding for electronic warfare application should provide a wider field of view as possible. But the maximum unambiguous field of view for conventional direction finding methods is a hemisphere. It cannot distinguish the direction of arrival of the signals from the back lobe of the array. In this paper, a full 3-D direction finding method based on aperture synthesis radiometry is proposed. The model of the direction finding system is illustrated, and the fundamentals are presented. The relationship between the outputs of the measurements of a 3-D array and the 3-D power distribution of the point sources can be represented by a 3-D Fourier transform, and then the 3-D power distribution of the point sources can be reconstructed by an inverse 3-D Fourier transform. And in order to display the 3-D power distribution of the point sources conveniently, the whole spherical distribution is represented by two 2-D circular distribution images, one of which is for the upper hemisphere, and the other is for the lower hemisphere. Then a numeric simulation is designed and conducted to demonstrate the feasibility of the method. The results show that the method can estimate the arbitrary direction of arrival of the signals in the 3-D space correctly.
Power Enhancement in High Dimensional Cross-Sectional Tests
Fan, Jianqing; Liao, Yuan; Yao, Jiawei
2016-01-01
We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
Money-center structures in dynamic banking systems
NASA Astrophysics Data System (ADS)
Li, Shouwei; Zhang, Minghui
2016-10-01
In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.
Estimation and applications of size-based distributions in forestry
Jeffrey H. Gove
2003-01-01
Size-based distributions arise in several contexts in forestry and ecology. Simple power relationships (e.g., basal area and diameter at breast height) between variables are one such area of interest arising from a modeling perspective. Another, probability proportional to size sampline (PPS), is found in the most widely used methods for sampling standing or dead and...
Long memory behavior of returns after intraday financial jumps
NASA Astrophysics Data System (ADS)
Behfar, Stefan Kambiz
2016-11-01
In this paper, characterization of intraday financial jumps and time dynamics of returns after jumps is investigated, and will be analytically and empirically shown that intraday jumps are power-law distributed with the exponent 1 < μ < 2; in addition, returns after jumps show long-memory behavior. In the theory of finance, it is important to be able to distinguish between jumps and continuous sample path price movements, and this can be achieved by introducing a statistical test via calculating sums of products of returns over small period of time. In the case of having jump, the null hypothesis for normality test is rejected; this is based on the idea that returns are composed of mixture of normally-distributed and power-law distributed data (∼ 1 /r 1 + μ). Probability of rejection of null hypothesis is a function of μ, which is equal to one for 1 < μ < 2 within large intraday sample size M. To test this idea empirically, we downloaded S&P500 index data for both periods of 1997-1998 and 2014-2015, and showed that the Complementary Cumulative Distribution Function of jump return is power-law distributed with the exponent 1 < μ < 2. There are far more jumps in 1997-1998 as compared to 2015-2016; and it represents a power law exponent in 2015-2016 greater than one in 1997-1998. Assuming that i.i.d returns generally follow Poisson distribution, if the jump is a causal factor, high returns after jumps are the effect; we show that returns caused by jump decay as power-law distribution. To test this idea empirically, we average over the time dynamics of all days; therefore the superposed time dynamics after jump represent a power-law, which indicates that there is a long memory with a power-law distribution of return after jump.
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.
Survey on the implementation and reliability of CubeSat electrical bus interfaces
NASA Astrophysics Data System (ADS)
Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard
2017-06-01
This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.
NASA Astrophysics Data System (ADS)
Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan
2017-10-01
Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.
Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoder, Karl; Langston, James; Hauer, John
2015-10-01
The National Renewable Energy Laboratory (NREL) teamed with Southern California Edison (SCE), Clean Power Research (CPR), Quanta Technology (QT), and Electrical Distribution Design (EDD) to conduct a U.S. Department of Energy (DOE) and California Public Utility Commission (CPUC) California Solar Initiative (CSI)-funded research project investigating the impacts of integrating high-penetration levels of photovoltaics (PV) onto the California distribution grid. One topic researched in the context of high-penetration PV integration onto the distribution system is the ability of PV inverters to (1) detect islanding conditions (i.e., when the distribution system to which the PV inverter is connected becomes disconnected from themore » utility power connection) and (2) disconnect from the islanded system within the time specified in the performance specifications outlined in IEEE Standard 1547. This condition may cause damage to other connected equipment due to insufficient power quality (e.g., over-and under-voltages) and may also be a safety hazard to personnel that may be working on feeder sections to restore service. NREL teamed with the Florida State University (FSU) Center for Advanced Power Systems (CAPS) to investigate a new way of testing PV inverters for IEEE Standard 1547 unintentional islanding performance specifications using power hardware-in-loop (PHIL) laboratory testing techniques.« less
Software Comparison for Renewable Energy Deployment in a Distribution Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objective of this report is to evaluate different software options for performing robust distributed generation (DG) power system modeling. The features and capabilities of four simulation tools, OpenDSS, GridLAB-D, CYMDIST, and PowerWorld Simulator, are compared to analyze their effectiveness in analyzing distribution networks with DG. OpenDSS and GridLAB-D, two open source software, have the capability to simulate networks with fluctuating data values. These packages allow the running of a simulation each time instant by iterating only the main script file. CYMDIST, a commercial software, allows for time-series simulation to study variations on network controls. PowerWorld Simulator, another commercialmore » tool, has a batch mode simulation function through the 'Time Step Simulation' tool, which obtains solutions for a list of specified time points. PowerWorld Simulator is intended for analysis of transmission-level systems, while the other three are designed for distribution systems. CYMDIST and PowerWorld Simulator feature easy-to-use graphical user interfaces (GUIs). OpenDSS and GridLAB-D, on the other hand, are based on command-line programs, which increase the time necessary to become familiar with the software packages.« less
Intelligent Distribution Voltage Control with Distributed Generation =
NASA Astrophysics Data System (ADS)
Castro Mendieta, Jose
In this thesis, three methods for the optimal participation of the reactive power of distributed generations (DGs) in unbalanced distributed network have been proposed, developed, and tested. These new methods were developed with the objectives of maintain voltage within permissible limits and reduce losses. The first method proposes an optimal participation of reactive power of all devices available in the network. The propose approach is validated by comparing the results with other methods reported in the literature. The proposed method was implemented using Simulink of Matlab and OpenDSS. Optimization techniques and the presentation of results are from Matlab. The co-simulation of Electric Power Research Institute's (EPRI) OpenDSS program solves a three-phase optimal power flow problem in the unbalanced IEEE 13 and 34-node test feeders. The results from this work showed a better loss reduction compared to the Coordinated Voltage Control (CVC) method. The second method aims to minimize the voltage variation on the pilot bus on distribution network using DGs. It uses Pareto and Fuzzy-PID logic to reduce the voltage variation. Results indicate that the proposed method reduces the voltage variation more than the other methods. Simulink of Matlab and OpenDSS is used in the development of the proposed approach. The performance of the method is evaluated on IEEE 13-node test feeder with one and three DGs. Variables and unbalanced loads are used, based on real consumption data, over a time window of 48 hours. The third method aims to minimize the reactive losses using DGs on distribution networks. This method analyzes the problem using the IEEE 13-node test feeder with three different loads and the IEEE 123-node test feeder with four DGs. The DGs can be fixed or variables. Results indicate that integration of DGs to optimize the reactive power of the network helps to maintain the voltage within the allowed limits and to reduce the reactive power losses. The thesis is presented in the form of the three articles. The first article is published in the journal Electrical Power and Energy System, the second is published in the international journal Energies and the third was submitted to the journal Electrical Power and Energy System. Two other articles have been published in conferences with reviewing committee. This work is based on six chapters, which are detailed in the various sections of the thesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung
2011-01-01
The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less
51. Interior of launch support building, minuteman power processor at ...
51. Interior of launch support building, minuteman power processor at lower left, power distribution panel at center, old diesel control panel at lower right, diesel battery at upper right, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuruganti, Phani Teja
The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response managementmore » system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.« less
Optical design of a high-power LED-based solar simulator
NASA Astrophysics Data System (ADS)
Toro-Betancur, Veronica; Velásquez-López, Alejandro; Velásquez, David; Acevedo-Gómez, David
2016-04-01
The optical design of a High-Power LED based Solar Simulator was made in order to reach the AM1.5G spectrum standards. An optical model of the light emitted by the LEDs was made and used for spectral intensities calculations and the light intensity uniformity was optimized. A class AAA solar simulator was designed using a hexagonal LED distribution.
Autonomous power management and distribution
NASA Technical Reports Server (NTRS)
Dolce, Jim; Kish, Jim
1990-01-01
The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.
Statistical characteristics of surrogate data based on geophysical measurements
NASA Astrophysics Data System (ADS)
Venema, V.; Bachner, S.; Rust, H. W.; Simmer, C.
2006-09-01
In this study, the statistical properties of a range of measurements are compared with those of their surrogate time series. Seven different records are studied, amongst others, historical time series of mean daily temperature, daily rain sums and runoff from two rivers, and cloud measurements. Seven different algorithms are used to generate the surrogate time series. The best-known method is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm, which is able to reproduce the measured distribution as well as the power spectrum. Using this setup, the measurements and their surrogates are compared with respect to their power spectrum, increment distribution, structure functions, annual percentiles and return values. It is found that the surrogates that reproduce the power spectrum and the distribution of the measurements are able to closely match the increment distributions and the structure functions of the measurements, but this often does not hold for surrogates that only mimic the power spectrum of the measurement. However, even the best performing surrogates do not have asymmetric increment distributions, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found deviations of the structure functions on small scales.
Adaptive linear rank tests for eQTL studies
Szymczak, Silke; Scheinhardt, Markus O.; Zeller, Tanja; Wild, Philipp S.; Blankenberg, Stefan; Ziegler, Andreas
2013-01-01
Expression quantitative trait loci (eQTL) studies are performed to identify single-nucleotide polymorphisms that modify average expression values of genes, proteins, or metabolites, depending on the genotype. As expression values are often not normally distributed, statistical methods for eQTL studies should be valid and powerful in these situations. Adaptive tests are promising alternatives to standard approaches, such as the analysis of variance or the Kruskal–Wallis test. In a two-stage procedure, skewness and tail length of the distributions are estimated and used to select one of several linear rank tests. In this study, we compare two adaptive tests that were proposed in the literature using extensive Monte Carlo simulations of a wide range of different symmetric and skewed distributions. We derive a new adaptive test that combines the advantages of both literature-based approaches. The new test does not require the user to specify a distribution. It is slightly less powerful than the locally most powerful rank test for the correct distribution and at least as powerful as the maximin efficiency robust rank test. We illustrate the application of all tests using two examples from different eQTL studies. PMID:22933317
Adaptive linear rank tests for eQTL studies.
Szymczak, Silke; Scheinhardt, Markus O; Zeller, Tanja; Wild, Philipp S; Blankenberg, Stefan; Ziegler, Andreas
2013-02-10
Expression quantitative trait loci (eQTL) studies are performed to identify single-nucleotide polymorphisms that modify average expression values of genes, proteins, or metabolites, depending on the genotype. As expression values are often not normally distributed, statistical methods for eQTL studies should be valid and powerful in these situations. Adaptive tests are promising alternatives to standard approaches, such as the analysis of variance or the Kruskal-Wallis test. In a two-stage procedure, skewness and tail length of the distributions are estimated and used to select one of several linear rank tests. In this study, we compare two adaptive tests that were proposed in the literature using extensive Monte Carlo simulations of a wide range of different symmetric and skewed distributions. We derive a new adaptive test that combines the advantages of both literature-based approaches. The new test does not require the user to specify a distribution. It is slightly less powerful than the locally most powerful rank test for the correct distribution and at least as powerful as the maximin efficiency robust rank test. We illustrate the application of all tests using two examples from different eQTL studies. Copyright © 2012 John Wiley & Sons, Ltd.
Challenges in reducing the computational time of QSTS simulations for distribution system analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less
NASA Astrophysics Data System (ADS)
Antonenkov, D. V.; Solovev, D. B.
2017-10-01
The article covers the aspects of forecasting and consideration of the wholesale market environment in generating the power demand forecast. Major mining companies that operate in conditions of the present day power market have to provide a reliable energy demand request for a certain time period ahead, thus ensuring sufficient reduction of financial losses associated with deviations of the actual power demand from the expected figures. Normally, under the power supply agreement, the consumer is bound to provide a per-month and per-hour request annually. It means that the consumer has to generate one-month-ahead short-term and medium-term hourly forecasts. The authors discovered that empiric distributions of “Yakutugol”, Holding Joint Stock Company, power demand belong to the sustainable rank parameter H-distribution type used for generating forecasts based on extrapolation of such distribution parameters. For this reason they justify the need to apply the mathematic rank analysis in short-term forecasting of the contracted power demand of “Neryungri” coil strip mine being a component of the technocenosis-type system of the mining company “Yakutugol”, Holding JSC.
