Sample records for based quantitative pcr

  1. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  3. Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection?

    PubMed

    Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K

    2009-06-01

    The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.

  4. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  5. Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.

    PubMed

    Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei

    2017-09-01

    Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction.

    PubMed

    Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping

    2016-12-06

    MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.

  7. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  8. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  9. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  10. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR.

    PubMed

    Qian, L; Song, H; Cai, W

    2016-09-01

    Breast milk is one of the most important sources of postnatal microbes. Quantitative real-time polymerase chain reaction (qRT-PCR) is currently used for the quantitative analysis of bacterial 16S rRNA genes in breast milk. However, this method relies on the use of standard curves and is imprecise when quantitating target DNA of low abundance. In contrast, droplet digital PCR (DD-PCR) provides an absolute quantitation without the need for calibration curves. A comparison between DD-PCR and qRT-PCR was conducted for the quantitation of Bifidobacterium and Lactobacillus 16S RNA genes in human breast milk, and the impacts of selected maternal factors were studied on the composition of these two bacteria in breast milk. From this study, DD-PCR reported between 0-34,460 16S rRNA gene copies of Bifidobacterium genera and between 1,108-634,000 16S rRNA gene copies of Lactobacillus genera in 1 ml breast milk. The 16S rRNA gene copy number of Lactobacillus genera was much greater than that of Bifidobacterium genera in breast milk. DD-PCR showed a 10-fold lower limit of quantitation as compared to qRT-PCR. A higher correlation and agreement was observed between qRT-PCR and DD-PCR in Lactobacillus quantitation as compared to Bifidobacterium quantitation. Based on our DD-PCR quantitation, a low abundance of Bifidobacterium bacteria in breast milk was correlated to higher pre-pregnancy body mass index (BMI). However, no significant difference was observed for these two bacteria in breast milk between mothers who had vaginal deliveries and caesarean deliveries. This study suggests that DD-PCR is a better tool to quantitate the bacterial load of breast milk compared to the conventional qRT-PCR method. The number of breast milk Bifidobacterium bacteria is influenced by maternal pre-pregnancy BMI.

  11. Quantitative analysis of pork and chicken products by droplet digital PCR.

    PubMed

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.

  12. Targeting GPR30 in Abiraterone and MDV3100 Resistant Prostate Cancer

    DTIC Science & Technology

    2017-12-01

    ID Labs, London, ON, Canada) following the manufacturer’s protocols. Quantitative real- time PCR Total RNA was treated with RNase-free DNase (Qiagen...99-gene panel for confirmation based on a literature search showing their relatedness to cell-mediated immune responses. Quantitative real- time PCR...mouse neutrophils (Geiser et al. 1993, Schaider et al. 2003), we analyzed murine neutrophil-related cytokine genes using quantitative real- time PCR

  13. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985.

    PubMed

    Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing

    2010-02-01

    To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.

  14. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  15. Application of Real-Time Fluorescent PCR for Quantitative Assessment of Neospora caninum Infections in Organotypic Slice Cultures of Rat Central Nervous System Tissue

    PubMed Central

    Müller, Norbert; Vonlaufen, Nathalie; Gianinazzi, Christian; Leib, Stephen L.; Hemphill, Andrew

    2002-01-01

    The previously described Nc5-specific PCR test for the diagnosis of Neospora caninum infections was used to develop a quantitative PCR assay which allows the determination of infection intensities within different experimental and diagnostic sample groups. The quantitative PCR was performed by using a dual fluorescent hybridization probe system and the LightCycler Instrument for online detection of amplified DNA. This assay was successfully applied for demonstrating the parasite proliferation kinetics in organotypic slice cultures of rat brain which were infected in vitro with N. caninum tachyzoites. This PCR-based method of parasite quantitation with organotypic brain tissue samples can be regarded as a novel ex vivo approach for exploring different aspects of cerebral N. caninum infection. PMID:11773124

  16. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  17. [A new method of processing quantitative PCR data].

    PubMed

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  18. Kinetics of Poliovirus Shedding following Oral Vaccination as Measured by Quantitative Reverse Transcription-PCR versus Culture

    PubMed Central

    Begum, Sharmin; Uddin, Md Jashim; Platts-Mills, James A.; Liu, Jie; Kirkpatrick, Beth D.; Chowdhury, Anwarul H.; Jamil, Khondoker M.; Haque, Rashidul; Petri, William A.; Houpt, Eric R.

    2014-01-01

    Amid polio eradication efforts, detection of oral polio vaccine (OPV) virus in stool samples can provide information about rates of mucosal immunity and allow estimation of the poliovirus reservoir. We developed a multiplex one-step quantitative reverse transcription-PCR (qRT-PCR) assay for detection of OPV Sabin strains 1, 2, and 3 directly in stool samples with an external control to normalize samples for viral quantity and compared its performance with that of viral culture. We applied the assay to samples from infants in Dhaka, Bangladesh, after the administration of trivalent OPV (tOPV) at weeks 14 and 52 of life (on days 0 [pre-OPV], +4, +11, +18, and +25 relative to vaccination). When 1,350 stool samples were tested, the sensitivity and specificity of the quantitative PCR (qPCR) assay were 89 and 91% compared with culture. A quantitative relationship between culture+/qPCR+ and culture−/qPCR+ stool samples was observed. The kinetics of shedding revealed by qPCR and culture were similar. qPCR quantitative cutoffs based on the day +11 or +18 stool samples could be used to identify the culture-positive shedders, as well as the long-duration or high-frequency shedders. Interestingly, qPCR revealed that a small minority (7%) of infants contributed the vast majority (93 to 100%) of the total estimated viral excretion across all subtypes at each time point. This qPCR assay for OPV can simply and quantitatively detect all three Sabin strains directly in stool samples to approximate shedding both qualitatively and quantitatively. PMID:25378579

  19. Laboratory Evaluations of the Enterococcus qPCR Method for Recreational Water Quality Testing: Method Performance and Sources of Uncertainty in Quantitative Measurements

    EPA Science Inventory

    The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...

  20. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    PubMed Central

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  1. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  2. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  3. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    PubMed

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  4. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    PubMed Central

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  5. Comparative Performance of Reagents and Platforms for Quantitation of Cytomegalovirus DNA by Digital PCR

    PubMed Central

    Gu, Z.; Sam, S. S.; Sun, Y.; Tang, L.; Pounds, S.; Caliendo, A. M.

    2016-01-01

    A potential benefit of digital PCR is a reduction in result variability across assays and platforms. Three sets of PCR reagents were tested on two digital PCR systems (Bio-Rad and RainDance), using three different sets of PCR reagents for quantitation of cytomegalovirus (CMV). Both commercial quantitative viral standards and 16 patient samples (n = 16) were tested. Quantitative accuracy (compared to nominal values) and variability were determined based on viral standard testing results. Quantitative correlation and variability were assessed with pairwise comparisons across all reagent-platform combinations for clinical plasma sample results. The three reagent sets, when used to assay quantitative standards on the Bio-Rad system, all showed a high degree of accuracy, low variability, and close agreement with one another. When used on the RainDance system, one of the three reagent sets appeared to have a much better correlation to nominal values than did the other two. Quantitative results for patient samples showed good correlation in most pairwise comparisons, with some showing poorer correlations when testing samples with low viral loads. Digital PCR is a robust method for measuring CMV viral load. Some degree of result variation may be seen, depending on platform and reagents used; this variation appears to be greater in samples with low viral load values. PMID:27535685

  6. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  7. Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR.

    PubMed

    Shuga, Joe; Zeng, Yong; Novak, Richard; Lan, Qing; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Li, Laiyu; Hubbard, Alan; Zhang, Luoping; Mathies, Richard A; Smith, Martyn T

    2013-09-01

    Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve 'quantitative' measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10(-6)) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1×10(-7) or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur.

  8. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    PubMed

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  9. Development of a chemiluminescence competitive PCR for the detection and quantification of parvovirus B19 DNA using a microplate luminometer.

    PubMed

    Fini, F; Gallinella, G; Girotti, S; Zerbini, M; Musiani, M

    1999-09-01

    Quantitative PCR of viral nucleic acids can be useful clinically in diagnosis, risk assessment, and monitoring of antiviral therapy. We wished to develop a chemiluminescence competitive PCR (cPCR) for parvovirus B19. Parvovirus DNA target sequences and competitor sequences were coamplified and directly labeled. Amplified products were then separately hybridized by specific biotin-labeled probes, captured onto streptavidin-coated ELISA microplates, and detected immunoenzymatically using chemiluminescent substrates of peroxidase. Chemiluminescent signals were quantitatively analyzed by a microplate luminometer and were correlated to the amounts of amplified products. Luminol-based systems displayed constant emission but had a higher detection limit (100-1000 genome copies) than the acridan-based system (20 genome copies). The detection limit of chemiluminescent substrates was lower (20 genome copies) than colorimetric substrates (50 genome copies). In chemiluminescence cPCR, the titration curves showed linear correlation above 100 target genome copies. Chemiluminescence cPCR was positive in six serum samples from patients with parvovirus infections and negative in six control sera. The chemiluminescence cPCR appears to be a sensitive and specific method for the quantitative detection of viral DNAs.

  10. Quantitative analysis of cytomegalovirus (CMV) viremia using the pp65 antigenemia assay and the COBAS AMPLICOR CMV MONITOR PCR test after blood and marrow allogeneic transplantation.

    PubMed

    Boivin, G; Bélanger, R; Delage, R; Béliveau, C; Demers, C; Goyette, N; Roy, J

    2000-12-01

    The performance of a commercially available qualitative PCR test for plasma (AMPLICOR CMV Test; Roche Diagnostics) and a quantitative PCR test for plasma and leukocytes (COBAS AMPLICOR CMV MONITOR Test; Roche Diagnostics) was evaluated with samples from 50 blood or marrow allogeneic transplant recipients who received short courses of sequential ganciclovir therapy (2 weeks intravenously followed by 2 weeks orally) based on a positive cytomegalovirus (CMV) pp65 antigenemia (AG) assay. The number of persons with a positive CMV test was significantly higher for leukocyte-based assays (AG, 67.5%; PCR, 62.5%) compared to both quantitative and qualitative PCR tests of plasma (42.5 and 35%, respectively). One person developed CMV disease during the study despite a negative AG assay; in this particular case, all PCR assays were found to be positive 10 days before his death. There was a trend for earlier positivity after transplantation and more rapid negativity after initiation of ganciclovir for the tests performed on leukocytes. The mean number of CMV copies as assessed by PCR was significantly higher in leukocytes than in plasma (P = 0.02). Overall, excellent agreement (kappa coefficient, >0.75) was found only between the two PCR assays (qualitative and quantitative) based on plasma. These results suggest that either the pp65 AG assay or the COBAS AMPLICOR CMV MONITOR Test using leukocytes could be used to safely monitor CMV viremia in related allogeneic blood or marrow transplant recipients. Such a strategy will result in preemptive treatment for about two-thirds of the persons with a relatively low rate (<33%) of secondary viremic episodes following short courses of ganciclovir therapy.

  11. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters.

    PubMed

    Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A

    2014-04-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    USGS Publications Warehouse

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  13. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  14. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    PubMed

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  15. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  16. Effects of Holding Time, Storage, and the Preservation of Samples on Sample Integrity for the Detection of Fecal Indicator Bacteria by Quantitative Polymerase Chain Reaction (qPCR)-based assays.

    EPA Science Inventory

    The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...

  17. Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.

    PubMed

    Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter

    2017-02-01

    DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.

  18. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    EPA Science Inventory

    Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...

  19. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    USDA-ARS?s Scientific Manuscript database

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  20. Protocol for the use of light upon extension real-time PCR for the determination of viral load in HBV infection.

    PubMed

    Li, Guimin; Li, Wangfeng; Liu, Lixia

    2012-01-01

    Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.

  1. Quantitative competitive (QC) PCR for quantification of porcine DNA.

    PubMed

    Wolf, C; Lüthy, J

    2001-02-01

    Many meat products nowadays may contain several species in different proportions. To protect consumers from fraud and misdeclarations, not only a qualitative but also a quantitative monitoring of ingredients of complex food products is necessary. DNA based techniques like the polymerase chain reaction (PCR) are widely used for identification of species but no answer to the proportional amount of a certain species could be given using current techniques. In this study we report the development and evaluation of a quantitative competitive polymerase chain reaction (QC-PCR) for detection and quantification of porcine DNA using a new porcine specific PCR system based on the growth hormone gene of sus scrofa. A DNA competitor differing by 30 bp in length from the porcine target sequence was constructed and used for PCR together with the target DNA. Specificity of the new primers was evaluated with DNA from cattle, sheep, chicken and turkey. The competitor concentration was adjusted to porcine DNA contents of 2 or 20% by coamplification of mixtures containing porcine and corresponding amounts of bovine DNA in defined ratios.

  2. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  3. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    USDA-ARS?s Scientific Manuscript database

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  4. Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki

    2015-05-20

    Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    USGS Publications Warehouse

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  6. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.

    PubMed

    Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing

    2009-11-25

    Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.

  7. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  8. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    PubMed

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific, sensitive, and economic alternative to the current quantitative methods.

  9. A Novel Triplex Quantitative PCR Strategy for Quantification of Toxigenic and Nontoxigenic Vibrio cholerae in Aquatic Environments

    PubMed Central

    Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.

    2015-01-01

    Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966

  10. Creation of a bovine herpes virus 1 (BoHV-1) quantitative particle standard by transmission electron microscopy and comparison with established standards for use in real-time PCR.

    PubMed

    Hoferer, Marc; Braun, Anne; Sting, Reinhard

    2017-07-01

    Standards are pivotal for pathogen quantification by real-time PCR (qPCR); however, the creation of a complete and universally applicable virus particle standard is challenging. In the present study a procedure based on purification of bovine herpes virus type 1 (BoHV-1) and subsequent quantification by transmission electron microscopy (TEM) is described. Accompanying quantitative quality controls of the TEM preparation procedure using qPCR yielded recovery rates of more than 95% of the BoHV-1 virus particles on the grid used for virus counting, which was attributed to pre-treatment of the grid with 5% bovine albumin. To compare the value of the new virus particle standard for use in qPCR, virus counter based quantification and established pure DNA standards represented by a plasmid and an oligonucleotide were included. It could be shown that the numbers of virus particles, plasmid and oligonucleotide equivalents were within one log10 range determined on the basis of standard curves indicating that different approaches provide comparable quantitative values. However, only virus particles represent a complete, universally applicable quantitative virus standard that meets the high requirements of an RNA and DNA virus gold standard. In contrast, standards based on pure DNA have to be considered as sub-standard due to limited applications. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  11. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    PubMed

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (<25%) of the GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  12. Immunomediator expression profiling in two beluga whale (delphinapterus leucas) clinical cases

    USDA-ARS?s Scientific Manuscript database

    Cytokines and other immunomediators can be biomarkers of inflammation. Quantitative real-time PCR (qPCR) has been used to examine cytokine gene expression in beluga whale (Delphinapterus leucas) peripheral blood mononuclear cells (PBMC). Thus, qPCR-based immunomediator assays could supplement clinic...

  13. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  14. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  15. Longitudinal monitoring of bottlenose dolphins leukocyte cytokine mRNA responsiveness by qPCR

    USDA-ARS?s Scientific Manuscript database

    Both veterinarians caring for bottlenose dolphins (Tursiops truncatus) in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin health. Quantitative PCR (qPCR) can be used to assess cytokine expression patterns of peripheral blood m...

  16. Longitudinal monitoring of bottlenose dolphin leukocyte cytokine mRNA responsiveness by qPCR

    USDA-ARS?s Scientific Manuscript database

    Both veterinarians caring for bottlenose dolphins (Tursiops truncatus) in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin health. Quantitative PCR (qPCR) can be used to assess cytokine expression patterns of peripheral blood m...

  17. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    USGS Publications Warehouse

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  18. Characterization and Comparison of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR Assay for Detection of Aspergillus fumigatus in Bronchoalveolar Lavage Fluid from Experimental Invasive Pulmonary Aspergillosis

    PubMed Central

    Francesconi, Andrea; Kasai, Miki; Petraitiene, Ruta; Petraitis, Vidmantas; Kelaher, Amy M.; Schaufele, Robert; Hope, William W.; Shea, Yvonne R.; Bacher, John; Walsh, Thomas J.

    2006-01-01

    Bronchoalveolar lavage (BAL) is widely used for evaluation of patients with suspected invasive pulmonary aspergillosis (IPA). However, the diagnostic yield of BAL for detection of IPA by culture and direct examination is limited. Earlier diagnosis may be facilitated by assays that can detect Aspergillus galactomannan antigen or DNA in BAL fluid. We therefore characterized and compared the diagnostic yields of a galactomannan enzyme immunoassay (GM EIA), quantitative real-time PCR (qPCR), and quantitative cultures in experiments using BAL fluid from neutropenic rabbits with experimentally induced IPA defined as microbiologically and histologically evident invasion. The qPCR assay targeted the rRNA gene complex of Aspergillus fumigatus. The GM EIA and qPCR assay were characterized by receiver operator curve analysis. With an optimal cutoff of 0.75, the GM EIA had a sensitivity and specificity of 100% in untreated controls. A decline in sensitivity (92%) was observed when antifungal therapy (AFT) was administered. The optimal cutoff for qPCR was a crossover of 36 cycles, with sensitivity and specificity of 80% and 100%, respectively. The sensitivity of qPCR also decreased with AFT to 50%. Quantitative culture of BAL had a sensitivity of 46% and a specificity of 100%. The sensitivity of quantitative culture decreased with AFT to 16%. The GM EIA and qPCR assay had greater sensitivity than culture in detection of A. fumigatus in BAL fluid in experimentally induced IPA (P ± 0.04). Use of the GM EIA and qPCR assay in conjunction with culture-based diagnostic methods applied to BAL fluid could facilitate accurate diagnosis and more-timely initiation of specific therapy. PMID:16825367

  19. Quantitative Detection and Genotyping of Helicobacter pylori from Stool using Droplet Digital PCR Reveals Variation in Bacterial Loads that Correlates with cagA Virulence Gene Carriage.

    PubMed

    Talarico, Sarah; Safaeian, Mahboobeh; Gonzalez, Paula; Hildesheim, Allan; Herrero, Rolando; Porras, Carolina; Cortes, Bernal; Larson, Ann; Fang, Ferric C; Salama, Nina R

    2016-08-01

    Epidemiologic studies of the carcinogenic stomach bacterium Helicobacter pylori have been limited by the lack of noninvasive detection and genotyping methods. We developed a new stool-based method for detection, quantification, and partial genotyping of H. pylori using droplet digital PCR (ddPCR), which allows for increased sensitivity and absolute quantification by PCR partitioning. Stool-based ddPCR assays for H. pylori 16S gene detection and cagA virulence gene typing were tested using a collection of 50 matched stool and serum samples from Costa Rican volunteers and 29 H. pylori stool antigen-tested stool samples collected at a US hospital. The stool-based H. pylori 16S ddPCR assay had a sensitivity of 84% and 100% and a specificity of 100% and 71% compared to serology and stool antigen tests, respectively. The stool-based cagA genotyping assay detected cagA in 22 (88%) of 25 stools from CagA antibody-positive individuals and four (16%) of 25 stools from CagA antibody-negative individuals from Costa Rica. All 26 of these samples had a Western-type cagA allele. Presence of serum CagA antibodies was correlated with a significantly higher load of H. pylori in the stool. The stool-based ddPCR assays are a sensitive, noninvasive method for detection, quantification, and partial genotyping of H. pylori. The quantitative nature of ddPCR-based H. pylori detection revealed significant variation in bacterial load among individuals that correlates with presence of the cagA virulence gene. These stool-based ddPCR assays will facilitate future population-based epidemiologic studies of this important human pathogen. © 2015 John Wiley & Sons Ltd.

  20. Development and comparison of TaqMan-based real-time PCR assays for detection and differentiation of Ralstonia solanacearum strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial wilt caused by Ralstonia solanacearum is destructive to many plant species worldwide. The race 3 biovar 2 (r3b2) strains of R. solanacearum infect potatoes in temperature climates and are listed as select agents by the U.S. government. TaqMan-based real-time quantitative PCR (qPCR) is comm...

  1. Rapid and Specific Method for Evaluating Streptomyces Competitive Dynamics in Complex Soil Communities

    USDA-ARS?s Scientific Manuscript database

    Quantifying target microbial populations in complex communities remains a barrier to studying species interactions in soil environments. Quantitative real-time PCR (qPCR) offers a rapid and specific means to assess populations of target microorganisms. SYBR Green and TaqMan-based qPCR assays were de...

  2. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean.

    PubMed

    Zhang, Haibo; Yang, Litao; Guo, Jinchao; Li, Xiang; Jiang, Lingxi; Zhang, Dabing

    2008-07-23

    To enforce the labeling regulations of genetically modified organisms (GMOs), the application of reference molecules as calibrators is becoming essential for practical quantification of GMOs. However, the reported reference molecules with tandem marker multiple targets have been proved not suitable for duplex PCR analysis. In this study, we developed one unique plasmid molecule based on one pMD-18T vector with three exogenous target DNA fragments of Roundup Ready soybean GTS 40-3-2 (RRS), that is, CaMV35S, NOS, and RRS event fragments, plus one fragment of soybean endogenous Lectin gene. This Lectin gene fragment was separated from the three exogenous target DNA fragments of RRS by inserting one 2.6 kb DNA fragment with no relatedness to RRS detection targets in this resultant plasmid. Then, we proved that this design allows the quantification of RRS using the three duplex real-time PCR assays targeting CaMV35S, NOS, and RRS events employing this reference molecule as the calibrator. In these duplex PCR assays, the limits of detection (LOD) and quantification (LOQ) were 10 and 50 copies, respectively. For the quantitative analysis of practical RRS samples, the results of accuracy and precision were similar to those of simplex PCR assays, for instance, the quantitative results were at the 1% level, the mean bias of the simplex and duplex PCR were 4.0% and 4.6%, respectively, and the statistic analysis ( t-test) showed that the quantitative data from duplex and simplex PCR had no significant discrepancy for each soybean sample. Obviously, duplex PCR analysis has the advantages of saving the costs of PCR reaction and reducing the experimental errors in simplex PCR testing. The strategy reported in the present study will be helpful for the development of new reference molecules suitable for duplex PCR quantitative assays of GMOs.

  3. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  4. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    PubMed

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.

  5. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  6. Medium-based noninvasive preimplantation genetic diagnosis for human α-thalassemias-SEA.

    PubMed

    Wu, Haitao; Ding, Chenhui; Shen, Xiaoting; Wang, Jing; Li, Rong; Cai, Bing; Xu, Yanwen; Zhong, Yiping; Zhou, Canquan

    2015-03-01

    To develop a noninvasive medium-based preimplantation genetic diagnosis (PGD) test for α-thalassemias-SEA. The embryos of α-thalassemia-SEA carriers undergoing in vitro fertilization (IVF) were cultured. Single cells were biopsied from blastomeres and subjected to fluorescent gap polymerase chain reaction (PCR) analysis; the spent culture media that contained embryo genomic DNA and corresponding blastocysts as verification were subjected to quantitative-PCR (Q-PCR) detection of α-thalassemia-SEA. The diagnosis efficiency and allele dropout (ADO) ratio were calculated, and the cell-free DNA concentration was quantitatively assessed in the culture medium. The diagnosis efficiency of medium-based α-thalassemias-SEA detection significantly increased compared with that of biopsy-based fluorescent gap PCR analysis (88.6% vs 82.1%, P < 0.05). There is no significant difference regarding ADO ratio between them. The optimal time for medium-based α-thalassemias-SEA detection is Day 5 (D5) following IVF. Medium-based α-thalassemias-SEA detection could represent a novel, quick, and noninvasive approach for carriers to undergo IVF and PGD.

  7. Comparison of 2 real-time PCR assays for diagnosis of Pneumocystis jirovecii pneumonia in human immunodeficiency virus (HIV) and non-HIV immunocompromised patients.

    PubMed

    Montesinos, Isabel; Brancart, Françoise; Schepers, Kinda; Jacobs, Frederique; Denis, Olivier; Delforge, Marie-Luce

    2015-06-01

    A total of 120 bronchoalveolar lavage specimens from HIV and non-HIV immunocompromised patients, positive for Pneumocystis jirovecii by an "in house" real-time polymerase chain reaction (PCR), were evaluated by the Bio-Evolution Pneumocystis real-time PCR, a commercial quantitative assay. Patients were classified in 2 categories based on clinical and radiological findings: definite and unlikely Pneumocystis pneumonia (PCP). For the "in house" PCR, cycle threshold 34 was established as cut-off value to discriminate definite PCP from unlikely PCP with 65% and 85% of sensitivity and specificity, respectively. For the Bio-Evolution quantitative PCR, a cut-off value of 2.8×10(5)copies/mL was defined with 72% and 82% of sensitivity and specificity, respectively. Overlapped zones of results for definite and unlikely PCP were observed. Quantitative PCR is probably a useful tool for PCP diagnosis. However, for optimal management of PCP in non-HIV immunocompromised patients, operational thresholds should be assessed according to underlying diseases and other clinical and radiological parameters. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  9. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  10. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    PubMed Central

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment. PMID:27235434

  11. Quantitative Assessment of Commutability for Clinical Viral Load Testing Using a Digital PCR-Based Reference Standard

    PubMed Central

    Tang, L.; Sun, Y.; Buelow, D.; Gu, Z.; Caliendo, A. M.; Pounds, S.

    2016-01-01

    Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous. We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assessment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an assay in practice. PMID:27076654

  12. Introduction to digital PCR.

    PubMed

    Bizouarn, Francisco

    2014-01-01

    Digital PCR (dPCR) is a molecular biology technique going through a renaissance. With the arrival of new instrumentation dPCR can now be performed as a routine molecular biology assay. This exciting new technique provides quantitative and detection capabilities that by far surpass other methods currently used. This chapter is an overview of some of the applications currently being performed using dPCR as well as the fundamental concepts and techniques this technology is based on.

  13. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    PubMed

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples.

    PubMed Central

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps. PMID:8919784

  15. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  16. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    PubMed

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quantitative PCR-based parasite burden estimation of Babesia gibsoni in the vector tick, Haemaphysalis longicornis (Acari: Ixodidae), fed on an experimentally infected dog.

    PubMed

    Hatta, Takeshi; Matsubayashi, Makoto; Miyoshi, Takeharu; Islam, Khyrul; Alim, M Abdul; Anisuzzaman; Yamaji, Kayoko; Fujisaki, Kozo; Tsuji, Naotoshi

    2013-01-31

    Most causative agents of babesiosis, Babesia parasites, are transmitted transovarially in ixodid ticks. In this study, B. gibsoni, the causative agent of canine babesiosis which has transovarial transmission, was detected in tissues of the vector tick, Haemaphysalis longicornis using a modified quantitative PCR assay. Conventional PCR results showed that the newly designed primer set, which amplifies a 143-bp fragment of rhoptry-associated protein-1 (BgRAP-1) gene in B. gibsoni, was 100 times more sensitive than primers targeting P18 gene encoding 18 kDa protein of B. gibsoni, which was recently renamed as thrombospondin related adhesive protein (BgTRAP) gene, in an artificially generated sample solution containing metagenomic DNA (B. gibsoni DNA extracted from infected dog blood mixed with tick DNA). The TaqMan probe-based quantitative PCR (qPCR) for BgRAP-1 could also detect infected RBCs (iRBCs) at levels of 3.5 × 10(5) to 3.5 × 10(1)/μl, a range that is broader than that of a past SYBR Green-based qPCR method for P18/BgTRAP, which had a detection limit of 3.5 × 10(3) iRBCs/μl. Using this qPCR assay, we attempted to quantify the B. gibsoni burden in tick ovaries and embryonated eggs. Levels of infection were normalized to the copy number of tick's genomic DNA fragment of ribosomal DNA internal transcribed spacer region 2 (ITS2) for the standardization. According to this, low levels of parasite burden were quantified in ovaries and eggs. This detection system is sensitive and is recommended as a tool for elucidating the biological interactions between the vector tick H. longicornis and the parasite, B. gibsoni.

  18. Detection of isotype switch rearrangement in bulk culture by PCR.

    PubMed

    Max, E E; Mills, F C; Chu, C

    2001-05-01

    When a B lymphocyte changes from synthesizing IgM to synthesizing IgG, IgA, or IgE, this isotype switch is generally accompanied by a unique DNA rearrangement. The protocols in this unit describe two polymerase chain reaction (PCR)-based strategies for detecting switch rearrangements in bulk culture. The first involves direct PCR across the switch junctions, providing the opportunity for characterizing the recombination products by nucleotide sequence analysis; however, because of characteristics inherent to the PCR methodology this strategy cannot easily be used as a quantitative assay for recombination. A support protocol details the preparation of the 5' Su PCR probe for this protocol. The second basic protocol describes a method known as digestion-circularization PCR (DCPCR) that is more amenable to quantitation but yields no information on structure of the recombination products. Both techniques should be capable of detecting reciprocal deletion circles as well as functional recombination products remaining on the expressed chromosome.

  19. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  20. The detection of Yersinia enterocolitica in surface water by quantitative PCR amplification of the ail and yadA genes.

    PubMed

    Cheyne, Bo M; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2010-09-01

    Yersinia enterocolitica has been detected in surface water, and drinking untreated water is a risk factor for infection. PCR-based methods have been used to detect Y. enterocolitica in various sample types, but quantitative studies have not been conducted in water. In this study, quantitative PCR (qPCR)-based methods targeting the Yersinia virulence genes ail and yadA were used to survey the Grand River watershed in southern Ontario, Canada. Initial testing of reference strains showed that ail and yadA PCR assays were specific for pathogenic biotypes of Y. enterocolitica; however the genes were also detected in one clinical Yersinia intermedia isolate. A survey of surface water from the Grand River watershed showed that both genes were detected at five sampling locations, with the ail and yadA genes detected in 38 and 21% of samples, respectively. Both genes were detected more frequently at colder water temperatures. A screening of Yersinia strains isolated from the watershed showed that the ail gene was detected in three Y. enterocolitica 1A/O:5 isolates. Results of this study show that Yersinia virulence genes were commonly detected in a watershed used as a source of drinking water, and that the occurrence of these genes was seasonal.

  1. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots.

    PubMed

    Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D

    2014-10-04

    As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, P<0.001) and symptomatic (Pearson's r=0.70, P<0.0001) P. falciparum infections. Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.