Interest-Driven Model for Human Dynamics
NASA Astrophysics Data System (ADS)
Shang, Ming-Sheng; Chen, Guan-Xiong; Dai, Shuang-Xing; Wang, Bing-Hong; Zhou, Tao
2010-04-01
Empirical observations indicate that the interevent time distribution of human actions exhibits heavy-tailed features. The queuing model based on task priorities is to some extent successful in explaining the origin of such heavy tails, however, it cannot explain all the temporal statistics of human behavior especially for the daily entertainments. We propose an interest-driven model, which can reproduce the power-law distribution of interevent time. The exponent can be analytically obtained and is in good accordance with the simulations. This model well explains the observed relationship between activities and power-law exponents, as reported recently for web-based behavior and the instant message communications.
Centralized vs decentralized lunar power system study
NASA Astrophysics Data System (ADS)
Metcalf, Kenneth; Harty, Richard B.; Perronne, Gerald E.
1991-09-01
Three power-system options are considered with respect to utilization on a lunar base: the fully centralized option, the fully decentralized option, and a hybrid comprising features of the first two options. Power source, power conditioning, and power transmission are considered separately, and each architecture option is examined with ac and dc distribution, high and low voltage transmission, and buried and suspended cables. Assessments are made on the basis of mass, technological complexity, cost, reliability, and installation complexity, however, a preferred power-system architecture is not proposed. Preferred options include transmission based on ac, transmission voltages of 2000-7000 V with buried high-voltage lines and suspended low-voltage lines. Assessments of the total cost associated with the installations are required to determine the most suitable power system.
Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid
NASA Astrophysics Data System (ADS)
Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei
2018-02-01
As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.
NASA Astrophysics Data System (ADS)
Hashemi-Dezaki, Hamed; Mohammadalizadeh-Shabestary, Masoud; Askarian-Abyaneh, Hossein; Rezaei-Jegarluei, Mohammad
2014-01-01
In electrical distribution systems, a great amount of power are wasting across the lines, also nowadays power factors, voltage profiles and total harmonic distortions (THDs) of most loads are not as would be desired. So these important parameters of a system play highly important role in wasting money and energy, and besides both consumers and sources are suffering from a high rate of distortions and even instabilities. Active power filters (APFs) are innovative ideas for solving of this adversity which have recently used instantaneous reactive power theory. In this paper, a novel method is proposed to optimize the allocation of APFs. The introduced method is based on the instantaneous reactive power theory in vectorial representation. By use of this representation, it is possible to asses different compensation strategies. Also, APFs proper placement in the system plays a crucial role in either reducing the losses costs and power quality improvement. To optimize the APFs placement, a new objective function has been defined on the basis of five terms: total losses, power factor, voltage profile, THD and cost. Genetic algorithm has been used to solve the optimization problem. The results of applying this method to a distribution network illustrate the method advantages.
Pareto versus lognormal: A maximum entropy test
NASA Astrophysics Data System (ADS)
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
Quero, Sara; García-Núñez, Marian; Párraga-Niño, Noemí; Barrabeig, Irene; Pedro-Botet, Maria L; de Simon, Mercè; Sopena, Nieves; Sabrià, Miquel
2016-06-01
To compare the discriminatory power of pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) in Legionella outbreaks for determining the infection source. Twenty-five investigations of Legionnaires' disease were analyzed by PFGE, SBT and Dresden monoclonal antibody. The results suggested that monoclonal antibody could reduce the number of Legionella isolates to be characterized by molecular methods. The epidemiological concordance PFGE-SBT was 100%, while the molecular concordance was 64%. Adjusted Wallace index (AW) showed that PFGE has better discriminatory power than SBT (AWSBT→PFGE = 0.767; AWPFGE→SBT = 1). The discrepancies appeared mostly in sequence type (ST) 1, a worldwide distributed ST for which PFGE discriminated different profiles. SBT discriminatory power was not sufficient verifying the infection source, especially in worldwide distributed STs, which were classified into different PFGE patterns.
A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations
NASA Astrophysics Data System (ADS)
Demir, I.; Agliamzanov, R.
2014-12-01
Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
Solar thermal plant impact analysis and requirements definition
NASA Technical Reports Server (NTRS)
Gupta, Y. P.
1980-01-01
Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
Modeling and Verification of Dependable Electronic Power System Architecture
NASA Astrophysics Data System (ADS)
Yuan, Ling; Fan, Ping; Zhang, Xiao-fang
The electronic power system can be viewed as a system composed of a set of concurrently interacting subsystems to generate, transmit, and distribute electric power. The complex interaction among sub-systems makes the design of electronic power system complicated. Furthermore, in order to guarantee the safe generation and distribution of electronic power, the fault tolerant mechanisms are incorporated in the system design to satisfy high reliability requirements. As a result, the incorporation makes the design of such system more complicated. We propose a dependable electronic power system architecture, which can provide a generic framework to guide the development of electronic power system to ease the development complexity. In order to provide common idioms and patterns to the system *designers, we formally model the electronic power system architecture by using the PVS formal language. Based on the PVS model of this system architecture, we formally verify the fault tolerant properties of the system architecture by using the PVS theorem prover, which can guarantee that the system architecture can satisfy high reliability requirements.
Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua
2014-03-10
A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.
Statistical characteristics of dynamics for population migration driven by the economic interests
NASA Astrophysics Data System (ADS)
Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui
2016-06-01
Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.
NASA Astrophysics Data System (ADS)
Dong, Jennie H.; Dong, Ren G.; Rakheja, Subhash; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2008-04-01
In this study it was hypothesized that the vibration-induced injuries or disorders in a substructure of human hand-arm system are primarily associated with the vibration power absorption distributed in that substructure. As the first step to test this hypothesis, the major objective of this study is to develop a method for analyzing the vibration power flow and the distribution of vibration power absorptions in the major substructures (fingers, palm-hand-wrist, forearm and upper arm, and shoulder) of the system exposed to hand-transmitted vibration. A five-degrees-of-freedom model of the system incorporating finger- as well as palm-side driving points was applied for the analysis. The mechanical impedance data measured at the two driving points under four different hand actions involving 50 N grip-only, 15 N grip and 35 N push, 30 N grip and 45 N push, and 50 N grip and 50 N push, were used to identify the model parameters. The vibration power absorption distributed in the substructures were evaluated using vibration spectra measured on many tools. The frequency weightings of the distributed vibration power absorptions were derived and compared with the weighting defined in ISO 5349-1 (2001). This study found that vibration power absorption is primarily distributed in the arm and shoulder when operating low-frequency tools such as rammers, while a high concentration of vibration power absorption in the fingers and hand is observed when operating high-frequency tools, such as grinders. The vibration power absorption distributed in palm-wrist and arm is well correlated with the ISO-weighted acceleration, while the finger vibration power absorption is highly correlated with unweighted acceleration. The finger vibration power absorption-based frequency weighting suggested that exposure to vibration in the frequency range of 16-500 Hz could pose higher risks of developing finger disorders. The results support the use of the frequency weighting specified in the current standard for assessing risks of developing disorders in the palm-wrist-arm substructures. The standardized weighting, however, could overestimate low-frequency effects but greatly underestimate high-frequency effects on the development of finger disorders. The results are further discussed to show that the trends observed in the vibration power absorptions distributed in the substructures are consistent with some major findings of various physiological and epidemiological studies, which provides a support to the hypothesis of this study.
NASA Astrophysics Data System (ADS)
Roy, P. C.; Majumder, A.; Chakraborty, N.
2010-10-01
An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.
Voltage profile program for the Kennedy Space Center electric power distribution system
NASA Technical Reports Server (NTRS)
1976-01-01
The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.
The Design of a 100 GHz CARM (Cyclotron Auto-Resonance Maser) Oscillator Experiment
1988-09-14
pulsed-power system must be considered. A model of the voltage pulse that consists of a linear voltage rise from zero to the operating voltage...to vary as the voltage to the 3/2 power in order to model space-charge limited flow from a relativistic diode.. As the current rises in the pulse, the...distribution due to a space-charge-limited, laminar flow of electrons based on a one-dimensional, planar, relativistic model . From the charge distribution
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
High-authority smart material integrated electric actuator
NASA Astrophysics Data System (ADS)
Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary
1997-05-01
For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.
Smart grid integration of small-scale trigeneration systems
NASA Astrophysics Data System (ADS)
Vacheva, Gergana; Kanchev, Hristiyan; Hinov, Nikolay
2017-12-01
This paper presents a study on the possibilities for implementation of local heating, air-conditioning and electricity generation (trigeneration) as distributed energy resource in the Smart Grid. By the means of microturbine-based generators and absorption chillers buildings are able to meet partially or entirely their electrical load curve or even supply power to the grid by following their heating and air-conditioning daily schedule. The principles of small-scale cooling, heating and power generation systems are presented at first, then the thermal calculations of an example building are performed: the heat losses due to thermal conductivity and the estimated daily heating and air-conditioning load curves. By considering daily power consumption curves and weather data for several winter and summer days, the heating/air-conditioning schedule is estimated and the available electrical energy from a microturbine-based cogeneration system is estimated. Simulation results confirm the potential of using cogeneration and trigeneration systems for local distributed electricity generation and grid support in the daily peaks of power consumption.
Adaptive protection algorithm and system
Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA
2009-04-28
An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.
Retrospective exposure assessment to airborne asbestos among power industry workers
2010-01-01
Background A method of individually assessing former exposure to asbestos fibres is a precondition of risk-differentiated health surveillance. The main aims of our study were to assess former levels of airborne asbestos exposure in the power industry in Germany and to propose a basic strategy for health surveillance and the early detection of asbestos related diseases. Methods Between March 2002 and the end of 2006, we conducted a retrospective questionnaire based survey of occupational tasks and exposures with airborne asbestos fibres in a cohort of 8632 formerly asbestos exposed power industry workers. The data on exposure and occupation were entered into a specially designed computer programme, based on ambient monitoring of airborne asbestos fibre concentrations. The cumulative asbestos exposure was expressed as the product of the eight-hour time weighted average and the total duration of exposure in fibre years (fibres/cubic centimetre-years). Results Data of 7775 (90% of the total) participants working in installations for power generation, power distribution or gas supply could be evaluated. The power generation group (n = 5284) had a mean age of 56 years, were exposed for 20 years and had an average cumulative asbestos exposure of 42 fibre years. The occupational group of "metalworkers" (n = 1600) had the highest mean value of 79 fibre years. The corresponding results for the power distribution group (n = 2491) were a mean age of 45 years, a mean exposure duration of 12 years and an average cumulative asbestos exposure of only 2.5 fibre years. The gas supply workers (n = 512) had a mean age of 54 years and a mean duration of exposure of 15 years. Conclusions While the surveyed cohort as a whole was heavily exposed to asbestos dust, the power distribution group had a mean cumulative exposure of only 6% of that found in the power generation group. Based on the presented data, risk-differentiated disease surveillance focusing on metalworkers and electricians from the power generating industry seems justified. That combined with a sensitive examination technique would allow detecting asbestos related diseases early and efficiently. PMID:20579364
Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach
Xu, Haitao; Guo, Chao; Zhang, Long
2017-01-01
In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945
Minimum-Time Consensus-Based Approach for Power System Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di; Sun, Yannan
2016-02-01
This paper presents minimum-time consensus based distributed algorithms for power system applications, such as load shedding and economic dispatch. The proposed algorithms are capable of solving these problems in a minimum number of time steps instead of asymptotically as in most of existing studies. Moreover, these algorithms are applicable to both undirected and directed communication networks. Simulation results are used to validate the proposed algorithms.
Fault diagnosis of power transformer based on fault-tree analysis (FTA)
NASA Astrophysics Data System (ADS)
Wang, Yongliang; Li, Xiaoqiang; Ma, Jianwei; Li, SuoYu
2017-05-01
Power transformers is an important equipment in power plants and substations, power distribution transmission link is made an important hub of power systems. Its performance directly affects the quality and health of the power system reliability and stability. This paper summarizes the five parts according to the fault type power transformers, then from the time dimension divided into three stages of power transformer fault, use DGA routine analysis and infrared diagnostics criterion set power transformer running state, finally, according to the needs of power transformer fault diagnosis, by the general to the section by stepwise refinement of dendritic tree constructed power transformer fault
Experimental study of low-cost fiber optic distributed temperature sensor system performance
NASA Astrophysics Data System (ADS)
Dashkov, Michael V.; Zharkov, Alexander D.
2016-03-01
The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.
LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network
NASA Astrophysics Data System (ADS)
Cha, Daehyun; Hwang, Chansik
Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.
Electric Power Consumption Coefficients for U.S. Industries: Regional Estimation and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boero, Riccardo
Economic activity relies on electric power provided by electrical generation, transmission, and distribution systems. This paper presents a method developed at Los Alamos National Laboratory to estimate electric power consumption by different industries in the United States. Results are validated through comparisons with existing literature and benchmarking data sources. We also discuss the limitations and applications of the presented method, such as estimating indirect electric power consumption and assessing the economic impact of power outages based on input-output economic models.
Analytical model of brittle destruction based on hypothesis of scale similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakcheev, A. S., E-mail: asarakcheev@gmail.com; Lotov, K. V.
2012-08-15
The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refinemore » the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.« less
NASA Astrophysics Data System (ADS)
Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza
2017-09-01
This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain
NASA Technical Reports Server (NTRS)
Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem
2016-01-01
The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.
NASA Astrophysics Data System (ADS)
Dehbozorgi, Mohammad Reza
2000-10-01
Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to switch electric water heater loads in response to power system disturbances. (H) A cost analysis for building and installing the distributed frequency controller has been carried out. (I) The proposed equipment and methodology has been implemented and tested successfully. (Abstract shortened by UMI.)
Distributed control network for optogenetic experiments
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.
2014-11-01
Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.
NASA Astrophysics Data System (ADS)
Vlasov, M. N.; Kelley, M. C.; Hysell, D. L.
2013-06-01
Enhanced optical emissions observed during HF pumping are induced by electrons accelerated by high-power electromagnetic waves. Using measured emission intensities, the energy distribution of accelerated electrons can be inferred. Energy loss from the excitation of molecular nitrogen vibrational levels (the vibrational barrier) strongly influences the electron energy distribution (EED). In airglow calculations, compensation for electron depletion within the 2-3 eV energy range, induced by the vibrational barrier, can be achieved via electrons with an EED similar to a Gaussian distribution and energies higher than 3 eV. This EED has a peak within the 5-10 eV energy range. We show that the main EED features depend strongly on altitude and solar activity. An EED similar to a power law distribution can occur above 270-300 km altitude. Below 270 km altitude, a Gaussian distribution for energies between 3 eV and 10 eV, together with a power law distribution for energies higher than 10 eV, is indicated. A Gaussian distribution combined with an exponential function is needed below 230 km altitude. The transition altitude from Gaussian to power law distribution depends strongly on solar activity, increasing for high solar activity. Electrons accelerated during the initial collisionless stage can inhibit the depletion of fast electrons within the vibrational barrier range, an effect that strongly depends on altitude and solar activity. The approach, based on the effective root square electric field, enables EED calculation, providing the observed red-line intensities for low and high solar activities.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
Stability of synchrony against local intermittent fluctuations in tree-like power grids
NASA Astrophysics Data System (ADS)
Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen
2017-12-01
90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.
Predicting the long tail of book sales: Unearthing the power-law exponent
NASA Astrophysics Data System (ADS)
Fenner, Trevor; Levene, Mark; Loizou, George
2010-06-01
The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.
Driver electronics design and control for a total artificial heart linear motor.
Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich
2018-01-27
For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.
Distributed acoustic sensing: how to make the best out of the Rayleigh-backscattered energy?
NASA Astrophysics Data System (ADS)
Eyal, A.; Gabai, H.; Shpatz, I.
2017-04-01
Coherent fading noise (also known as speckle noise) affects the SNR and sensitivity of Distributed Acoustic Sensing (DAS) systems and makes them random processes of position and time. As in speckle noise, the statistical distribution of DAS SNR is particularly wide and its standard deviation (STD) roughly equals its mean (σSNR/
Fluid Distribution for In-space Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Lear, William
2005-01-01
The ultimate goal of this task is to enable the use of a single supply of cryogenic propellants for three distinct spacecraft propulsion missions: main propulsion, orbital maneuvering, and attitude control. A fluid distribution system is sought which allows large propellant flows during the first two missions while still allowing control of small propellant flows during attitude control. Existing research has identified the probable benefits of a combined thermal management/power/fluid distribution system based on the Solar Integrated Thermal Management and Power (SITMAP) cycle. Both a numerical model and an experimental model are constructed in order to predict the performance of such an integrated thermal management/propulsion system. This research task provides a numerical model and an experimental apparatus which will simulate an integrated thermal/power/fluid management system based on the SITMAP cycle, and assess its feasibility for various space missions. Various modifications are done to the cycle, such as the addition of a regeneration process that allows heat to be transferred into the working fluid prior to the solar collector, thereby reducing the collector size and weight. Fabri choking analysis was also accounted for. Finally the cycle is to be optimized for various space missions based on a mass based figure of merit, namely the System Mass Ratio (SMR). -. 1 he theoretical and experimental results from these models are be used to develop a design code (JETSIT code) which is able to provide design parameters for such a system, over a range of cooling loads, power generation, and attitude control thrust levels. The performance gains and mass savings will be compared to those of existing spacecraft systems.
Effect of self-organized interdependence between populations on the evolution of cooperation
NASA Astrophysics Data System (ADS)
Luo, Chao; Zhang, Xiaolin
2017-01-01
In this article, based on interdependent networks, the effect of self-organized interdependence on the evolution of cooperation is studied. Different from the previous works, the interdependent strength, which can effectively improve the fitness of players, is taken as a kind of limited resources and co-evolves with players' strategy. We show that the self-organization of interdependent strength would spontaneously lead to power law distribution at the stationary state, where the level of cooperation in system can be significantly promoted. Furthermore, when intermediate quantity of interdependence resources existing in system, the power law distribution is most evident with the power β ≈ 1.72, meanwhile the level of cooperation also reaches the maximum value. We discuss the related microscopic system properties which are responsible for the observed results and also demonstrate that the power law distribution of interdependence resources is an elementary property which is robust against the governing repeated games and the initial resources allocation patterns.
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat
2008-09-01
The measurement accuracy in the photometric quantities measured through photometer head is determined by the value of the spectral mismatch correction factor ( c( St, Ss)), which is defined as a function of spectral power distribution of light sources, besides illuminance responsivity of the photometer head used. This factor is more important when photometric quantities of the light-emitting diode (LED) style optical sources, which radiate within relatively narrow spectral bands as compared with that of other optical sources, are being measured. Variations of the illuminance responsivities of various V( λ)-adopted photometer heads are discussed. High-power-colored LEDs, manufactured by Lumileds Lighting Co., were used as light sources and their relative spectral power distributions (RSPDs) were measured using a spectrometer-based optical setup. Dependences of the c( St, Ss) factors of three types of photometer heads ( f1'=1.4%, f1'=0.8% and f1'=0.5%) with wavelength and influences of the factors on the illuminance responsivities of photometer heads are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitani, Akira; Tsubota, Makoto
2006-07-01
The energy spectrum of decaying quantum turbulence at T=0 obeys Kolmogorov's law. In addition to this, recent studies revealed that the vortex-length distribution (VLD), meaning the size distribution of the vortices, in decaying Kolmogorov quantum turbulence also obeys a power law. This power-law VLD suggests that the decaying turbulence has scale-free structure in real space. Unfortunately, however, there has been no practical study that answers the following important question: why can quantum turbulence acquire a scale-free VLD? We propose here a model to study the origin of the power law of the VLD from a generic point of view. Themore » nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model, which explains the scale-invariance structure of large networks. We show here that such a model can reproduce the power law of the VLD well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Zhang, Yanwen; Zhu, Zihua
Accurate information of electronic stopping power is fundamental for broad advances in electronic industry, space exploration, national security, and sustainable energy technologies. The Stopping and Range of Ions in Matter (SRIM) code has been widely applied to predict stopping powers and ion distributions for decades. Recent experimental results have, however, shown considerable errors in the SRIM predictions for stopping of heavy ions in compounds containing light elements, indicating an urgent need to improve current stopping power models. The electronic stopping powers of 35Cl, 80Br, 127I, and 197Au ions are experimentally determined in two important functional materials, SiC and SiO2, frommore » tens to hundreds keV/u based on a single ion technique. By combining with the reciprocity theory, new electronic stopping powers are suggested in a region from 0 to 15 MeV, where large deviations from SRIM predictions are observed. For independent experimental validation of the electronic stopping powers we determined, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC with energies from 700 keV to 15 MeV. The measured ion distributions from both RBS and SIMS are considerably deeper (up to ~30%) than the predictions from the commercial SRIM code. In comparison, the new electronic stopping power values are utilized in a modified TRIM-85 (the original version of the SRIM) code, M-TRIM, to predict ion distributions, and the results are in good agreement with the experimentally measured ion distributions.« less
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2014-01-01
This report presents an example of the application of multi-criteria decision analysis to the selection of an architecture for a safety-critical distributed computer system. The design problem includes constraints on minimum system availability and integrity, and the decision is based on the optimal balance of power, weight and cost. The analysis process includes the generation of alternative architectures, evaluation of individual decision criteria, and the selection of an alternative based on overall value. In this example presented here, iterative application of the quantitative evaluation process made it possible to deliberately generate an alternative architecture that is superior to all others regardless of the relative importance of cost.
Gao, Changwei; Liu, Xiaoming; Chen, Hai
2017-08-22
This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2000-01-01
An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.
Minică, Camelia C; Dolan, Conor V; Hottenga, Jouke-Jan; Willemsen, Gonneke; Vink, Jacqueline M; Boomsma, Dorret I
2013-05-01
When phenotypic, but no genotypic data are available for relatives of participants in genetic association studies, previous research has shown that family-based imputed genotypes can boost the statistical power when included in such studies. Here, using simulations, we compared the performance of two statistical approaches suitable to model imputed genotype data: the mixture approach, which involves the full distribution of the imputed genotypes and the dosage approach, where the mean of the conditional distribution features as the imputed genotype. Simulations were run by varying sibship size, size of the phenotypic correlations among siblings, imputation accuracy and minor allele frequency of the causal SNP. Furthermore, as imputing sibling data and extending the model to include sibships of size two or greater requires modeling the familial covariance matrix, we inquired whether model misspecification affects power. Finally, the results obtained via simulations were empirically verified in two datasets with continuous phenotype data (height) and with a dichotomous phenotype (smoking initiation). Across the settings considered, the mixture and the dosage approach are equally powerful and both produce unbiased parameter estimates. In addition, the likelihood-ratio test in the linear mixed model appears to be robust to the considered misspecification in the background covariance structure, given low to moderate phenotypic correlations among siblings. Empirical results show that the inclusion in association analysis of imputed sibling genotypes does not always result in larger test statistic. The actual test statistic may drop in value due to small effect sizes. That is, if the power benefit is small, that the change in distribution of the test statistic under the alternative is relatively small, the probability is greater of obtaining a smaller test statistic. As the genetic effects are typically hypothesized to be small, in practice, the decision on whether family-based imputation could be used as a means to increase power should be informed by prior power calculations and by the consideration of the background correlation.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
A comparison of queueing, cluster and distributed computing systems
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Nelson, Michael L.
1993-01-01
Using workstation clusters for distributed computing has become popular with the proliferation of inexpensive, powerful workstations. Workstation clusters offer both a cost effective alternative to batch processing and an easy entry into parallel computing. However, a number of workstations on a network does not constitute a cluster. Cluster management software is necessary to harness the collective computing power. A variety of cluster management and queuing systems are compared: Distributed Queueing Systems (DQS), Condor, Load Leveler, Load Balancer, Load Sharing Facility (LSF - formerly Utopia), Distributed Job Manager (DJM), Computing in Distributed Networked Environments (CODINE), and NQS/Exec. The systems differ in their design philosophy and implementation. Based on published reports on the different systems and conversations with the system's developers and vendors, a comparison of the systems are made on the integral issues of clustered computing.
Baik, Sunhee; Morgan, M Granger; Davis, Alexander L
2018-02-01
While they are rare, widespread blackouts of the bulk power system can result in large costs to individuals and society. If local distribution circuits remain intact, it is possible to use new technologies including smart meters, intelligent switches that can change the topology of distribution circuits, and distributed generation owned by customers and the power company, to provide limited local electric power service. Many utilities are already making investments that would make this possible. We use customers' measured willingness to pay to explore when the incremental investments needed to implement these capabilities would be justified. Under many circumstances, upgrades in advanced distribution systems could be justified for a customer charge of less than a dollar a month (plus the cost of electricity used during outages), and would be less expensive and safer than the proliferation of small portable backup generators. We also discuss issues of social equity, extreme events, and various sources of underlying uncertainty. © 2017 Society for Risk Analysis.