  3. Quantitative PCR for HTLV-1 provirus in adult T-cell leukemia/lymphoma using paraffin tumor sections.

    PubMed

    Kato, Junki; Masaki, Ayako; Fujii, Keiichiro; Takino, Hisashi; Murase, Takayuki; Yonekura, Kentaro; Utsunomiya, Atae; Ishida, Takashi; Iida, Shinsuke; Inagaki, Hiroshi

    2016-11-01

    Detection of HTLV-1 provirus using paraffin tumor sections may assist the diagnosis of adult T-cell leukemia/lymphoma (ATLL). For the detection, non-quantitative PCR assay has been reported, but its usefulness and limitations remain unclear. To our knowledge, quantitative PCR assay using paraffin tumor sections has not been reported. Using paraffin sections from ATLLs and non-ATLL T-cell lymphomas, we first performed non-quantitative PCR for HTLV-1 provirus. Next, we determined tumor ratios and carried out quantitative PCR to obtain provirus copy numbers. The results were analyzed with a simple regression model and a novel criterion, cut-off using 95 % rejection limits. Our quantitative PCR assay showed an excellent association between tumor ratios and the copy numbers (r = 0.89, P < 0.0001). The 95 % rejection limits provided a statistical basis for the range for the determination of HTLV-1 involvement. Its application suggested that results of non-quantitative PCR assay should be interpreted very carefully and that our quantitative PCR assay is useful to estimate the status of HTLV-1 involvement in the tumor cases. In conclusion, our quantitative PCR assay using paraffin tumor sections may be useful for the screening of ATLL cases, especially in HTLV-1 non-endemic areas where easy access to serological testing for HTLV-1 infection is limited. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  4. Performance Evaluation of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit: Comparison with the Roche COBAS® AmpliPrep/COBAS TaqMan® HIV-1 Test Ver.2.0 for Quantification of HIV-1 Viral Load in Indonesia.

    PubMed

    Kosasih, Agus Susanto; Sugiarto, Christine; Hayuanta, Hubertus Hosti; Juhaendi, Runingsih; Setiawan, Lyana

    2017-08-08

    Measurement of viral load in human immunodeficiency virus type 1 (HIV-1) infected patients is essential for the establishment of a therapeutic strategy. Several assays based on qPCR are available for the measurement of viral load; they differ in sample volume, technology applied, target gene, sensitivity and dynamic range. The Bioneer AccuPower® HIV-1 Quantitative RT-PCR is a novel commercial kit that has not been evaluated for its performance. This study aimed to evaluate the performance of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit. In total, 288 EDTA plasma samples from the Dharmais Cancer Hospital were analyzed with the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit and the Roche COBAS? AmpliPrep/COBAS® TaqMan® HIV-1 version 2.0 (CAP/CTM v2.0). The performance of the Bioneer assay was then evaluated against the Roche CAP/CTM v2.0. Overall, there was good agreement between the two assays. The Bioneer assay showed significant linear correlation with CAP/CTM v2.0 (R2=0.963, p<0.001) for all samples (N=118) which were quantified by both assays, with high agreement (94.9%, 112/118) according to the Bland-Altman model. The mean difference between the quantitative values measured by Bioneer assay and CAP/CTM v2.0 was 0.11 Log10 IU/mL (SD=0.26). Based on these results, the Bioneer assay can be used to quantify HIV-1 RNA in clinical laboratories.

  5. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  6. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    PubMed

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  7. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    PubMed

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of Commercial Cell Preparations as Sources of Calibration Standards for Real-Time qPCR Analysis of Enterococci in Recreational Waters

    EPA Science Inventory

    In response to the Beach Act, the U.S. EPA has developed a quantitative PCR (qPCR) method for enterococci that meets requirements for rapid, risk-based water quality assessments of recreational waters. Widespread implementation of this method will require that different laborator...

  9. Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR.

    PubMed

    Stein, Erica V; Duewer, David L; Farkas, Natalia; Romsos, Erica L; Wang, Lili; Cole, Kenneth D

    2017-01-01

    Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values.

  10. Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR

    PubMed Central

    Duewer, David L.; Farkas, Natalia; Romsos, Erica L.; Wang, Lili; Cole, Kenneth D.

    2017-01-01

    Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values. PMID:29145448

  11. Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.

    PubMed

    Huang, Danqiong; Walla, James A; Dai, Wenhao

    2014-03-01

    A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR

    PubMed Central

    2010-01-01

    Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234

  13. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  14. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason A.

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  15. Comparative evaluation of two Rickettsia typhi-specific quantitative real-time PCRs for research and diagnostic purposes.

    PubMed

    Papp, Stefanie; Rauch, Jessica; Kuehl, Svenja; Richardt, Ulricke; Keller, Christian; Osterloh, Anke

    2017-02-01

    Rickettsioses are caused by intracellular bacteria of the family of Rickettsiaceae. Rickettsia (R.) typhi is the causative agent of endemic typhus. The disease occurs worldwide and is one of the most prevalent rickettsioses. Rickettsial diseases, however, are generally underdiagnosed which is mainly due to the lack of sensitive and specific methods. In addition, methods for quantitative detection of the bacteria for research purposes are rare. We established two qPCRs for the detection of R. typhi by amplification of the outer membrane protein B (ompB) and parvulin-type PPIase (prsA) genes. Both qPCRs are specific and exclusively recognize R. typhi but no other rickettsiae including the closest relative, R. prowazekii. The prsA-based qPCR revealed to be much more sensitive than the amplification of ompB and provided highly reproducible results in the detection of R. typhi in organs of infected mice. Furthermore, as a nested PCR the prsA qPCR was applicable for the detection of R. typhi in human blood samples. Collectively, the prsA-based qPCR represents a reliable method for the quantitative detection of R. typhi for research purposes and is a promising candidate for differential diagnosis.

  16. A polymerase chain reaction strategy for the diagnosis of camelpox.

    PubMed

    Balamurugan, Vinayagamurthy; Bhanuprakash, Veerakyathappa; Hosamani, Madhusudhan; Jayappa, Kallesh Danappa; Venkatesan, Gnanavel; Chauhan, Bina; Singh, Raj Kumar

    2009-03-01

    Camelpox is a contagious viral skin disease that is mostly seen in young camels. The disease is caused by the Camelpox virus (CMLV). In the present study, a polymerase chain reaction (PCR) assay based on the C18L gene (encoding ankyrin repeat protein) and a duplex PCR based on the C18L and DNA polymerase (DNA pol) genes were developed. The former assay yields a specific amplicon of 243 bp of the C18L gene, whereas the duplex PCR yields 243- and 96-bp products of the C18L and DNA pol genes, respectively, in CMLV, and only a 96-bp product of the DNA pol gene in other orthopoxviruses. The limit of detection was as low as 0.4 ng of viral DNA. Both PCR assays were employed successfully for the direct detection and differentiation of CMLV from other orthopoxviruses, capripoxviruses, and parapoxviruses in both cell culture samples and clinical material. Furthermore, a highly sensitive SYBR Green dye-based, real-time PCR was optimized for quantitation of CMLV DNA. In the standard curve of the quantitative assay, the melting temperature of the specific amplicon at 77.6 degrees C with peak measured fluorescence in dissociation plot was observed with an efficiency of 102%. To the authors' knowledge, this is the first report to describe a C18L gene-based PCR for specific diagnosis of camelpox infection.

  17. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    PubMed

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  18. Development of a quantitative-competitive PCR for quantification of human cytomegalovirus load and comparison with antigenaemia, viraemia and pp67 RNA detection by nucleic acid sequence-based amplification.

    PubMed

    Bergallo, M; Costa, C; Tarallo, S; Daniele, R; Merlino, C; Segoloni, G P; Negro Ponzi, A; Cavallo, R

    2006-06-01

    The human cytomegalovirus (HCMV) is an important pathogen in immunocompromised patients, such as transplant recipients. The use of sensitive and rapid diagnostic assays can have a great impact on antiviral prophylaxis and therapy monitoring and diagnosing active disease. Quantification of HCMV DNA may additionally have prognostic value and guide routine management. The aim of this study was to develop a reliable internally-controlled quantitative-competitive PCR (QC-PCR) for the detection and quantification of HCMV DNA viral load in peripheral blood and compare it with other methods: the HCMV pp65 antigenaemia assay in leukocyte fraction, the HCMV viraemia, both routinely employed in our laboratory, and the nucleic acid sequence-based amplification (NASBA) for detection of HCMV pp67-mRNA. Quantitative-competitive PCR is a procedure for nucleic acid quantification based on co-amplification of competitive templates, the target DNA and a competitor functioning as internal standard. In particular, a standard curve is generated by amplifying 10(2) to 10(5) copies of target pCMV-435 plasmid with 10(4) copies of competitor pCMV-C plasmid. Clinical samples derived from 40 kidney transplant patients were tested by spiking 10(4) copies of pCMV-C into the PCR mix as internal control, and comparing results with the standard curve. Of the 40 patients studied, 39 (97.5%) were positive for HCMV DNA by QC-PCR. While the correlation between the number of pp65-positive cells and the number of HCMV DNA genome copies/mL and the former and the pp67mRNA-positivity were statistically significant, there was no significant correlation between HCMV DNA viral load assayed by QC-PCR and HCMV viraemia. The QC-PCR assay could detect from 10(2) to over 10(7) copies of HCMV DNA with a range of linearity between 10(2) and 10(5) genomes.

  19. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring.

    PubMed

    Luu, Martin H; Press, Richard D

    2013-09-01

    The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.

  20. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation.

    PubMed

    Whale, Alexandra S; Huggett, Jim F; Cowen, Simon; Speirs, Valerie; Shaw, Jacqui; Ellison, Stephen; Foy, Carole A; Scott, Daniel J

    2012-06-01

    One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA.

  1. quantGenius: implementation of a decision support system for qPCR-based gene quantification.

    PubMed

    Baebler, Špela; Svalina, Miha; Petek, Marko; Stare, Katja; Rotter, Ana; Pompe-Novak, Maruša; Gruden, Kristina

    2017-05-25

    Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR platforms, there is a need for a tool allowing for robust, reliable and fast nucleic acid quantification. We have developed "quantGenius" ( http://quantgenius.nib.si ), an open-access web application for a reliable qPCR-based quantification of nucleic acids. The quantGenius workflow interactively guides the user through data import, quality control (QC) and calculation steps. The input is machine- and chemistry-independent. Quantification is performed using the standard curve approach, with normalization to one or several reference genes. The special feature of the application is the implementation of user-guided QC-based decision support system, based on qPCR standards, that takes into account pipetting errors, assay amplification efficiencies, limits of detection and quantification of the assays as well as the control of PCR inhibition in individual samples. The intermediate calculations and final results are exportable in a data matrix suitable for further statistical analysis or visualization. We additionally compare the most important features of quantGenius with similar advanced software tools and illustrate the importance of proper QC system in the analysis of qPCR data in two use cases. To our knowledge, quantGenius is the only qPCR data analysis tool that integrates QC-based decision support and will help scientists to obtain reliable results which are the basis for biologically meaningful data interpretation.

  2. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection.

    PubMed

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-11-04

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 10⁶ copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics.

  5. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  6. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  7. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve.

    PubMed

    Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.

  8. RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy.

    PubMed

    Denkert, C; Loibl, S; Kronenwett, R; Budczies, J; von Törne, C; Nekljudova, V; Darb-Esfahani, S; Solbach, C; Sinn, B V; Petry, C; Müller, B M; Hilfrich, J; Altmann, G; Staebler, A; Roth, C; Ataseven, B; Kirchner, T; Dietel, M; Untch, M; von Minckwitz, G

    2013-03-01

    Hormone and human epidermal growth factor receptor 2 (HER2) receptors are the most important breast cancer biomarkers, and additional objective and quantitative test methods such as messenger RNA (mRNA)-based quantitative analysis are urgently needed. In this study, we investigated the clinical validity of RT-PCR-based evaluation of estrogen receptor (ESR1) and HER2 mRNA expression. A total of 1050 core biopsies from two retrospective (GeparTrio, GeparQuattro) and one prospective (PREDICT) neoadjuvant studies were evaluated by quantitative RT-PCR for ESR1 and HER2. ESR1 mRNA was significantly predictive for reduced response to neoadjuvant chemotherapy in univariate and multivariate analysis in all three cohorts. The complete pathologically documented response (pathological complete response, pCR) rate for ESR1+/HER2- tumors was 7.3%, 8.0% and 8.6%; for ESR1-/HER2- tumors it was 34.4%, 33.7% and 37.3% in GeparTrio, GeparQuattro and PREDICT, respectively (P < 0.001 in each cohort). In the Kaplan-Meier analysis in GeparTrio patients with ESR1+/HER2- tumors had the best prognosis, compared with ESR1-/HER2- and ESR1-/HER2+ tumors [disease-free survival (DFS): P < 0.0005, overall survival (OS): P < 0.0005]. Our results suggest that mRNA levels of ESR1 and HER2 predict response to neoadjuvant chemotherapy and are significantly associated with long-term outcome. As an additional option to standard immunohistochemistry and gene-array-based analysis, quantitative RT-PCR analysis might be useful for determination of the receptor status in breast cancer.

  9. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  10. Monitoring the dynamics of syntrophic β-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF).

    PubMed

    Millon, L; Herbrecht, R; Grenouillet, F; Morio, F; Alanio, A; Letscher-Bru, V; Cassaing, S; Chouaki, T; Kauffmann-Lacroix, C; Poirier, P; Toubas, D; Augereau, O; Rocchi, S; Garcia-Hermoso, D; Bretagne, S

    2016-09-01

    The main objective of this study was to assess the diagnostic performance of a set of three Mucorales quantitative PCR assays in a retrospective multicentre study. Mucormycosis cases were recorded thanks to the French prospective surveillance programme (RESSIF network). The day of sampling of the first histological or mycological positive specimen was defined as day 0 (D0). Detection of circulating DNA was performed on frozen serum samples collected from D-30 to D30, using quantitative PCR assays targeting Rhizomucor, Lichtheimia, Mucor/Rhizopus. Forty-four patients diagnosed with probable (n = 19) or proven (n = 25) mucormycosis were included. Thirty-six of the 44 patients (81%) had at least one PCR-positive serum. The first PCR-positive sample was observed 9 days (range 0-28 days) before diagnosis was made using mycological criteria and at least 2 days (range 0-24 days) before imaging. The identifications provided with the quantitative PCR assays were all concordant with culture and/or PCR-based identification of the causal species. Survival rate at D84 was significantly higher for patients with an initially positive PCR that became negative after treatment initiation than for patients whose PCR remained positive (48% and 4%, respectively; p <10 -6 ). The median time for complete negativity of PCR was 7 days (range 3-19 days) after initiation of l-AmB treatment. Despite some limitations due to the retrospective design of the study, we showed that Mucorales quantitative PCR could not only confirm the mucormycosis diagnosis when other mycological arguments were present but could also anticipate this diagnosis. Quantification of DNA loads may also be a useful adjunct to treatment monitoring. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Mathematics of quantitative kinetic PCR and the application of standard curves.

    PubMed

    Rutledge, R G; Côté, C

    2003-08-15

    Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of +/-6-21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.

  13. Signal Amplification by Glyco-qPCR for Ultrasensitive Detection of Carbohydrates: Applications in Glycobiology**

    PubMed Central

    Kwon, Seok Joon; Lee, Kyung Bok; Solakyildirim, Kemal; Masuko, Sayaka; Ly, Mellisa; Zhang, Fuming; Li, Lingyun; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Tiny amounts of carbohydrates (ca. 1 zmol) can be detected quantitatively by a real-time method based on the conjugation of carbohydrates with DNA markers (see picture). The proposed method (glyco-qPCR) provides uniform, ultrasensitive detection of carbohydrates, which can be applied to glycobiology, as well as carbohydrate-based drug discovery. PMID:23073897

  14. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp.

    PubMed

    Criado-Fornelio, A; Buling, A; Cunha-Filho, N A; Ruas, J L; Farias, N A R; Rey-Valeiron, C; Pingret, J L; Etievant, M; Barba-Carretero, J C

    2007-12-25

    With the aim to improve current molecular diagnostic techniques of Hepatozoon sp. in carnivore mammals, we developed a quantitative PCR (qPCR) assay with SYBR Green I((R)). The method, consisting of amplification of a 235bp fragment of the 18S rRNA gene, is able to detect at least 0.1fg of parasite DNA. Reproducible quantitative results were obtained over a range of 0.1ng-0.1fg of Hepatozoon sp. DNA. To assess the performance of the qPCR assay, DNA samples from dogs (140) and cats (50) were tested with either standard PCR or qPCR. Positive samples were always confirmed by partial sequencing of the 18S rRNA gene. Quantitative PCR was 15.8% more sensitive than standard PCR to detect H. canis in dogs. In cats, no infections were detected by standard PCR, compared to two positives by qPCR (which were infected by H. canis as shown by sequencing).

  16. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR.

    PubMed

    Kim, Jeong-Soon; Wang, Nian

    2009-03-06

    Citrus Huanglongbing (HLB) is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR) indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  17. A simple quantitative diagnostic alternative for MGMT DNA-methylation testing on RCL2 fixed paraffin embedded tumors using restriction coupled qPCR.

    PubMed

    Pulverer, Walter; Hofner, Manuela; Preusser, Matthias; Dirnberger, Elisabeth; Hainfellner, Johannes A; Weinhaeusel, Andreas

    2014-01-01

    MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.

  18. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells.

    PubMed

    Wolffs, Petra; Norling, Börje; Rådström, Peter

    2005-03-01

    Real-time PCR technology is increasingly used for detection and quantification of pathogens in food samples. A main disadvantage of nucleic acid detection is the inability to distinguish between signals originating from viable cells and DNA released from dead cells. In order to gain knowledge concerning risks of false-positive results due to detection of DNA originating from dead cells, quantitative PCR (qPCR) was used to investigate the degradation kinetics of free DNA in four types of meat samples. Results showed that the fastest degradation rate was observed (1 log unit per 0.5 h) in chicken homogenate, whereas the slowest rate was observed in pork rinse (1 log unit per 120.5 h). Overall results indicated that degradation occurred faster in chicken samples than in pork samples and faster at higher temperatures. Based on these results, it was concluded that, especially in pork samples, there is a risk of false-positive PCR results. This was confirmed in a quantitative study on cell death and signal persistence over a period of 28 days, employing three different methods, i.e. viable counts, direct qPCR, and finally floatation, a recently developed discontinuous density centrifugation method, followed by qPCR. Results showed that direct qPCR resulted in an overestimation of up to 10 times of the amount of cells in the samples compared to viable counts, due to detection of DNA from dead cells. However, after using floatation prior to qPCR, results resembled the viable count data. This indicates that by using of floatation as a sample treatment step prior to qPCR, the risk of false-positive PCR results due to detection of dead cells, can be minimized.

  19. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    PubMed

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  20. Detection of Haemophilus influenzae in respiratory secretions from pneumonia patients by quantitative real-time polymerase chain reaction.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2009-08-01

    A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.

  1. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  2. O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis.

    PubMed

    Mekonnen, Solomon A; Beissner, Marcus; Saar, Malkin; Ali, Solomon; Zeynudin, Ahmed; Tesfaye, Kassahun; Adbaru, Mulatu G; Battke, Florian; Poppert, Sven; Hoelscher, Michael; Löscher, Thomas; Bretzel, Gisela; Herbinger, Karl-Heinz

    2017-10-02

    Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis.

  3. Normalised quantitative polymerase chain reaction for diagnosis of tuberculosis-associated uveitis.

    PubMed

    Barik, Manas Ranjan; Rath, Soveeta; Modi, Rohit; Rana, Rajkishori; Reddy, Mamatha M; Basu, Soumyava

    2018-05-01

    Polymerase chain reaction (PCR)-based diagnosis of tuberculosis-associated uveitis (TBU) in TB-endemic countries is challenging due to likelihood of latent mycobacterial infection in both immune and non-immune cells. In this study, we investigated normalised quantitative PCR (nqPCR) in ocular fluids (aqueous/vitreous) for diagnosis of TBU in a TB-endemic population. Mycobacterial copy numbers (mpb64 gene) were normalised to host genome copy numbers (RNAse P RNA component H1 [RPPH1] gene) in TBU (n = 16) and control (n = 13) samples (discovery cohort). The mpb64:RPPH1 ratios (normalised value) from each TBU and control sample were tested against the current reference standard i.e. clinically-diagnosed TBU, to generate Receiver Operating Characteristic (ROC) curves. The optimum cut-off value of mpb64:RPPH1 ratio (0.011) for diagnosing TBU was identified from the highest Youden index. This cut-off value was then tested in a different cohort of TBU and controls (validation cohort, 20 cases and 18 controls), where it yielded specificity, sensitivity and diagnostic accuracy of 94.4%, 85.0%, and 89.4% respectively. The above values for conventional quantitative PCR (≥1 copy of mpb64 per reaction) were 61.1%, 90.0%, and 74.3% respectively. Normalisation markedly improved the specificity and diagnostic accuracy of quantitative PCR for diagnosis of TBU. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment

    PubMed Central

    Staggs, Sarah E.; Beckman, Erin M.; Keely, Scott P.; Mackwan, Reena; Ware, Michael W.; Moyer, Alan P.; Ferretti, James A.; Sayed, Abu; Xiao, Lihua; Villegas, Eric N.

    2013-01-01

    Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources. PMID:23805235

  5. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies.

    PubMed

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-07-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6%; P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS.

  6. Relationship and Variation of qPCR and Culturable Enterococci Estimates in Ambient Surface Waters Are Predictable

    EPA Science Inventory

    The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based meth...

  7. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  8. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  9. Development and comparative evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients.

    PubMed

    Kumar, Jyoti S; Saxena, Divyasha; Parida, Manmohan

    2014-01-01

    The recent outbreaks of West Nile Virus (WNV) in the Northeastern American continents and other regions of the world have made it essential to develop an efficient protocol for surveillance of WN virus. Nucleic acid based techniques like, RT-PCR have the advantage of sensitivity, specificity and rapidity. A one step single tube Env gene specific real-time RT-PCR was developed for early and reliable clinical diagnosis of WNV infection in clinical samples. The applicability of this assay for clinical diagnosis was validated with 105 suspected acute-phase serum and plasma samples from the recent epidemic of mysterious fever in Tamil Nadu, India in 2009-10. The comparative evaluation revealed the higher sensitivity of real-time RT-PCR assay by picking up 4 additional samples with low copy number of template in comparison to conventional RT-PCR. All the real-time positive samples further confirmed by CDC reported TaqMan real-time RT-PCR and quantitative real-time RT-PCR assays for the simultaneous detection of WNV lineage 1 and 2 strains. The quantitation of the viral load samples was done using a standard curve. These findings demonstrated that the assay has the potential usefulness for clinical diagnosis due to detection and quantification of WNV in acute-phase patient serum samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sexing chick mRNA: A protocol based on quantitative real-time polymerase chain reaction.

    PubMed

    Wan, Z; Lu, Y; Rui, L; Yu, X; Li, Z

    2017-03-01

    The accurate identification of sex in birds is important for research on avian sex determination and differentiation. Polymerase chain reaction (PCR)-based methods have been widely applied for the molecular sexing of birds. However, these methods have used genomic DNA. Here, we present the first sexing protocol for chick mRNA based on real-time quantitative PCR. We demonstrate that this method can accurately determine sex using mRNA from chick gonads and other tissues, such as heart, liver, spleen, lung, and muscle. The strategy of this protocol also may be suitable for other species in which sex is determined by the inheritance of sex chromosomes (ZZ male and ZW female). © 2016 Poultry Science Association Inc.

  11. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR.

    PubMed

    Sauer, Eva; Reinke, Ann-Kathrin; Courts, Cornelius

    2016-05-01

    Applying molecular genetic approaches for the identification of forensically relevant body fluids, which often yield crucial information for the reconstruction of a potential crime, is a current topic of forensic research. Due to their body fluid specific expression patterns and stability against degradation, microRNAs (miRNA) emerged as a promising molecular species, with a range of candidate markers published. The analysis of miRNA via quantitative Real-Time PCR, however, should be based on a relevant strategy of normalization of non-biological variances to deliver reliable and biologically meaningful results. The herein presented work is the as yet most comprehensive study of forensic body fluid identification via miRNA expression analysis based on a thoroughly validated qPCR procedure and unbiased statistical decision making to identify single source samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy.

    PubMed

    Chen, Lida; Li, Wenli; Zhang, Kuo; Zhang, Rui; Lu, Tian; Hao, Mingju; Jia, Tingting; Sun, Yu; Lin, Guigao; Wang, Lunan; Li, Jinming

    2016-01-01

    Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P < 0.05). This quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    PubMed

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  14. A human fecal contamination score for ranking recreational sites using the HF183/BacR287 quantitative real-time PCR method.

    PubMed

    Cao, Yiping; Sivaganesan, Mano; Kelty, Catherine A; Wang, Dan; Boehm, Alexandria B; Griffith, John F; Weisberg, Stephen B; Shanks, Orin C

    2018-01-01

    Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and management. However, there are currently no standardized approaches for field implementation and interpretation of qPCR data. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and a novel Bayesian weighted average approach to establish a human fecal contamination score (HFS) that can be used to prioritize sampling sites for remediation based on measured human waste levels. The HFS was then used to investigate 975 study design scenarios utilizing different combinations of sites with varying sampling intensities (daily to once per week) and number of qPCR replicates per sample (2-14 replicates). Findings demonstrate that site prioritization with HFS is feasible and that both sampling intensity and number of qPCR replicates influence reliability of HFS estimates. The novel data analysis strategy presented here provides a prescribed approach for the implementation and interpretation of human-associated HF183/BacR287 qPCR data with the goal of site prioritization based on human fecal pollution levels. In addition, information is provided for future users to customize study designs for optimal HFS performance. Published by Elsevier Ltd.

  15. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-07

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011

  16. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing

    2005-08-10

    As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.

  17. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    USGS Publications Warehouse

    Kirshtein, Julie D.; Anderson, Chauncey W.; Wood, J.S.; Longcore, Joyce E.; Voytek, Mary A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  19. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    PubMed

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  20. Development of a fluorescent quantitative real-time polymerase chain reaction assay for the detection of Goose parvovirus in vivo

    PubMed Central

    Yang, Jin-Long; Cheng, An-Chun; Wang, Ming-Shu; Pan, Kang-Cheng; Li, Min; Guo, Yu-Fei; Li, Chuan-Feng; Zhu, De-Kang; Chen, Xiao-Yue

    2009-01-01

    Background Goose parvovirus (GPV) is a Dependovirus associated with latent infection and mortality in geese. Currently, it severely affects geese production worldwide. The objective of this study was to develop a fluorescent quantitative real-time polymerase chain reaction (PCR) (FQ-PCR) assay for fast and accurate quantification of GPV DNA in infected goslings, which can aid in the understanding of the regular distribution pattern and the nosogenesis of GPV in vivo. Results The detection limit of the assay was 2.8 × 101 standard DNA copies, with a sensitivity of 3 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intraassay and interassay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity, and reproducibility of the GPV fluorogenic PCR assay, combined with a high throughput, make this method suitable for a broad spectrum of GPV etiology-related applications. PMID:19754946

  1. Legionella in water samples: how can you interpret the results obtained by quantitative PCR?

    PubMed

    Ditommaso, Savina; Ricciardi, Elisa; Giacomuzzi, Monica; Arauco Rivera, Susan R; Zotti, Carla M

    2015-02-01

    Evaluation of the potential risk associated with Legionella has traditionally been determined from culture-based methods. Quantitative polymerase chain reaction (qPCR) is an alternative tool that offers rapid, sensitive and specific detection of Legionella in environmental water samples. In this study we compare the results obtained by conventional qPCR (iQ-Check™ Quanti Legionella spp.; Bio-Rad) and by culture method on artificial samples prepared in Page's saline by addiction of Legionella pneumophila serogroup 1 (ATCC 33152) and we analyse the selective quantification of viable Legionella cells by the qPCR-PMA method. The amount of Legionella DNA (GU) determined by qPCR was 28-fold higher than the load detected by culture (CFU). Applying the qPCR combined with PMA treatment we obtained a reduction of 98.5% of the qPCR signal from dead cells. We observed a dissimilarity in the ability of PMA to suppress the PCR signal in samples with different amounts of bacteria: the effective elimination of detection signals by PMA depended on the concentration of GU and increasing amounts of cells resulted in higher values of reduction. Using the results from this study we created an algorithm to facilitate the interpretation of viable cell level estimation with qPCR-PMA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Development of a Quantitative Competitive PCR Assay for Detection and Quantification of Escherichia coli O157:H7 Cells

    PubMed Central

    Li, Wenli; Drake, Mary Anne

    2001-01-01

    A quantitative competitive PCR (QC-PCR) assay was developed to detect and quantify Escherichia coli O157:H7 cells. From 103 to 108 CFU of E. coli O157:H7 cells/ml was quantified in broth or skim milk, and cell densities predicted by QC-PCR were highly related to viable cell counts (r2 = 0.99 and 0.93, respectively). QC-PCR has potential for quantitative detection of pathogenic bacteria in foods. PMID:11425755

  3. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  4. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  5. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  6. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  7. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  8. Development of a duplex ddPCR assay for detection of “Candidatus Liberibacter asiaticus”

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) (aka citrus greening) is a devastating citrus disease associated with “Candidatus Liberibacter asiaticus” (CLas). Currently, diagnosis of CLas in regulatory samples is based on a real-time quantitative polymerase chain reaction (qPCR) assay using 16S rRNA gene specific primers/pr...

  9. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  10. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.

    PubMed

    Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng

    2018-05-15

    Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. The detection of large deletions or duplications in genomic DNA.

    PubMed

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  12. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE).

    PubMed

    Taylor, Sean C; Mrkusich, Eli M

    2014-01-01

    In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR. © 2013 S. Karger AG, Basel.

  13. Development of strain-specific PCR primers for quantitative detection of Bacillus mesentericus strain TO-A in human feces.

    PubMed

    Sato, Naoki; Seo, Genichiro; Benno, Yoshimi

    2014-01-01

    Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.

  14. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications.

    PubMed

    Cao, Lei; Cui, Xingye; Hu, Jie; Li, Zedong; Choi, Jane Ru; Yang, Qingzhen; Lin, Min; Ying Hui, Li; Xu, Feng

    2017-04-15

    Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice.

    PubMed

    Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn

    2008-09-01

    Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.

  16. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution

    PubMed Central

    Ludlow, Andrew T.; Robin, Jerome D.; Sayed, Mohammed; Litterst, Claudia M.; Shelton, Dawne N.; Shay, Jerry W.; Wright, Woodring E.

    2014-01-01

    The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. PMID:24861623

  17. Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR

    PubMed Central

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750

  18. Rapid Determination of Lymphogranuloma Venereum Serovars of Chlamydia trachomatis by Quantitative High-Resolution Melt Analysis (HRMA)

    PubMed Central

    Stevens, Matthew P.; Garland, Suzanne M.; Zaia, Angelo M.; Tabrizi, Sepehr N.

    2012-01-01

    A quantitative high-resolution melt analysis assay was developed to differentiate lymphogranuloma venereum-causing serovars of Chlamydia trachomatis (L1 to L3) from other C. trachomatis serovars (D to K). The detection limit of this assay is approximately 10 copies per reaction, comparable to the limits of other quantitative-PCR-based methods. PMID:22933594

  19. [Quantitative PCR in the diagnosis of Leishmania].

    PubMed

    Mortarino, M; Franceschi, A; Mancianti, F; Bazzocchi, C; Genchi, C; Bandi, C

    2004-06-01

    Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of residual pathogens after treatment. At this regard, a TaqMan Real Time PCR method developed for the quantification of Leishmania infantum minicircle DNA in peripheral blood of naturally infected dogs sampled before and at different time points after the beginning of a standard antileishmanial therapy will be illustrated.