Chance-Constrained Day-Ahead Hourly Scheduling in Distribution System Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize themore » system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.« less
NASA Astrophysics Data System (ADS)
McLinko, Ryan M.; Sagar, Basant V.
2009-12-01
Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages. The only satellites that are constrained to a significant mass are the beam-down satellites, which still require significant transmission arrays to sufficiently focus the beams targeting corresponding ground stations. With robust design and inherent redundancy built-in, power generation and transmission will not be interrupted in the event of mishaps like space debris collision. Furthermore, the "plug and play" nature of this system significantly reduces the cost, complexity, and risk of upgrading the system. The distributed nature of smallsat clusters maximizes the use of economies of scale. This approach retains some problems of older designs and introduces additional ones. Mitigations will be explored further. For example, the distributed nature of the system requires very precise coordination between and among satellites and a mature attitude control and determination system. Such a design incorporates multiple beaming stages, which has the potential to reduce overall system efficiency. Although this design eliminates the need for space assembly, it retains the challenge of significant on-orbit deployment of solar and transmission arrays. Space power "beaming" is a three step process that involves: 1) conversion of dc power generated by solar cells on the satellite into an electromagnetic wave of suitable frequency, 2) transmission of that wave to power stations on ground, and 3) conversion of the radio waves back into dc power. A great deal of research has been done on the use of microwaves for this purpose. Various factors that affect efficient power generation and transmission will be analyzed in this paper. Based on relevant theory and performance and optimization models, the paper proposes solutions that will help make space-based solar power generation a practical and viable option for addressing the world's growing energy needs.
Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers
2015-01-01
We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...
NASA Astrophysics Data System (ADS)
Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat
2017-04-01
The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia
Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for amore » renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.« less
Faculty members' use of power: midwifery students' perceptions and expectations.
Kantek, Filiz; Gezer, Nurdan
2010-08-01
the power dynamics of relationships/interactions between faculty members and students are of crucial importance for positive student outcomes. This study aimed to investigate the relationship between the perceptions and expectations of midwifery students in relation to the use of power by faculty members and bases of power. descriptive, quantitative study. a school for health sciences in Turkey. 122 midwifery students at the school. data were collected using a perceived leadership power survey, and analysed by frequency distribution, arithmetic mean, variance analysis and Cronbach's alpha. the students perceived that faculty members used coercive power most often and used reward power least often. Students expected their instructors to use expert power. In addition, in the examination of relationships between power bases, it was determined that there were positive correlations between legitimate, referent, reward and expert power, but coercive power was only positively correlated with legitimate power. this study found that students expect faculty members to use expert power, and faculty members need to reconsider their power bases. The factors affecting the perceptions of midwifery students regarding the use of power should be analysed in more detail. Copyright 2008 Elsevier Ltd. All rights reserved.
Extremum Seeking Control of Smart Inverters for VAR Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma
2015-09-04
Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand informationmore » confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.« less
Voting Power on School Governing Boards: The Countenance of Proportionality.
ERIC Educational Resources Information Center
Kelly, Anthony
2002-01-01
Used the mathematics of cooperative multiperson game theory to analyze the relative strengths of various representative groupings on three models of school governing bodies loosely based on school types in Northern Ireland. Findings contribute to understanding of the distribution of power in committee-like structures. (SLD)
Power-Solidarity Relationship of Teachers with Their Future Colleagues
ERIC Educational Resources Information Center
Acikalin, Isil
2007-01-01
Classroom talk is an example of institutional discourse, based on asymmetrical distribution of communicative rights and obligations between teachers and students. Teachers hold power and solidarity relationships with their students. It has been assumed that, in general, women are more concerned with solidarity while men are more interested in…
Deviation from Power Law Behavior in Landslide Phenomenon
NASA Astrophysics Data System (ADS)
Li, L.; Lan, H.; Wu, Y.
2013-12-01
Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.
Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway
NASA Astrophysics Data System (ADS)
Jibin, Yang; Jiye, Zhang; Pengyun, Song
2017-05-01
In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.
NASA Astrophysics Data System (ADS)
Ali Saif, M.; Gade, Prashant M.
2009-03-01
Pareto law, which states that wealth distribution in societies has a power-law tail, has been the subject of intensive investigations in the statistical physics community. Several models have been employed to explain this behavior. However, most of the agent based models assume the conservation of number of agents and wealth. Both these assumptions are unrealistic. In this paper, we study the limiting wealth distribution when one or both of these assumptions are not valid. Given the universality of the law, we have tried to study the wealth distribution from the asset exchange models point of view. We consider models in which (a) new agents enter the market at a constant rate (b) richer agents fragment with higher probability introducing newer agents in the system (c) both fragmentation and entry of new agents is taking place. While models (a) and (c) do not conserve total wealth or number of agents, model (b) conserves total wealth. All these models lead to a power-law tail in the wealth distribution pointing to the possibility that more generalized asset exchange models could help us to explain the emergence of a power-law tail in wealth distribution.
NASA Astrophysics Data System (ADS)
Mohamed, Ahmed
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Characterization of vector stimulated Brillouin scattering gain over wide power range
NASA Astrophysics Data System (ADS)
Li, Yongqian; An, Qi; Li, Xiaojuan; Zhang, Lixin
2017-07-01
The wide range power dependence of vector stimulated Brillouin scattering (SBS) gain is theoretically and experimentally characterized by a mathematical model and measurement system based on the heterodyne pump-Stokes technique. The results show that SBS phase shift is much more tolerant of pump depletion than SBS amplitude gain, hence the performance improvement of the SBS-based distributed sensing system can be achieved by measuring the SBS phase shift spectrum. The discussion about the measured Brillouin spectrum width versus pump power at different Stokes powers reveals that the occurrence of nonnegligible pump depletion imposes a restriction on the determination of pump and Stokes powers in an SBS amplitude gain-based application system. The amplitude gain and phase shift of vector SBS gain increase with the increase of pump power and decrease with the increase of Stokes power, which indicates that the design strategy with smaller Stokes power and higher pump power is reasonable. And the measured center-asymmetry of the SBS phase shift spectrum is mainly caused by the nonlinear refractive index, which puts a limitation on the maximum pump power. The obtained results can provide a useful basis for the optimal design of practical vector SBS gain-based application systems.
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
Cho, Ming-Yuan; Hoang, Thi Thom
2017-01-01
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
NASA Technical Reports Server (NTRS)
Dezelick, R. A.
1976-01-01
Space shuttle base heating tests were conducted using a 0.040-scale model in the Plum Brook Space Power Facility of The NASA Lewis Research Center. The tests measured heat transfer rates, pressure distributions, and gas recovery temperatures on the orbiter vehicle 2A base configuration resulting from engine plume impingement. One hundred and sixty-eight hydrogen-oxygen engine firings were made at simulated flight altitudes ranging from 120,000 to 360,000 feet.
Smart grid as a service: a discussion on design issues.
Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.
Exploring the effect of power law social popularity on language evolution.
Gong, Tao; Shuai, Lan
2014-01-01
We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.
Smart Grid as a Service: A Discussion on Design Issues
Tsai, Chen-Chou; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214
Design and simulation of sensor networks for tracking Wifi users in outdoor urban environments
NASA Astrophysics Data System (ADS)
Thron, Christopher; Tran, Khoi; Smith, Douglas; Benincasa, Daniel
2017-05-01
We present a proof-of-concept investigation into the use of sensor networks for tracking of WiFi users in outdoor urban environments. Sensors are fixed, and are capable of measuring signal power from users' WiFi devices. We derive a maximum likelihood estimate for user location based on instantaneous sensor power measurements. The algorithm takes into account the effects of power control, and is self-calibrating in that the signal power model used by the location algorithm is adjusted and improved as part of the operation of the network. Simulation results to verify the system's performance are presented. The simulation scenario is based on a 1.5 km2 area of lower Manhattan, The self-calibration mechanism was verified for initial rms (root mean square) errors of up to 12 dB in the channel power estimates: rms errors were reduced by over 60% in 300 track-hours, in systems with limited power control. Under typical operating conditions with (without) power control, location rms errors are about 8.5 (5) meters with 90% accuracy within 9 (13) meters, for both pedestrian and vehicular users. The distance error distributions for smaller distances (<30 m) are well-approximated by an exponential distribution, while the distributions for large distance errors have fat tails. The issue of optimal sensor placement in the sensor network is also addressed. We specify a linear programming algorithm for determining sensor placement for networks with reduced number of sensors. In our test case, the algorithm produces a network with 18.5% fewer sensors with comparable accuracy estimation performance. Finally, we discuss future research directions for improving the accuracy and capabilities of sensor network systems in urban environments.
Space Station 20-kHz power management and distribution system
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Sundberg, Gale R.
1986-01-01
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the Space Station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.
Space station 20-kHz power management and distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Sundberg, G. R.
1986-01-01
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.
Power flow analysis and optimal locations of resistive type superconducting fault current limiters.
Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A
2016-01-01
Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.
Electric power processing, distribution, management and energy storage
NASA Astrophysics Data System (ADS)
Giudici, R. J.
1980-07-01
Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.
Electric power processing, distribution, management and energy storage
NASA Technical Reports Server (NTRS)
Giudici, R. J.
1980-01-01
Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.
Alwan, Faris M; Baharum, Adam; Hassan, Geehan S
2013-01-01
The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.
Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.
2013-01-01
The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346
Benazzi, Stefano; Kullmer, Ottmar; Grosse, Ian R; Weber, Gerhard W
2011-01-01
Simulations based on finite element analysis (FEA) have attracted increasing interest in dentistry and dental anthropology for evaluating the stress and strain distribution in teeth under occlusal loading conditions. Nonetheless, FEA is usually applied without considering changes in contacts between antagonistic teeth during the occlusal power stroke. In this contribution we show how occlusal information can be used to investigate the stress distribution with 3D FEA in lower first molars (M1). The antagonistic crowns M1 and P2–M1 of two dried modern human skulls were scanned by μCT in maximum intercuspation (centric occlusion) contact. A virtual analysis of the occlusal power stroke between M1 and P2–M1 was carried out in the Occlusal Fingerprint Analyser (OFA) software, and the occlusal trajectory path was recorded, while contact areas per time-step were visualized and quantified. Stress distribution of the M1 in selected occlusal stages were analyzed in strand7, considering occlusal information taken from OFA results for individual loading direction and loading area. Our FEA results show that the stress pattern changes considerably during the power stroke, suggesting that wear facets have a crucial influence on the distribution of stress on the whole tooth. Grooves and fissures on the occlusal surface are seen as critical locations, as tensile stresses are concentrated at these features. Properly accounting for the power stroke kinematics of occluding teeth results in quite different results (less tensile stresses in the crown) than usual loading scenarios based on parallel forces to the long axis of the tooth. This leads to the conclusion that functional studies considering kinematics of teeth are important to understand biomechanics and interpret morphological adaptation of teeth. PMID:21615398
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
Efficient transformer study: Analysis of manufacture and utility data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Klaehn; Cordaro, Joe; McIntosh, John
Distribution transformers convert power from the distribution system voltage to the end-customer voltage, which consists of residences, businesses, distributed generation, campus systems, and manufacturing facilities. Amorphous metal distribution transformers (AMDT) are also more expensive and heavier than conventional silicon steel distribution transformers. This and the difficulty to measure the benefit from energy efficiency and low awareness of the technology have hindered the adoption of AMDT. This report presents the cost savings for installing AMDT and the amount of energy saved based on the improved efficiency.
Autonomous power system brassboard
NASA Technical Reports Server (NTRS)
Merolla, Anthony
1992-01-01
The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems. However, there are elements of the brassboard which could be enhanced, thus improving system performance. Modifications and enhancements to improve the brassboard's operation are discussed.
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
The Payout Method: A Spending Policy That Enhances Return.
ERIC Educational Resources Information Center
Morrell, Louis R.
1991-01-01
College and university business officers are encouraged to implement an endowment distribution method that increases the amount distributed by a fixed annual percentage based on asset mix, inflation, and expected return. Such a payout system provides a predictable, steadily increasing level of endowment income yet maintains the purchasing power of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.
Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is thatmore » additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.« less
Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin; Yang, Liuqing; Florita, Anthony
The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less
Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin; Yang, Liuqing; Florita, Anthony
The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the helpmore » of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.« less
Study on Stochastic Optimal Electric Power Procurement Strategies with Uncertain Market Prices
NASA Astrophysics Data System (ADS)
Sakchai, Siripatanakulkhajorn; Saisho, Yuichi; Fujii, Yasumasa; Yamaji, Kenji
The player in deregulated electricity markets can be categorized into three groups of GENCO (Generator Companies), TRNASCO (Transmission Companies), DISCO (Distribution Companies). This research focuses on the role of Distribution Companies, which purchase electricity from market at randomly fluctuating prices, and provide it to their customers at given fixed prices. Therefore Distribution companies have to take the risk stemming from price fluctuation of electricity instead of the customers. This entails the necessity to develop a certain method to make an optimal strategy for electricity procurement. In such a circumstance, this research has the purpose for proposing the mathematical method based on stochastic dynamic programming to evaluate the value of a long-term bilateral contract of electricity trade, and also a project of combination of the bilateral contract and power generation with their own generators for procuring electric power in deregulated market.
Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid
NASA Astrophysics Data System (ADS)
Yu, Xunwei
As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods. Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.
Climate change impact on wave energy in the Persian Gulf
NASA Astrophysics Data System (ADS)
Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas
2015-06-01
Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.
Political and legal institutions and their influence on drug policy: an Australian perspective.
Ryder, David
2008-07-01
Under a federal system of government, political power is separated and distributed between different institutions of government. The distribution of power to enact policies that influence alcohol and other drug use can impact on the associated harm. A description of the separation of powers under a federal system of government is followed by three case studies of alcohol and other drug policies which have been influenced by the use of power by different institutions of government. Whether or not a policy is enacted depends upon who has the power to bring such a policy into being, who has the power to prevent its enactment and whether those with such power choose to use them. The enactment of policy is a political act, needing to be understood by those wishing to see evidence-based policies brought into being. An understanding of the separation of powers under a federal system of government is one aspect of the political process that those who work in the alcohol and other drug field need to understand.
Resolving power for the diffusion orientation distribution function.
Jensen, Jens H; Helpern, Joseph A
2016-08-01
The diffusion orientation distribution function (dODF) is primarily used for white matter fiber tractography. Here the resolving power of the dODF is investigated for a simple diffusion model of two intersecting axonal fiber bundles. The resolving power for the dODF is evaluated using the Sparrow criterion. This is determined for the exact dODF and also for q-space imaging (QSI), q-ball, and kurtosis approximations. Based on theoretical and numerical calculations, the resolving power is found to depend on the eigenvalues of the diffusion model and on the degree of radial weighting for the dODF. The resolving powers of the QSI and q-ball dODFs improve with increased b-value. The kurtosis dODF has a resolving power similar to that of the exact dODF. The dODFs, whether exact or approximate, have finite resolving powers that limit their sensitivity to fiber crossings. The resolving powers for the different dODFs considered here provide convenient benchmarks for assessing and comparing their performance. Magn Reson Med 76:679-688, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hosseini; Hamedi; Ebrahimi Mamaghani; Kim; Kim; Dayou
2017-07-01
Among the various techniques of power scavenging, piezoelectric energy harvesting usually has more power density. Although piezoceramics are usually more efficient than other piezoelectric materials, since they are very brittle and fragile, researchers are looking for alternative materials. Recently Cellulose Electro-active paper (EAPap) has been recognized as a smart material with piezoelectric behavior that can be used in energy scavenging systems. The majority of researches in energy harvesting area, use unimorph piezoelectric cantilever beams. This paper presents an analytical solution based on distributed parameter model for partially covered pieoelectric cantilever energy harvester. The purpose of the paper is to describe the changes in generated power with damping and the load resistance using analytical calculations. The analytical data are verified using experiment on a vibrating cantilever substrate that is partially covered by EAPap films. The results are very close to each other. Also asymptotic trends of the voltage, current and power outputs are investigated and expressions are obtained for the extreme conditions of the load resistance. These new findings provide guidelines for identification and manipulation of effective parameters in order to achieve the efficient performance in different ambient source conditions.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
2015-03-26
albeit powerful , method available for exploring CAS. As discussed above, there are many useful mathematical tools appropriate for CAS modeling. Agent-based...cells, tele- phone calls, and sexual contacts approach power -law distributions. [48] Networks in general are robust against random failures, but...targeted failures can have powerful effects – provided the targeter has a good understanding of the network structure. Some argue (convincingly) that all
NASA Astrophysics Data System (ADS)
Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.
2018-04-01
Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition
A Model-Based Expert System for Space Power Distribution Diagnostics
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Schlegelmilch, Richard F.
1994-01-01
When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.
A parametric simulation of solar chimney power plant
NASA Astrophysics Data System (ADS)
Beng Hooi, Lim; Kannan Thangavelu, Saravana
2018-01-01
The strong solar radiation, continuous supplies of sunlight and environmental friendly factors have made the solar chimney power plant becoming highly feasible to build in Malaysia. Solar chimney power plant produces upward buoyancy force through the greenhouse effect. Numerical simulation was performed on the model of a solar chimney power plant using the ANSYS Fluent software by applying standard k-epsilon turbulence model and discrete ordinates (DO) radiation model to solve the relevant equations. A parametric study was carried out to evaluate the performance of solar chimney power plant, which focused on the temperature rise in the collector, air velocity at the chimney base, and pressure drop inside the chimney were based on the results of temperature, velocity, and static pressure distributions. The results demonstrate reliability by comparing a model with the experimental data of Manzanares Spanish prototype. Based on the numerical results, power capacity and efficiency were analysed theoretically. Results indicate that a stronger solar radiation and larger prototype will improve the performance of solar chimney power plant.
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
NASA Astrophysics Data System (ADS)
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
Heterogeneous distribution of metabolites across plant species
NASA Astrophysics Data System (ADS)
Takemoto, Kazuhiro; Arita, Masanori
2009-07-01
We investigate the distribution of flavonoids, a major category of plant secondary metabolites, across species. Flavonoids are known to show high species specificity, and were once considered as chemical markers for understanding adaptive evolution and characterization of living organisms. We investigate the distribution among species using bipartite networks, and find that two heterogeneous distributions are conserved among several families: the power-law distributions of the number of flavonoids in a species and the number of shared species of a particular flavonoid. In order to explain the possible origin of the heterogeneity, we propose a simple model with, essentially, a single parameter. As a result, we show that two respective power-law statistics emerge from simple evolutionary mechanisms based on a multiplicative process. These findings provide insights into the evolution of metabolite diversity and characterization of living organisms that defy genome sequence analysis for different reasons.
Substation Reactive Power Regulation Strategy
NASA Astrophysics Data System (ADS)
Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing
2018-01-01
With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.
A phenomenological model of muscle fatigue and the power-endurance relationship.
James, A; Green, S
2012-11-01
The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.
Planning and Resource Management in an Intelligent Automated Power Management System
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1991-01-01
Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process.
49 CFR 232.603 - Design, interoperability, and configuration management requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: 1999; Revised 2002, 2007); (3) AAR S-4220, “ECP Cable-Based Brake DC Power Supply—Performance...; Revised: 2004); (7) AAR S-4260, “ECP Brake and Wire Distributed Power Interoperability Test Procedures...) Approval. A freight train or freight car equipped with an ECP brake system and equipment covered by the AAR...
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
ERIC Educational Resources Information Center
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Autonomous power expert system advanced development
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.
Power Processing for a Conceptual Project Prometheus Electric Propulsion System
NASA Technical Reports Server (NTRS)
Scina, Joseph E., Jr.; Aulisio, Michael; Gerber, Scott S.; Hewitt, Frank; Miller, Leonard; Elbuluk, Malik; Pinero, Luis R. (Technical Monitor)
2005-01-01
NASA has proposed a bold mission to orbit and explore the moons of Jupiter. This mission, known as the Jupiter Icy Moons Orbiter (JIMO), would significantly increase NASA s capability to explore deep space by making use of high power electric propulsion. One electric propulsion option under study for JIMO is an ion propulsion system. An early version of an ion propulsion system was successfully used on NASA's Deep Space 1 mission. One concept for an ion thruster system capable of meeting the current JIMO mission requirement would have individual thrusters that are 16 to 25 kW each and require voltages as high as 8.0 kV. The purpose of this work is to develop power processing schemes for delivering the high voltage power to the spacecraft ion thrusters based upon a three-phase AC distribution system. In addition, a proposed DC-DC converter topology is presented for an ion thruster ancillary supply based upon a DC distribution system. All specifications discussed in this paper are for design convenience and are speculative in nature.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
Barkhausen noise in FeCoB amorphous alloys (abstract)
NASA Astrophysics Data System (ADS)
Durin, G.; Bertotti, G.
1996-04-01
In recent years, the Barkhausen effect has been indicated as a promising tool to investigate and verify the ideas about the self-organization of physical complex systems displaying power law distributions and 1/f noise. When measured at low magnetization rates, the Barkhausen signal displays 1/fα-type spectra (with α=1.5÷2) and power law distributions of duration and size of the Barkhausen jumps. These experimental data are quite well described by the model of Alessandro et al. which is based on a stochastic description of the domain wall dynamics over a pinning field with brownian properties. Yet, this model always predicts a 1/f 2 spectrum, and, at the moment, it is not clear if it can take into account possible effects of self-organization of the magnetization process. In order to improve the power of the model and clarify this problem, we have performed a thorough investigation of the noise spectra and the amplitude distributions of a wide set of FeCoB amorphous alloys. The stationary amplitude distribution of the signal is very well fitted by the gamma distribution P(ν)=νc-1 exp(-ν)/Γ(c), where ν is proportional to the domain wall velocity, and c is a dimensionless parameter. As predicted in Ref. , this parameter is found to have a parabolic dependence on the magnetization rate. In particular, the linear coefficient is related to the amplitude of the fluctuations of the pinning field, a parameter which can be measured directly from the power spectra. In all measured cases, the power spectra show α exponents less than 2, and thus poorly fitted by the model. Actually, the absolute value of the high frequency spectral density is not consistent with the c parameter determined from the amplitude distribution data. This discrepancy requires to introduce effects not taken into account in the model, as the propagation of the jumps along the domain wall. This highly enhances the fit of the data and indicates effects of propagation on the scale of a few millimeters. These results are analyzed in terms of new descriptions of the statistical properties of the pinning field based on fractional brownian processes.
Direct yaw moment control and power consumption of in-wheel motor vehicle in steady-state turning
NASA Astrophysics Data System (ADS)
Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki
2017-01-01
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.
NASA Technical Reports Server (NTRS)
Schmeckpeper, K. R.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 1671 failure modes analyzed, 9 single failures were determined to result in loss of crew or vehicle. Three single failures unique to intact abort were determined to result in possible loss of the crew or vehicle. A possible loss of mission could result if any of 136 single failures occurred. Six of the criticality 1/1 failures are in two rotary and two pushbutton switches that control External Tank and Solid Rocket Booster separation. The other 6 criticality 1/1 failures are fuses, one each per Aft Power Control Assembly (APCA) 4, 5, and 6 and one each per Forward Power Control Assembly (FPCA) 1, 2, and 3, that supply power to certain Main Propulsion System (MPS) valves and Forward Reaction Control System (RCS) circuits.
NASA Astrophysics Data System (ADS)
Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng
2018-01-01
We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.
NASA Astrophysics Data System (ADS)
Neto, B.; Klingler, A.; Reis, C.; Dionísio, R. P.; Nogueira, R. N.; Teixeira, A. L. J.; André, P. S.
2011-03-01
In this paper, we propose a method to mitigate the temporal power transients arising from Erbium doped fiber amplifiers (EDFAs) on packeted/bursty scenario. The technique, applicable on hybrid WDM/TDM-PON for extended reach, is based on a low power clamping provided by a distributed feedback (DFB) laser and a fiber Bragg grating (FBG). An improvement in the data signal Q factor was achieved keeping the clamping control signal with a low power, accompanied by a maximum reduction in the gain excursion of 1.12 dB.
Comparison of dynamic isotope power systems for distributed planet surface applications
NASA Technical Reports Server (NTRS)
Bents, David J.; Mckissock, Barbara I.; Hanlon, James C.; Schmitz, Paul C.; Rodriguez, Carlos D.; Withrow, Colleen A.
1991-01-01
Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.
OAST space power technology program
NASA Technical Reports Server (NTRS)
Mullin, J. P.
1978-01-01
The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahault, Benoit Alexandre; Saxena, Avadh Behari; Nisoli, Cristiano
We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, onlymore » minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.« less
Li, Peng; Ji, Haoran; Wang, Chengshan; ...
2017-03-22
The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less
Decentralized and Modular Electrical Architecture
NASA Astrophysics Data System (ADS)
Elisabelar, Christian; Lebaratoux, Laurence
2014-08-01
This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Peng; Ji, Haoran; Wang, Chengshan
The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less
Remote maintenance monitoring system
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)
1992-01-01
A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.
High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.
Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao
2017-06-10
We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.
Shi, Xiaoping; Wu, Yuehua; Rao, Calyampudi Radhakrishna
2018-06-05
The change-point detection has been carried out in terms of the Euclidean minimum spanning tree (MST) and shortest Hamiltonian path (SHP), with successful applications in the determination of authorship of a classic novel, the detection of change in a network over time, the detection of cell divisions, etc. However, these Euclidean graph-based tests may fail if a dataset contains random interferences. To solve this problem, we present a powerful non-Euclidean SHP-based test, which is consistent and distribution-free. The simulation shows that the test is more powerful than both Euclidean MST- and SHP-based tests and the non-Euclidean MST-based test. Its applicability in detecting both landing and departure times in video data of bees' flower visits is illustrated.
NASA Astrophysics Data System (ADS)
Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki
Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems
NASA Astrophysics Data System (ADS)
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a “normal” state where the motors’ mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a “stalled” state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors’ mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
Sánchez-Álvarez, David; Rodríguez-Pérez, Francisco-Javier
2018-01-01
In this paper, we present a work based on the computational load distribution among the homogeneous nodes and the Hub/Sink of Wireless Sensor Networks (WSNs). The main contribution of the paper is an early decision support framework helping WSN designers to take decisions about computational load distribution for those WSNs where power consumption is a key issue (when we refer to “framework” in this work, we are considering it as a support tool to make decisions where the executive judgment can be included along with the set of mathematical tools of the WSN designer; this work shows the need to include the load distribution as an integral component of the WSN system for making early decisions regarding energy consumption). The framework takes advantage of the idea that balancing sensors nodes and Hub/Sink computational load can lead to improved energy consumption for the whole or at least the battery-powered nodes of the WSN. The approach is not trivial and it takes into account related issues such as the required data distribution, nodes, and Hub/Sink connectivity and availability due to their connectivity features and duty-cycle. For a practical demonstration, the proposed framework is applied to an agriculture case study, a sector very relevant in our region. In this kind of rural context, distances, low costs due to vegetable selling prices and the lack of continuous power supplies may lead to viable or inviable sensing solutions for the farmers. The proposed framework systematize and facilitates WSN designers the required complex calculations taking into account the most relevant variables regarding power consumption, avoiding full/partial/prototype implementations, and measurements of different computational load distribution potential solutions for a specific WSN. PMID:29570645
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
14 CFR 23.1310 - Power source capacity and distribution.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose functioning... power supply system, distribution system, or other utilization system. (b) In determining compliance...
Comparative evaluation of distributed-collector solar thermal electric power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.
1978-01-01
Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.
A novel polyimide based micro heater with high temperature uniformity
Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...
2017-02-06
MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less
A novel polyimide based micro heater with high temperature uniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shifeng; Wang, Shuyu; Lu, Ming
MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less
An improved AVC strategy applied in distributed wind power system
NASA Astrophysics Data System (ADS)
Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.
2016-08-01
Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.
Motion systems providing three or four degrees of freedom
NASA Technical Reports Server (NTRS)
Chou, Richard C. (Inventor)
1982-01-01
A motion system is provided by a platform generally parallel to a base and connected thereto by a column and powered and controlled extensible members, at least three of which are connected between distributed points around the column. In a three degree of freedom device, the column is conical, rigidly supported at its base with a universal joint at its top. The points of attachment define triangles in the base and in the platform surrounding the column with one extensible member connected between each. In the four degree of freedom version, the column is modified by making it effectively a column which is pivoted or guided at the base or contains an extensible member, preferably retains its triangular shape and its universal joint connection to the platform at its apex. For stability four powered and controlled extensible members are provided between points in the base and platform distributed around the column, a preferred pattern of arrangement being a square with the column at the center.
Resilient Distribution System by Microgrids Formation After Natural Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Wang, Jianhui; Qiu, Feng
2016-03-01
Microgrids with distributed generation provide a resilient solution in the case of major faults in a distribution system due to natural disasters. This paper proposes a novel distribution system operational approach by forming multiple microgrids energized by distributed generation from the radial distribution system in real-time operations, to restore critical loads from the power outage. Specifically, a mixed-integer linear program (MILP) is formulated to maximize the critical loads to be picked up while satisfying the self-adequacy and operation constraints for the microgrids formation problem, by controlling the ON/OFF status of the remotely controlled switch devices and distributed generation. A distributedmore » multi-agent coordination scheme is designed via local communications for the global information discovery as inputs of the optimization, which is suitable for autonomous communication requirements after the disastrous event. The formed microgrids can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on modified IEEE distribution test systems validate the effectiveness of our proposed scheme.« less
A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie
Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less
The AgESGUI geospatial simulation system for environmental model application and evaluation
USDA-ARS?s Scientific Manuscript database
Practical decision making in spatially-distributed environmental assessment and management is increasingly being based on environmental process-based models linked to geographical information systems (GIS). Furthermore, powerful computers and Internet-accessible assessment tools are providing much g...
Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.
Namikawa, Jun
2005-08-01
Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.
A Review of Distributed Control Techniques for Power Quality Improvement in Micro-grids
NASA Astrophysics Data System (ADS)
Zeeshan, Hafiz Muhammad Ali; Nisar, Fatima; Hassan, Ahmad
2017-05-01
Micro-grid is typically visualized as a small scale local power supply network dependent on distributed energy resources (DERs) that can operate simultaneously with grid as well as in standalone manner. The distributed generator of a micro-grid system is usually a converter-inverter type topology acting as a non-linear load, and injecting harmonics into the distribution feeder. Hence, the negative effects on power quality by the usage of distributed generation sources and components are clearly witnessed. In this paper, a review of distributed control approaches for power quality improvement is presented which encompasses harmonic compensation, loss mitigation and optimum power sharing in multi-source-load distributed power network. The decentralized subsystems for harmonic compensation and active-reactive power sharing accuracy have been analysed in detail. Results have been validated to be consistent with IEEE standards.
Distribution and progression of add power among people in need of near correction.
Han, Xiaotong; Lee, Pei Ying; Liu, Chi; He, Mingguang
2018-04-16
This study helps to better understand the need and trend in presbyopic add power in the aging society. Distribution and progression of presbyopic add power in East Asian population is largely unknown. Prospective cohort study. About 303 participants from a population-based study of residents aged 35 years and older in Guangzhou, China. Visual acuity (VA) test and non-cycloplegic automated refraction were performed at baseline in 2008 and the 6-year follow-up per standardized protocol. Participants with presenting near VA ≤ 20/40 underwent distance subjective refraction and add power measurement by increasing plus lens at a standard distance of 40 cm at each visit. Add power at baseline and follow-ups. Mean (standard deviation) age of the study participants was 57.6 (11.1) years and 50.2% were female. The mean add power at baseline was 1.43, 1.73, 2.03 and 2.20 diopters (D) for individuals in the age groups of 35-44, 45-54, 55-64 and 65+ years, respectively. Participants with older age and lower educational level had significantly higher add power requirements (P < 0.001). The overall 6-year increase in add power was 0.15D (95% CI: 0.06 to 0.25), and was smaller in myopic subjects (P = 0.03). Baseline age and add power, but not changes in biometric factors, were associated with longitudinal change in add power (P < 0.001). Distribution and progression of add power in Chinese was different from that previously suggested by Caucasian studies. More studies are needed to establish up-to-date age-related add power prescription norms for population of different ethnicities. © 2018 Royal Australian and New Zealand College of Ophthalmologists.
NASA Astrophysics Data System (ADS)
Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen
2018-02-01
The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.
The origin of the criticality in meme popularity distribution on complex networks.
Kim, Yup; Park, Seokjong; Yook, Soon-Hyung
2016-03-24
Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks.
The origin of the criticality in meme popularity distribution on complex networks
Kim, Yup; Park, Seokjong; Yook, Soon-Hyung
2016-01-01
Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks. PMID:27009399
The origin of the criticality in meme popularity distribution on complex networks
NASA Astrophysics Data System (ADS)
Kim, Yup; Park, Seokjong; Yook, Soon-Hyung
2016-03-01
Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks.
Zhuo, Fan; Duan, Hucai
2017-01-01
The data sequence of spectrum sensing results injected from dedicated spectrum sensor nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network congestion may occur at a SU acting as fusion center when the offered data load exceeds its available capacity, which degrades network performance. In this paper, we present an effective approach to mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier (IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy consumption. In particular, we firstly devise two pricing factors by considering stability of local spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility function of this power control problem is formulated by jointly taking into account the revenue of power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the utility function maximization and linear differential equation constraint of energy consumption, we further formulate the power control problem as a differential game model under a cooperation or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived by alleviating the buffer load over their internal buffers. Simulation results are presented to show the effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario. PMID:28914803
Cathode power distribution system and method of using the same for power distribution
Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J
2014-11-11
Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.
Prevention of Unintentional Islands in Power Systems with Distributed
Islands in Power Systems with Distributed Resources Webinar Prevention of Unintentional Islands in Power Systems with Distributed Resources Webinar Learn about unintentional islanding in a webinar from NREL and following the presentation. Types of islands in power systems with distributed resources Issues with
Auction-based Security Game for Multiuser Cooperative Networks
NASA Astrophysics Data System (ADS)
Wang, An; Cai, Yueming; Yang, Wendong; Cheng, Yunpeng
2013-04-01
In this paper, we develop an auction-based algorithm to allocate the relay power efficiently to improve the system secrecy rate in a cooperative network, where several source-destination pairs and one cooperative relay are involved. On the one hand, the cooperative relay assists these pairs to transmit under a peak power constraint. On the other hand, the relay is untrusty and is also a passive eavesdropper. The whole auction process is completely distributed and no instantaneous channel state information exchange is needed. We also prove the existence and uniqueness of the Nash Equilibrium (NE) for the proposed power auction game. Moreover, the Pareto optimality is also validated. Simulation results show that our proposed auction-based algorithm can effectively improve the system secrecy rate. Besides, the proposed auction-based algorithm can converge to the unique NE point within a finite number of iterations. More interestingly, we also find that the proposed power auction mechanism is cheat-proof.
Zhang, Yifei; Kang, Jian
2017-11-01
The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.
2012-08-01
HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal , and brake pedal . From this driver requested power at the...HMMWV engine, b) base HMMWV gear ratios of the 4 speed transmission, c) acceleration and brake pedal pressed for the hybrid vehicle and d) Torque...coefficient. µb: Threshold for detecting brake pedal pressed ? 2 tanE4FGH 2 tanE4 I [K ρ: Air mass density, ρ = ma/Va where ma is mass of air
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Zhang, Kai; Xiong, Jian
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
Wang, Cheng; Zhang, Kai; Xiong, Jian; ...
2017-09-26
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.
2004-01-01
Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors, etc. is not included.
Alternative power supply systems for remote industrial customers
NASA Astrophysics Data System (ADS)
Kharlamova, N. V.; Khalyasmaa, A. I.; Eroshenko, S. A.
2017-06-01
The paper addresses the problem of alternative power supply of remote industrial clusters with renewable electric energy generation. As a result of different technologies comparison, consideration is given to wind energy application. The authors present a methodology of mean expected wind generation output calculation, based on Weibull distribution, which provides an effective express-tool for preliminary assessment of required installed generation capacity. The case study is based on real data including database of meteorological information, relief characteristics, power system topology etc. Wind generation feasibility estimation for a specific territory is followed by power flow calculations using Monte Carlo methodology. Finally, the paper provides a set of recommendations to ensure safe and reliable power supply for the final customers and, subsequently, to provide sustainable development of the regions, located far from megalopolises and industrial centres.
NASA Technical Reports Server (NTRS)
Ashby, G. C., Jr.; Harris, J. E.
1974-01-01
Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.
Su, Hongsheng
2017-12-18
Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.
Blockchain for Smart Grid Resilience: Exchanging Distributed Energy at Speed, Scale and Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup
Blockchain may help solve several complex problems related to integrity and trustworthiness of rapid, distributed, complex energy transactions and data exchanges. In a move towards resilience, blockchain commoditizes trust and enables automated smart contracts to support auditable multiparty transactions based on predefined rules between distributed energy providers and customers. Blockchain based smart contracts also help remove the need to interact with third-parties, facilitating the adoption and monetization of distributed energy transactions and exchanges, both energy flows as well as financial transactions. This may help reduce transactive energy costs and increase the security and sustainability of distributed energy resource (DER) integration,more » helping to remove barriers to a more decentralized and resilient power grid.« less
Estimating Bias Error Distributions
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Finley, Tom D.