  20. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    EPA Science Inventory

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  1. Analysis of cytomegalovirus (CMV) viremia using the pp65 antigenemia assay, the amplicor CMV test, and a semi-quantitative polymerase chain reaction test after allogeneic marrow transplantation.

    PubMed

    Ksouri, H; Eljed, H; Greco, A; Lakhal, A; Torjman, L; Abdelkefi, A; Ben Othmen, T; Ladeb, S; Slim, A; Zouari, B; Abdeladhim, A; Ben Hassen, A

    2007-03-01

    A pp65 antigenemia assay for polymorphonuclear leukocytes (PMNLs) (CINAkit Rapid Antigenemia), and a qualitative polymerase chain reaction (PCR) test for plasma 'PCR-P qual' (Amplicor cytomegalovirus [CMV] test) were performed for 126 samples (blood and plasma) obtained from 18 bone marrow transplant patients, over a 9-month surveillance period. Among those samples, 92 were assayed with a semi-quantitative PCR test for PMNLs 'PCR-L quant.' The number of samples with a positive CMV test for antigenemia and PCR-P qual assays was 20.63% and 12.7%, respectively, whereas the PCR-L quant assay was positive in 48 of the 92 samples assayed (52.17%). The rates of concordance of the results of PCR-P qual and antigenemia, PCR-P qual and PCR-L quant, antigenemia and PCR-L quant were 92%, 65.2% and 66.8%, respectively. The analysis of the results for the 92 specimens tested by all 3 methods showed a rate of concordance of 63% among all methods. Good agreement (kappa=0.72) was found only between pp65 Ag and PCR-P qual assays. Clinical disease correlates with an antigenemia high viral load. Three patients had CMV disease despite preemptive therapy, and all of them had graft-versus-host-disease (GVHD). PMNLs-based assays are more efficient in monitoring CMV reactivation, but for high-risk patients with GVHD, more sensitive assays (real-time PCR) must be done.

  2. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    PubMed

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A PCR method for the detection and differentiation of Lentinus edodes and Trametes versicolor in defined-mixed cultures used for wastewater treatment.

    PubMed

    García-Mena, Jaime; Cano-Ramirez, Claudia; Garibay-Orijel, Claudio; Ramirez-Canseco, Sergio; Poggi-Varaldo, Héctor M

    2005-06-01

    A PCR-based method for the quantitative detection of Lentinus edodes and Trametes versicolor, two ligninolytic fungi applied for wastewater treatment and bioremediation, was developed. Genomic DNA was used to optimize a PCR method targeting the conserved copper-binding sequence of laccase genes. The method allowed the quantitative detection and differentiation of these fungi in single and defined-mixed cultures after fractionation of the PCR products by electrophoresis in agarose gels. Amplified products of about 150 bp for L. edodes, and about 200 bp for T. versicolor were purified and cloned. The PCR method showed a linear detection response in the 1.0 microg-1 ng range. The same method was tested with genomic DNA from a third fungus (Phanerochaete chrysosporium), yielding a fragment of about 400 bp. Southern-blot and DNA sequence analysis indicated that a specific PCR product was amplified from each genome, and that these corresponded to sequences of laccase genes. This PCR protocol permits the detection and differentiation of three ligninolytic fungi by amplifying DNA fragments of different sizes using a single pair of primers, without further enzymatic restriction of the PCR products. This method has potential use in the monitoring, evaluation, and improvement of fungal cultures used in wastewater treatment processes.

  4. Competitor internal standards for quantitative detection of mycoplasma DNA.

    PubMed

    Sidhu, M K; Rashidbaigi, A; Testa, D; Liao, M J

    1995-05-01

    Homologous internal controls were used as competitor DNA in the polymerase chain reaction for the quantitative detection of mycoplasma DNA. PCR primer sets were designed on the basis of the most conserved nucleotide sequences of the 16S rRNA gene of mycoplasma species. Amplification of this gene was examined in five different mycoplasma species: Mycoplasma orale, M. hyorhinus, M. synoviae, M. gallisepticum and M. pneumoniae. To evaluate the primers, a number of different cell lines were assayed for the detection of mycoplasma infections. All positive cell lines showed a distinct product on agarose gels while uninfected cells showed no DNA amplification. Neither bacterial nor eukaryotic DNA produced any cross-reaction with the primers used, thus confirming their specificity. Internal control DNA to be used for quantitation was constructed by modifying the sizes of the wild-type amplified products and cloning them in plasmid vectors. These controls used the same primer binding sites as the wild-type and the amplified products were differentiated by a size difference. The detection limits for all the mycoplasma species by competitive quantitative PCR were estimated to range from 4 to 60 genome copies per assay as determined by ethidium bromide-stained agarose gels. These internal standards also serve as positive controls in PCR-based detection of mycoplasma DNA, and therefore accidental contamination of test samples with wild-type positive controls can be eliminated. The quantitative PCR method developed will be useful in monitoring the progression and significance of mycoplasma in the disease process.

  5. Use of the Genomic Subtractive Hybridization Technique To Develop a Real-Time PCR Assay for Quantitative Detection of Prevotella spp. in Oral Biofilm Samples

    PubMed Central

    Nagashima, Shiori; Yoshida, Akihiro; Suzuki, Nao; Ansai, Toshihiro; Takehara, Tadamichi

    2005-01-01

    Genomic subtractive hybridization was used to design Prevotella nigrescens-specific primers and TaqMan probes. Based on this technique, a TaqMan real-time PCR assay was developed for quantifying four oral black-pigmented Prevotella species. The combination of real-time PCR and genomic subtractive hybridization is useful for preparing species-specific primer-probe sets for closely related species. PMID:15956428

  6. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening.

    PubMed

    Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie

    2010-09-01

    Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.

  7. Selection of low-variance expressed Malus x domestica (apple) genes for use as quantitative PCR reference genes (housekeepers)

    USDA-ARS?s Scientific Manuscript database

    To accurately measure gene expression using PCR-based approaches, there is the need for reference genes that have low variance in expression (housekeeping genes) to normalise the data for RNA quantity and quality. For non-model species such as Malus x domestica (apples), previously, the selection of...

  8. Influences of sample interference and interference controls on quantification of enterococci fecal indicator bacteria in surface water samples by the qPCR method

    EPA Science Inventory

    A quantitative polymerase chain reaction (qPCR) method for the detection of entercocci fecal indicator bacteria has been shown to be generally applicable for the analysis of temperate fresh (Great Lakes) and marine coastal waters and for providing risk-based determinations of wat...

  9. Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions

    PubMed Central

    Ackermann, Mark R.

    2006-01-01

    The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional. PMID:17033699

  10. Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods.

    PubMed

    Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T

    2012-02-01

    Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.

  11. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  12. Quantitative assessment of Naegleria fowleri and fecal indicator bacteria in brackish water of Lake Pontchartrain, Louisiana.

    PubMed

    Xue, Jia; Lamar, Frederica G; Zhang, Bowen; Lin, Siyu; Lamori, Jennifer G; Sherchan, Samendra P

    2018-05-01

    Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and enterococci in water collected from Lake Pontchartrain. N. fowleri target sequence was detected in 35.4% (56/158) of the water samples from ten sites around the lake. Statistically significant positive correlations between N. fowleri concentration and water temperature as well as E. coli (qPCR) were observed. Multiple linear regression (MLR) model shows seasonal factor (summer or winter) has significant effect on the concentration of N. fowleri, E. coli and enterococci (qPCR) concentration. Significant positive relationships between E. coli and enterococci was observed from both qPCR (r=0.25) and culture based method (r=0.54). Meanwhile, significant positive correlation between qPCR and culture based methods for enterococci concentration was observed (r=0.33). In our study, water temperature and E. coli concentration were indicative of N. fowleri concentrations in brackish water environment. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Experimental studies of using real-time fluorescence quantitative PCR and RT-PCR to detect E6 and E7 genes of human papillomavirus type 16 in cervical carcinoma cell lines].

    PubMed

    Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min

    2007-06-01

    To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.

  14. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    PubMed

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an effective alternative to lengthy conventional diagnostic procedures requiring both cytogenetic analysis followed by targeted quantitative reverse transcription (qRT-PCR) methods, thus allowing timely patient management.

  15. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level.

    PubMed

    Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James

    2012-10-21

    Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.

  16. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    PubMed

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Detection of group a streptococcal pharyngitis by quantitative PCR.

    PubMed

    Dunne, Eileen M; Marshall, Julia L; Baker, Ciara A; Manning, Jayne; Gonis, Gena; Danchin, Margaret H; Smeesters, Pierre R; Satzke, Catherine; Steer, Andrew C

    2013-07-11

    Group A streptococcus (GAS) is the most common bacterial cause of sore throat. School-age children bear the highest burden of GAS pharyngitis. Accurate diagnosis is difficult: the majority of sore throats are viral in origin, culture-based identification of GAS requires 24-48 hours, and up to 15% of children are asymptomatic throat carriers of GAS. The aim of this study was to develop a quantitative polymerase chain reaction (qPCR) assay for detecting GAS pharyngitis and assess its suitability for clinical diagnosis. Pharyngeal swabs were collected from children aged 3-18 years (n = 91) and adults (n = 36) located in the Melbourne area who presented with sore throat. Six candidate PCR assays were screened using a panel of reference isolates, and two of these assays, targeting speB and spy1258, were developed into qPCR assays. The qPCR assays were compared to standard culture-based methods for their ability to detect GAS pharyngitis. GAS isolates from culture positive swabs underwent emm-typing. Clinical data were used to calculate McIsaac scores as an indicator of disease severity. Twenty-four of the 127 samples (18.9%) were culture-positive for GAS, and all were in children (26%). The speB qPCR had 100% sensitivity and 100% specificity compared with gold-standard culture, whereas the spy1258 qPCR had 87% sensitivity and 100% specificity. Nine different emm types were found, of which emm 89, 3, and 28 were most common. Bacterial load as measured by qPCR correlated with culture load. There were no associations between symptom severity as indicated by McIsaac scores and GAS bacterial load. The speB qPCR displayed high sensitivity and specificity and may be a useful tool for GAS pharyngitis diagnosis and research.

  18. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.

    PubMed

    Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei

    2018-06-01

    The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8  copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4  copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1  copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

  19. Repertoire of novel sequence signatures for the detection of Candidatus Liberibacter asiaticus by quantitative real-time PCR

    PubMed Central

    2014-01-01

    Background Huanglongbing (HLB) or citrus greening is a devastating disease of citrus. The gram-negative bacterium Candidatus Liberibacter asiaticus (Las) belonging to the α-proteobacteria is responsible for HLB in North America as well as in Asia. Currently, there is no cure for this disease. Early detection and quarantine of Las-infected trees are important management strategies used to prevent HLB from invading HLB-free citrus producing regions. Quantitative real-time PCR (qRT-PCR) based molecular diagnostic assays have been routinely used in the detection and diagnosis of Las. The oligonucleotide primer pairs based on conserved genes or regions, which include 16S rDNA and the β-operon, have been widely employed in the detection of Las by qRT-PCR. The availability of whole genome sequence of Las now allows the design of primers beyond the conserved regions for the detection of Las explicitly. Results We took a complimentary approach by systematically screening the genes in a genome-wide fashion, to identify the unique signatures that are only present in Las by an exhaustive sequence based similarity search against the nucleotide sequence database. Our search resulted in 34 probable unique signatures. Furthermore, by designing the primer pair specific to the identified signatures, we showed that most of our primer sets are able to detect Las from the infected plant and psyllid materials collected from the USA and China by qRT-PCR. Overall, 18 primer pairs of the 34 are found to be highly specific to Las with no cross reactivity to the closely related species Ca. L. americanus (Lam) and Ca. L. africanus (Laf). Conclusions We have designed qRT-PCR primers based on Las specific genes. Among them, 18 are suitable for the detection of Las from Las-infected plant and psyllid samples. The repertoire of primers that we have developed and characterized in this study enhanced the qRT-PCR based molecular diagnosis of HLB. PMID:24533511

  20. [Application study of droplet digital PCR to detect maternal cell contamination in prenatal diagnosis].

    PubMed

    Geng, J; Liu, C; Zhou, X C; Ma, J; Du, L; Lu, J; Zhou, W N; Hu, T T; Lyu, L J; Yin, A H

    2017-02-25

    Objective: To develop a new method based on droplet digital PCR (DD-PCR) for detection and quantification of maternal cell contamination in prenatal diagnosis. Methods: Invasive prenatal samples from 40 couples of β(IVS-Ⅱ-654)/β(N) thalassemia gene carriers who accepted prenatal diagnosis in Affiliated Women and Children's Hospital of Guangzhou Medical University from October 2015 to December 2016 were analyzed retrospectively. Specific primers and probes were designed. The concentration gradient were 50%, 25%, 12.5%, 6.25%, 3.125%, 1.562 5%. There were 40 groups of prenatal diagnostic samples. Comparing DD-PCR with quantitative fluorescent-PCR (QF-PCR) based on the short tandem repeats for assement of the sensitivity and accuracy of maternal cell contamination, respectively. Results: DD-PCR could quantify the maternal cell contamination as low as 1.562 5%. The result was proportional to the dilution titers. In the 40 prenatal samples, 6 cases (15%, 6/40) of maternal cell contamination were detected by DD-PCR, while the QF-PCR based on short tandem repeat showed 3 cases (7.5%, 3/40) with maternal cell contamination, DD-PCR was more accurate ( P= 0.002) . Conclusion: DD-PCR is a precise and sensitive method in the detection of maternal cell contamintation. It could be useful in clinical application.

  1. Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan.

    PubMed

    Haase, Ilka; Brüning, Philipp; Matissek, Reinhard; Fischer, Markus

    2013-04-10

    Marzipan or marzipan raw paste is a typical German sweet which is consumed directly or is used as an ingredient in the bakery industry/confectionery (e.g., in stollen) and as filling for chocolate candies. Almonds (blanched and pealed) and sugar are the only ingredients for marzipan production according to German food guidelines. Especially for the confectionery industry, the use of persipan, which contains apricot or peach kernels instead of almonds, is preferred due to its stronger aroma. In most of the companies, both raw pastes are produced, in most cases on the same production line, running the risk of an unintended cross contamination. Additionally, due to high almond market values, dilutions of marzipan with cheaper seeds may occur. Especially in the case of apricot and almond, the close relationship of both species is a challenge for the analysis. DNA based methods for the qualitative detection of apricot, peach, pea, bean, lupine, soy, cashew, pistachio, and chickpea in marzipan have recently been published. In this study, different quantitation strategies on the basis of real-time PCR have been evaluated and a relative quantitation method with a reference amplification product was shown to give the best results. As the real-time PCR is based on the high copy rDNA-cluster, even contaminations <1% can be reliably quantitated.

  2. Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16S rRNA Genes.

    PubMed

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2017-01-01

    Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5' end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and relative abundance based on a standard sequence library. We demonstrated that the qSeq protocol proposed here is advantageous for providing less-biased absolute copy numbers of each target DNA with NGS sequencing at one time. By this new experiment scheme in microbial ecology, microbial community compositions can be explored in more quantitative manner, thus expanding our knowledge of microbial ecosystems in natural environments.

  3. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina.

    PubMed

    Buling, A; Criado-Fornelio, A; Asenzo, G; Benitez, D; Barba-Carretero, J C; Florin-Christensen, M

    2007-06-20

    The haemoparasites Babesia bovis and Babesia bigemina affect cattle over vast areas of the tropics and temperate parts of the world. Microscopic examination of blood smears allows the detection of clinical cases of babesiosis, but this procedure lacks sensitivity when parasitaemia levels are low. In addition, differentiating between similar haemoparasites can be very difficult. Molecular diagnostic procedures can, however, overcome these problems. This paper reports a quantitative PCR (qPCR) assay involving the use of SYBR Green. Based on the amplification of a small fragment of the cytochrome b gene, this method shows both high sensitivity and specificity, and allows quantification of parasite DNA. In tests, reproducible quantitative results were obtained over the range of 0.1 ng to 0.1 fg of parasite DNA. Melting curve analysis differentiated between B. bovis and B. bigemina. To assess the performance of the new qPCR procedure it was used to screen for babesiosis in 40 cows and 80 horses. B. bigemina was detected in five cows (three of these were also found to be positive by standard PCR techniques targeting the 18S rRNA gene). In addition, B. bovis was detected in one horse and B. bigemina in two horses using the proposed method, while none was found positive by ribosomal standard PCR. The sequences of the B. bigemina cytochrome b and 18S rRNA genes were completely conserved in isolates from Spain and Argentina, while those of B. bovis showed moderate polymorphism.

  4. Disclosing respiratory co-infections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform.

    PubMed

    Croville, Guillaume; Foret, Charlotte; Heuillard, Pauline; Senet, Alexis; Delpont, Mattias; Mouahid, Mohammed; Ducatez, Mariette F; Kichou, Faouzi; Guerin, Jean-Luc

    2018-06-01

    Respiratory syndromes (RS) are among the most significant pathological conditions in edible birds and are caused by complex coactions of pathogens and environmental factors. In poultry, low pathogenic avian influenza A viruses, metapneumoviruses, infectious bronchitis virus, infectious laryngotracheitis virus, Mycoplasma spp. Escherichia coli and/or Ornithobacterium rhinotracheale in turkeys are considered as key co-infectious agents of RS. Aspergillus sp., Pasteurella multocida, Avibacterium paragallinarum or Chlamydia psittaci may also be involved in respiratory outbreaks. An innovative quantitative PCR method, based on a nanofluidic technology, has the ability to screen up to 96 samples with 96 pathogen-specific PCR primers, at the same time, in one run of real-time quantitative PCR. This platform was used for the screening of avian respiratory pathogens: 15 respiratory agents, including viruses, bacteria and fungi potentially associated with respiratory infections of poultry, were targeted. Primers were designed and validated for SYBR green real-time quantitative PCR and subsequently validated on the Biomark high throughput PCR nanofluidic platform (Fluidigm©, San Francisco, CA, USA). As a clinical assessment, tracheal swabs were sampled from turkeys showing RS and submitted to this panel assay. Beside systematic detection of E. coli, avian metapneumovirus, Mycoplasma gallisepticum and Mycoplasma synoviae were frequently detected, with distinctive co-infection patterns between French and Moroccan flocks. This proof-of-concept study illustrates the potential of such panel assays for unveiling respiratory co-infection profiles in poultry.

  5. Development and application of a real-time PCR assay for the detection and quantitation of lymphocystis disease virus.

    PubMed

    Ciulli, Sara; Pinheiro, Ana Cristina de Aguiar Saldana; Volpe, Enrico; Moscato, Michele; Jung, Tae Sung; Galeotti, Marco; Stellino, Sabrina; Farneti, Riccardo; Prosperi, Santino

    2015-03-01

    Lymphocystis disease virus (LCDV) is responsible for a chronic self-limiting disease that affects more than 125 teleosts. Viral isolation of LCDV is difficult, time-consuming and often ineffective; the development of a rapid and specific tool to detect and quantify LCDV is desirable for both diagnosis and pathogenic studies. In this study, a quantitative real-time PCR (qPCR) assay was developed using a Sybr-Green-based assay targeting a highly conserved region of the MCP gene. Primers were designed on a multiple alignment that included all known LCDV genotypes. The viral DNA segment was cloned within a plasmid to generate a standard curve. The limit of detection was as low as 2.6DNA copies/μl of plasmid and the qPCR was able to detect viral DNA from cell culture lysates and tissues at levels ten-times lower than conventional PCR. Both gilthead seabream and olive flounder LCDV has been amplified, and an in silico assay showed that LCDV of all genotypes can be amplified. LCDV was detected in target and non-target tissues of both diseased and asymptomatic fish. The LCDV qPCR assay developed in this study is highly sensitive, specific, reproducible and versatile for the detection and quantitation of Lymphocystivirus, and may also be used for asymptomatic carrier detection or pathogenesis studies of different LCDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A sensitive and high throughput TaqMan-based reverse transcription quantitative polymerase chain reaction assay efficiently discriminates ALK rearrangement from overexpression for lung cancer FFPE specimens.

    PubMed

    Lung, Jrhau; Lin, Yu-Ching; Hung, Ming-Szu; Jiang, Yuan Yuan; Lee, Kuan-Der; Lin, Paul Yann; Tsai, Ying Huang

    2016-04-01

    ALK fusion gene is an oncogenic driver in lung cancer with low prevalence, which can be ameliorated by crizotinib. Currently, ALK fusion gene can be diagnosed by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), but inconstistnt results between the two methods are encountered regularly. To make the ALK fusion gene screening more efficient and to provide a simple solution to clarify the discrepancy between FISH and IHC results, a sensitive TaqMan-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was established. The 3-plex TaqMan-based RT-qPCR assay was established and performed on 102 archived formalin-fixed, paraffin-embedded (FFPE) NSCLC samples to detect ALK rearrangement and overexpression. Break-apart FISH and automatic immunohistochemistry based ALK assays were performed side by side using tissue microarray. The RT-qPCR was performed successfully for 80 samples and 10 of them showed positive signals. Three out of the 10 qPCR positive cases were further confirmed by FISH and IHC test. Two others were IHC positive and FISH negative, and expressed full-length ALK transcript. The rest were neither FISH nor IHC positive and their ALK expression level was significantly lower than those FISH or IHC positive cases. Our RT-qPCR assay demonstrates that the capability and reliability of ALK detection is comparable to FISH and IHC, but it is more effective at discriminating ALK rearrangement from overexpression. The RT-qPCR assay easily clarifies the discrepancy between FISH and IHC, and can be incorporated into routine ALK screening for lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  8. Detecting the Presence of Bacterial DNA and RNA by Polymerase Chain Reaction to Diagnose Suspected Periprosthetic Joint Infection after Antibiotic Therapy.

    PubMed

    Fang, Xin-Yu; Li, Wen-Bo; Zhang, Chao-Fan; Huang, Zi-da; Zeng, Hui-Yi; Dong, Zheng; Zhang, Wen-Ming

    2018-02-01

    To explore the diagnostic efficiency of DNA-based and RNA-based quantitative polymerase chain reaction (qPCR) analyses for periprosthetic joint infection (PJI). To determine the detection limit of DNA-based and RNA-based qPCR in vitro, Staphylococcus aureus and Escherichia coli strains were added to sterile synovial fluid obtained from a patient with knee osteoarthritis. Serial dilutions of samples were analyzed by DNA-based and RNA-based qPCR. Clinically, patients who were suspected of having PJI and eventually underwent revision arthroplasty in our hospital from July 2014 to December 2016 were screened. Preoperative puncture or intraoperative collection was performed on patients who met the inclusion and exclusion criteria to obtain synovial fluid. DNA-based and RNA-based PCR analyses and culture were performed on each synovial fluid sample. The patients' demographic characteristics, medical history, and laboratory test results were recorded. The diagnostic efficiency of both PCR assays was compared with culture methods. The in vitro analysis demonstrated that DNA-based qPCR assay was highly sensitive, with the detection limit being 1200 colony forming units (CFU)/mL of S. aureus and 3200 CFU/mL of E. coli. Meanwhile, The RNA-based qPCR assay could detect 2300 CFU/mL of S. aureus and 11 000 CFU/mL of E. coli. Clinically, the sensitivity, specificity, and accuracy were 65.7%, 100%, and 81.6%, respectively, for the culture method; 81.5%, 84.8%, and 83.1%, respectively, for DNA-based qPCR; and 73.6%, 100%, and 85.9%, respectively, for RNA-based qPCR. DNA-based qPCR could detect suspected PJI with high sensitivity after antibiotic therapy. RNA-based qPCR could reduce the false positive rates of DNA-based assays. qPCR-based methods could improve the efficiency of PJI diagnosis. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  9. Development of a real-time PCR assay for the detection and identification of Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri.

    PubMed

    Iwase, Tadayuki; Seki, Keiko; Shinji, Hitomi; Mizunoe, Yoshimitsu; Masuda, Shogo

    2007-10-01

    Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri are coagulase-negative staphylococci. Each species has different characteristics, and a difference in pathology is also seen in compromised hosts. Therefore, the development of a species-specific simple detection method for the identification of these staphylococci is important. Here, a species-specific real-time PCR assay is reported that targets the superoxide dismutase A-encoding gene of these bacteria. Primers were designed with a base that was non-complementary with regard to the other bacteria. This base was at the 3' end of the primer (3' mismatch primer) and conferred high specificity. These primers were then evaluated using real-time PCR. They reacted only with the target bacterium. In addition, stable quantitative reactions were observed when experiments were performed using genomic DNA extracted from varying numbers of staphylococci cells (10(1)-10(7) cells). These results indicate that this method is useful for the identification and quantitative analysis of S. capitis, S. haemolyticus and S. warneri.

  10. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  11. Digital PCR analysis of circulating nucleic acids.

    PubMed

    Hudecova, Irena

    2015-10-01

    Detection of plasma circulating nucleic acids (CNAs) requires the use of extremely sensitive and precise methods. The commonly used quantitative real-time polymerase chain reaction (PCR) poses certain technical limitations in relation to the precise measurement of CNAs whereas the costs of massively parallel sequencing are still relatively high. Digital PCR (dPCR) now represents an affordable and powerful single molecule counting strategy to detect minute amounts of genetic material with performance surpassing many quantitative methods. Microfluidic (chip) and emulsion (droplet)-based technologies have already been integrated into platforms offering hundreds to millions of nanoliter- or even picoliter-scale reaction partitions. The compelling observations reported in the field of cancer research, prenatal testing, transplantation medicine and virology support translation of this technology into routine use. Extremely sensitive plasma detection of rare mutations originating from tumor or placental cells among a large background of homologous sequences facilitates unraveling of the early stages of cancer or the detection of fetal mutations. Digital measurement of quantitative changes in plasma CNAs associated with cancer or graft rejection provides valuable information on the monitoring of disease burden or the recipient's immune response and subsequent therapy treatment. Furthermore, careful quantitative assessment of the viral load offers great value for effective monitoring of antiviral therapy for immunosuppressed or transplant patients. The present review describes the inherent features of dPCR that make it exceptionally robust in precise and sensitive quantification of CNAs. Moreover, I provide an insight into the types of potential clinical applications that have been developed by researchers to date. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. The characterization and certification of a quantitative reference material for Legionella detection and quantification by qPCR.

    PubMed

    Baume, M; Garrelly, L; Facon, J P; Bouton, S; Fraisse, P O; Yardin, C; Reyrolle, M; Jarraud, S

    2013-06-01

    The characterization and certification of a Legionella DNA quantitative reference material as a primary measurement standard for Legionella qPCR. Twelve laboratories participated in a collaborative certification campaign. A candidate reference DNA material was analysed through PCR-based limiting dilution assays (LDAs). The validated data were used to statistically assign both a reference value and an associated uncertainty to the reference material. This LDA method allowed for the direct quantification of the amount of Legionella DNA per tube in genomic units (GU) and the determination of the associated uncertainties. This method could be used for the certification of all types of microbiological standards for qPCR. The use of this primary standard will improve the accuracy of Legionella qPCR measurements and the overall consistency of these measurements among different laboratories. The extensive use of this certified reference material (CRM) has been integrated in the French standard NF T90-471 (April 2010) and in the ISO Technical Specification 12 869 (Anon 2012 International Standardisation Organisation) for validating qPCR methods and ensuring the reliability of these methods. © 2013 The Society for Applied Microbiology.

  13. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation

    PubMed Central

    ZHANG, BO; XU, CHUN-WEI; SHAO, YUN; WANG, HUAI-TAO; WU, YONG-FANG; SONG, YE-YING; LI, XIAO-BING; ZHANG, ZHE; WANG, WEN-JING; LI, LI-QIONG; CAI, CONG-LI

    2015-01-01

    Early detection of epidermal growth factor receptor (EGFR) mutation, particularly EGFR T790M mutation, is of clinical significance. The aim of the present study was to compare the performances of amplification refractory mutation system-based quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital polymerase chain reaction (ddPCR) approaches in the detection of EGFR mutation and explore the feasibility of using ddPCR in the detection of samples with low mutation rates. EGFR gene mutations in plasmid samples with different T790M mutation rates (0.1–5%) and 10 clinical samples were detected using the ARMS-qPCR and ddPCR approaches. The results demonstrated that the ARMS-qPCR method stably detected the plasmid samples (6,000 copies) with 5 and 1% mutation rates, while the ddPCR approach reliably detected those with 5% (398 copies), 1% (57 copies), 0.5% (24 copies) and 0.1% (average 6 copies) mutation rates. For the 10 clinical samples, the results for nine samples by the ARMS-qPCR and ddPCR methods were consistent; however, the sample N006, indicated to be EGFR wild-type by ARMS-qPCR, was revealed to have a clear EGFR T790M mutation with seven copies of mutant alleles in a background of 6,000 wild-type copies using ddPCR technology. This study demonstrates the feasibility of applying the ddPCR system to detect EGFR mutation and identified the advantage of ddPCR in the detection of samples with a low EGFR mutation abundance, particularly the secondary EGFR T790M resistance mutation, which enables early diagnosis before acquired resistance to tyrosine kinase inhibitors becomes clinically detectable. PMID:25780439

  14. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  15. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine.

    PubMed

    Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael

    2016-12-01

    Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.

  17. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis

    PubMed Central

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338

  18. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis.

    PubMed

    Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.

  19. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    PubMed

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  20. Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides

    EPA Science Inventory

    Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...

  1. Human fecal source identification with real-time quantitative PCR

    EPA Science Inventory

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  2. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution.

    PubMed

    Ludlow, Andrew T; Robin, Jerome D; Sayed, Mohammed; Litterst, Claudia M; Shelton, Dawne N; Shay, Jerry W; Wright, Woodring E

    2014-07-01

    The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Age-Related Shifts in the Density and Distribution of Genetic Marker Water Quality Indicators in Cow and Calf Feces (Journal)

    EPA Science Inventory

    Calves (≤ 226 kg body mass) make up about 16% of the current bovine population in the United States and can excrete high levels of human pathogens. We describe the density and distribution of genetic markers from 11 PCR- and real-time quantitative PCR-based assays including CF...

  4. [Detection of Plasmodium falciparum by using magnetic nanoparticles separation-based quantitative real-time PCR assay].

    PubMed

    Wang, Fei; Tian, Yin; Yang, Jing; Sun, Fu-Jun; Sun, Ning; Liu, Bi-Yong; Tian, Rui; Ge, Guang-Lu; Zou, Ming-qiang; Deng, Cong-liang; Liu, Yi

    2014-10-01

    To establish a magnetic nanoparticles separation-based quantitative real-time PCR (RT-PCR) assay for fast and accurate detection of Plasmodium falciparum and providing a technical support for improving the control and prevention of imported malaria. According to the conserved sequences of the P. falciparum genome 18SrRNA, the species-specific primers and probe were designed and synthetized. The RT-PCR was established by constructing the plasmid standard, fitting the standard curve and using magnetic nanoparticles separation. The sensitivity and specificity of the assay were evaluated. The relationship between the threshold cycle (Ct) and logarithm of initial templates copies was linear over a range of 2.5 x 10(1) to 2.5 x 10(8) copies/μl (R2 = 0.999). Among 13 subjects of entry frontier, a P. falciparum carrier with low load was detected by using the assay and none was detected with the conventional examinations (microscopic examinations and rapid tests). This assay shows a high sensitivity in detection of P. falciparum, with rapid and accurate characteristics, and is especially useful in diagnosis of P. falciparum infectors with low parasitaemia at entry-exit frontier ports.