2001-01-01
This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.
Passivity-Based Automated Design of Stable Multi-Feedback Distributed Power Delivery Systems
2017-03-01
thous ce the comple hapes are com e combined no ibiting a reduc rent loads wi o the size of The location o the center of t ber of the fin uced...Nu co ,736 318 578 776 ng scenario i y system. Th ted system i rent loads. I power supplie ocation of th fies the qualit the distribute tomated...ansient respon A to 788 mA oltages of, r lustrated in Fi b) igure 6. Expe single LDO re b) measured tr ased on thes arallel LDO oltage droop o
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Space station power management and distribution
NASA Technical Reports Server (NTRS)
Teren, F.
1985-01-01
The power system architecture is presented by a series of schematics which illustrate the power management and distribution (PMAD) system at the component level, including converters, controllers, switchgear, rotary power transfer devices, power and data cables, remote power controllers, and load converters. Power distribution options, reference power management, and control strategy are also outlined. A summary of advanced development status and plans and an overview of system test plans are presented.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Water supply pipe dimensioning using hydraulic power dissipation
NASA Astrophysics Data System (ADS)
Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.
2017-07-01
Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.
Possibilities of creating a pure coal-fired power industry based on nanomaterials
NASA Astrophysics Data System (ADS)
Zyryanov, V. V.
2015-08-01
A concept of distributed multigeneration during combustion of homogenized solid fuels with the addition of oxygen-enriched (to 30-50%) air is proposed. To implement this concept, application of medium-temperature δ-Bi2O3/Ag-nanocermet-based membranes is suggested under low pressures and sweeping of oxygen by the cleaned exit gas or the air. The primary product of the multigeneration is microsphere materials. The heat, the AC and the DC electric energy, the cleaned exit gases with a high CO2 content, and volatile elements adsorbed by the filters are the secondary products. To completely clean the exit gases, which is necessary to implement the distributed multigeneration, an array of successive passive plants is proposed. A thermoelectric module based on a BiTeSb-skutterudite nanocomposite is effective in generation of the DC electric energy at microthermoelectric power plants.
Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...
2017-07-14
Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azim, Riyasat; Li, Fangxing; Xue, Yaosuo
Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less
7 CFR 1710.102 - Borrower eligibility for different types of loans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... financing of distribution and subtransmission facilities of both distribution and power supply borrowers... distribution and subtransmission facilities of both distribution and power supply borrowers, including, under.... Both distribution and power supply borrowers are eligible for 100 percent loan guarantees under section...
7 CFR 1710.102 - Borrower eligibility for different types of loans.
Code of Federal Regulations, 2011 CFR
2011-01-01
... financing of distribution and subtransmission facilities of both distribution and power supply borrowers... distribution and subtransmission facilities of both distribution and power supply borrowers, including, under.... Both distribution and power supply borrowers are eligible for 100 percent loan guarantees under section...
Power system distributed oscilation detection based on Synchrophasor data
NASA Astrophysics Data System (ADS)
Ning, Jiawei
Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed methods could achieve faster and more reliable results. Subsequently, this claim is tested and approved by test results of IEEE Two-area simulation test system and real power system historian synchrophasor data case studies.
Design and implementation of a simple nuclear power plant simulator
NASA Astrophysics Data System (ADS)
Miller, William H.
1983-02-01
A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.
Temperature distribution of laser crystal in end-pumped DPSSL
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Jia, Liping; Zhang, Lei; Wen, Jihua; Kang, Junjian
2009-11-01
The temperature distribution in different cooling system was studied. A thermal distribution model of laser crystal was established. Based on the calculation, the temperature distribution and deformation of ND:YVO4 crystal in different cooling system were obtained. When the pumping power is 2 W and the radius of pumping beams is 320μm, the temperature distribution and end face distortion of the laser crystal are lowest by using side directly hydrocooling method. The study shows that, the side directly hydrocooling method is a more efficient method to control the crystal temperature distribution and reduce the thermal effect.
Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao
2013-08-01
We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.
NASA Astrophysics Data System (ADS)
Islam, Mujahidul
A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable from the vast network. A path tracing methodology is developed to identify the power lines that are vulnerable to an unscheduled flow effect in the sub-transmission network. It is much harder to aggregate power system network sensitivity information or data from measuring load flow physically than to simulate in software. System dynamics is one of the key factors to determine an appropriate dynamic control mechanism at an optimum network location. Once a model of deterministic but variable power generator is used, the simulation can be meaningful in justifying this claim. The method used to model the variable generator is named the two-components phase distortion model. The model was validated from the high resolution data collected from three pilot photovoltaic sites in Florida - two in the city of St. Petersburg and one in the city of Tampa. The high resolution data was correlated with weather radar closest to the sites during the design stage of the model. Technically the deterministic model cannot replicate a stochastic model which is more realistically applicable for solar isolation and involves a Markov chain. The author justified the proposition based on the fact that for analysis of the response functions of different systems, the excitation function should be common for comparison. Moreover, there could be many possible simulation scenarios but fewer worst cases. Almost all commercial systems are protected against potential faults and contingencies to a certain extent. Hence, the proposed model for worst case studies was designed within a reasonable limit. The simulation includes steady state and transient mode using multiple software modules including MatlabRTM, PSCADRTM and Paladin Design BaseRTM. It is shown that by identifying vulnerable or sensitive branches in the network, the control mechanisms can be coordinated reliably. In the long run this can save money by preventing unscheduled power flow in the network and eventually stabilizing the energy market.
Han, Buhm; Kang, Hyun Min; Eskin, Eleazar
2009-01-01
With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu. PMID:19381255
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
2013-01-01
The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.
Microprocessor control and networking for the amps breadboard
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1987-01-01
Future space missions will require more sophisticated power systems, implying higher costs and more extensive crew and ground support involvement. To decrease this human involvement, as well as to protect and most efficiently utilize this important resource, NASA has undertaken major efforts to promote progress in the design and development of autonomously managed power systems. Two areas being actively pursued are autonomous power system (APS) breadboards and knowledge-based expert system (KBES) applications. The former are viewed as a requirement for the timely development of the latter. Not only will they serve as final testbeds for the various KBES applications, but will play a major role in the knowledge engineering phase of their development. The current power system breadboard designs are of a distributed microprocessor nature. The distributed nature, plus the need to connect various external computer capabilities (i.e., conventional host computers and symbolic processors), places major emphasis on effective networking. The communications and networking technologies for the first power system breadboard/test facility are described.
Neural correlates of mathematical problem solving.
Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping
2015-03-01
This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Potential of laser for SPS power transmission
NASA Technical Reports Server (NTRS)
Bain, C. N.
1978-01-01
Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.
NASA Technical Reports Server (NTRS)
Bains, R. W.; Herwig, H. A.; Luedeman, J. K.; Torina, E. M.
1974-01-01
The Shuttle Electric Power System Analysis SEPS computer program which performs detailed load analysis including predicting energy demands and consumables requirements of the shuttle electric power system along with parameteric and special case studies on the shuttle electric power system is described. The functional flow diagram of the SEPS program is presented along with data base requirements and formats, procedure and activity definitions, and mission timeline input formats. Distribution circuit input and fixed data requirements are included. Run procedures and deck setups are described.
Flexible Power Distribution Based on Point of Load Converters
NASA Astrophysics Data System (ADS)
Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.
2014-08-01
Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.
Power systems and requirements for the integration of smart structures into aircraft
NASA Astrophysics Data System (ADS)
Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.
2002-07-01
Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam
Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.
Constructing probabilistic scenarios for wide-area solar power generation
Woodruff, David L.; Deride, Julio; Staid, Andrea; ...
2017-12-22
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
Constructing probabilistic scenarios for wide-area solar power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, David L.; Deride, Julio; Staid, Andrea
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
Interim analyses in 2 x 2 crossover trials.
Cook, R J
1995-09-01
A method is presented for performing interim analyses in long term 2 x 2 crossover trials with serial patient entry. The analyses are based on a linear statistic that combines data from individuals observed for one treatment period with data from individuals observed for both periods. The coefficients in this linear combination can be chosen quite arbitrarily, but we focus on variance-based weights to maximize power for tests regarding direct treatment effects. The type I error rate of this procedure is controlled by utilizing the joint distribution of the linear statistics over analysis stages. Methods for performing power and sample size calculations are indicated. A two-stage sequential design involving simultaneous patient entry and a single between-period interim analysis is considered in detail. The power and average number of measurements required for this design are compared to those of the usual crossover trial. The results indicate that, while there is minimal loss in power relative to the usual crossover design in the absence of differential carry-over effects, the proposed design can have substantially greater power when differential carry-over effects are present. The two-stage crossover design can also lead to more economical studies in terms of the expected number of measurements required, due to the potential for early stopping. Attention is directed toward normally distributed responses.
NASA Technical Reports Server (NTRS)
Holms, A. G.
1980-01-01
Population model coefficients were chosen to simulate a saturated 2 to the fourth power fixed effects experiment having an unfavorable distribution of relative values. Using random number studies, deletion strategies were compared that were based on the F distribution, on an order statistics distribution of Cochran's, and on a combination of the two. Results of the comparisons and a recommended strategy are given.
2016-12-01
Approved for public release. Distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public...ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 i THIS PAGE...operating bases (FOBs) rely on fossil fuel-based generators to power equipment and systems for military operations. Over estimated power requirements
Forty Years of Research and Development at Griffiss Air Force Base, June 1951-June 1991
1991-06-01
joints to transfer a number of power sources from the stationary base to the rotating antenna in order to develop high power, multi -beam, long-range...2757. 1 2a. DISTFIBUIOWAVALABLUY STATEMENT 12. DISTILUION CODE Approved for public release; distribution unlimited. a3 ABSTRACT *-= in This historical...did not lend itself to the use of footnotes and a formal bibliography, so a brief note on the primary sources is in order here. The bulk of the
Code of Federal Regulations, 2012 CFR
2012-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2013 CFR
2013-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2014 CFR
2014-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2011 CFR
2011-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Reproducible Growth of High-Quality Cubic-SiC Layers
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony
2004-01-01
Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.
A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchfield, Adam; Schweitzer, Eran; Athari, Mir
Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less
Sun, Libo; Wan, Ying
2018-04-22
Conditional power and predictive power provide estimates of the probability of success at the end of the trial based on the information from the interim analysis. The observed value of the time to event endpoint at the interim analysis could be biased for the true treatment effect due to early censoring, leading to a biased estimate of conditional power and predictive power. In such cases, the estimates and inference for this right censored primary endpoint are enhanced by incorporating a fully observed auxiliary variable. We assume a bivariate normal distribution of the transformed primary variable and a correlated auxiliary variable. Simulation studies are conducted that not only shows enhanced conditional power and predictive power but also can provide the framework for a more efficient futility interim analysis in terms of an improved accuracy in estimator, a smaller inflation in type II error and an optimal timing for such analysis. We also illustrated the new approach by a real clinical trial example. Copyright © 2018 John Wiley & Sons, Ltd.
A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids
Birchfield, Adam; Schweitzer, Eran; Athari, Mir; ...
2017-08-19
Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less
Enhanced power quality based single phase photovoltaic distributed generation system
NASA Astrophysics Data System (ADS)
Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.
2016-08-01
This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.
Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants.
Mirbozorgi, S Abdollah; Yeon, Pyungwoo; Ghovanloo, Maysam
2017-06-01
This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Beach, Raymond F.; Soeder, James F.; McNelis, Nancy B.; May, Ryan; Dever, Timothy P.; Trase, Larry
2014-01-01
The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper.
Empirical study of the tails of mutual fund size
NASA Astrophysics Data System (ADS)
Schwarzkopf, Yonathan; Farmer, J. Doyne
2010-06-01
The mutual fund industry manages about a quarter of the assets in the U.S. stock market and thus plays an important role in the U.S. economy. The question of how much control is concentrated in the hands of the largest players is best quantitatively discussed in terms of the tail behavior of the mutual fund size distribution. We study the distribution empirically and show that the tail is much better described by a log-normal than a power law, indicating less concentration than, for example, personal income. The results are highly statistically significant and are consistent across fifteen years. This contradicts a recent theory concerning the origin of the power law tails of the trading volume distribution. Based on the analysis in a companion paper, the log-normality is to be expected, and indicates that the distribution of mutual funds remains perpetually out of equilibrium.