  5. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy.

    PubMed

    Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan

    2018-06-05

    The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Correlation between quantitative PCR and Culture-Based methods for measuring Enterococcus spp. over various temporal scales at three California marine beaches

    EPA Science Inventory

    Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...

  7. Comparison of quantitative cytomegalovirus (CMV) PCR in plasma and CMV antigenemia assay: clinical utility of the prototype AMPLICOR CMV MONITOR test in transplant recipients.

    PubMed

    Caliendo, A M; St George, K; Kao, S Y; Allega, J; Tan, B H; LaFontaine, R; Bui, L; Rinaldo, C R

    2000-06-01

    The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients.

  8. Comparison of Quantitative Cytomegalovirus (CMV) PCR in Plasma and CMV Antigenemia Assay: Clinical Utility of the Prototype AMPLICOR CMV MONITOR Test in Transplant Recipients

    PubMed Central

    Caliendo, Angela M.; St. George, Kirsten; Kao, Shaw-Yi; Allega, Jessica; Tan, Ban-Hock; LaFontaine, Robert; Bui, Larry; Rinaldo, Charles R.

    2000-01-01

    The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients. PMID:10834964

  9. Identification of reference genes for RT-qPCR analysis in peach genotypes with contrasting chilling requirements.

    PubMed

    Marini, N; Bevilacqua, C B; Büttow, M V; Raseira, M C B; Bonow, S

    2017-05-25

    Selecting and validating reference genes are the first steps in studying gene expression by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The present study aimed to evaluate the stability of five reference genes for the purpose of normalization when studying gene expression in various cultivars of Prunus persica with different chilling requirements. Flower bud tissues of nine peach genotypes from Embrapa's peach breeding program with different chilling requirements were used, and five candidate reference genes based on the RT-qPCR that were useful for studying the relative quantitative gene expression and stability were evaluated using geNorm, NormFinder, and bestKeeper software packages. The results indicated that among the genes tested, the most stable genes to be used as reference genes are Act and UBQ10. This study is the first survey of the stability of reference genes in peaches under chilling stress and provides guidelines for more accurate RT-qPCR results.

  10. Digital Assays Part I: Partitioning Statistics and Digital PCR.

    PubMed

    Basu, Amar S

    2017-08-01

    A digital assay is one in which the sample is partitioned into many small containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, …). A powerful technique in the biologist's toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotypes and phenotypes. Part I of this review begins with the benefits and Poisson statistics of partitioning, including sources of error. The remainder focuses on digital PCR (dPCR) for quantification of nucleic acids. We discuss five commercial instruments that partition samples into physically isolated chambers (cdPCR) or droplet emulsions (ddPCR). We compare the strengths of dPCR (absolute quantitation, precision, and ability to detect rare or mutant targets) with those of its predecessor, quantitative real-time PCR (dynamic range, larger sample volumes, and throughput). Lastly, we describe several promising applications of dPCR, including copy number variation, quantitation of circulating tumor DNA and viral load, RNA/miRNA quantitation with reverse transcription dPCR, and library preparation for next-generation sequencing. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows. Part II focuses on digital protein and cell assays.

  11. chipPCR: an R package to pre-process raw data of amplification curves.

    PubMed

    Rödiger, Stefan; Burdukiewicz, Michał; Schierack, Peter

    2015-09-01

    Both the quantitative real-time polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard methods for nucleic acid quantification. Numerous real-time read-out technologies have been developed. Despite the continuous interest in amplification-based techniques, there are only few tools for pre-processing of amplification data. However, a transparent tool for precise control of raw data is indispensable in several scenarios, for example, during the development of new instruments. chipPCR is an R: package for the pre-processing and quality analysis of raw data of amplification curves. The package takes advantage of R: 's S4 object model and offers an extensible environment. chipPCR contains tools for raw data exploration: normalization, baselining, imputation of missing values, a powerful wrapper for amplification curve smoothing and a function to detect the start and end of an amplification curve. The capabilities of the software are enhanced by the implementation of algorithms unavailable in R: , such as a 5-point stencil for derivative interpolation. Simulation tools, statistical tests, plots for data quality management, amplification efficiency/quantification cycle calculation, and datasets from qPCR and qIA experiments are part of the package. Core functionalities are integrated in GUIs (web-based and standalone shiny applications), thus streamlining analysis and report generation. http://cran.r-project.org/web/packages/chipPCR. Source code: https://github.com/michbur/chipPCR. stefan.roediger@b-tu.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. A Novel Strategy for Human Papillomavirus Detection and Genotyping with SybrGreen and Molecular Beacon Polymerase Chain Reaction

    PubMed Central

    Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.

    2001-01-01

    Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426

  13. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    PubMed

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  14. Clinical Comparison of an Enhanced-Sensitivity Branched-DNA Assay and Reverse Transcription-PCR for Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Nolte, Frederick S.; Boysza, Jodi; Thurmond, Cathy; Clark, W. Scott; Lennox, Jeffrey L.

    1998-01-01

    The performance characteristics of an enhanced-sensitivity branched-DNA assay (bDNA) (Quantiplex HIV-1 version 2.0; Chiron Corp., Emeryville, Calif.) and a reverse transcription (RT)-PCR assay (AMPLICOR HIV-1 Monitor; Roche Diagnostic Systems, Inc., Branchburg, N.J.) were compared in a molecular diagnostic laboratory. Samples used in this evaluation included linearity and reproducibility panels made by dilution of a human immunodeficiency virus type 1 (HIV-1) stock culture of known virus particle count in HIV-1-negative plasma, a subtype panel consisting of HIV-1 subtypes A through F at a standardized level, and 64 baseline plasma specimens from HIV-1-infected individuals. Plots of log10 HIV RNA copies per milliliter versus log10 nominal virus particles per milliliter demonstrated that both assays were linear over the stated dynamic ranges (bDNA, r = 0.98; RT-PCR, r = 0.99), but comparison of the slopes of the regression lines (bDNA, m = 0.96; RT-PCR, m = 0.83) suggested that RT-PCR had greater proportional systematic error. The between-run coefficients of variation for bDNA and RT-PCR were 24.3 and 34.3%, respectively, for a sample containing 1,650 nominal virus particles/ml and 44.0 and 42.7%, respectively, for a sample containing 165 nominal virus particles/ml. Subtypes B, C, and D were quantitated with similar efficiencies by bDNA and RT-PCR; however, RT-PCR was less efficient in quantitating subtypes A, E, and F. One non-B subtype was recognized in our clinical specimens based on the ratio of values obtained with the two methods. HIV-1 RNA was quantitated in 53 (83%) baseline plasma specimens by bDNA and in 55 (86%) specimens by RT-PCR. RT-PCR values were consistently greater than bDNA values, with population means of 142,419 and 67,580 copies/ml, respectively (P < 0.01). The results were highly correlated (r = 0.91), but the agreement was poor (mean difference in log10 copies per milliliter ± 2 standard deviations, 0.45 ± 0.61) for the 50 clinical specimens that gave discrete values with both methods. PMID:9508301

  15. Development and Application of Quantitative Detection Method for Viral Hemorrhagic Septicemia Virus (VHSV) Genogroup IVa

    PubMed Central

    Kim, Jong-Oh; Kim, Wi-Sik; Kim, Si-Woo; Han, Hyun-Ja; Kim, Jin Woo; Park, Myoung Ae; Oh, Myung-Joo

    2014-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a problematic pathogen in olive flounder (Paralichthys olivaceus) aquaculture farms in Korea. Thus, it is necessary to develop a rapid and accurate diagnostic method to detect this virus. We developed a quantitative RT-PCR (qRT-PCR) method based on the nucleocapsid (N) gene sequence of Korean VHSV isolate (Genogroup IVa). The slope and R2 values of the primer set developed in this study were −0.2928 (96% efficiency) and 0.9979, respectively. Its comparison with viral infectivity calculated by traditional quantifying method (TCID50) showed a similar pattern of kinetic changes in vitro and in vivo. The qRT-PCR method reduced detection time compared to that of TCID50, making it a very useful tool for VHSV diagnosis. PMID:24859343

  16. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    PubMed

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  17. Prenatal diagnosis of fetuses with increased nuchal translucency using an approach based on quantitative fluorescent polymerase chain reaction and genomic microarray.

    PubMed

    Pan, Min; Han, Jin; Zhen, Li; Yang, Xin; Li, Ru; Liao, Can; Li, Dong-Zhi

    2016-02-01

    To assess the clinical value of prenatal diagnosis of fetuses with increased nuchal translucency (NT) using an approach based on quantitative fluorescent polymerase chain reaction (QF-PCR) and chromosomal microarray (CMA). From January 2013 to October 2014, we included 175 pregnancies with fetal NT ≥ 3.5mm at 11-13 weeks' gestation who received chorionic villus sampling. QF-PCR was first used to rapidly detect common aneuploidies. The cases with a normal QF-PCR result were analyzed by CMA. Of the 175 cases, common aneuploidies were detected by QF-PCR in 53 (30.2%) cases (30 cases of trisomy 21, 12 cases of monosomy X, 7 cases of trisomy 18, 3 cases of trisomy 13 and 1 case of 47, XXY). Among the 122 cases with a normal QF-PCR result, microarray detected additional pathogenic copy number variants (CNVs) in 5.7% (7/122) of cases. Four cases would have expected to be detectable by conventional karyotyping because of large deletions/duplications (>10 Mb), leaving three cases (2.5%; 3/118) with pathogenic CNVs only detectable by CMA. It is rational to use a diagnostic strategy in which CMA is preceded by the less expensive, rapid, QF-PCR to detect common aneuploidies. CMA allows detection of a number of pathogenic chromosomal aberrations in fetuses with a high NT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. EVALUATION OF RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...

  19. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  20. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources.

    PubMed

    Raith, Meredith R; Kelty, Catherine A; Griffith, John F; Schriewer, Alexander; Wuertz, Stefan; Mieszkin, Sophie; Gourmelon, Michele; Reischer, Georg H; Farnleitner, Andreas H; Ervin, Jared S; Holden, Patricia A; Ebentier, Darcy L; Jay, Jennifer A; Wang, Dan; Boehm, Alexandria B; Aw, Tiong Gim; Rose, Joan B; Balleste, E; Meijer, W G; Sivaganesan, Mano; Shanks, Orin C

    2013-11-15

    The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation. Published by Elsevier Ltd.

  1. Evaluation and utilization of preassembled frozen commercial fast real-time qPCR master mixes for detection of cytomegalovirus and BK virus.

    PubMed

    Glover, William A; Atienza, Ederlyn E; Nesbitt, Shannon; Kim, Woo J; Castor, Jared; Cook, Linda; Jerome, Keith R

    2016-01-01

    Quantitative DNA detection of cytomegalovirus (CMV) and BK virus (BKV) is critical in the management of transplant patients. Quantitative laboratory-developed procedures for CMV and BKV have been described in which much of the processing is automated, resulting in rapid, reproducible, and high-throughput testing of transplant patients. To increase the efficiency of such assays, the performance and stability of four commercial preassembled frozen fast qPCR master mixes (Roche FastStart Universal Probe Master Mix with Rox, Bio-Rad SsoFast Probes Supermix with Rox, Life Technologies TaqMan FastAdvanced Master Mix, and Life Technologies Fast Universal PCR Master Mix), in combination with in-house designed primers and probes, was evaluated using controls and standards from standard CMV and BK assays. A subsequent parallel evaluation using patient samples was performed comparing the performance of freshly prepared assay mixes versus aliquoted frozen master mixes made with two of the fast qPCR mixes (Life Technologies TaqMan FastAdvanced Master Mix, and Bio-Rad SsoFast Probes Supermix with Rox), chosen based on their performance and compatibility with existing PCR cycling conditions. The data demonstrate that the frozen master mixes retain excellent performance over a period of at least 10 weeks. During the parallel testing using clinical specimens, no difference in quantitative results was observed between the preassembled frozen master mixes and freshly prepared master mixes. Preassembled fast real-time qPCR frozen master mixes perform well and represent an additional strategy laboratories can implement to reduce assay preparation times, and to minimize technical errors and effort necessary to perform clinical PCR. © 2015 Wiley Periodicals, Inc.

  2. Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation.

    PubMed

    Cho, Gyu-Sung; Krauss, Sabrina; Huch, Melanie; Du Toit, Maret; Franz, Charles M A P

    2011-12-01

    A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at 3.6 × 10(6) CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above 10(5)/ml for approx. 10 days, after which cell numbers decreased to levels of 10(3) CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. 1 × 10(2) CFU/ml was detected. The minimum detection level for quantitative PCR in this study was 1 × 10(2) to 1 × 10(3) CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.

  3. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    PubMed

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs. © 2012 Institute of Food Technologists®

  4. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  5. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  6. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  7. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  8. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  9. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  10. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  11. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  12. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  13. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors.

    PubMed

    Piedra, Jose; Ontiveros, Maria; Miravet, Susana; Penalva, Cristina; Monfar, Mercè; Chillon, Miguel

    2015-02-01

    Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.

  14. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients.

    PubMed

    Millon, Laurence; Larosa, Fabrice; Lepiller, Quentin; Legrand, Faezeh; Rocchi, Steffi; Daguindau, Etienne; Scherer, Emeline; Bellanger, Anne-Pauline; Leroy, Joel; Grenouillet, Frederic

    2013-05-01

    The aim of our study was to assess the detection of circulating DNA from the most common species of Mucorales for early diagnosis of mucormycosis in at-risk patients. We retrospectively evaluated a combination of 3 quantitative polymerase chain reaction (qPCR) assays using hydrolysis probes targeting Mucor/Rhizopus, Lichtheimia (formerly Absidia), and Rhizomucor for circulating Mucorales detection. Serial serum samples from 10 patients diagnosed with proven mucormycosis (2-9 samples per patient) were analyzed. No cross-reactivity was detected in the 3 qPCR assays using 19 reference strains of opportunistic fungi, and the limit of detection ranged from 3.7 to 15 femtograms/10 µL, depending on the species. DNA from Mucorales was detected in the serum of 9 of 10 patients between 68 and 3 days before mucormycosis diagnosis was confirmed by histopathological examination and/or positive culture. All the qPCR results were concordant with culture and/or PCR-based identification of the causing agents in tissue (Lichtheimia species, Rhizomucor species, and Mucor/Rhizopus species in 4, 3, and 2 patients, respectively). Quantitative PCR was negative in only 1 patient with proven disseminated mucormycosis caused by Lichtheimia species. Our study suggests that using specific qPCR targeting several species of Mucorales according to local ecology to screen at-risk patients could be useful in a clinical setting. The cost and efficacy of this strategy should be evaluated. However, given the human and economic cost of mucormycosis and the need for rapid diagnosis to initiate prompt directed antifungal therapy, this strategy could be highly attractive.

  15. COMPARISON OF ENTEROCOCCUS MEASUREMENTS IN FRESHWATER AT TWO RECREATIONAL BEACHES BY QUANTITATIVE POLYMERASE CHAIN REACTION AND MEMBRANE FILER CULTURE ANALYSIS

    EPA Science Inventory

    Cell densities of the fecal pollution indicator genus, Enterococcus, were determined by a rapid (2-3 hr) quantitative PCR (QPCR) analysis based method in 100 ml water samples collected from recreational beaches on Lake Michigan and Lake Erie during the summer of 2003. Enumeration...

  16. The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma.

    PubMed

    Zhu, Yi; Zhang, Jing-jing; Zhu, Rong; Zhu, Yan; Liang, Wen-biao; Gao, Wen-tao; Yu, Jun-bo; Xu, Ze-kuan; Miao, Yi

    2011-12-01

    The MUC4 gene could have a key role in the progression of pancreatic cancer, but the quantitative measurement of its expression in clinical tissue samples remains a challenge. The correlations between MUC4 promoter methylation status in vivo and either pancreatic cancer progression or MUC4 mRNA expression need to be demonstrated. We used the techniques of quantitative real-time PCR and DNA methylation-specific PCR combined microdissection to precisely detect MUC4 expression and promoter methylation status in 116 microdissected foci from 57 patients with pancreatic ductal adenocarcinoma. Both mRNA expression and hypomethylation frequency increased from normal to precancerous lesions to pancreatic cancer. Multivariate Cox regression analysis showed that high-level MUC4 expression (P = 0.008) and tumor-node-metastasis staging (P = 0.038) were significant independent risk factors for predicting the prognosis of 57 patients. The MUC4 mRNA expression was not significantly correlated with promoter methylation status in 30 foci of pancreatic ductal adenocarcinoma. These results suggest that high mRNA expression and hypomethylation of the MUC4 gene could be involved in carcinogenesis and in the malignant development of pancreatic ductal adenocarcinoma. The MUC4 mRNA expression may become a new prognostic marker for pancreatic cancer. Microdissection-based quantitative real-time PCR and methylation-specific PCR contribute to the quantitative detection of MUC4 expression in clinical samples and reflect the epigenetic regulatory mechanisms of MUC4 in vivo.

  17. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  18. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms.

    PubMed

    Demeke, Tigst; Dobnik, David

    2018-07-01

    The number of genetically modified organisms (GMOs) on the market is steadily increasing. Because of regulation of cultivation and trade of GMOs in several countries, there is pressure for their accurate detection and quantification. Today, DNA-based approaches are more popular for this purpose than protein-based methods, and real-time quantitative PCR (qPCR) is still the gold standard in GMO analytics. However, digital PCR (dPCR) offers several advantages over qPCR, making this new technique appealing also for GMO analysis. This critical review focuses on the use of dPCR for the purpose of GMO quantification and addresses parameters which are important for achieving accurate and reliable results, such as the quality and purity of DNA and reaction optimization. Three critical factors are explored and discussed in more depth: correct classification of partitions as positive, correctly determined partition volume, and dilution factor. This review could serve as a guide for all laboratories implementing dPCR. Most of the parameters discussed are applicable to fields other than purely GMO testing. Graphical abstract There are generally three different options for absolute quantification of genetically modified organisms (GMOs) using digital PCR: droplet- or chamber-based and droplets in chambers. All have in common the distribution of reaction mixture into several partitions, which are all subjected to PCR and scored at the end-point as positive or negative. Based on these results GMO content can be calculated.

  19. Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated Bacteroidetes for Microbial Source Tracking across Sixteen Countries on Six Continents

    PubMed Central

    2013-01-01

    Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods. PMID:23755882

  20. Selection and Validation of Appropriate Reference Genes for qRT-PCR Analysis in Isatis indigotica Fort.

    PubMed Central

    Li, Tao; Wang, Jing; Lu, Miao; Zhang, Tianyi; Qu, Xinyun; Wang, Zhezhi

    2017-01-01

    Due to its sensitivity and specificity, real-time quantitative PCR (qRT-PCR) is a popular technique for investigating gene expression levels in plants. Based on the Minimum Information for Publication of Real-Time Quantitative PCR Experiments (MIQE) guidelines, it is necessary to select and validate putative appropriate reference genes for qRT-PCR normalization. In the current study, three algorithms, geNorm, NormFinder, and BestKeeper, were applied to assess the expression stability of 10 candidate reference genes across five different tissues and three different abiotic stresses in Isatis indigotica Fort. Additionally, the IiYUC6 gene associated with IAA biosynthesis was applied to validate the candidate reference genes. The analysis results of the geNorm, NormFinder, and BestKeeper algorithms indicated certain differences for the different sample sets and different experiment conditions. Considering all of the algorithms, PP2A-4 and TUB4 were recommended as the most stable reference genes for total and different tissue samples, respectively. Moreover, RPL15 and PP2A-4 were considered to be the most suitable reference genes for abiotic stress treatments. The obtained experimental results might contribute to improved accuracy and credibility for the expression levels of target genes by qRT-PCR normalization in I. indigotica. PMID:28702046

  1. Fluorescence acquisition during hybridization phase in quantitative real-time PCR improves specificity and signal-to-noise ratio.

    PubMed

    Mehndiratta, Mohit; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Pal, Arnab; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2008-12-01

    Quantitative real-time PCR (qPCR) is a standard method used for quantification of specific gene expression. This utilizes either dsDNA binding dyes or probe based chemistry. While dsDNA binding dyes have the advantage of low cost and flexibility, fluorescence due to primer dimers also interferes with the fluorescence of the specific product. Sometimes it is difficult, if not impossible, to standardize conditions and redesign primers in such a way that only specific fluorescence of the products of test and reference genes are acquired. Normally, the fluorescence acquisition in qPCR using dsDNA binding dyes is done during the melting phase of the PCR at a temperature between the melting points of primer dimers and the specific product. We have modified the protocol to acquire fluorescence during the hybridization phase. This significantly increased the signal-to-noise ratio and enabled the use of dsDNA binding dyes for mRNA quantification in situations where it was not possible when measurement was done in the melting phase. We have demonstrated it for three mRNAs, E6, E7, and DNMT1 with beta-actin as the reference gene, and for two miRNAs. This modification broadens the scope of qPCR using dsDNA binding dyes.

  2. Detection of Nanophyetus salmincola in water, snails, and fish tissues by quantitative polymerase chain reaction

    USGS Publications Warehouse

    Purcell, Maureen K.; Powers, Rachel L.; Besijn, Bonnie; Hershberger, Paul K.

    2017-01-01

    We report the development and validation of two quantitative PCR (qPCR) assays to detect Nanophyetus salmincola DNA in water samples and in fish and snail tissues. Analytical and diagnostic validation demonstrated good sensitivity, specificity, and repeatability of both qPCR assays. The N. salmincola DNA copy number in kidney tissue was significantly correlated with metacercaria counts based on microscopy. Extraction methods were optimized for the sensitive qPCR detection of N. salmincola DNA in settled water samples. Artificially spiked samples suggested that the 1-cercaria/L threshold corresponded to an estimated log10 copies per liter ≥ 6.0. Significant correlation of DNA copy number per liter and microscopic counts indicated that the estimated qPCR copy number was a good predictor of the number of waterborne cercariae. However, the detection of real-world samples below the estimated 1-cercaria/L threshold suggests that the assays may also detect other N. salmincola life stages, nonintact cercariae, or free DNA that settles with the debris. In summary, the qPCR assays reported here are suitable for identifying and quantifying all life stages of N. salmincola that occur in fish tissues, snail tissues, and water.

  3. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    PubMed

    Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E

    2014-01-01

    Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  4. Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish.

    PubMed

    Tattiyapong, P; Sirikanchana, K; Surachetpong, W

    2018-02-01

    Tilapia lake virus (TiLV) is an emerging pathogen associated with high mortalities of wild and farm-raised tilapia in different countries. In this study, a SYBR green-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting segment three of the virus was developed to detect and quantify TiLV in clinical samples and experimentally challenged fish. All 30 field samples with clinical signs and history consistent with TiLV infection were positive for TiLV as detected by the developed RT-qPCR method. The RT-qPCR technique provided 100 and 10,000 times more sensitive for virus detection than those offered by the RT-PCR and virus isolation in cell culture methods, respectively. The detection limit of the RT-qPCR method was as low as two viral copies/μl. Moreover, the RT-qPCR technique could be applied for TiLV detection in various fish tissues including gills, liver, brain, heart, anterior kidney and spleen. Significantly, this study delivered an accurate and reliable method for rapid detection of TiLV viruses that facilitates active surveillance programme and disease containment. © 2017 John Wiley & Sons Ltd.

  5. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  6. Comparative analysis of techniques for detection of quiescent Botrytis cinerea in grapes by quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to quiescent Botrytis cinerea infections of grape berries identified some specific limitations. In this study, four DNA extraction methods, two tissue-grinding methods, two gra...

  7. A Human Fecal Contamination Score for Ranking Recreational Sites using the HF183/BacR287 Quantitative Real-Time PCR Method

    EPA Science Inventory

    Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and manag...

  8. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  9. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  10. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  11. Droplet Digital PCR for Minimal Residual Disease Detection in Mature Lymphoproliferative Disorders.

    PubMed

    Drandi, Daniela; Ferrero, Simone; Ladetto, Marco

    2018-01-01

    Minimal residual disease (MRD) detection has a powerful prognostic relevance for response evaluation and prediction of relapse in hematological malignancies. Real-time quantitative PCR (qPCR) has become the settled and standardized method for MRD assessment in lymphoid disorders. However, qPCR is a relative quantification approach, since it requires a reference standard curve. Droplet digital TM PCR (ddPCR TM ) allows a reliable absolute tumor burden quantification withdrawing the need for preparing, for each experiment, a tumor-specific standard curve. We have recently shown that ddPCR has a good concordance with qPCR and could be a feasible and reliable tool for MRD monitoring in mature lymphoproliferative disorders. In this chapter we describe the experimental workflow, from the detection of the clonal molecular marker to the MRD monitoring by ddPCR, in patients affected by multiple myeloma, mantle cell lymphoma and follicular lymphoma. However, standardization programs among different laboratories are needed in order to ensure the reliability and reproducibility of ddPCR-based MRD results.

  12. A Novel Real-Time PCR for Listeria monocytogenes That Monitors Analytical Performance via an Internal Amplification Control

    PubMed Central

    Rodríguez-Lázaro, David; Pla, Maria; Scortti, Mariela; Monzó, Héctor J.; Vázquez-Boland, José A.

    2005-01-01

    We describe a novel quantitative real-time (Q)-PCR assay for Listeria monocytogenes based on the coamplification of a target hly gene fragment and an internal amplification control (IAC). The IAC is a chimeric double-stranded DNA containing a fragment of the rapeseed BnACCg8 gene flanked by the hly-specific target sequences. This IAC is detected using a second TaqMan probe labeled with a different fluorophore, enabling the simultaneous monitoring of the hly and IAC signals. The hly-IAC assay had a specificity and sensitivity of 100%, as assessed using 49 L. monocytogenes isolates of different serotypes and 96 strains of nontarget bacteria, including 51 Listeria isolates. The detection and quantification limits were 8 and 30 genome equivalents, and the coefficients for PCR linearity (R2) and efficiency (E) were 0.997 and 0.80, respectively. We tested the performance of the hly-IAC Q-PCR assay using various broth media and food matrices. Fraser and half-Fraser media, raw pork, and raw or cold-smoked salmon were strongly PCR-inhibitory. This Q-PCR assay for L. monocytogenes, the first incorporating an IAC to be described for quantitative detection of a food-borne pathogen, is a simple and robust tool facilitating the identification of false negatives or underestimations of contamination loads due to PCR failure. PMID:16332910

  13. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    PubMed

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development of a quantitative real-time PCR assay for sapovirus in children under 5-years-old in Regina Margherita Hospital of Turin, Italy.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Brusin, Martina Rosa; Finotti, Serena; Paderi, Giulia; Gabiano, Clara

    2017-04-01

    Gastroenteritis is a common disease in children. It is characterized by diarrhea, vomiting, abdominal pain, and fever. Sapovirus (SaV) is a causative agent of acute gastroenteritis, but it causes milder illness than do rotavirus and norovirus. There is high variability in the analytical performance of quantitative PCR-based assays among clinical laboratories. This study developed a reverse transcription real-time PCR method to detect SaV in fecal specimens collected from children under 5-years-old with acute gastroenteritis. Of 137 episodes of acute gastroenteritis, 15 (10.9%) were associated with SaV genomic detection, with a median viral load of 6.6(log 10 ) ± 7.1(log 10 ) genomes/mg fecal specimens. There was a significant difference in detection rate between males and females (9.48% (13/15) vs. 1.46% (2/15), p = 0.0232). Among the 15 SaV-positive cases, 6 were also positive for rotavirus. Viral RNA recovery rate ranged from 46% to 77% in the manual RNAzol protocol and from 31% to 90% in the automated Maxwell protocol. We also studied whether human genomic DNA influences the sensitivity of the assay: its presence caused a decrease in PCR sensitivity. The development of a laboratory-designed real-time PCR TaqMan assay for quantitative detection of SaV and the optimization and standardization of this assay, using stools of children with acute gastroenteritis, are described.

  15. Validating internal controls for quantitative plant gene expression studies.

    PubMed

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-08-18

    Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

  16. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  17. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis

    PubMed Central

    2014-01-01

    Background Leptotrombidium pallidum and Leptotrombidium scutellare are the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. Before these organisms can be subjected to whole-genome sequencing, it is necessary to estimate their genome sizes to obtain basic information for establishing the strategies that should be used for genome sequencing and assembly. Method The genome sizes of L. pallidum and L. scutellare were estimated by a method based on quantitative real-time PCR. In addition, a k-mer analysis of the whole-genome sequences obtained through Illumina sequencing was conducted to verify the mutual compatibility and reliability of the results. Results The genome sizes estimated using qPCR were 191 ± 7 Mb for L. pallidum and 262 ± 13 Mb for L. scutellare. The k-mer analysis-based genome lengths were estimated to be 175 Mb for L. pallidum and 286 Mb for L. scutellare. The estimates from these two independent methods were mutually complementary and within a similar range to those of other Acariform mites. Conclusions The estimation method based on qPCR appears to be a useful alternative when the standard methods, such as flow cytometry, are impractical. The relatively small estimated genome sizes should facilitate whole-genome analysis, which could contribute to our understanding of Arachnida genome evolution and provide key information for scrub typhus prevention and mite vector competence. PMID:24947244

  18. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    PubMed Central

    Fout, G. Shay; Cashdollar, Jennifer L.; Griffin, Shannon M.; Brinkman, Nichole E.; Varughese, Eunice A.; Parshionikar, Sandhya U.

    2016-01-01

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. This method was developed with the goal of having a standardized method for use in multiple analytical laboratories during monitoring period 3 of the Unregulated Contaminant Monitoring Rule. Herein we present the protocol for extraction of viral ribonucleic acid (RNA) from water sample concentrates and for quantitatively measuring enterovirus and norovirus concentrations using reverse transcription-quantitative PCR (RT-qPCR). Virus concentrations for the molecular assay are calculated in terms of genomic copies of viral RNA per liter based upon a standard curve. The method uses a number of quality controls to increase data quality and to reduce interlaboratory and intralaboratory variation. The method has been evaluated by examining virus recovery from ground and reagent grade waters seeded with poliovirus type 3 and murine norovirus as a surrogate for human noroviruses. Mean poliovirus recoveries were 20% in groundwaters and 44% in reagent grade water. Mean murine norovirus recoveries with the RT-qPCR assay were 30% in groundwaters and 4% in reagent grade water. PMID:26862985

  19. Development of a Multiplex Real-Time PCR for Determination of Apricot in Marzipan Using the Plexor System.

    PubMed

    Schelm, Stefanie; Haase, Ilka; Fischer, Christin; Fischer, Markus

    2017-01-18

    Marzipan is a confectionary which is mostly offered in form of filled chocolate, pralines, or pure. According to the German guidelines for oil seeds only almonds, sugar and water are admitted ingredients of marzipan. A product very similar in taste is persipan which is used in the confectionary industry because of its stronger flavor. For persipan production almonds are replaced by debittered apricot or peach kernels. To guarantee high quality products for consumers, German raw paste producers have agreed a limit of apricot kernels in marzipan raw paste of 0.5%. Different DNA-based methods for quantitation of persipan contaminations in marzipan are already published. To increase the detection specificity compared to published intercalation dye-based assays, the present work demonstrate the utilization of a multiplex real-time PCR based on the Plexor technology. Thus, the present work enables the detection of at least 0.1% apricot DNA in almond DNA or less. By analyzing DNA mixtures, the theoretical limit of quantification of the duplex PCR for the quantitation of persipan raw paste DNA in marzipan raw paste DNA was determined as 0.05%.

  20. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  1. Targeting neuroendocrine differentiation for prostate cancer radiosensitization

    DTIC Science & Technology

    2017-12-01

    Secondary HRP-conjugated antibodies were purchased fromGEHealthcare UK Ltd. (Buckinghamshire, UK). 2.5. RNA isolation and quantitative real- time PCR (qRT...gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T))Method,Methods 25 (2001) 402–408. [47] T.K. Kelly, T.B. Miranda, G...relative gene expression data using real- time quantitative PCR and the 2(−Delta Delta C(T)) method, Methods 25 (2001) 402–408. [37] J. Ren, L. Wen, X

  2. Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR.

    PubMed

    McDermott, Geoffrey P; Do, Duc; Litterst, Claudia M; Maar, Dianna; Hindson, Christopher M; Steenblock, Erin R; Legler, Tina C; Jouvenot, Yann; Marrs, Samuel H; Bemis, Adam; Shah, Pallavi; Wong, Josephine; Wang, Shenglong; Sally, David; Javier, Leanne; Dinio, Theresa; Han, Chunxiao; Brackbill, Timothy P; Hodges, Shawn P; Ling, Yunfeng; Klitgord, Niels; Carman, George J; Berman, Jennifer R; Koehler, Ryan T; Hiddessen, Amy L; Walse, Pramod; Bousse, Luc; Tzonev, Svilen; Hefner, Eli; Hindson, Benjamin J; Cauly, Thomas H; Hamby, Keith; Patel, Viresh P; Regan, John F; Wyatt, Paul W; Karlin-Neumann, George A; Stumbo, David P; Lowe, Adam J

    2013-12-03

    Two years ago, we described the first droplet digital PCR (ddPCR) system aimed at empowering all researchers with a tool that removes the substantial uncertainties associated with using the analogue standard, quantitative real-time PCR (qPCR). This system enabled TaqMan hydrolysis probe-based assays for the absolute quantification of nucleic acids. Due to significant advancements in droplet chemistry and buoyed by the multiple benefits associated with dye-based target detection, we have created a "second generation" ddPCR system compatible with both TaqMan-probe and DNA-binding dye detection chemistries. Herein, we describe the operating characteristics of DNA-binding dye based ddPCR and offer a side-by-side comparison to TaqMan probe detection. By partitioning each sample prior to thermal cycling, we demonstrate that it is now possible to use a DNA-binding dye for the quantification of multiple target species from a single reaction. The increased resolution associated with partitioning also made it possible to visualize and account for signals arising from nonspecific amplification products. We expect that the ability to combine the precision of ddPCR with both DNA-binding dye and TaqMan probe detection chemistries will further enable the research community to answer complex and diverse genetic questions.

  3. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods

    EPA Science Inventory

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...

  4. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  5. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies.

    PubMed

    Wong, Samson S Y; Poon, Rosana W S; Chau, Sandy; Wong, Sally C Y; To, Kelvin K W; Cheng, Vincent C C; Fung, Kitty S C; Yuen, K Y

    2015-07-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.

    PubMed

    Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice

    2017-11-01

    Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.

  7. The occurrence of Campylobacter in river water and waterfowl within a watershed in southern Ontario, Canada.

    PubMed

    Van Dyke, M I; Morton, V K; McLellan, N L; Huck, P M

    2010-09-01

    Quantitative PCR and a culture method were used to investigate Campylobacter occurrence over 3 years in a watershed located in southern Ontario, Canada that is used as a source of drinking water. Direct DNA extraction from river water followed by quantitative PCR analysis detected thermophilic campylobacters at low concentrations (<130 cells 100 ml(-1) ) in 57-79% of samples taken from five locations. By comparison, a culture-based method detected Campylobacter in 0-23% of samples. Water quality parameters such as total Escherichia coli were not highly correlated with Campylobacter levels, although higher pathogen concentrations were observed at colder water temperatures (<10°C). Strains isolated from river water were primarily nalidixic acid-susceptible Campylobacter lari, and selected isolates were identified as Campylobacter lari ssp. concheus. Campylobacter from wild birds (seagulls, ducks and geese) were detected at a similar rate using PCR (32%) and culture-based (29%) methods, and although Campylobacter jejuni was isolated most frequently, C. lari ssp. concheus was also detected. Campylobacter were frequently detected at low concentrations in the watershed. Higher prevalence rates using quantitative PCR was likely because of the formation of viable but nonculturable cells and low recovery of the culture method. In addition to animal and human waste, waterfowl can be an important contributor of Campylobacter in the environment. Results of this study show that Campylobacter in surface water can be an important vector for human disease transmission and that method selection is important in determining pathogen occurrence in a water environment. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  8. Pyrosequencing®-Based Identification of Low-Frequency Mutations Enriched Through Enhanced-ice-COLD-PCR.

    PubMed

    How-Kit, Alexandre; Tost, Jörg

    2015-01-01

    A number of molecular diagnostic assays have been developed in the last years for mutation detection. Although these methods have become increasingly sensitive, most of them are incompatible with a sequencing-based readout and require prior knowledge of the mutation present in the sample. Consequently, coamplification at low denaturation (COLD)-PCR-based methods have been developed and combine a high analytical sensitivity due to mutation enrichment in the sample with the identification of known or unknown mutations by downstream sequencing experiments. Among these methods, the recently developed Enhanced-ice-COLD-PCR appeared as the most powerful method as it outperformed the other COLD-PCR-based methods in terms of the mutation enrichment and due to the simplicity of the experimental setup of the assay. Indeed, E-ice-COLD-PCR is very versatile as it can be used on all types of PCR platforms and is applicable to different types of samples including fresh frozen, FFPE, and plasma samples. The technique relies on the incorporation of an LNA containing blocker probe in the PCR reaction followed by selective heteroduplex denaturation enabling amplification of the mutant allele while amplification of the wild-type allele is prevented. Combined with Pyrosequencing(®), which is a very quantitative high-resolution sequencing technology, E-ice-COLD-PCR can detect and identify mutations with a limit of detection down to 0.01 %.

  9. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    PubMed

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea. © 2016 The Author(s).

  10. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development.

    PubMed

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  11. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development

    PubMed Central

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J.; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species. PMID:28900431

  12. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    USGS Publications Warehouse

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  13. Comparative evaluation of three automated systems for DNA extraction in conjunction with three commercially available real-time PCR assays for quantitation of plasma Cytomegalovirus DNAemia in allogeneic stem cell transplant recipients.

    PubMed

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David

    2011-08-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.

  14. Establishment and application of event-specific polymerase chain reaction methods for two genetically modified soybean events, A2704-12 and A5547-127.

    PubMed

    Li, Xiang; Pan, Liangwen; Li, Junyi; Zhang, Qigang; Zhang, Shuya; Lv, Rong; Yang, Litao

    2011-12-28

    For implementation of the issued regulations and labeling policies for genetically modified organism (GMO) supervision, the polymerase chain reaction (PCR) method has been widely used due to its high specificity and sensitivity. In particular, use of the event-specific PCR method based on the flanking sequence of transgenes has become the primary trend. In this study, both qualitative and quantitative PCR methods were established on the basis of the 5' flanking sequence of transgenic soybean A2704-12 and the 3' flanking sequence of transgenic soybean A5547-127, respectively. In qualitative PCR assays, the limits of detection (LODs) were 10 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127. In quantitative real-time PCR assays, the LODs were 5 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127, and the limits of quantification (LOQs) were 10 copies for both. Low bias and acceptable SD and RSD values were also achieved in quantification of four blind samples using the developed real-time PCR assays. In addition, the developed PCR assays for the two transgenic soybean events were used for routine analysis of soybean samples imported to Shanghai in a 6 month period from October 2010 to March 2011. A total of 27 lots of soybean from the United States and Argentina were analyzed: 8 lots from the Unites States were found to have the GM soybean A2704-12 event, and the GM contents were <1.5% in all eight analyzed lots. On the contrary, no GM soybean A5547-127 content was found in any of the eight lots. These results demonstrated that the established event-specific qualitative and quantitative PCR methods could be used effectively in routine identification and quantification of GM soybeans A2704-12 and A5547-127 and their derived products.

  15. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    PubMed

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-05-19

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  16. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    PubMed

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  17. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus"

    PubMed Central

    Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium “Candidatus Liberibacter asiaticus” (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer. PMID:29772016

  18. Targeting Mechanisms of Resistance to Taxane-Based Chemotherapy

    DTIC Science & Technology

    2007-09-01

    gene ; monoamine oxidase A ( MAOA ) was upregulated in patients with PSA relapse (Figure 5A). Quantitative real-time PCR (qRT-PCR) was performed to...resistance and uncover mechanisms or pathways suitable for targeting with the objective of improving tumor responses to chemotherapy. Gene expression...CXCL10 but not IL8 conferring chemoresistance to prostate cancer cells. When using longer term clinical outcome, we found genes correlated with PSA

  19. Rapid Quantitative Detection of Lactobacillus sakei in Meat and Fermented Sausages by Real-Time PCR

    PubMed Central

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-01-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages. PMID:16957227

  20. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    PubMed

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  1. Clinical comparison of branched DNA and reverse transcriptase-PCR and nucleic acid sequence-based amplification assay for the quantitation of circulating recombinant form_BC HIV-1 RNA in plasma.

    PubMed

    Pan, Pinliang; Tao, Xiaoxia; Zhang, Qi; Xing, Wenge; Sun, Xianguang; Pei, Lijian; Jiang, Yan

    2007-12-01

    To investigate the correlation between three viral load assays for circulating recombinant form (CRF)_BC. Recent studies in HIV-1 molecular epidemiology, reveals that CRF_BC is the dominant subtype of HIV-1 virus in mainland China, representing over 45% of the HIV-1 infected population. The performances of nucleic acid sequence-based amplification (NASBA), branched DNA (bDNA) and reverse transcriptase polymerase chain reaction (RT-PCR) were compared for the HIV-1 viral load detection and quantitation of CRF_BC in China. Sixteen HIV-1 positive and three HIV-1 negative samples were collected. Sequencing of the positive samples in the gp41 region was conducted. The HIV-1 viral load values were determined using bDNA, RT-PCR and NASBA assays. Deming regression analysis with SPSS 12.0 (SPS Inc., Chicago, Illinois, USA) was performed for data analysis. Sequencing and phylogenetic analysis of env gene (gp41) region of the 16 HIV-1 positive clinical specimens from Guizhou Province in southwest China revealed the dominance of the subtype CRF_BC in that region. A good correlation of their viral load values was observed among three assays. Pearson's correlation between RT-PCR and bDNA is 0.969, Lg(VL)RT-PCR = 0.969 * Lg(VL)bDNA + 0.55; Pearson's correlation between RT-PCR and NASBA is 0.968, Lg(VL)RT-PCR = 0.968 * Lg(VL)NASBA + 0.937; Pearson's correlation between NASBA and bDNA is 0.980, Lg(VL)NASBA = 0.980 * Lg(VL)bDNA - 0.318. When testing with 3 different assays, RT-PCR, bDNA and NASBA, the group of 16 HIV-1 positive samples showed the viral load value was highest for RT-PCR, followed by bDNA then NASBA, which is consistent with the former results in subtype B. The three viral load assays are highly correlative for CRF_BC in China.

  2. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  3. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  4. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    PubMed

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  5. Evaluation of quantitative PCR for early diagnosis of Pseudomonas aeruginosa infection in cystic fibrosis: a prospective cohort study.

    PubMed

    Héry-Arnaud, G; Nowak, E; Caillon, J; David, V; Dirou, A; Revert, K; Munck, M-R; Frachon, I; Haloun, A; Horeau-Langlard, D; Le Bihan, J; Danner-Boucher, I; Ramel, S; Pelletier, M-P; Rosec, S; Gouriou, S; Poulhazan, E; Payan, C; Férec, C; Rault, G; Le Gal, G; Le Berre, R

    2017-03-01

    Early detection of Pseudomonas aeruginosa lung positivity is a key element in cystic fibrosis (CF) management. PCR has increased the accuracy of detection of many microorganisms. Clinical relevance of P. aeruginosa quantitative PCR (qPCR) in this context is unclear. Our aim was to determine P. aeruginosa qPCR sensitivity and specificity, and to assess the possible time saved by qPCR in comparison with standard practice (culture). A multicentre cohort study was conducted over a 3-year period in 96 patients with CF without chronic P. aeruginosa colonization. Sputum samples were collected at each visit. Conventional culture and two-step qPCR (oprL qPCR and gyrB/ecfX qPCR) were performed for 707 samples. The positivity criteria were based on the qPCR results, defined in a previous study as follow: oprL qPCR positivity alone if bacterial density was <730 CFU/mL or oprL qPCR combined with gyrB/ecfX qPCR if bacterial density was ≥730 CFU/mL. During follow up, 36 of the 96 patients with CF were diagnosed on culture as colonized with P. aeruginosa. This two-step qPCR displayed a sensitivity of 94.3% (95% CI 79.7%-98.6%), and a specificity of 86.3% (95% CI 83.4%-88.7%). It enabled P. aeruginosa acquisition to be diagnosed earlier in 20 patients, providing a median detection time gain of 8 months (interquartile range 3.7-17.6) for them. Implementing oprL and gyrB/ecfX qPCR in the management of patients with CF allowed earlier detection of first P. aeruginosa lung positivity than culture alone. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    NASA Technical Reports Server (NTRS)

    Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.

  7. Application of quantitative PCR method in detection of Lymphocystis disease virus China (LCDV-cn) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zan, Jindong; Sun, Xiuqin; Zhang, Zhiwen; Qu, Lingyun; Zhang, Jinxing

    2007-10-01

    Lymphocystis disease causes serious economic losses in the fish farming industry. The causative agent of the disease is Lymphocystis disease virus China (LCDV-cn), which has a wide range of hosts. Based on competitive quantitative PCR technology, we established a method to quantify the LCDV-cn in tissue. Results demonstrate that the average amount of LCDV-cn in the peripheral blood of infected flounder with evident tumors is about 106 virions/ml while the average amount in those flounder with no evident tumor but cultured with the flounder with evident tumor is about 104 virions/ml. No virus was found in the negative samples of flounder.

  8. How to Combine ChIP with qPCR.

    PubMed

    Asp, Patrik

    2018-01-01

    Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR) has in the last 15 years become a basic mainstream tool in genomic research. Numerous commercially available ChIP kits, qPCR kits, and real-time PCR systems allow for quick and easy analysis of virtually anything chromatin-related as long as there is an available antibody. However, the highly accurate quantitative dimension added by using qPCR to analyze ChIP samples significantly raises the bar in terms of experimental accuracy, appropriate controls, data analysis, and data presentation. This chapter will address these potential pitfalls by providing protocols and procedures that address the difficulties inherent in ChIP-qPCR assays.

  9. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    USDA-ARS?s Scientific Manuscript database

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  10. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    EPA Science Inventory

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  11. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti.

    PubMed

    Richardson, Jason; Molina-Cruz, Alvaro; Salazar, Ma Isabel; Black, William

    2006-01-01

    Dengue virus-2 (DENV-2) RNA was quantified from the midgut and legs of individual Aedes aegypti at each of 14 days postinfectious blood meal (dpi) in a DENV-2 susceptible strain from Chetumal, Mexico. A SYBR Green I based strand-specific, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed. The lower detection and quantitation limits were 20 and 200 copies per reaction, respectively. Amounts of positive and negative strand viral RNA strands were correlated. Numbers of plaque-forming units (PFU) were correlated with DENV-2 RNA copy number in both C6/36 cell cultures and mosquitoes. PFU were consistently lower than RNA copy number by 2-3 log(10). Midgut levels of DENV-2 RNA peaked 8 dpi and fluctuated erratically between 6 and 9 dpi. Copies of DENV-2 RNA varied significantly among infected mosquitoes at each time point. Quantitative real-time RT-PCR is a convenient and reliable method that provides new insights into virus-vector interactions.

  12. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  13. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods. © 2013 Elsevier B.V. All rights reserved.

  14. Gram Stains: A Resource for Retrospective Analysis of Bacterial Pathogens in Clinical Studies

    PubMed Central

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F.; Iyer, Ram K.; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 108 cfu/ml of Escherichia coli and 105 cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces. PMID:23071487

  15. Gram stains: a resource for retrospective analysis of bacterial pathogens in clinical studies.

    PubMed

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F; Iyer, Ram K; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 10(8) cfu/ml of Escherichia coli and 10(5) cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces.

  16. Array-based comparative genomic hybridization-guided identification of reference genes for normalization of real-time quantitative polymerase chain reaction assay data for lymphomas, histiocytic sarcomas, and osteosarcomas of dogs.

    PubMed

    Tsai, Pei-Chien; Breen, Matthew

    2012-09-01

    To identify suitable reference genes for normalization of real-time quantitative PCR (RT-qPCR) assay data for common tumors of dogs. Malignant lymph node (n = 8), appendicular osteosarcoma (9), and histiocytic sarcoma (12) samples and control samples of various nonneoplastic canine tissues. Array-based comparative genomic hybridization (aCGH) data were used to guide selection of 9 candidate reference genes. Expression stability of candidate reference genes and 4 commonly used reference genes was determined for tumor samples with RT-qPCR assays and 3 software programs. LOC611555 was the candidate reference gene with the highest expression stability among the 3 tumor types. Of the commonly used reference genes, expression stability of HPRT was high in histiocytic sarcoma samples, and expression stability of Ubi and RPL32 was high in osteosarcoma samples. Some of the candidate reference genes had higher expression stability than did the commonly used reference genes. Data for constitutively expressed genes with high expression stability are required for normalization of RT-qPCR assay results. Without such data, accurate quantification of gene expression in tumor tissue samples is difficult. Results of the present study indicated LOC611555 may be a useful RT-qPCR assay reference gene for multiple tissue types. Some commonly used reference genes may be suitable for normalization of gene expression data for tumors of dogs, such as lymphomas, osteosarcomas, or histiocytic sarcomas.

  17. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco.

    PubMed

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-11-17

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N'-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 10¹ to 1 × 10⁵ copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%-99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter.

  18. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  19. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  20. Comparative diagnostics of allergy using quantitative immuno-PCR and ELISA.

    PubMed

    Simonova, Maria A; Pivovarov, Victor D; Ryazantsev, Dmitry Y; Dolgova, Anna S; Berzhets, Valentina M; Zavriev, Sergei K; Svirshchevskaya, Elena V

    2018-05-01

    Estimation of specific IgE is essential for the prevention of allergy progression. Quantitative immuno-PCR (qiPCR) can increase the sensitivity of IgE detection. We aimed to develop qiPCR and compare it to the conventional ELISA in identification of IgE to Alt a 1 and Fel d 1 allergens. Single stranded 60-mer DNA conjugated to streptavidin was used to detect antigen-IgE-biotin complex by qiPCR. In semi-logarithmic scale qiPCR data were linear in a full range of serum dilutions resulting in three- to ten-times higher sensitivity of qiPCR in comparison with ELISA in IgE estimation in low titer sera. Higher sensitivity of qiPCR in identification of low titer IgE is a result of a higher linearity of qiPCR data.

  1. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-07-01

    The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R (2) = 1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0 ~ 5 × 10(8) and 0 ~ 5 × 10(7) cells per gram of soil, respectively (n = 5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract(-1) as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA(-1)) at ≥5 × 10(5) MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y = a · x) revealed excellent quantitative agreement between the two technologies (a = 0.98, R (2) = 0.97 in the CupMBT set and a = 0.90, R (2) = 0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.

  2. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...

  3. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (Peronospora schachtii)

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach (Spinacia oleracea L.), caused by Peronospora effusa, is a disease constraint on production worldwide, including in California where the majority of United States spinach is grown. The aim of this study was to develop a real-time quantitative PCR (qPCR) assay for detection o...

  4. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  5. DNA BASED METHOD OF MOLD AND APPLYING THE ENVIRONMENTAL RELATIVE MOLDINESS INDEX (ERMI)

    EPA Science Inventory

    NASA facilities can potentially have mold contamination problems. The EPA has created an Environmental Relative Moldiness Index based on the analysis of dust by Mold Specific Quantitative PCR (MSQPCR). In this presentation, the scientific background for the ERMI will be present...

  6. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR.

    PubMed

    Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang

    2013-10-10

    Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Development of a SYBR Green I real-time PCR for detection and quantitation of orthopoxvirus by using Ectromelia virus.

    PubMed

    Cheng, Wenyu; He, Xiaobing; Jia, Huaijie; Chen, Guohua; Wang, Cong; Zhang, Jun; Jing, Zhizhong

    2018-04-01

    Ectromelia virus (ECTV) is the causative agent of mousepox, which has devastating effects in laboratory-mouse colonies and causes economic loss in biomedical research. More importantly, ECTV has been extensively used as an excellent model for studies of the pathogenesis and immunobiology of human smallpox. A rapid and sensitive SYBR Green I-based real-time PCR assay was developed and used for the detection and quantitation of orthopoxvirus by using ECTV in this study. Primers targeted to the highly conserved region of major core protein P4b gene of orthopoxvirus were designed and the standard plasmid was constructed. This assay was able to detect a minimum of 10 copies of standard DNA and 5 TCID 50 units of ECTV. In addition, no cross-reactions were observed with two DNA viruses, such as herpes simplex virus and swine pseudorabies virus, and one RNA virus, vesicular stomatitis virus. Furthermore, intra- and inter-assay variability data showed that this method had a highly reproducibility and reliability. Moreover, the current assay was faster and had a higher sensitivity for detection of ECTV genomic DNA in cell cultured and clinical test samples. Therefore, the high sensitivity and reproducibility of this SYBR Green real-time PCR approach is a more effective method than the conventional PCR for ECTV diagnosis and quantitation. Copyright © 2017. Published by Elsevier Ltd.

  8. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    USGS Publications Warehouse

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  9. Development and validation of quantitative PCR for detection of Terrapene herpesvirus 1 utilizing free-ranging eastern box turtles (Terrapene carolina carolina).

    PubMed

    Kane, Lauren P; Bunick, David; Abd-Eldaim, Mohamed; Dzhaman, Elena; Allender, Matthew C

    2016-06-01

    Diseases that affect the upper respiratory tract (URT) in chelonians have been well described as a significant contributor of morbidity and mortality. Specifically, herpesviruses are common pathogens in captive chelonians worldwide, but their importance on free-ranging populations is less well known. Historical methods for the diagnosis of herpesvirus infections include virus isolation and conventional PCR. Real-time PCR has become an essential tool for detection and quantitation of many pathogens, but has not yet been developed for herpesviruses in box turtles. Two quantitative real-time TaqMan PCR assays, TerHV58 and TerHV64, were developed targeting the DNA polymerase gene of Terrapene herpesvirus 1 (TerHV1). The assay detected a viral DNA segment cloned within a plasmid with 10-fold serial dilutions from 1.04 × 10(7) to 1.04 × 10(1) viral copies per reaction. Even though both primers had acceptable levels of efficiency and variation, TerHV58 was utilized to test clinical samples based on less variation and increased efficiency. This assay detected as few as 10 viral copies per reaction and should be utilized in free-ranging and captive box turtles to aid in the characterization of the epidemiology of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    PubMed

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  11. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System

    PubMed Central

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health. PMID:26824897

  12. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  13. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  14. A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients.

    PubMed

    Carow, Katrin; Read, Christina; Häfner, Norman; Runnebaum, Ingo B; Corner, Adam; Dürst, Matthias

    2017-10-30

    Qualitative analyses showed that the presence of HPV mRNA in sentinel lymph nodes of cervical cancer patients with pN0 status is associated with significantly decreased recurrence free survival. To further address the clinical potential of the strategy and to define prognostic threshold levels it is necessary to use a quantitative assay. Here, we compare two methods of quantification: digital PCR and standard quantitative PCR. Serial dilutions of 5 ng-5 pg RNA (≙ 500-0.5 cells) of the cervical cancer cell line SiHa were prepared in 5 µg RNA of the HPV-negative human keratinocyte cell line HaCaT. Clinical samples consisted of 10 sentinel lymph nodes with varying HPV transcript levels. Reverse transcription of total RNA (5 µg RNA each) was performed in 100 µl and cDNA aliquots were analyzed by qPCR and dPCR. Digital PCR was run in the RainDrop ® Digital PCR system (RainDance Technologies) using a probe-based detection of HPV E6/E7 cDNA PCR products with 11 µl template. qPCR was done using a Rotor Gene Q 5plex HRM (Qiagen) amplifying HPV E6/E7 cDNA in a SYBR Green format with 1 µl template. For the analysis of both, clinical samples and serial dilution samples, dPCR and qPCR showed comparable sensitivity. With regard to reproducibility, both methods differed considerably, especially for low template samples. Here, we found with qPCR a mean variation coefficient of 126% whereas dPCR enabled a significantly lower mean variation coefficient of 40% (p = 0.01). Generally, we saw with dPCR a substantial reduction of subsampling errors, which most likely reflects the large cDNA amounts available for analysis. Compared to real-time PCR, dPCR shows higher reliability. Thus, our HPV mRNA dPCR assay holds promise for the clinical evaluation of occult tumor cells in histologically tumor-free lymph nodes in future studies.

  15. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

  16. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  17. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  18. Validating internal controls for quantitative plant gene expression studies

    PubMed Central

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-01-01

    Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments. PMID:15317655

  19. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    PubMed

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  20. Monitoring the Single-Cell Stress Response of the Diatom Thalassiosira pseudonana by Quantitative Real-Time Reverse Transcription-PCR

    PubMed Central

    Shi, Xu; Gao, Weimin; Chao, Shih-hui

    2013-01-01

    Directly monitoring the stress response of microbes to their environments could be one way to inspect the health of microorganisms themselves, as well as the environments in which the microorganisms live. The ultimate resolution for such an endeavor could be down to a single-cell level. In this study, using the diatom Thalassiosira pseudonana as a model species, we aimed to measure gene expression responses of this organism to various stresses at a single-cell level. We developed a single-cell quantitative real-time reverse transcription-PCR (RT-qPCR) protocol and applied it to determine the expression levels of multiple selected genes under nitrogen, phosphate, and iron depletion stress conditions. The results, for the first time, provided a quantitative measurement of gene expression at single-cell levels in T. pseudonana and demonstrated that significant gene expression heterogeneity was present within the cell population. In addition, different expression patterns between single-cell- and bulk-cell-based analyses were also observed for all genes assayed in this study, suggesting that cell response heterogeneity needs to be taken into consideration in order to obtain accurate information that indicates the environmental stress condition. PMID:23315741

  1. Monitoring the single-cell stress response of the diatom Thalassiosira pseudonana by quantitative real-time reverse transcription-PCR.

    PubMed

    Shi, Xu; Gao, Weimin; Chao, Shih-hui; Zhang, Weiwen; Meldrum, Deirdre R

    2013-03-01

    Directly monitoring the stress response of microbes to their environments could be one way to inspect the health of microorganisms themselves, as well as the environments in which the microorganisms live. The ultimate resolution for such an endeavor could be down to a single-cell level. In this study, using the diatom Thalassiosira pseudonana as a model species, we aimed to measure gene expression responses of this organism to various stresses at a single-cell level. We developed a single-cell quantitative real-time reverse transcription-PCR (RT-qPCR) protocol and applied it to determine the expression levels of multiple selected genes under nitrogen, phosphate, and iron depletion stress conditions. The results, for the first time, provided a quantitative measurement of gene expression at single-cell levels in T. pseudonana and demonstrated that significant gene expression heterogeneity was present within the cell population. In addition, different expression patterns between single-cell- and bulk-cell-based analyses were also observed for all genes assayed in this study, suggesting that cell response heterogeneity needs to be taken into consideration in order to obtain accurate information that indicates the environmental stress condition.

  2. Identification of Lactobacillus delbrueckii and Streptococcus thermophilus Strains Present in Artisanal Raw Cow Milk Cheese Using Real-time PCR and Classic Plate Count Methods.

    PubMed

    Stachelska, Milena A

    2017-12-04

    The aim of this paper was to detect Lactobacillus delbrueckii and Streptococcus thermophilus using real-time quantitative PCR assay in 7-day ripening cheese produced from unpasteurised milk. Real-time quantitative PCR assays were designed to identify and enumerate the chosen species of lactic acid bacteria (LAB) in ripened cheese. The results of molecular quantification and classic bacterial enumeration showed a high level of similarity proving that DNA extraction was carried out in a proper way and that genomic DNA solutions were free of PCR inhibitors. These methods revealed the presence of L. delbrueckii and S. thermophilus. The real-time PCR enabled quantification with a detection of 101-103 CFU/g of product. qPCR-standard curves were linear over seven log units down to 101 copies per reaction; efficiencies ranged from 77.9% to 93.6%. Cheese samples were analysed with plate count method and qPCR in parallel. Compared with the classic plate count method, the newly developed qPCR method provided faster and species specific identification of two dairy LAB and yielded comparable quantitative results.

  3. Amoeba-related health risk in drinking water systems: could monitoring of amoebae be a complementary approach to current quality control strategies?

    PubMed

    Codony, Francesc; Pérez, Leonardo Martín; Adrados, Bárbara; Agustí, Gemma; Fittipaldi, Mariana; Morató, Jordi

    2012-01-01

    Culture-based methods for fecal indicator microorganisms are the standard protocol to assess potential health risk from drinking water systems. However, these traditional fecal indicators are inappropriate surrogates for disinfection-resistant fecal pathogens and the indigenous pathogens that grow in drinking water systems. There is now a range of molecular-based methods, such as quantitative PCR, which allow detection of a variety of pathogens and alternative indicators. Hence, in addition to targeting total Escherichia coli (i.e., dead and alive) for the detection of fecal pollution, various amoebae may be suitable to indicate the potential presence of pathogenic amoeba-resisting microorganisms, such as Legionellae. Therefore, monitoring amoeba levels by quantitative PCR could be a useful tool for directly and indirectly evaluating health risk and could also be a complementary approach to current microbial quality control strategies for drinking water systems.

  4. Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction-Based Threshold Cycle Value and Virus Isolation From Human Plasma.

    PubMed

    Spengler, Jessica R; McElroy, Anita K; Harmon, Jessica R; Ströher, Ute; Nichol, Stuart T; Spiropoulou, Christina F

    2015-10-01

    We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti-EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production.