The Distribution and Behaviour of Photospheric Magnetic Features
NASA Astrophysics Data System (ADS)
Parnell, C. E.; Lamb, D. A.; DeForest, C. E.
2014-12-01
Over the past two decades enormous amounts of data on the magnetic fields of the solar photosphere have been produced by both ground-based (Kitt Peak & SOLIS), as well as space-based instruments (MDI, Hinode & HMI). In order to study the behaviour and distribution of photospheric magnetic features, efficient automated detection routines need to be utilised to identify and track magnetic features. In this talk, I will discuss the pros and cons of different automated magnetic feature identification and tracking routines with a special focus on the requirements of these codes to deal with the large data sets produced by HMI. By patching together results from Hinode and MDI (high-res & full-disk), the fluxes of magnetic features were found to follow a power-law over 5 orders of magnitude. At the strong flux tail of this distribution, the power law was found to fall off at solar minimum, but was maintained over all fluxes during solar maximum. However, the point of deflection in the power-law distribution occurs at a patching point between instruments and so questions remain over the reasons for the deflection. The feature fluxes determined from the superb high-resolution HMI data covers almost all of the 5 orders of magnitude. Considering both solar mimimum and solar maximum HMI data sets, we investigate whether the power-law over 5 orders of magnitude in flux still holds. Furthermore, we investigate the behaviour of magnetic features in order to probe the nature of their origin. In particular, we analyse small-scale flux emergence events using HMI data to investigate the existence of a small-scale dynamo just below the solar photosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...
2017-07-24
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Focus-based filtering + clustering technique for power-law networks with small world phenomenon
NASA Astrophysics Data System (ADS)
Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz
2006-01-01
Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Fractal analysis of the short time series in a visibility graph method
NASA Astrophysics Data System (ADS)
Li, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Chen, Yingyuan
2016-05-01
The aim of this study is to evaluate the performance of the visibility graph (VG) method on short fractal time series. In this paper, the time series of Fractional Brownian motions (fBm), characterized by different Hurst exponent H, are simulated and then mapped into a scale-free visibility graph, of which the degree distributions show the power-law form. The maximum likelihood estimation (MLE) is applied to estimate power-law indexes of degree distribution, and in this progress, the Kolmogorov-Smirnov (KS) statistic is used to test the performance of estimation of power-law index, aiming to avoid the influence of droop head and heavy tail in degree distribution. As a result, we find that the MLE gives an optimal estimation of power-law index when KS statistic reaches its first local minimum. Based on the results from KS statistic, the relationship between the power-law index and the Hurst exponent is reexamined and then amended to meet short time series. Thus, a method combining VG, MLE and KS statistics is proposed to estimate Hurst exponents from short time series. Lastly, this paper also offers an exemplification to verify the effectiveness of the combined method. In addition, the corresponding results show that the VG can provide a reliable estimation of Hurst exponents.
Research on application model of blockchain technology in distributed electricity market
NASA Astrophysics Data System (ADS)
Cheng, S.; Zeng, B.; Huang, Y. Z.
2017-11-01
In the context of current energy Internet, the emergence of a large number of energy productive consumers will create a new business model. In the decentralized electricity market, the cost of traditional centralized solution construction, management and maintenance is too high, and it is difficult to support the collection, transmission, reception, storage and analysis of massive data. To provide a solution to this phenomenon, we apply the blockchain technology to this distributed electricity market to achieve peer to peer transactions in the power systems. The blockchain technology which is very popular nowadays will be used in power system to establish a credible direct transaction between devices. At first, this article analyzes the future direction of the development of power systems, studies the characteristics of decentralized power systems and summarizes the main issues in the development process. Then, we analyze the basic characteristics of blockchain and put forward a new transaction framework in consideration of problems existing in current energy market. The transaction framework is based on the blockchain technology in the distributed electricity market and includes the pricing method, the power transaction system architecture, various modules of the trading system and the details of the whole transaction system runtime. This framework provides a viable solution for increasingly complex energy transactions.
Spatially explicit power analysis for occupancy-based monitoring of wolverine populations in the U.S
Martha M. Ellis; Jacob S. Ivan; Michael K. Schwartz
2014-01-01
Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a...
NASA Astrophysics Data System (ADS)
Chandler, Damon M.; Field, David J.
2007-04-01
Natural scenes, like most all natural data sets, show considerable redundancy. Although many forms of redundancy have been investigated (e.g., pixel distributions, power spectra, contour relationships, etc.), estimates of the true entropy of natural scenes have been largely considered intractable. We describe a technique for estimating the entropy and relative dimensionality of image patches based on a function we call the proximity distribution (a nearest-neighbor technique). The advantage of this function over simple statistics such as the power spectrum is that the proximity distribution is dependent on all forms of redundancy. We demonstrate that this function can be used to estimate the entropy (redundancy) of 3×3 patches of known entropy as well as 8×8 patches of Gaussian white noise, natural scenes, and noise with the same power spectrum as natural scenes. The techniques are based on assumptions regarding the intrinsic dimensionality of the data, and although the estimates depend on an extrapolation model for images larger than 3×3, we argue that this approach provides the best current estimates of the entropy and compressibility of natural-scene patches and that it provides insights into the efficiency of any coding strategy that aims to reduce redundancy. We show that the sample of 8×8 patches of natural scenes used in this study has less than half the entropy of 8×8 white noise and less than 60% of the entropy of noise with the same power spectrum. In addition, given a finite number of samples (<220) drawn randomly from the space of 8×8 patches, the subspace of 8×8 natural-scene patches shows a dimensionality that depends on the sampling density and that for low densities is significantly lower dimensional than the space of 8×8 patches of white noise and noise with the same power spectrum.
Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response
NASA Astrophysics Data System (ADS)
Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei
2018-01-01
Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.
7 CFR 1710.203 - Requirement to prepare a load forecast-distribution borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
...—distribution borrowers. (a) A distribution borrower that is a member of a power supply borrower with a total... forecast work plan of its power supply borrower. (b) A distribution borrower that is a member of a power supply borrower which is itself a member of another power supply borrower that has a total utility plant...
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1995-01-01
The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.
Jamali, Jamshid; Ayatollahi, Seyyed Mohammad Taghi; Jafari, Peyman
2017-01-01
Evaluating measurement equivalence (also known as differential item functioning (DIF)) is an important part of the process of validating psychometric questionnaires. This study aimed at evaluating the multiple indicators multiple causes (MIMIC) model for DIF detection when latent construct distribution is nonnormal and the focal group sample size is small. In this simulation-based study, Type I error rates and power of MIMIC model for detecting uniform-DIF were investigated under different combinations of reference to focal group sample size ratio, magnitude of the uniform-DIF effect, scale length, the number of response categories, and latent trait distribution. Moderate and high skewness in the latent trait distribution led to a decrease of 0.33% and 0.47% power of MIMIC model for detecting uniform-DIF, respectively. The findings indicated that, by increasing the scale length, the number of response categories and magnitude DIF improved the power of MIMIC model, by 3.47%, 4.83%, and 20.35%, respectively; it also decreased Type I error of MIMIC approach by 2.81%, 5.66%, and 0.04%, respectively. This study revealed that power of MIMIC model was at an acceptable level when latent trait distributions were skewed. However, empirical Type I error rate was slightly greater than nominal significance level. Consequently, the MIMIC was recommended for detection of uniform-DIF when latent construct distribution is nonnormal and the focal group sample size is small.
Jafari, Peyman
2017-01-01
Evaluating measurement equivalence (also known as differential item functioning (DIF)) is an important part of the process of validating psychometric questionnaires. This study aimed at evaluating the multiple indicators multiple causes (MIMIC) model for DIF detection when latent construct distribution is nonnormal and the focal group sample size is small. In this simulation-based study, Type I error rates and power of MIMIC model for detecting uniform-DIF were investigated under different combinations of reference to focal group sample size ratio, magnitude of the uniform-DIF effect, scale length, the number of response categories, and latent trait distribution. Moderate and high skewness in the latent trait distribution led to a decrease of 0.33% and 0.47% power of MIMIC model for detecting uniform-DIF, respectively. The findings indicated that, by increasing the scale length, the number of response categories and magnitude DIF improved the power of MIMIC model, by 3.47%, 4.83%, and 20.35%, respectively; it also decreased Type I error of MIMIC approach by 2.81%, 5.66%, and 0.04%, respectively. This study revealed that power of MIMIC model was at an acceptable level when latent trait distributions were skewed. However, empirical Type I error rate was slightly greater than nominal significance level. Consequently, the MIMIC was recommended for detection of uniform-DIF when latent construct distribution is nonnormal and the focal group sample size is small. PMID:28713828
Smart caching based on mobile agent of power WebGIS platform.
Wang, Xiaohui; Wu, Kehe; Chen, Fei
2013-01-01
Power information construction is developing towards intensive, platform, distributed direction with the expansion of power grid and improvement of information technology. In order to meet the trend, power WebGIS was designed and developed. In this paper, we first discuss the architecture and functionality of power WebGIS, and then we study caching technology in detail, which contains dynamic display cache model, caching structure based on mobile agent, and cache data model. We have designed experiments of different data capacity to contrast performance between WebGIS with the proposed caching model and traditional WebGIS. The experimental results showed that, with the same hardware environment, the response time of WebGIS with and without caching model increased as data capacity growing, while the larger the data was, the higher the performance of WebGIS with proposed caching model improved.
Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles
NASA Astrophysics Data System (ADS)
Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie
2018-01-01
In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.
Theoretical Framework for Integrating Distributed Energy Resources into Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Wu, Di; Kalsi, Karanjit
This paper focuses on developing a novel theoretical framework for effective coordination and control of a large number of distributed energy resources in distribution systems in order to more reliably manage the future U.S. electric power grid under the high penetration of renewable generation. The proposed framework provides a systematic view of the overall structure of the future distribution systems along with the underlying information flow, functional organization, and operational procedures. It is characterized by the features of being open, flexible and interoperable with the potential to support dynamic system configuration. Under the proposed framework, the energy consumption of variousmore » DERs is coordinated and controlled in a hierarchical way by using market-based approaches. The real-time voltage control is simultaneously considered to complement the real power control in order to keep nodal voltages stable within acceptable ranges during real time. In addition, computational challenges associated with the proposed framework are also discussed with recommended practices.« less
Herman, Agnieszka
2010-06-01
Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x(-1-α) exp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.
Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems
NASA Astrophysics Data System (ADS)
Herman, Agnieszka
2010-06-01
Sea-ice floe-size distribution (FSD) in ice-pack covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x-1-αexp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-ice model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-area distribution in agreement with observations.
Effect of distributed generation installation on power loss using genetic algorithm method
NASA Astrophysics Data System (ADS)
Hasibuan, A.; Masri, S.; Othman, W. A. F. W. B.
2018-02-01
Injection of the generator distributed in the distribution network can affect the power system significantly. The effect that occurs depends on the allocation of DG on each part of the distribution network. Implementation of this approach has been made to the IEEE 30 bus standard and shows the optimum location and size of the DG which shows a decrease in power losses in the system. This paper aims to show the impact of distributed generation on the distribution system losses. The main purpose of installing DG on a distribution system is to reduce power losses on the power system.Some problems in power systems that can be solved with the installation of DG, one of which will be explored in the use of DG in this study is to reduce the power loss in the transmission line. Simulation results from case studies on the IEEE 30 bus standard system show that the system power loss decreased from 5.7781 MW to 1,5757 MW or just 27,27%. The simulated DG is injected to the bus with the lowest voltage drop on the bus number 8.
NASA Technical Reports Server (NTRS)
Nussberger, A. A.; Woodcock, G. R.
1980-01-01
SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.
NREL Establishes New Center for Distributed Power
Establishes New Center for Distributed Power Changing Electricity Market Demands Greater , smaller-scale generation facilities. That concept, known as "distributed power," will be Energy Laboratory (NREL). The Distributed Energy Resources Center at NREL will conduct research and
Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying
2007-03-19
A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.
Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System
NASA Astrophysics Data System (ADS)
Singh, Bhim; Arya, Sabha Raj
2014-01-01
This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.
Kong, Weipeng; Sugita, Atsushi; Taira, Takunori
2012-07-01
We have demonstrated high-order Hermite-Gaussian (HG) mode generation based on 2D gain distribution control edge-pumped, composite all-ceramic Yb:YAG/YAG microchip lasers using a V-type cavity. Several hundred milliwatts to several watts HG(mn) modes are achieved. We also generated different kinds of vortex arrays directly from the oscillator with the same power level. In addition, a more than 7 W doughnut-shape mode can be generated in the same cavity.