    PubMed

    Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro

    2017-06-01

    Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electrochemical branched-DNA assay for polymerase chain reaction-free detection and quantification of oncogenes in messenger RNA.

    PubMed

    Lee, Ai-Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-15

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcripts in the population of messenger ribonucleic acid (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify the target signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-naphthyl phosphate. The voltammetric characteristics of substrate and enzymatic product as well as the parameters of SWV analysis were systematically optimized. A detection limit of 1 fM (1 x 10(-19) mol of target transcripts in 100 microL) and a 3-order-wide dynamic range of target concentration were achieved by the electrochemical bDNA assay. Such limit corresponded to approximately 17 fg of the p185 BCR-ABL fusion transcripts. The specificity and sensitivity of assay enabled direct detection of target transcripts in as little as 4.6 ng of mRNA population without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcripts in mRNA population. A mean transcript copy number of 62,900/ng of mRNA was determined, which was at least 50-fold higher than that of real-time quantitative PCR (qPCR). The finding was consistent with the underestimation of targets by qPCR reported earlier. In addition, the unique design based on bDNA technology increases the assay specificity as only the p185 BCR-ABL fusion transcripts will respond to the detection. The approach thus provides a simple, sensitive, accurate, and quantitative tool alternative to the qPCR for early disease diagnosis.

  7. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    PubMed

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  8. A New Diagnostic system for Ultra Sensitive and Specific Detection and Quantitation of “Candidatus Liberibacter asiaticus”, the Bacterium Associated with Citrus Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    In this study, an ultra sensitive and quantitative diagnostic system for “Candidatus Liberibacter asiaticus” was developed. This system adapts a nested PCR and Taq-Man PCR in a single closed tube. The procedure involves two steps of PCR using the species specific outer and inner primer pairs. Differ...

  9. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  10. Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases

    MedlinePlus

    ... like RPE. They also use a technique called quantitative RT-PCR to measure the expression of genes ... higher in iPS cells than mature RPE. But quantitative RT-PCR only permits the simultaneous measurement of ...

  11. Quantitative Expression and Immunogenicity of MAGE-3 and -6 in Upper Aerodigestive Tract Cancer

    PubMed Central

    Andrade Filho, Pedro A.; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L.

    2009-01-01

    The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aero-digestive tract (UADT) tumor cells and its association with T cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using western blot. HLA-A*0201:MAGE-3(271–279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. Based on MAGE-3/6 expression we could identify 31 (47%) of the 65 UADT tumors which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, two MAGE-3/6 mRNAhigh SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6 specific knockdown. RNAi–transfected cells showed that MAGE expression, and MAGE-CTL recognition, were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials. PMID:19610063

  12. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    NASA Astrophysics Data System (ADS)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p < 0.005, all R > 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.

  13. Predictive value of PD-L1 based on mRNA level in the treatment of stage IV melanoma with ipilimumab.

    PubMed

    Brüggemann, C; Kirchberger, M C; Goldinger, S M; Weide, B; Konrad, A; Erdmann, M; Schadendorf, D; Croner, R S; Krähenbühl, L; Kähler, K C; Hafner, C; Leisgang, W; Kiesewetter, F; Dummer, R; Schuler, G; Stürzl, M; Heinzerling, L

    2017-10-01

    PD-L1 is established as a predictive marker for therapy of non-small cell lung cancer with pembrolizumab. Furthermore, PD-L1 positive melanoma has shown more favorable outcomes when treated with anti-PD1 antibodies and dacarbazine compared to PD-L1 negative melanoma. However, the role of PD-L1 expression with regard to response to checkpoint inhibition with anti-CTLA-4 is not clear, yet. In addition, the lack of standardization in the immunohistochemical assessment of PD-L1 makes the comparison of results difficult. In this study, we investigated the PD-L1 gene expression with a new fully automated technique via RT-PCR and correlated the findings with the response to the anti-CTLA-4 antibody ipilimumab. Within a retrospective multi-center trial, PD-L1 gene expression was evaluated in 78 melanoma patients in a total of 111 pre-treatment tumor samples from 6 skin cancer centers and analyzed with regard to response to ipilimumab. For meaningful statistical analysis, the cohort was enriched for responders with 30 responders and 48 non-responders. Gene expression was assessed by quantitative RT-PCR after extracting mRNA from formalin-fixed paraffin embedded tumor tissue and correlated with results from immunohistochemical (IHC) stainings. The evaluation of PD-L1 expression based on mRNA level is feasible. Correlation between PD-L1 expression as assessed by IHC and RT-PCR showed varying levels of concordance depending on the antibody employed. RT-PCR should be further investigated to measure PD-L1 expression, since it is a semi-quantitative method with observer-independent evaluation. With this approach, there was no statistical significant difference in the PD-L1 expression between responders and non-responders to the therapy with ipilimumab. The evaluation of PD-L1 expression based on mRNA level is feasible. Correlation between PD-L1 expression as assessed by IHC and RT-PCR showed varying levels of concordance depending on the antibody employed. RT-PCR should be further investigated to measure PD-L1 expression, since it is a semi-quantitative method with observer-independent evaluation. With this approach, there was no statistical significant difference in the PD-L1 expression between responders and non-responders to the therapy with ipilimumab.

  14. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    PubMed

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution analysis in inhibitory tissues.

  15. Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method.

    PubMed

    Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan

    2010-09-01

    Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and qPCR reaction would greatly improve the performance of the model. This methodology, built upon Bacteroidales assays, is readily transferable to any other microbial source indicator where a universal assay for fecal sources of that indicator exists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Relationship and variation of qPCR and culturable enterococci estimates in ambient surface waters are predictable

    USGS Publications Warehouse

    Whitman, Richard L.; Ge, Zhongfu; Nevers, Meredith B.; Boehm, Alexandria B.; Chern, Eunice C.; Haugland, Richard A.; Lukasik, Ashley M.; Molina, Marirosa; Przybyla-Kelly, Kasia; Shively, Dawn A.; White, Emily M.; Zepp, Richard G.; Byappanahalli, Muruleedhara N.

    2010-01-01

    The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based methods, the U.S. Environmental Protection Agency is currently considering its use as a basis for revised ambient water quality criteria. In anticipation of this possibility, we sought to examine the relationship between qPCR-based and culture-based estimates of enterococci in surface waters. Using data from several research groups, we compared enterococci estimates by the two methods in water samples collected from 37 sites across the United States. A consistent linear pattern in the relationship between cell equivalents (CCE), based on the qPCR method, and colony-forming units (CFU), based on the traditional culturable method, was significant (P 10CFU > 2.0/100 mL) while uncertainty increases at lower CFU values. It was further noted that the relative error in replicated qPCR estimates was generally higher than that in replicated culture counts even at relatively high target levels, suggesting a greater need for replicated analyses in the qPCR method to reduce relative error. Further studies evaluating the relationship between culture and qPCR should take into account analytical uncertainty as well as potential differences in results of these methods that may arise from sample variability, different sources of pollution, and environmental factors.

  17. Molecular Quantification of Zooplankton Gut Content: The Case For qPCR

    NASA Astrophysics Data System (ADS)

    Frischer, M. E.; Walters, T. L.; Gibson, D. M.; Nejstgaard, J. C.; Troedsson, C.

    2016-02-01

    The ability to obtain information about feeding selectivity and rates in situ for zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, directly estimating feeding selection and rates of zooplankton, without bias, associated with culturing conditions has been notoriously difficult. A potential approach for addressing this problem is to target prey-specific DNA as a marker for prey ingestion and selection. In this study we report the development of a differential length amplification quantitative PCR (dla-qPCR) assay targeting the 18S rRNA gene to validate the use of a DNA-based approach to quantify consumption of specific plankton prey by the pelagic tunicate (doliolid) Dolioletta gegenbauri. Compared to copepods and other marine animals, the digestion of prey genomic DNA inside the gut of doliolids is low. This method minimizes potential underestimations, and therefore allows prey DNA to be used as an effective indicator of prey consumption. We also present an initial application of a qPCR-assay to estimate consumption of specific prey species on the southeastern continental shelf of the U.S., where doliolids stochastically bloom in response to upwelling events. Estimated feeding rates, based on qPCR, were in the same range as those estimated from clearance rates in laboratory feeding studies. In the field, consumption of specific prey, including the centric diatom Thalassiosira spp. was detected in the gut of wild caught D. gegenbauri at the levels consistent with their abundance in the water column at the time of collection. Thus, both experimental and field investigations support the hypothesis that a qPCR approach will be useful for the quantitative investigation of the in situ diet of D. gegenbauri without introduced bias' associated with cultivation.

  18. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  19. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome.

    PubMed

    Badri, Amine; Stefani, Franck O P; Lachance, Geneviève; Roy-Arcand, Line; Beaudet, Denis; Vialle, Agathe; Hijri, Mohamed

    2016-10-01

    Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers. From the sequencing of 14 complete AMF mitochondrial (mt) genomes, a qPCR assay using a hydrolysis probe designed in the single copy cox3-rnl intergenic region was tested and validated to specifically and accurately quantify the spores of R. irregularis isolate DAOM-197198. Specificity tests were performed using standard PCR and qPCR, and results clearly showed that the primers specifically amplified the isolate DAOM-197198, yielding a PCR product of 106 bp. According to the qPCR analyses on spores produced in vitro, the average copy number of mt genomes per spore was 3172 ± 304 SE (n = 6). Quantification assays were successfully undertaken on known and unknown samples in liquid suspensions and commercial dry formulations to show the accuracy, precision, robustness, and reproducibility of the qPCR assay. This study provides a powerful molecular toolkit specifically designed to quantify spores of the model AMF isolate DAOM-197198. The approach of molecular toolkit used in our study could be applied to other AMF taxa and will be useful to research institutions and governmental and industrial laboratories running routine quality control of AMF-based products.

  1. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    PubMed

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human genomic DNA quantitation system, H-Quant: development and validation for use in forensic casework.

    PubMed

    Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K

    2007-03-01

    The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.

  3. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  4. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus) Growth Hormone Receptor Type I

    PubMed Central

    2009-01-01

    Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes. PMID:19495916

  5. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains

    PubMed Central

    de Gier, Camilla; Pickering, Janessa L.; Richmond, Peter C.; Thornton, Ruth B.

    2016-01-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148

  6. Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR.

    PubMed

    Nielsen, Martin K; Peterson, David S; Monrad, Jesper; Thamsborg, Stig M; Olsen, Susanne N; Kaplan, Ray M

    2008-03-01

    Strongylus vulgaris is an important strongyle nematode with high pathogenic potential infecting horses world-wide. Several decades of intensive anthelmintic use has virtually eliminated clinical disease caused by S. vulgaris, but has also caused high levels of anthelmintic resistance in equine small strongyle (cyathostomin) nematodes. Recommendations aimed at limiting the development of anthelmintic resistance by reducing treatment intensity raises a simultaneous demand for reliable and accurate diagnostic tools for detecting important parasitic pathogens. Presently, the only means available to differentiate among strongyle species in a faecal sample is by identifying individual L3 larvae following a two week coproculture procedure. The aim of the present study is to overcome this diagnostic obstacle by developing a fluorescence-based quantitative PCR assay capable of identifying S. vulgaris eggs in faecal samples from horses. Species-specific primers and a TaqMan probe were designed by alignment of published ribosomal DNA sequences of the second internal transcribed spacer of cyathostomin and Strongylus spp. nematodes. The assay was tested for specificity and optimized using genomic DNA extracted from identified male worms of Strongylus and cyathostomin species. In addition, eggs were collected from adult female worms and used to evaluate the quantitative potential of the assay. Statistically significant linear relationships were found between egg numbers and cycle of threshold (Ct) values. PCR results were unaffected by the presence of cyathostomin DNA in the sample and there was no indication of PCR inhibition by faecal sources. A field evaluation on faecal samples obtained from four Danish horse farms revealed a good agreement with the traditional larval culture (kappa-value=0.78), but with a significantly higher performance of the PCR assay. An association between Ct values and S. vulgaris larval counts was statistically significant. The present assay can reliably and semi-quantitatively detect minute quantities of S. vulgaris eggs in faecal samples.

  7. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  8. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    PubMed

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  9. PCR-free Quantification of Multiple Splice Variants in Cancer Gene by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Sun, Lan; Irudayaraj, Joseph

    2009-01-01

    We demonstrate a surface enhanced Raman spectroscopy (SERS) based array platform to monitor gene expression in cancer cells in a multiplex and quantitative format without amplification steps. A strategy comprising of DNA/RNA hybridization, S1 nuclease digestion, and alkaline hydrolysis was adopted to obtain DNA targets specific to two splice junction variants Δ(9, 10) and Δ(5) of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 breast cancer cell lines. These two targets were identified simultaneously and their absolute quantities were estimated by a SERS strategy utilizing the inherent plasmon-phonon Raman mode of gold nanoparticle probes as a self-referencing standard to correct for variability in surface enhancement. Results were then validated by reverse transcription PCR (RT-PCR). Our proposed methodology could be expanded to a higher level of multiplexing for quantitative gene expression analysis of any gene without any amplification steps. PMID:19780515

  10. NAIMA as a solution for future GMO diagnostics challenges.

    PubMed

    Dobnik, David; Morisset, Dany; Gruden, Kristina

    2010-03-01

    In the field of genetically modified organism (GMO) diagnostics, real-time PCR has been the method of choice for target detection and quantification in most laboratories. Despite its numerous advantages, however, the lack of a true multiplexing option may render real-time PCR less practical in the face of future GMO detection challenges such as the multiplicity and increasing complexity of new transgenic events, as well as the repeated occurrence of unauthorized GMOs on the market. In this context, we recently reported the development of a novel multiplex quantitative DNA-based target amplification method, named NASBA implemented microarray analysis (NAIMA), which is suitable for sensitive, specific and quantitative detection of GMOs on a microarray. In this article, the performance of NAIMA is compared with that of real-time PCR, the focus being their performances in view of the upcoming challenge to detect/quantify an increasing number of possible GMOs at a sustainable cost and affordable staff effort. Finally, we present our conclusions concerning the applicability of NAIMA for future use in GMO diagnostics.

  11. A novel duplex real time quantitative reverse transcription polymerase chain reaction for rubella virus with armored RNA as a noncompetitive internal positive control.

    PubMed

    Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping

    2015-07-01

    The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A novel strategy to obtain quantitative data for modelling: combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses.

    PubMed

    Krämer, Nadine; Löfström, Charlotta; Vigre, Håkan; Hoorfar, Jeffrey; Bunge, Cornelia; Malorny, Burkhard

    2011-03-01

    Salmonella is a major zoonotic pathogen which causes outbreaks and sporadic cases of gastroenteritis in humans worldwide. The primary sources for Salmonella are food-producing animals such as pigs and poultry. For risk assessment and hazard analysis and critical control point (HACCP) concepts, it is essential to produce large amounts of quantitative data, which is currently not achievable with the standard cultural based methods for enumeration of Salmonella. This study presents the development of a novel strategy to enumerate low numbers of Salmonella in cork borer samples taken from pig carcasses as a first concept and proof of principle for a new sensitive and rapid quantification method based on combined enrichment and real-time PCR. The novelty of the approach is in the short pre-enrichment step, where for most bacteria, growth is in the log phase. The method consists of an 8h pre-enrichment of the cork borer sample diluted 1:10 in non-selective buffered peptone water, followed by DNA extraction, and Salmonella detection and quantification by real-time PCR. The limit of quantification was 1.4 colony forming units (CFU)/20 cm(2) (approximately 10 g) of artificially contaminated sample with 95% confidence interval of ± 0.7 log CFU/sample. The precision was similar to the standard reference most probable number (MPN) method. A screening of 200 potentially naturally contaminated cork borer samples obtained over seven weeks in a slaughterhouse resulted in 25 Salmonella-positive samples. The analysis of salmonellae within these samples showed that the PCR method had a higher sensitivity for samples with a low contamination level (<6.7 CFU/sample), where 15 of the samples negative with the MPN method was detected with the PCR method and 5 were found to be negative by both methods. For the samples with a higher contamination level (6.7-310 CFU/sample) a good agreement between the results obtained with the PCR and MPN methods was obtained. The quantitative real-time PCR method can easily be applied to other food and environmental matrices by adaptation of the pre-enrichment time and media. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods.

    PubMed

    Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P

    1999-12-01

    A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.

  14. Qualitative and quantitative distribution of PCV2 in wild boars and domestic pigs in Germany.

    PubMed

    Reiner, Gerald; Bronnert, Bastian; Hohloch, Corinna; Fresen, Christina; Haack, Ingo; Willems, Hermann; Reinacher, Manfred

    2010-09-28

    Porcine circovirus 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome (PMWS), has been detected in North American and European wild boars at prevalences arguing for high circulation rates among populations. Systematic data on the qualitative distribution of PCV2 infections and on PCVD (PCV2 diseases) in wild boars are rare, however, and quantitative data about viral loads are missing. To be able to judge the PCV2/PCVD situation in wild boars, evaluation of the nationwide qualitative and quantitative distribution of PCV2 and PCVD in Germany was the objective of the present study. Wild boar samples were compared with domestic pig samples of the same greater areas, including tonsils, lungs, spleen, Lnn. bronchiales and Lnn. mesenterici of 349 wild boars and 348 domestic pigs. All of the wild boars and 308 of the domestic pigs have been apparently free of PCVD, 40 of the domestic pigs had been rejected from slaughter due to health problems (i.e. wasting). Tissues were examined by pathohistology, immunohistology (IHC), nested PCR (nPCR and quantitative PCR (qPCR). One wild boar (0.3%) and 8.7% of the domestic pigs were classified as PCVD-affected, based on pathohistology and IHC. PCV2 DNA was detected in 63.1% and 45.4% of the wild boars by nPCR and qPCR, respectively, and in 100% and 98.8% of the domestic pigs. PCV2 loads differed significantly between wild boars (average: 10(2.8) PCV2 genomes/microg extracted sample DNA) and domestic pigs (average: 10(4.2) PCV2 genomes/microg of sample DNA). The qualitative detection of PCV2 DNA in tissues of wild boars and domestic pigs was abundant and not of any pathological relevance. The overall load of PCV2 in domestic pigs was relatively high and borderline with respect to PCVD, and there was no difference between apparently healthy pigs and pigs rejected from slaughter in this respect. Most of the wild boars were infected with PCV2 at loads less relevant for PCVD. (c) 2010 Elsevier B.V. All rights reserved.

  15. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    PubMed

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  16. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    PubMed

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  17. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  18. PCR-Mediated Detection and Quantification of the Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis Via a Novel Gene Target.

    PubMed

    McNally, R Ryan; Ishimaru, Carol A; Malvick, Dean K

    2016-12-01

    Goss's leaf blight and wilt of maize (corn) is a significant and reemerging disease caused by the bacterium Clavibacter michiganensis subsp. nebraskensis. Despite its importance, molecular tools for diagnosing and studying this disease remain limited. We report the identification of CMN_01184 as a novel gene target and its use in conventional PCR (cPCR) and SYBR green-based quantitative PCR (qPCR) assays for specific detection and quantification of C. michiganensis subsp. nebraskensis. The cPCR and qPCR assays based on primers targeting CMN_01184 specifically amplified only C. michiganensis subsp. nebraskensis among a diverse collection of 129 bacterial and fungal isolates, including multiple maize bacterial and fungal pathogens, environmental organisms from agricultural fields, and all known subspecies of C. michiganensis. Specificity of the assays for detection of only C. michiganensis subsp. nebraskensis was also validated with field samples of C. michiganensis subsp. nebraskensis-infected and uninfected maize leaves and C. michiganensis subsp. nebraskensis-infested and uninfested soil. Detection limits were determined at 30 and 3 ng of pure C. michiganensis subsp. nebraskensis DNA, and 100 and 10 CFU of C. michiganensis subsp. nebraskensis for the cPCR and qPCR assays, respectively. Infection of maize leaves by C. michiganensis subsp. nebraskensis was quantified from infected field samples and was standardized using an internal maize DNA control. These novel, specific, and sensitive PCR assays based on CMN_01184 are effective for diagnosis of Goss's wilt and for studies of the epidemiology and host-pathogen interactions of C. michiganensis subsp. nebraskensis.

  19. Cellular chromosome DNA interferes with fluorescence quantitative real-time PCR detection of HBV DNA in culture medium.

    PubMed

    Pan, Xiao-Ben; Wei, Lai; Han, Jin-Chao; Gao, Yan

    2008-01-01

    Fluorescence quantitative real-time PCR (FQ-PCR) is a recently developed technique increasingly used for clinical diagnosis by detection of hepatitis B virus (HBV) DNA in serum. FQ-PCR is also used in scientific research for detection of HBV DNA in cell culture. Understanding potential FQ-PCR interference factors can improve the accuracy of HBV DNA quantification in cell culture medium. HBV positive serum was diluted with culture medium to produce three test groups with HBV DNA levels of 5 x 10(7) copies/ml (high), 5 x 10(5) copies/ml (medium), and 5 x 10(3) copies/ml (low). Chromosome DNA was extracted from HepG2 cells and then added to high, medium, and low group samples at final concentrations of 0, 12.5, 25, 50, and 100 microg/ml. The samples were quantified by FQ-PCR and data were evaluated using statistical software. No marked changes were seen in the quantitative curves for high level HBV DNA samples when the samples were supplemented with 0-100 microg/ml of chromosome DNA. Interference was observed in medium level samples when 50 and 100 microg/ml of chromosome DNA was added. Interference was also observed in low level HBV DNA samples when the concentration of added chromosome DNA was greater than 25 microg/ml. The interference was eliminated when samples were digested by DNase I prior to PCR detection. In Conclusions, the presence of cellular chromosome DNA can interfere with the detection of HBV DNA by FQ-PCR. Removal of cellular chromosome DNA from culture media prior to FQ-PCR is necessary for reliable HBV DNA quantitative detection. (c) 2007 Wiley-Liss, Inc.

  20. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas)

    PubMed Central

    Wang, Jiann-Hsiung; Chou, Shih-Jen; Li, Tsung-Hsien; Leu, Ming-Yih; Ho, Hsiao-Kuan

    2017-01-01

    Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR) is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales (Delphinapterus leucas) that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ) were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4) with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNAlater™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset. PMID:28970970

  1. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas).

    PubMed

    Tsai, Ming-An; Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Li, Tsung-Hsien; Leu, Ming-Yih; Ho, Hsiao-Kuan; Yang, Wei Cheng

    2017-01-01

    Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR) is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales ( Delphinapterus leucas ) that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ) were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4) with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNA later ™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset.

  2. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  3. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    PubMed

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.

  4. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.

    PubMed

    Lettat, A; Hassanat, F; Benchaar, C

    2013-08-01

    Methane produced by the methanogenic Archaea that inhabit the rumen is a potent greenhouse gas and represents an energy loss for the animal. Although several strategies have been proposed to mitigate enteric CH4 production, little is known about the effects of dietary changes on the microbial consortia involved in ruminal methanogenesis. Thus, the current study aimed to examine how the metabolically active microbes are affected when dairy cows were fed diets with increasing proportions of corn silage (CS). For this purpose, 9 ruminally cannulated lactating dairy cows were used in a replicated 3 × 3 Latin square design and fed a total mixed ration (60:40 forage:concentrate ratio on a dry matter basis) with the forage portion being either alfalfa silage (0% CS), corn silage (100% CS), or a 50:50 mixture (50% CS). Enteric CH4 production was determined using respiration chambers and total rumen content was sampled for the determination of fermentation characteristics and molecular biology analyses (cDNA-based length heterogeneity PCR, quantitative PCR). The cDNA-based length heterogeneity PCR targeting active microbes revealed similar bacterial communities in cows fed 0% CS and 50% CS diets, whereas important differences were observed between 0% CS and 100% CS diets, including a reduction in the bacterial richness and diversity in cows fed 100% CS diet. As revealed by quantitative PCR, feeding the 100% CS diet increased the number of total bacteria, Prevotella spp., Archaea, and methanogenic activity, though it reduced protozoal number. Meanwhile, increasing the CS proportion in the diet increased propionate concentration but decreased ruminal pH, CH4 production (L/kg of dry matter intake), and concentrations of acetate and butyrate. Based on these microbial and fermentation changes, and because CH4 production was reduced by feeding 100% CS diet, this study shows that the use of cDNA-based quantitative PCR to estimate archaeal growth and activity is not reliable enough to reflect changes in ruminal methanogenesis. A more robust technique to characterize changes in archaeal community structures will help to better understand the microbial process involved in ruminal methanogenesis and, hence, enabling the development of more effective dietary CH4 mitigation strategies. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  6. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  7. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  8. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy.

    PubMed

    Wan, Cai-Feng; Liu, Xue-Song; Wang, Lin; Zhang, Jie; Lu, Jin-Song; Li, Feng-Hua

    2018-06-01

    To clarify whether the quantitative parameters of contrast-enhanced ultrasound (CEUS) can be used to predict pathological complete response (pCR) in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy (NAC). Fifty-one patients with histologically proved locally advanced breast cancer scheduled for NAC were enrolled. The quantitative data for CEUS and the tumor diameter were collected at baseline and before surgery, and compared with the pathological response. Multiple logistic regression analysis was performed to examine quantitative parameters at CEUS and the tumor diameter to predict the pCR, and receiver operating characteristic (ROC) curve analysis was used as a summary statistic. Multiple logistic regression analysis revealed that PEAK (the maximum intensity of the time-intensity curve during bolus transit), PEAK%, TTP% (time to peak), and diameter% were significant independent predictors of pCR, and the area under the ROC curve was 0.932(Az 1 ), and the sensitivity and specificity to predict pCR were 93.7% and 80.0%. The area under the ROC curve for the quantitative parameters was 0.927(Az 2 ), and the sensitivity and specificity to predict pCR were 81.2% and 94.3%. For diameter%, the area under the ROC curve was 0.786 (Az 3 ), and the sensitivity and specificity to predict pCR were 93.8% and 54.3%. The values of Az 1 and Az 2 were significantly higher than that of Az 3 (P = 0.027 and P = 0.034, respectively). However, there was no significant difference between the values of Az 1 and Az 2 (P = 0.825). Quantitative analysis of tumor blood perfusion with CEUS is superior to diameter% to predict pCR, and can be used as a functional technique to evaluate tumor response to NAC. Copyright © 2018. Published by Elsevier B.V.

  9. Clinical Usefulness of a One-Tube Nested Reverse Transcription Quantitative Polymerase Chain Reaction Assay for Evaluating Human Epidermal Growth Factor Receptor 2 mRNA Overexpression in Formalin-Fixed and Paraffin-Embedded Breast Cancer Tissue Samples.

    PubMed

    Wang, Hye-Young; Ahn, Sungwoo; Park, Sunyoung; Kim, SeungIl; Lee, Hyeyoung

    2017-01-01

    Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods. In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples. The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001). Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression. © 2016 S. Karger AG, Basel.

  10. Validation and application of quantitative PCR assays using host-specific Bacteroidales genetic markers for swine fecal pollution tracking.

    PubMed

    Fan, Lihua; Shuai, Jiangbing; Zeng, Ruoxue; Mo, Hongfei; Wang, Suhua; Zhang, Xiaofeng; He, Yongqiang

    2017-12-01

    Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a Myxozoan parasite causing intestinal giant cystic disease in the Israel carp.

    PubMed

    Seo, Jung Soo; Jeon, Eun Ji; Kim, Moo Sang; Woo, Sung Ho; Kim, Jin Do; Jung, Sung Hee; Park, Myoung Ae; Jee, Bo Young; Kim, Jin Woo; Kim, Yi-Cheong; Lee, Eun Hye

    2012-06-01

    Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.

  12. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    PubMed Central

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to evaluate the quality and performance on different matrixes and extraction techniques. The effect of PCR efficiency on the resulting GMO content is demonstrated. Conclusion The crucial influence of extraction technique and sample matrix properties on the results of GMO quantification is demonstrated. Appropriate extraction techniques for each matrix need to be determined to achieve accurate DNA quantification. Nevertheless, as it is shown that in the area of food and feed testing matrix with certain specificities is impossible to define strict quality controls need to be introduced to monitor PCR. The results of our study are also applicable to other fields of quantitative testing by real-time PCR. PMID:16907967

  13. The use of comparative duplex PCR in monitoring of patients with non-Hodgkin's lymphoma and chronic lymphocytic leukaemia.

    PubMed

    Slavícková, A; Forsterová, K; Ivánek, R; Cerný, J; Klener, P

    2005-01-01

    Various quantitative PCR approaches have been utilized during the last years to provide information about the treatment efficacy and the risk of recurrent disease in haematological malignancies. Apart from the frequently used real-time PCR, cost-saving modified standard PCR methods may be applied as well. This report evaluates the utility of the end-point comparative duplex PCR. We have used this method for monitoring of 35 patients with either NHL or CLL and observed a good correlation between quantitative molecular results and clinical outcome. There was also an agreement between comparative duplex PCR and real-time PCR in patients who were monitored by both methods. We therefore believe that use of this technique should be strongly considered instead of simple qualitative detection in monitoring of therapeutic outcome in NHL or CLL patients.

  14. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    PubMed

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  16. Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts.

    PubMed

    Weßling, Ralf; Panstruga, Ralph

    2012-08-31

    The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.

  17. A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples.

    PubMed

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2015-05-18

    Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Bartonella vinsonii subsp. berkhoffii and B. henselae in dogs.

    PubMed

    Müller, A; Soto, F; Sepúlveda, M; Bittencourt, P; Benevenute, J L; Ikeda, P; Machado, R Z; André, M R

    2018-05-06

    This study aimed to molecularly survey Bartonella in dogs from Chile. Quantitative real-time PCR (qPCR) for Bartonella spp. based on nuoG gene was performed in 139 blood samples taken from dogs belonging to rural localities of the Valdivia Province, Los Ríos region, southern Chile. nuoG qPCR-positive samples were submitted to conventional PCR assays for ftsZ, gltA, rpoB and nuoG genes and sequencing for speciation and phylogenetic analysis. Based upon qPCR results, Bartonella spp. occurrence in dogs was 4.3% (6/139). Out of six nuoG qPCR-positive samples, six, three, two and none showed positive results in cPCR assays based on gltA, ftsZ, rpoB and nuoG genes, respectively. Consistent sequencing results were obtained only for the ftsZ gene from sample #1532 (GeneBank accession number: MG252491), and gltA gene from samples #1535 (MG252490) and #1532 (148 bp fragment that was not deposited in GenBank). Phylogenetic analysis of ftsZ and gltA genes allowed speciation of two nuoG-positive samples, one as Bartonella vinsonii subsp. berkhoffii and the other as B. henselae. Bartonella vinsonii subsp. berkhoffii and B. henselae are detected for the first time in dogs from Chile, highlighting the importance of the canine population as a source of zoonotic agents and potential infection risk to humans.

  19. Detection of Mycobacterium avium subsp. paratuberculosis in Drinking Water and Biofilms by Quantitative PCR ▿ †

    PubMed Central

    Beumer, Amy; King, Dawn; Donohue, Maura; Mistry, Jatin; Covert, Terry; Pfaller, Stacy

    2010-01-01

    It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn's disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States. PMID:20817803

  20. Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Olcén, Per; Blomberg, Jonas; Mölling, Paula; Herrmann, Björn

    2013-06-01

    A quantitative polymerase chain reaction (PCR) for the fucK gene was developed for specific detection of Haemophilus influenzae. The method was tested on sputum and nasopharyngeal aspirate (NPA) from 78 patients with community-acquired pneumonia (CAP). With a reference standard of sputum culture and/or serology against the patient's own nasopharyngeal isolate, H. influenzae etiology was detected in 20 patients. Compared with the reference standard, fucK PCR (using the detection limit 10(5) DNA copies/mL) on sputum and NPA showed a sensitivity of 95.0% (19/20) in both cases, and specificities of 87.9% (51/58) and 89.5% (52/58), respectively. In a receiver operating characteristic curve analysis, sputum fucK PCR was found to be significantly superior to sputum P6 PCR for detection of H. influenzae CAP. NPA fucK PCR was positive in 3 of 54 adult controls without respiratory symptoms. In conclusion, quantitative fucK real-time PCR provides a sensitive and specific identification of H. influenzae in respiratory secretions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches.

    PubMed

    Khodakov, Dmitriy; Wang, Chunyan; Zhang, David Yu

    2016-10-01

    Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    PubMed

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Development and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal populations in both in vitro and in vivo systems.

    PubMed

    Sekhavati, Mohammad H; Mesgaran, Mohsen Danesh; Nassiri, Mohammad R; Mohammadabadi, Tahereh; Rezaii, Farkhondeh; Fani Maleki, Adham

    2009-10-01

    This paper describes the use of a quantitative competitive polymerase chain reaction (QC-PCR) assay; using PCR primers to the rRNA locus of rumen fungi and a standard-control DNA including design and validation. In order to test the efficiency of this method for quantifying anaerobic rumen fungi, it has been attempted to evaluate this method in in vitro conditions by comparing with an assay based on measuring cell wall chitin. The changes in fungal growth have been studied when they are grown in in vitro on either untreated (US) or sodium hydroxide treated wheat straw (TS). Results showed that rumen fungi growth was significantly higher in treated samples compared with untreated during the 12d incubation (P<0.05) and plotting the chitin assay's results against the competitive PCR's showed high positive correlation (R(2)> or =0.87). The low mean values of the coefficients of variance in repeatability in the QC-PCR method against the chitin assay demonstrated more reliability of this new approach. And finally, the efficiency of this method was investigated in in vivo conditions. Samples of rumen fluid were collected from four fistulated Holstein steers which were fed four different diets (basal diet, high starch, high sucrose and starch plus sucrose) in rotation. The results of QC-PCR showed that addition of these non-structural carbohydrates to the basal diets caused a significant decrease in rumen anaerobic fungi biomass. The QC-PCR method appears to be a reliable and can be used for rumen samples.

  4. mcrA-Targeted Real-Time Quantitative PCR Method To Examine Methanogen Communities▿

    PubMed Central

    Steinberg, Lisa M.; Regan, John M.

    2009-01-01

    Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members. PMID:19447957

  5. Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis)measurement.

    PubMed

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Cuba, César Augusto Cuba; Hagström, Luciana; Hecht, Mariana Machado; Santana, Camila; Ribeiro, Marcelle; Vital, Tamires Emanuele; Santalucia, Marcelo; Knox, Monique; Obara, Marcos Takashi; Abad-Franch, Fernando; Gurgel-Gonçalves, Rodrigo

    2018-01-09

    Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.

  6. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research

    PubMed Central

    Yan, Xu; Bishop, David J.

    2018-01-01

    Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content. PMID:29746477

  7. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States.

    PubMed

    Varughese, Eunice A; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer L; Fout, G Shay; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T; Keely, Scott P

    2018-04-01

    Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters. Published by Elsevier B.V.

  8. Monochloramine Disinfection Kinetics of Nitrosomonas europaea by Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods▿

    PubMed Central

    Wahman, David G.; Wulfeck-Kleier, Karen A.; Pressman, Jonathan G.

    2009-01-01

    Monochloramine disinfection kinetics were determined for the pure-culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture-independent methods, namely, Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR). Both methods were first verified with mixtures of heat-killed (nonviable) and non-heat-killed (viable) cells before a series of batch disinfection experiments with stationary-phase cultures (batch grown for 7 days) at pH 8.0, 25°C, and 5, 10, and 20 mg Cl2/liter monochloramine. Two data sets were generated based on the viability method used, either (i) LD or (ii) PMA-qPCR. These two data sets were used to estimate kinetic parameters for the delayed Chick-Watson disinfection model through a Bayesian analysis implemented in WinBUGS. This analysis provided parameter estimates of 490 mg Cl2-min/liter for the lag coefficient (b) and 1.6 × 10−3 to 4.0 × 10−3 liter/mg Cl2-min for the Chick-Watson disinfection rate constant (k). While estimates of b were similar for both data sets, the LD data set resulted in a greater k estimate than that obtained with the PMA-qPCR data set, implying that the PMA-qPCR viability measure was more conservative than LD. For N. europaea, the lag phase was not previously reported for culture-independent methods and may have implications for nitrification in drinking water distribution systems. This is the first published application of a PMA-qPCR method for disinfection kinetic model parameter estimation as well as its application to N. europaea or monochloramine. Ultimately, this PMA-qPCR method will allow evaluation of monochloramine disinfection kinetics for mixed-culture bacteria in drinking water distribution systems. PMID:19561179

  9. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  10. Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs.

    PubMed

    Isaac, Andre; Kostiuk, Morris; Zhang, Han; Lindsay, Cameron; Makki, Fawaz; O'Connell, Daniel A; Harris, Jeffrey R; Cote, David W J; Seikaly, Hadi; Biron, Vincent L

    2017-01-14

    The incidence of oropharyngeal squamous cell carcinoma (OPSCC) caused by oncogenic human papillomavirus (HPV) is rising worldwide. HPV-OPSCC is commonly diagnosed by RT-qPCR of HPV E6 and E7 oncoproteins or by p16 immunohistochemistry (IHC). Droplet digital PCR (ddPCR) has been recently reported as an ultra-sensitive and highly precise method of nucleic acid quantification for biomarker analysis. To validate the use of a minimally invasive assay for detection of oncogenic HPV based on oropharyngeal swabs using ddPCR. Secondary objectives were to compare the accuracy of ddPCR swabs to fresh tissue p16 IHC and RT-qPCR, and to compare the cost of ddPCR with p16 IHC. We prospectively included patients with p16 + oral cavity/oropharyngeal cancer (OC/OPSCC), and two control groups: p16 - OC/OPSCC patients, and healthy controls undergoing tonsillectomy. All underwent an oropharyngeal swab with ddPCR for quantitative detection of E6 and E7 mRNA. Surgical specimens had p16 IHC performed. Agreement between ddPCR and p16 IHC was determined for patients with p16 positive and negative OC/OPSCC as well as for healthy control patients. The sensitivity and specificity of ddPCR of oropharyngeal swabs were calculated against p16 IHC for OPSCC. 122 patients were included: 36 patients with p16 + OPSCC, 16 patients with p16 - OPSCC, 4 patients with p16 + OCSCC, 41 patients with p16 - OCSCC, and 25 healthy controls. The sensitivity and specificity of ddPCR of oropharyngeal swabs against p16 IHC were 92 and 98% respectively, using 20-50 times less RNA than that required for conventional RT-qPCR. Overall agreement between ddPCR of tissue swabs and p16 of tumor tissue was high at ĸ = 0.826 [0.662-0.989]. Oropharyngeal swabs analyzed by ddPCR is a quantitative, rapid, and effective method for minimally invasive oncogenic HPV detection. This assay represents the most sensitive and accurate mode of HPV detection in OPSCC without a tissue biopsy in the available literature.

  11. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  13. Sensitivity of Small RNA-Based Detection of Plant Viruses.

    PubMed

    Santala, Johanna; Valkonen, Jari P T

    2018-01-01

    Plants recognize unrelated viruses by the antiviral defense system called RNA interference (RNAi). RNAi processes double-stranded viral RNA into small RNAs (sRNAs) of 21-24 nucleotides, the reassembly of which into longer strands in silico allows virus identification by comparison with the sequences available in databases. The aim of this study was to compare the virus detection sensitivity of sRNA-based virus diagnosis with the established virus species-specific polymerase chain reaction (PCR) approach. Viruses propagated in tobacco plants included three engineered, infectious clones of Potato virus A (PVA), each carrying a different marker gene, and an infectious clone of Potato virus Y (PVY). Total RNA (containing sRNA) was isolated and subjected to reverse-transcription real-time PCR (RT-RT-PCR) and sRNA deep-sequencing at different concentrations. RNA extracted from various crop plants was included in the reactions to normalize RNA concentrations. Targeted detection of selected viruses showed a similar threshold for the sRNA and reverse-transcription quantitative PCR (RT-qPCR) analyses. The detection limit for PVY and PVA by RT-qPCR in this study was 3 and 1.5 fg of viral RNA, respectively, in 50 ng of total RNA per PCR reaction. When knowledge was available about the viruses likely present in the samples, sRNA-based virus detection was 10 times more sensitive than RT-RT-PCR. The advantage of sRNA analysis is the detection of all tested viruses without the need for virus-specific primers or probes.

  14. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

    PubMed

    Ploemen, Ivo H J; Prudêncio, Miguel; Douradinha, Bruno G; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J F; Hermsen, Cornelus C; Sauerwein, Robert W; Baptista, Fernanda G; Mota, Maria M; Waters, Andrew P; Que, Ivo; Lowik, Clemens W G M; Khan, Shahid M; Janse, Chris J; Franke-Fayard, Blandine M D

    2009-11-18

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luc(con), expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1-5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.

  15. Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging

    PubMed Central

    Douradinha, Bruno G.; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J. F.; Hermsen, Cornelus C.; Sauerwein, Robert W.; Baptista, Fernanda G.; Mota, Maria M.; Waters, Andrew P.; Que, Ivo; Lowik, Clemens W. G. M.; Khan, Shahid M.; Janse, Chris J.; Franke-Fayard, Blandine M. D.

    2009-01-01

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium. PMID:19924309

  16. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  17. Real-time water quality monitoring at a Great Lakes National Park

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara; Nevers, Meredith; Shively, Dawn; Spoljaric, Ashley; Otto, Christopher

    2018-01-01

    Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using Escherichia coli and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall (r = 0.686, p < 0.0001, n = 98) and at individual locations as well, except at the Platte River outlet location: Esch Road Beach (r = 0.441, p = 0.031, n = 24), Otter Creek (r = 0.592, p = 0.002, n = 24), and Platte Point Bay (r = 0.571, p = 0.004, n = 24). Similarly, E. coli MF and qPCR results were significantly, positively correlated (r = 0.469, p < 0.0001, n = 95), overall but not at individual locations. Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.

  18. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population.

    PubMed

    Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos

    2015-05-20

    Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.

  19. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  20. Prevalence of PCR detectable malaria infection among febrile patients with a negative Plasmodium falciparum specific rapid diagnostic test in Zanzibar.

    PubMed

    Baltzell, Kimberly A; Shakely, Deler; Hsiang, Michelle; Kemere, Jordan; Ali, Abdullah Suleiman; Björkman, Anders; Mårtensson, Andreas; Omar, Rahila; Elfving, Kristina; Msellem, Mwinyi; Aydin-Schmidt, Berit; Rosenthal, Philip J; Greenhouse, Bryan

    2013-02-01

    We screened for malaria in 594 blood samples from febrile patients who tested negative by a Plasmodium falciparum-specific histidine-rich protein-2-based rapid diagnostic test at 12 health facilities in Zanzibar districts North A and Micheweni, from May to August 2010. Screening was with microscopy, polymerase chain reaction (PCR) targeting the cytochrome b gene (cytbPCR) of the four major human malaria species, and quantitative PCR (qPCR). The prevalence of cytbPCR-detectable malaria infection was 2% (12 of 594), including 8 P. falciparum, 3 Plasmodium malariae, and 1 Plasmodium vivax infections. Microscopy identified 4 of 8 P. falciparum infections. Parasite density as estimated by microscopy or qPCR was > 4,000 parasites/μL in 5 of 8 cytbPCR-detectable P. falciparum infections. The infections that were missed by the rapid diagnostic test represent a particular challenge in malaria elimination settings and highlight the need for more sensitive point-of-care diagnostic tools to improve case detection of all human malaria species in febrile patients.

  1. HSV2 acute retinal necrosis: diagnosis and monitoring with quantitative polymerase chain reaction.

    PubMed

    Cottet, L; Kaiser, L; Hirsch, H H; Baglivo, E

    2009-06-01

    To describe a case of HSV2 acute retinal necrosis (ARN) diagnosed and monitored with quantitative polymerase chain reaction (PCR) in ocular fluids. Case report. Quantitative PCR was performed in the aqueous humor (AH) and vitreous using primers specific for herpes virus. A positive PCR was found for HSV2 in the AH (>100,000,000 viral copies - 8.00 log/ml). After therapy, another anterior chamber tap showed a reduction of the viral load at 4.28 log/ml (19205 copies), confirming the efficacy of the treatment. After six months, PCR on the vitreous still showed the presence of HSV2 viral particles in the eye (3.14 log DNA copies/ml, 1379 copies) although the lesion was healed. This case demonstrates that PCR is useful to detect viral DNA in AH and vitreous and to monitor viral activity and therapeutic response. Viral DNA persists in ocular fluids for months in the presence of a healed infection.

  2. mRNA-Based Parallel Detection of Active Methanotroph Populations by Use of a Diagnostic Microarray

    PubMed Central

    Bodrossy, Levente; Stralis-Pavese, Nancy; Konrad-Köszler, Marianne; Weilharter, Alexandra; Reichenauer, Thomas G.; Schöfer, David; Sessitsch, Angela

    2006-01-01

    A method was developed for the mRNA-based application of microbial diagnostic microarrays to detect active microbial populations. DNA- and mRNA-based analyses of environmental samples were compared and confirmed via quantitative PCR. Results indicated that mRNA-based microarray analyses may provide additional information on the composition and functioning of microbial communities. PMID:16461725

  3. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  4. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  5. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells

    PubMed Central

    Berman, Jennifer R.; Postovit, Lynne-Marie

    2016-01-01

    The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs “mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an “all-in-one” CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation. PMID:27089539

  6. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens

    PubMed Central

    2018-01-01

    Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling. PMID:29799876

  7. Comparison of EPA Method 1615 RT-qPCR Assays in Standard and Kit Format

    EPA Science Inventory

    EPA Method 1615 contains protocols for measuring enterovirus and norovirus by reverse transcription quantitative polymerase chain reaction. A commercial kit based upon these protocols was designed and compared to the method's standard approach. Reagent grade, secondary effluent, ...

  8. Selection and Evaluation of Potential Reference Genes for Gene Expression Analysis in the Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) Using Reverse-Transcription Quantitative PCR

    PubMed Central

    Zhu, Xun; Wan, Hu; Shakeel, Muhammad; Zhan, Sha; Jin, Byung-Rae; Li, Jianhong

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR). Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT), muscle actin (MACT), ribosomal protein S11 (RPS11), ribosomal protein S15e (RPS15), alpha 2-tubulin (TUB), elongation factor 1 delta (EF), 18S ribosomal RNA (18S), and arginine kinase (AK) and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method) to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation) following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments) guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for expression studies of related insects. PMID:24466124

  9. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR.

    PubMed

    Yuan, Miao; Lu, Yanhui; Zhu, Xun; Wan, Hu; Shakeel, Muhammad; Zhan, Sha; Jin, Byung-Rae; Li, Jianhong

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR). Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT), muscle actin (MACT), ribosomal protein S11 (RPS11), ribosomal protein S15e (RPS15), alpha 2-tubulin (TUB), elongation factor 1 delta (EF), 18S ribosomal RNA (18S), and arginine kinase (AK) and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method) to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation) following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments) guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for expression studies of related insects.

  10. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  11. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  12. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  13. EVALUATION OF RAPID DNA EXTRACTION PROCEDURES FOR THE QUANTITATIVE DETECTION OF FUNGAL CELLS USING REAL TIME PCR ANALYSIS

    EPA Science Inventory

    The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...

  14. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  15. QUANTITATIVE PCR ANALYSIS OF HOUSE DUST CAN REVEAL ABNORMAL MOLD CONDITIONS

    EPA Science Inventory

    Indoor mold populations were measured in the dust of homes in Cleveland and Cincinnati, OH, by quantitative PCR (QPCR) and, in Cincinnati, also by culturing. QPCR assays for 82 species (or groups of species) were used to identify and quantify indoor mold populations in moldy home...

  16. Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp.

    PubMed

    Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V

    2008-04-01

    In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

  17. Estimation of total bacteria by real-time PCR in patients with periodontal disease.

    PubMed

    Brajović, Gavrilo; Popović, Branka; Puletić, Miljan; Kostić, Marija; Milasin, Jelena

    2016-01-01

    Periodontal diseases are associated with the presence of elevated levels of bacteria within the gingival crevice. The aim of this study was to evaluate a total amount of bacteria in subgingival plaque samples in patients with a periodontal disease. A quantitative evaluation of total bacteria amount using quantitative real-time polymerase chain reaction (qRT-PCR) was performed on 20 samples of patients with ulceronecrotic periodontitis and on 10 samples of healthy subjects. The estimation of total bacterial amount was based on gene copy number for 16S rRNA that was determined by comparing to Ct values/gene copy number of the standard curve. A statistically significant difference between average gene copy number of total bacteria in periodontal patients (2.55 x 10⁷) and healthy control (2.37 x 10⁶) was found (p = 0.01). Also, a trend of higher numbers of the gene copy in deeper periodontal lesions (> 7 mm) was confirmed by a positive value of coefficient of correlation (r = 0.073). The quantitative estimation of total bacteria based on gene copy number could be an important additional tool in diagnosing periodontitis.

  18. Rapid diagnosis of common deletional α-thalassemia in the Chinese population by qPCR based on identical primer homologous fragments.

    PubMed

    Long, Ju

    2016-05-01

    In China, -(SEA), -α(3.7) and -α(4.2) are common deletional α-thalassemia alleles. Gap-PCR is the currently used detection method for these alleles, whose disadvantages include time-consuming procedure and increased potential for PCR product contamination. Therefore, this detection method needs to be improved. Based on identical-primer homologous fragments, a qPCR system was developed for deletional α-thalassemia genotyping, which was composed of a group of quantitatively-related primers and their corresponding probes plus two groups of qualitatively-related primers and their corresponding probes. In order to verify the accuracy of the qPCR system, known genotype samples and random samples are employed. The standard curve result demonstrated that designed primers and probes all yielded good amplification efficiency. In the tests of known genotype samples and random samples, sample detection results were consistent with verification results. In detecting αα, -(SEA), -α(3.7) and -α(4.2) alleles, deletional α-thalassemia alleles are accurately detected by this method. In addition, this method is provided with a wider detection range, greater speed and reduced PCR product contamination risk when compared with current common gap-PCR detection reagents. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR

    PubMed Central

    Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo

    2015-01-01

    Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR. PMID:26109350

  20. [Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].

    PubMed

    Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L

    2018-04-20

    Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes, time of gel detection was 20 minutes, and the total time was 138 minutes. In real-time fluorescence quantitative PCR, amplification and detection could be completed simultaneously, which took 90 minutes, and the total time was 110 minutes. In RPA, amplification and detection could also be completed simultaneously, which took 15 minutes, and the total time was 35 minutes. (2) Pseudomonas putida did not show positive amplification signals or gel positive results in any of the three detection methods. The detection limit of Pseudomonas aeruginosa in real-time fluorescence quantitative PCR and PCR was 1×10(1) CFU/mL, and that of Pseudomonas aeruginosa in RPA was 1×10(2) CFU/mL. In RPA and real-time fluorescence quantitative PCR, the higher the concentration of Pseudomonas aeruginosa, the shorter threshold time and smaller the number of cycles, namely shorter time for detecting the positive amplified signal. In real-time fluorescence quantitative PCR, all positive amplification signal could be detected when the concentration of Pseudomonas aeruginosa was 1×10(1)-1×10(7) CFU/mL. In RPA, the detection rate of positive amplification signal was 0 when the concentration of Pseudomonas aeruginosa was 1×10(1) CFU/mL, while the detection rate of positive amplification signal was 67% when the concentration of Pseudomonas aeruginosa was 1×10(2) CFU/mL, and the detection rate of positive amplification signal was 100% when the concentration of Pseudomonas aeruginosa was 1×10(3)-1×10(7) CFU/mL. (3) In RPA, PCR, and real-time fluorescence quantitative PCR, Pseudomonas aeruginosa showed positive amplification signals and gel positive results, but there were no positive amplification signals or gel positive results in four negative control strains of Acinetobacter baumannii, Staphylococcus aureus, Candida albicans, and Pseudomonas putida . (4) In RPA, 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin and 1 clinical strain of Pseudomonas aeruginosa taken by cotton swab showed positive amplification signals, while Pseudomonas putida did not show positive amplification signal. The detection rate of positive amplification signal of 29 clinical strains of Pseudomonas aeruginosa in RPA was 100%. Conclusions: The established optimized RPA technology for fast detection of Pseudomonas aeruginosa requires shorter time, with high sensitivity and specificity. It was of great value in fast detection of Pseudomonas aeruginosa infection in clinic.

  1. Real-time quantitative reverse transcription-PCR assay for renal cell carcinoma-associated antigen G250.

    PubMed

    Chuanzhong, Ye; Ming, Guan; Fanglin, Zhang; Haijiao, Chen; Zhen, Lin; Shiping, Chen; YongKang, Zhang

    2002-04-01

    Gene amplification/expression of G250 is a major event in human renal tumorigenesis. G250-based therapeutic agents and G250-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen G250 alterations in renal cell cancer (RCC) patients and investigate the relationship between G250 mRNA expression and RCC. We developed a quantitative RT-PCR assay for the measurement of G250 mRNA expression using a real-time procedure based on the use of fluorogenic probes and the ABI PRISM 7700 Sequence Detector System. The method has been applied to the measurement of quantitative mRNA level of G250 in 31 cases RCC and 6 normal renal tissues. The dynamic range was 10(3)-10(8). The relationship between Ct and log starting concentration was linear (r=0.99). G250 expression was present in all RCCs with G250 amplification but was absent in normal ones. G250 mRNA expression ranged from 2.9 x 10(3) to 6.5 x 10(7) copy/microg RNA, with a mean value of 3.5 x 10(6) copy/microg RNA. The expression of G250 revealed an inverse correlation to tumor grade. G250 mRNA level did not correlate with the cell types and clinical stages (P>0.05). G250 has the potential to be used as a marker of diagnosis and increasing proliferation in RCC. This new simple, rapid, semi-automated assay was a major alternative to competitive PCR and Northern blot analysis for gene alteration analysis in human tumors and might be a powerful tool for large randomized, prospective cooperative group trials and supporting future G250-based biological and gene therapy approaches.

  2. One-to-one quantum dot-labeled single long DNA probes.

    PubMed

    He, Shibin; Huang, Bi-Hai; Tan, Junjun; Luo, Qing-Ying; Lin, Yi; Li, Jun; Hu, Yong; Zhang, Lu; Yan, Shihan; Zhang, Qi; Pang, Dai-Wen; Li, Lijia

    2011-08-01

    Quantum dots (QDs) have been received most attention due to their unique properties. Constructing QDs conjugated with certain number of biomolecules is considered as one of the most important research goals in nanobiotechnology. In this study, we report polymerase chain reaction (PCR) amplification of primer oligonucleotides bound to QDs, termed as QD-based PCR. Characterization of QD-based PCR products by gel electrophoresis and atomic force microscopy showed that QD-labeled long DNA strands were synthesized and only a single long DNA strand was conjugated with a QD. The QD-based PCR products still kept fluorescence properties. Moreover, the one-to-one QD-labeled long DNA conjugates as probes could detect a single-copy gene on maize chromosomes by fluorescence in situ hybridization. Labeling a single QD to a single long DNA will make detection of small single-copy DNA fragments, quantitative detection and single molecule imaging come true by nanotechnology, and it will promote medical diagnosis and basic biological research as well as nano-material fabrication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A Droplet Digital PCR Method for Severe Combined Immunodeficiency Newborn Screening.

    PubMed

    Vidal-Folch, Noemi; Milosevic, Dragana; Majumdar, Ramanath; Gavrilov, Dimitar; Matern, Dietrich; Raymond, Kimiyo; Rinaldo, Piero; Tortorelli, Silvia; Abraham, Roshini S; Oglesbee, Devin

    2017-09-01

    Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS. Yet, real-time quantitative PCR has inefficiencies necessitating normalization, repeat analyses, or standard curves. To address these issues, we developed a multiplex, droplet digital PCR (ddPCR) method for measuring absolute TREC amounts in one DBS punch. TREC and RPP30 levels were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. DBSs from 610 presumed-normal, 29 lymphocyte-profiled, and 10 clinically diagnosed infants (1 X-linked SCID, 1 RAG1 Omenn syndrome, and other conditions) were tested. Control infants showed 14 to 474 TREC copies/μL blood. SCID infants, and other TCL conditions, had ≤15 TREC copies/μL. The ddPCR lower limit of quantitation was 14 TREC copies/μL, and the limit of detection was 4 TREC copies/μL. Intra-assay and interassay imprecision was <20% CV for DBSs at 54 to 60 TREC copies/μL. Testing 29 infants with known lymphocyte profiles resulted in a sensitivity of 88.9% and a specificity of 100% at TRECs <20 copies/μL. We developed a multiplex ddPCR method for the absolute quantitation of DBS TRECs that can detect SCID and other TCL conditions associated with absent or low TRECs and validated this method for NBS. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Deep Diversity: Novel Approach to Overcoming the PCR Bias Encountered During Environmental Analysis of Microbial Populations for Alpha-Diversity

    NASA Technical Reports Server (NTRS)

    Ramirez, Gustavo A; Vaishampayan, Parag A.

    2011-01-01

    Alpha-diversity studies are of crucial importance to environmental microbiologists. The polymerase chain reaction (PCR) method has been paramount for studies interrogating microbial environmental samples for taxon richness. Phylogenetic studies using this technique are based on the amplification and comparison of the 16S rRNA coding regions. PCR, due disproportionate distribution of microbial species in the environment, increasingly favors the amplification of the most predominant phylotypes with every subsequent reaction cycle. The genetic and chemical complexity of environmental samples are intrinsic factors that exacerbate an inherit bias in PCR-based quantitative and qualitative studies of microbial communities. We report that treatment of a genetically complex total genomic environmental DNA extract with Propidium Monoazide (PMA), a DNA intercalating molecule capable of forming a covalent cross-linkage to organic moieties upon light exposure, disproportionally inactivates predominant phylotypes and results in the exponential amplification of previously shadowed microbial ?-diversity quantified as a 19.5% increase in OUTs reported via phylogenetic screening using PhyloChip.

  5. Quantitative real-time polymerase chain reaction for the verification of genomic imbalances detected by microarray-based comparative genomic hybridization.

    PubMed

    Yu, Shihui; Kielt, Matthew; Stegner, Andrew L; Kibiryeva, Nataliya; Bittel, Douglas C; Cooley, Linda D

    2009-12-01

    The American College of Medical Genetics guidelines for microarray analysis for constitutional cytogenetic abnormalities require abnormal or ambiguous results from microarray-based comparative genomic hybridization (aCGH) analysis be confirmed by an alternative method. We employed quantitative real-time polymerase chain reaction (qPCR) technology using SYBR Green I reagents for confirmation of 93 abnormal aCGH results (50 deletions and 43 duplications) and 54 parental samples. A novel qPCR protocol using DNA sequences coding for X-linked lethal diseases in males for designing reference primers was established. Of the 81 sets of test primers used for confirmation of 93 abnormal copy number variants (CNVs) in 80 patients, 71 sets worked after the initial primer design (88%), 9 sets were redesigned once, and 1 set twice because of poor amplification. Fifty-four parental samples were tested using 33 sets of test primers to follow up 34 CNVs in 30 patients. Nineteen CNVs were confirmed as inherited, 13 were negative in both parents, and 2 were inconclusive due to a negative result in a single parent. The qPCR assessment clarified aCGH results in two cases and corrected a fluorescence in situ hybridization result in one case. Our data illustrate that qPCR methodology using SYBR Green I reagents is accurate, highly sensitive, specific, rapid, and cost-effective for verification of chromosomal imbalances detected by aCGH in the clinical setting.

  6. Factors affecting the relationship between quantitative polymerase chain reaction (qPCR) and culture-based enumeration of Enterococcus in environmental waters.

    PubMed

    Raith, M R; Ebentier, D L; Cao, Y; Griffith, J F; Weisberg, S B

    2014-03-01

    To determine the extent to which discrepancies between qPCR and culture-based results in beach water quality monitoring can be attributed to: (i) within-method variability, (ii) between-method difference within each method class (qPCR or culture) and (iii) between-class difference. We analysed 306 samples using two culture-based (EPA1600 and Enterolert) and two qPCR (Taqman and Scorpion) methods, each in duplicate. Both qPCR methods correlated with EPA1600, but regression analyses indicated approximately 0·8 log10 unit overestimation by qPCR compared to culture methods. Differences between methods within a class were less than half of this and were minimal for between-replicate within a method. Using the 104 Enterococcus per 100 ml management decision threshold, Taqman qPCR indicated the same decisions as EPA1600 for 87% of the samples, but indicated beach posting for unhealthful water when EPA1600 did not for 12% of the samples. After accounting for within-method and within-class variability, 8% of the samples exhibited true between-class discrepancy where both qPCR methods indicated beach posting while both culture methods did not. Measurement target difference (DNA vs growth) accounted for the majority of the qPCR-vs-culture discrepancy, but its influence on monitoring application is outweighed by frequent incorrect posting with culture methods due to incubation time delay. This is the first study to quantify the frequency with which culture-vs-qPCR discrepancies can be attributed to target difference - vs - method variability. © 2013 The Society for Applied Microbiology.

  7. Molecular Detection of Campylobacter spp. in California Gull (Larus californicus) Excreta ▿ †

    PubMed Central

    Lu, Jingrang; Ryu, Hodon; Santo Domingo, Jorge W.; Griffith, John F.; Ashbolt, Nicholas

    2011-01-01

    We examined the prevalence, quantity, and diversity of Campylobacter species in the excreta of 159 California gull (Larus californicus) samples using culture-, PCR-, and quantitative PCR (qPCR)-based detection assays. Campylobacter prevalence and abundance were relatively high in the gull excreta examined; however, C. jejuni and C. lari were detected in fewer than 2% of the isolates and DNA extracts from the fecal samples that tested positive. Moreover, molecular and sequencing data indicated that most L. californicus campylobacters were novel (<97% 16S rRNA gene sequence identity to known Campylobacter species) and not closely related to species commonly associated with human illness. Campylobacter estimates were positively related with those of fecal indicators, including a gull fecal marker based on the Catellicoccus marimammalium 16S rRNA gene. PMID:21622785

  8. Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR.

    PubMed

    Wang, Weilan; Zijlstra, Ruurd T; Gänzle, Michael G

    2017-05-15

    Diagnosis of enterotoxigenic E. coli (ETEC) associated diarrhea is complicated by the diversity of E.coli virulence factors. This study developed a multiplex quantitative PCR assay based on high-resolution melting curves analysis (HRM-qPCR) to identify and quantify genes encoding five ETEC fimbriae related to diarrhea in swine, i.e. K99, F41, F18, F6 and K88. Five fimbriae expressed by ETEC were amplified in multiple HRM-qPCR reactions to allow simultaneous identification and quantification of five target genes. The assay was calibrated to allow quantification of the most abundant target gene, and validated by analysis of 30 samples obtained from piglets with diarrhea and healthy controls, and comparison to standard qPCR detection. The five amplicons with melting temperatures (Tm) ranging from 74.7 ± 0.06 to 80.5 ± 0.15 °C were well-separated by HRM-qPCR. The area of amplicons under the melting peak correlated linearly to the proportion of the template in the calibration mixture if the proportion exceeded 4.8% (K88) or <1% (all other amplicons). The suitability of the method was evaluated using 30 samples from weaned pigs aged 6-7 weeks; 14 of these animals suffered from diarrhea in consequence of poor sanitary conditions. Genes encoding fimbriae and enterotoxins were quantified by HRM-qPCR and/or qPCR. The multiplex HRM-qPCR allowed accurate analysis when the total gene copy number of targets was more than 1 × 10 5 / g wet feces and the HRM curves were able to simultaneously distinguish fimbriae genes in the fecal samples. The relative quantification of the most abundant F18 based on melting peak area was highly correlated (P < 0.001; r 2  = 0.956) with that of individual qPCR result but the correlation for less abundant fimbriae was much lower. The multiplex HRM assay identifies ETEC virulence factors specifically and efficiently. It correctly indicated the predominant fimbriae type and additionally provides information of presence/ absence of other fimbriae types and it could find broad applications for pathogen diagnosis.

  9. Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution▿

    PubMed Central

    Shanks, Orin C.; White, Karen; Kelty, Catherine A.; Hayes, Sam; Sivaganesan, Mano; Jenkins, Michael; Varma, Manju; Haugland, Richard A.

    2010-01-01

    There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest. PMID:20061457

  10. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    PubMed

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).

  11. Quantitative Real-Time Legionella PCR for Environmental Water Samples: Data Interpretation

    PubMed Central

    Joly, Philippe; Falconnet, Pierre-Alain; André, Janine; Weill, Nicole; Reyrolle, Monique; Vandenesch, François; Maurin, Max; Etienne, Jerome; Jarraud, Sophie

    2006-01-01

    Quantitative Legionella PCRs targeting the 16S rRNA gene (specific for the genus Legionella) and the mip gene (specific for the species Legionella pneumophila) were applied to a total of 223 hot water system samples (131 in one laboratory and 92 in another laboratory) and 37 cooling tower samples (all in the same laboratory). The PCR results were compared with those of conventional culture. 16S rRNA gene PCR results were nonquantifiable for 2.8% of cooling tower samples and up to 39.1% of hot water system samples, and this was highly predictive of Legionella CFU counts below 250/liter. PCR cutoff values for identifying hot water system samples containing >103 CFU/liter legionellae were determined separately in each laboratory. The cutoffs differed widely between the laboratories and had sensitivities from 87.7 to 92.9% and specificities from 77.3 to 96.5%. The best specificity was obtained with mip PCR. PCR cutoffs could not be determined for cooling tower samples, as the results were highly variable and often high for culture-negative samples. Thus, quantitative Legionella PCR appears to be applicable to samples from hot water systems, but the positivity cutoff has to be determined in each laboratory. PMID:16597985

  12. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    PubMed Central

    2013-01-01

    Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to < two hours. Analysis of the PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252

  13. Q-PCR based bioburden assessment of drinking water throughout treatment and delivery to the International Space Station

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Stuecker, Tara; La Duc, Myron; Venkateswaran, Kasthuri

    2005-01-01

    Previous studies indicated evidence of opportunistic pathogens samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were used to elucidate overall bacterial rRNA gene numbers. while those specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and used to probe for the presence of these two opportunistic pathogens. This research builds upon previous microbial diversity studies of ISS water and demonstrates the utility of Q-PCR tool to examine water quality.

  14. METHODS TO CLASSIFY ENVIRONMENTAL SAMPLES BASED ON MOLD ANALYSES BY QPCR

    EPA Science Inventory

    Quantitative PCR (QPCR) analysis of molds in indoor environmental samples produces highly accurate speciation and enumeration data. In a number of studies, eighty of the most common or potentially problematic indoor molds were identified and quantified in dust samples from homes...

  15. RELATIVE MOLDINESS INDEX© AS PREDICTOR OF CHILDHOOD RESPIRATORY ILLNESS

    EPA Science Inventory

    The results of a traditional visual mold inspection were compared to a mold evaluation based on the Relative Moldiness Index (RMI). The RMI is calculated from mold specific quantitative PCR (MSQPCR) measurements of the concentation of 36 species of molds in floor dust samples. ...

  16. Multiplex real-time PCR using temperature sensitive primer-supplying hydrogel particles and its application for malaria species identification

    PubMed Central

    Byoun, Mun Sub; Yoo, Changhoon; Sim, Sang Jun; Lim, Chae Seung; Kim, Sung Woo

    2018-01-01

    Real-time PCR, also called quantitative PCR (qPCR), has been powerful analytical tool for detection of nucleic acids since it developed. Not only for biological research but also for diagnostic needs, qPCR technique requires capacity to detect multiple genes in recent years. Solid phase PCR (SP-PCR) where one or two directional primers are immobilized on solid substrates could analyze multiplex genetic targets. However, conventional SP-PCR was subjected to restriction of application for lack of PCR efficiency and quantitative resolution. Here we introduce an advanced qPCR with primer-incorporated network (PIN). One directional primers are immobilized in the porous hydrogel particle by covalent bond and the other direction of primers are temporarily immobilized at so-called 'Supplimers'. Supplimers released the primers to aqueous phase in the hydrogel at the thermal cycling of PCR. It induced the high PCR efficiency over 92% with high reliability. It reduced the formation of primer dimers and improved the selectivity of qPCR thanks to the strategy of 'right primers supplied to right place only'. By conducting a six-plex qPCR of 30 minutes, we analyzed DNA samples originated from malaria patients and successfully identified malaria species in a single reaction. PMID:29293604

  17. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    PubMed

    Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.

  18. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station

    PubMed Central

    Boone, Travis D.; Tran, Luan; Blaber, Elizabeth A.; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T.; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J.; Rubins, Kathleen; Sgarlato, Gregory D.; Talavera, Rafael O.; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S.; Schonfeld, Julie

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment. PMID:28877184

  19. Selection and validation of reference genes for quantitative real-time PCR in Artemisia sphaerocephala based on transcriptome sequence data.

    PubMed

    Hu, Xiaowei; Zhang, Lijing; Nan, Shuzhen; Miao, Xiumei; Yang, Pengfang; Duan, Guoqin; Fu, Hua

    2018-05-30

    Artemisia sphaerocephala, a dicotyledonous perennial semi-shrub belonging to the Artemisia genus of the Compositae family, is widely distributed in northwestern China. This shrub is one of the most important pioneer plants which is capable of protecting rangelands from wind erosion. It therefore plays a vital role in maintaining desert ecosystem stability. In addition, to its use as a forage grass, it has excellent prospective applications as a source of plant oil and as a plant-based fuel. The use of internal genes is the basis for accurately assessing Real time quantitative PCR. In this study, based on transcriptome data of A. sphaerocephala, we analyzed 21 candidate internal genes to determine the optimal internal genes in this shrub. The stabilities of candidate genes were evaluated in 16 samples of A. sphaerocephala. Finally, UBC9 and TIP41-like were determined as the optimal reference genes in A. sphaerocephala by Delta Ct and three various programs. There were GeNorm, NormFinder and BestKeeper. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  1. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  2. A theoretical introduction to "combinatory SYBRGreen qPCR screening", a matrix-based approach for the detection of materials derived from genetically modified plants.

    PubMed

    Van den Bulcke, Marc; Lievens, Antoon; Barbau-Piednoir, Elodie; MbongoloMbella, Guillaume; Roosens, Nancy; Sneyers, Myriam; Casi, Amaya Leunda

    2010-03-01

    The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. "Combinatory qPCR SYBRGreen screening" (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBRGREEN qPCR analysis based on four values: the C(t)- and T(m) values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, "Prime number tracing", matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBRGREEN qPCR methods and through application of a newly developed "prime number"-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product.

  3. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    PubMed

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    PubMed

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p < 0.05). The DNA yield decreased as frozen storage time increased due to DNA degradation. The half-life (t 1/2  = ln2/0.015) was calculated as 46 months. The DNA quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. An international trial of quantitative PCR for monitoring Legionella in artificial water systems.

    PubMed

    Lee, J V; Lai, S; Exner, M; Lenz, J; Gaia, V; Casati, S; Hartemann, P; Lück, C; Pangon, B; Ricci, M L; Scaturro, M; Fontana, S; Sabria, M; Sánchez, I; Assaf, S; Surman-Lee, S

    2011-04-01

      To perform an international trial to derive alert and action levels for the use of quantitative PCR (qPCR) in the monitoring of Legionella to determine the effectiveness of control measures against legionellae.   Laboratories (7) participated from six countries. Legionellae were determined by culture and qPCR methods with comparable detection limits. Systems were monitored over ≥10 weeks. For cooling towers (232 samples), there was a significant difference between the log mean difference between qPCR (GU l(-1) ) and culture (CFU l(-1) ) for Legionella pneumophila (0·71) and for Legionella spp. (2·03). In hot and cold water (506 samples), the differences were less, 0·62 for Leg. pneumophila and 1·05 for Legionella spp. Results for individual systems depended on the nature of the system and its treatment. In cooling towers, Legionella spp. GU l(-1) always exceeded CFU l(-1) , and usually Legionella spp. were detected by qPCR when absent by culture. The pattern of results by qPCR for Leg. pneumophila followed the culture trend. In hot and cold water, culture and qPCR gave similar results, particularly for Leg. pneumophila. There were some marked exceptions with temperatures ≥50°C, or in the presence of supplementary biocides. Action and alert levels for qPCR were derived that gave results comparable to the application of the European Guidelines based on culture. Algorithms are proposed for the use of qPCR for routine monitoring.   Action and alert levels for qPCR can be adjusted to ensure public health is protected with the benefit that remedial actions can be validated earlier with only a small increase in the frequency of action being required.   This study confirms it is possible to derive guidelines on the use of qPCR for monitoring the control of legionellae with consequent improvement to response and public health protection. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Development of a reference material of a single DNA molecule for the quality control of PCR testing.

    PubMed

    Mano, Junichi; Hatano, Shuko; Futo, Satoshi; Yoshii, Junji; Nakae, Hiroki; Naito, Shigehiro; Takabatake, Reona; Kitta, Kazumi

    2014-09-02

    We developed a reference material of a single DNA molecule with a specific nucleotide sequence. The double-strand linear DNA which has PCR target sequences at the both ends was prepared as a reference DNA molecule, and we named the PCR targets on each side as confirmation sequence and standard sequence. The highly diluted solution of the reference molecule was dispensed into 96 wells of a plastic PCR plate to make the average number of molecules in a well below one. Subsequently, the presence or absence of the reference molecule in each well was checked by real-time PCR targeting for the confirmation sequence. After an enzymatic treatment of the reaction mixture in the positive wells for the digestion of PCR products, the resultant solution was used as the reference material of a single DNA molecule with the standard sequence. PCR analyses revealed that the prepared samples included only one reference molecule with high probability. The single-molecule reference material developed in this study will be useful for the absolute evaluation of a detection limit of PCR-based testing methods, the quality control of PCR analyses, performance evaluations of PCR reagents and instruments, and the preparation of an accurate calibration curve for real-time PCR quantitation.

  7. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  8. Development Status of the WetLab-2 Project: New Tools for On-orbit Real-time Quantitative Gene Expression.

    NASA Technical Reports Server (NTRS)

    Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott

    2013-01-01

    The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is currently designing a module that will lyse the cells and extract RNA of sufficient quality for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. Current testing focuses on two promising commercial products and chemistries that allow for RNA extraction with minimal complexity and crew time.

  9. Determining Fungi rRNA Copy Number by PCR

    EPA Science Inventory

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within ...

  10. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    USGS Publications Warehouse

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  11. A tool for design of primers for microRNA-specific quantitative RT-qPCR.

    PubMed

    Busk, Peter K

    2014-01-28

    MicroRNAs are small but biologically important RNA molecules. Although different methods can be used for quantification of microRNAs, quantitative PCR is regarded as the reference that is used to validate other methods. Several commercial qPCR assays are available but they often come at a high price and the sequences of the primers are not disclosed. An alternative to commercial assays is to manually design primers but this work is tedious and, hence, not practical for the design of primers for a larger number of targets. I have developed the software miRprimer for automatic design of primers for the method miR-specific RT-qPCR, which is one of the best performing microRNA qPCR methods available. The algorithm is based on an implementation of the previously published rules for manual design of miR-specific primers with the additional feature of evaluating the propensity of formation of secondary structures and primer dimers. Testing of the primers showed that 76 out of 79 primers (96%) worked for quantification of microRNAs by miR-specific RT-qPCR of mammalian RNA samples. This success rate corresponds to the success rate of manual primer design. Furthermore, primers designed by this method have been distributed to several labs and used successfully in published studies. The software miRprimer is an automatic and easy method for design of functional primers for miR-specific RT-qPCR. The application is available as stand-alone software that will work on the MS Windows platform and in a developer version written in the Ruby programming language.

  12. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer.

    PubMed

    Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M

    1998-11-23

    Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.

  13. Comparison of conventional PCR, quantitative PCR, bacteriological culture and the Warthin Starry technique to detect Leptospira spp. in kidney and liver samples from naturally infected sheep from Brazil.

    PubMed

    Fornazari, Felipe; da Silva, Rodrigo Costa; Richini-Pereira, Virginia Bodelão; Beserra, Hugo Enrique Orsini; Luvizotto, Maria Cecília Rui; Langoni, Helio

    2012-09-01

    Leptospirosis is an infectious disease of worldwide importance. The development of diagnostic techniques allows sick animals to be identified, reservoirs to be eliminated and the disease prevented and controlled. The present study aimed to compare different techniques for diagnosing leptospirosis in sheep. Samples of kidney, liver and blood were collected from 465 animals that originated from a slaughterhouse. The sera were analyzed by the Microscopic Agglutination Test (MAT), and kidney and liver samples of seropositive animals were analyzed using four techniques: bacteriological culture, the Warthin Starry (WS) technique, conventional PCR (cPCR), and quantitative PCR (qPCR). With the MAT, 21 animals were positive (4.5%) to serovars Hardjo (n=12), Hebdomadis (n=5), Sentot (n=2), Wolfii (n=1) and Shermani (n=1). Titers were 100 (n=10), 200 (n=2), 400 (n=6) and 1600 (n=3). No animal was positive by bacteriological culture; four animals were positive by the WS technique in kidney samples; six animals were positive by cPCR in kidney samples; and 11 animals were positive by qPCR, eight of which in kidney samples and three in liver. The bacterial quantification revealed a median of 4.3 bacteria/μL in liver samples and 36.6 bacteria/μL in kidney samples. qPCR presented the highest sensitivity among the techniques, followed by cPCR, the WS technique and bacteriological culture. These results indicate that sheep can carry leptospires of the Sejroe serogroup, and demonstrate the efficiency of quantitative PCR to detect Leptospira spp. in tissue samples. Published by Elsevier B.V.

  14. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.

    PubMed

    Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A

    2017-10-05

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.

  15. Quantitative estimation of Nipah virus replication kinetics in vitro

    PubMed Central

    Chang, Li-Yen; Ali, AR Mohd; Hassan, Sharifah Syed; AbuBakar, Sazaly

    2006-01-01

    Background Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR® Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay. Results The qRT-PCR had a dynamic range of at least seven orders of magnitude and can detect Nipah virus from as low as one PFU/μL. Following initiation of infection, it was estimated that Nipah virus RNA doubles at every ~40 minutes and attained peak intracellular virus RNA level of ~8.4 log PFU/μL at about 32 hours post-infection (PI). Significant extracellular Nipah virus RNA release occurred only after 8 hours PI and the level peaked at ~7.9 log PFU/μL at 64 hours PI. The estimated rate of Nipah virus RNA released into the cell culture medium was ~0.07 log PFU/μL per hour and less than 10% of the released Nipah virus RNA was infectious. Conclusion The SYBR® Green I-based qRT-PCR assay enabled quantitative assessment of Nipah virus RNA synthesis in Vero cells. A low rate of Nipah virus extracellular RNA release and low infectious virus yield together with extensive syncytial formation during the infection support a cell-to-cell spread mechanism for Nipah virus infection. PMID:16784519

  16. The role of quantitative estrogen receptor status in predicting tumor response at surgery in breast cancer patients treated with neoadjuvant chemotherapy.

    PubMed

    Raphael, Jacques; Gandhi, Sonal; Li, Nim; Lu, Fang-I; Trudeau, Maureen

    2017-07-01

    Estrogen receptor (ER) negative (-) breast cancer (BC) patients have better tumor response rates than ER-positive (+) patients after neoadjuvant chemotherapy (NCT). We conducted a retrospective review using the institutional database "Biomatrix" to assess the value of quantitative ER status in predicting tumor response at surgery and to identify potential predictors of survival outcomes. Univariate followed by multivariable regression analyses were conducted to assess the association between quantitative ER and tumor response assessed as tumor size reduction and pathologic complete response (pCR). Predictors of recurrence-free survival (RFS) were identified using a cox proportional hazards model (CPH). A log-rank test was used to compare RFS between groups if a significant predictor was identified. 304 patients were included with a median follow-up of 43.3 months (Q1-Q3 28.7-61.1) and a mean age of 49.7 years (SD 10.9). Quantitative ER was inversely associated with tumor size reduction and pCR (OR 0.99, 95% CI 0.99-1.00, p = 0.027 and 0.98 95% CI 0.97-0.99, p < 0.0001, respectively). A cut-off of 60 and 80% predicted best the association with tumor size reduction and pCR, respectively. pCR was shown to be an independent predictor of RFS (HR 0.17, 95% CI 0.07-0.43, p = 0.0002) in all patients. At 5 years, 93% of patients with pCR and 72% of patients with residual tumor were recurrence-free, respectively (p = 0.0012). Quantitative ER status is inversely associated with tumor response in BC patients treated with NCT. A cut-off of 60 and 80% predicts best the association with tumor size reduction and pCR, respectively. Therefore, patients with an ER status higher than the cut-off might benefit from a neoadjuvant endocrine therapy approach. Patients with pCR had better survival outcomes independently of their tumor phenotype. Further prospective studies are needed to validate the clinical utility of quantitative ER as a predictive marker of tumor response.

  17. Correlation of Clinical Outcomes with Quantitative Polymerase Chain Reaction DNA Copy Number in Patients with Acute Retinal Necrosis.

    PubMed

    Calvo, Charles M; Khan, Mohammed Ali; Mehta, Sonia; Garg, Sunir J; Dunn, James P

    2017-04-01

    To correlate visual acuity outcomes and clinical features with quantitative PCR DNA copy number in patients with acute retinal necrosis (ARN). Retrospective, consecutive case series. In total, 14 eyes of 13 patients were diagnosed with ARN, based on the American Uveitis Society criteria, and were followed for a mean of 324.5 days (median 250.5 days, SD ± 214 days). Anterior chamber fluid analyzed by quantitative PCR identified viral DNA in 11 of 14 eyes (78.5%). Varicella zoster virus (VZV) was identified in seven eyes (50%) and herpes simplex virus (HSV) in four eyes (28.5%). Mean DNA copy number was 7.9 × 10 6 /mL (median 2.10 × 10 6 /mL, range: 0-5.60 × 10 7 /mL). Eyes with quantitative PCR DNA copy number of ≥5.0 × 10 6 /mL (n = 6 eyes) had worse baseline visual acuity (logMAR 1.48 ± 0.71 vs 0.94 ± 0.76, p = 0.196) and final visual acuity (logMAR 2.10 ± 0.60 vs 0.82 ± 0.81, p = 0.007) compared with patients with a DNA copy number <5.0 × 10 6 /mL (n = 8 eyes). Patients with a DNA copy number of ≥5.0 × 10 6 /mL were more likely to have at least 5 clock hours of retinitis on funduscopic exam (p = 0.03) and developed retinal detachment more frequently (p = 0.08). Quantitative DNA copy number of ≥5.0 × 10 6 /mL is associated with more extensive retinitis, worse visual acuity, and development of retinal detachment in patients with acute retinal necrosis.

  18. Real-time polymerase chain reaction for diagnosing infectious mononucleosis in pediatric patients: A systematic review and meta-analysis.

    PubMed

    Jiang, Sha-Yi; Yang, Jing-Wei; Shao, Jing-Bo; Liao, Xue-Lian; Lu, Zheng-Hua; Jiang, Hui

    2016-05-01

    In this meta-analysis, we evaluated the diagnostic role of Epstein-Barr virus deoxyribonucleic acid detection and quantitation in the serum of pediatric and young adult patients with infectious mononucleosis. The primary outcome of this meta-analysis was the sensitivity and specificity of Epstein-Barr virus (EBV) deoxyribonucleic acid (DNA) detection and quantitation using polymerase chain reaction (PCR). A systematic review and meta-analysis was performed by searching for articles that were published through September 24, 2014 in the following databases: Medline, Cochrane, EMBASE, and Google Scholar. The following keywords were used for the search: "Epstein-Barr virus," "infectious mononucleosis," "children/young adults/infant/pediatric," and "polymerase chain reaction or PCR." Three were included in this analysis. We found that for detection by PCR, the pooled sensitivity for detecting EBV DNA was 77% (95%CI, 66-86%) and the pooled specificity for was 98% (95%CI, 93-100%). Our findings indicate that this PCR-based assay has high specificity and good sensitivity for detecting of EBV DNA, indicating it may useful for identifying patients with infectious mononucleosis. This assay may also be helpful to identify young athletic patients or highly physically active pediatric patients who are at risk for a splenic rupture due to acute infectious mononucleosis. © 2015 Wiley Periodicals, Inc.

  19. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  20. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  1. EPA Technology Available for Licensing: Viral-Based Real-Time Quantitative PCR Test for Human Fecal Contamination

    EPA Pesticide Factsheets

    Human fecal contamination of clean water sources is a major contributor to the spread of disease worldwide. To monitor and manage this threat, the United States Environmental Protection Agency (EPA), World Health Organization, and European Union rely on ba

  2. Concentration of carp edema virus (CEV) DNA in koi tissues affected by koi sleepy disease (KSD).

    PubMed

    Adamek, Mikolaj; Jung-Schroers, Verena; Hellmann, John; Teitge, Felix; Bergmann, Sven Michael; Runge, Martin; Kleingeld, Dirk Willem; Way, Keith; Stone, David Michael; Steinhagen, Dieter

    2016-05-26

    Carp edema virus (CEV), the causative agent of 'koi sleepy disease' (KSD), appears to be spreading worldwide and to be responsible for losses in koi, ornamental varieties of the common carp Cyprinus carpio. Clinical signs of KSD include lethargic behaviour, swollen gills, sunken eyes and skin alterations and can easily be mistaken for other diseases, such as infection with cyprinid herpesvirus 3 (CyHV-3). To improve the future diagnosis of CEV infection and to provide a tool to better explore the relationship between viral load and clinical disease, we developed a specific quantitative PCR (qPCR) for strains of the virus known to infect koi carp. In samples from several clinically affected koi, CEV-specific DNA was present in a range from 1 to 2,046,000 copies, with a mean of 129,982 copies and a median of 45 copies per 250 ng of isolated DNA, but virus DNA could not be detected in all clinically affected koi. A comparison of the newly developed qPCR, which is based on a dual-labelled probe, to an existing end-point PCR procedure revealed higher specificity and sensitivity of the qPCR and demonstrated that the new protocol could improve CEV detection in koi. In addition to improved diagnosis, the newly developed qPCR test would be a useful research tool. For example, studies on the pathobiology of CEV could employ controlled infection experiments in which the development of clinical signs could be examined in parallel with a quantitative determination of virus load.

  3. Novel primers and PCR protocols for the specific detection and quantification of Sphingobium suberifaciens in situ

    USDA-ARS?s Scientific Manuscript database

    The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...

  4. Universal and specific quantitative detection of botulinum neurotoxin genes

    PubMed Central

    2010-01-01

    Background Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin. Results We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies. Conclusions While other studies have reported conventional or quantitative PCR-based assays for the detection of C. botulinum genes, our procedure's high-throughput capability and its portability allows most laboratories to quickly assess the possible presence of BoNTs either in food processing samples or in suspected cases of botulism. Thus, this assay provides rapid and specific detection of BoNT and toxin complex genes and would enable the targeting of appropriate therapeutics to infected individuals in a timely manner. PMID:20961439

  5. RNA sequencing analysis reveals new findings of hyperbaric oxygen treatment on rats with acute carbon monoxide poisoning.

    PubMed

    Wang, Wenlan; Xue, Li; Li, Ya; Li, Rong; Xie, Xiaoping; Bao, Junxiang; Hai, Chunxu; Li, Jinsheng

    2016-01-01

    To elucidate the altered gene network in the brains of carbon monoxide (CO) poisoned rats after treatment with hyperbaric oxygen (HBO₂). RNA sequencing (RNA-seq) analysis was performed to examine differentially expressed genes (DEGs) in brain tissue samples from nine male rats: a normal control group; a CO poisoning group; and an HBO₂ treatment group (three rats/group). Reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative PCR were used for validation of the DEGs in another 18 male rats (six rats/group). RNA-seq revealed that two genes were upregulated (4.18 and 8.76 log to the base 2 fold change) (p⟨0.05) in the CO-poisoned rats relative to the control rats; two genes were upregulated (3.88 and 7.69 log to the base 2 fold change); and 23 genes were downregulated (3.49-15.12 log to the base 2 fold change) (p⟨0.05) in the brains of the HBO₂-treated rats relative to the CO-poisoned rats. Target prediction of DEGs by gene network analysis and analysis of pathways affected suggested that regulation of gene expressions of dopamine metabolism and nitric oxide (NO) synthesis were significantly affected by CO poisoning and HBO₂ treatment. Results of RT-PCR and real-time quantitative PCR indicated that four genes (Pomc, GH-1, Pr1 and Fshβ) associated with hormone secretion in the hypothalamic-pituitary system have potential as markers for prognosis of CO. This study is the first RNA-seq analysis profile of HBO₂ treatment on rats with acute CO poisoning. It concludes that changes of hormone secretion in the hypothalamic-pituitary system, dopamine metabolism and NO synthesis involved in brain damage and behavior abnormalities after CO poisoning and HBO₂ therapy may regulate these changes.

  6. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.

    PubMed

    Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui

    2018-05-01

    The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.

  7. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    PubMed

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  8. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR.

    PubMed

    Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla

    2014-09-01

    Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A preamplification approach to GMO detection in processed foods.

    PubMed

    Del Gaudio, S; Cirillo, A; Di Bernardo, G; Galderisi, U; Cipollaro, M

    2010-03-01

    DNA is widely used as a target for GMO analysis because of its stability and high detectability. Real-time PCR is the method routinely used in most analytical laboratories due to its quantitative performance and great sensitivity. Accurate DNA detection and quantification is dependent on the specificity and sensitivity of the amplification protocol as well as on the quality and quantity of the DNA used in the PCR reaction. In order to enhance the sensitivity of real-time PCR and consequently expand the number of analyzable target genes, we applied a preamplification technique to processed foods where DNA can be present in low amounts and/or in degraded forms thereby affecting the reliability of qualitative and quantitative results. The preamplification procedure utilizes a pool of primers targeting genes of interest and is followed by real-time PCR reactions specific for each gene. An improvement of Ct values was found comparing preamplified vs. non-preamplified DNA. The strategy reported in the present study will be also applicable to other fields requiring quantitative DNA testing by real-time PCR.

  10. Ambient stable quantitative PCR reagents for the detection of Yersinia pestis.

    PubMed

    Qu, Shi; Shi, Qinghai; Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-03-09

    Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37 degrees C. TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37 degrees C for at least 49 days for a lower concentration of template DNA (10 copies/microl), and up to 79 days for higher concentrations (> or =10(2) copies/microl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5x10(4) CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37 degrees C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance.

  11. Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    PubMed Central

    Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-01-01

    Background Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C. Methods/Principal Findings TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. Conclusions/Significance The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance. PMID:20231881

  12. Viability PCR, a Culture-Independent Method for Rapid and Selective Quantification of Viable Legionella pneumophila Cells in Environmental Water Samples▿

    PubMed Central

    Delgado-Viscogliosi, Pilar; Solignac, Lydie; Delattre, Jean-Marie

    2009-01-01

    PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells. PMID:19363080

  13. Quantitative PCR for human herpesviruses 6 and 7.

    PubMed Central

    Secchiero, P; Zella, D; Crowley, R W; Gallo, R C; Lusso, P

    1995-01-01

    A quantitative PCR assay for the detection of human herpesvirus 6 (HHV-6) (variants A and B) and HHV-7 DNAs in clinical samples was developed. The assay uses a nonhomologous internal standard (IS) for each virus that is coamplified with the wild-type target sequence in the same vial and with the same pair of primers. This method allows for a correction of the variability of efficiency of the PCR technique. A standard curve is constructed for each experiment by coamplification of known quantities of the cloned HHV-6 or HHV-7 target templates with the respective IS. Absolute quantitation of the test samples is then achieved by determining the viral target/IS ratio of the hybridization signals of the amplification products and plotting this value against the standard curve. Using this assay, we quantitated the amount of HHV-6 or HHV-7 DNA in infected cell cultures and demonstrated an inhibitory effect of phosphonoformic acid on the replication of HHV-6 and HHV-7 in vitro. As the first clinical application of this procedure, we performed preliminary measurements of the loads of HHV-6 and HHV-7 in lymph nodes from patients with Hodgkin's disease and AIDS. Application of this quantitative PCR method should be helpful for elucidating the pathogenic roles of HHV-6 and HHV-7. PMID:7559960

  14. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  15. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms.

    PubMed

    Nathan, Lucas M; Simmons, Megan; Wegleitner, Benjamin J; Jerde, Christopher L; Mahon, Andrew R

    2014-11-04

    The use of molecular surveillance techniques has become popular among aquatic researchers and managers due to the improved sensitivity and efficiency compared to traditional sampling methods. Rapid expansion in the use of environmental DNA (eDNA), paired with the advancement of molecular technologies, has resulted in new detection platforms and techniques. In this study we present a comparison of three eDNA surveillance platforms: traditional polymerase chain reaction (PCR), quantitative PCR (qPCR), and digital droplet PCR (ddPCR) in which water samples were collected over a 24 h time period from mesocosm experiments containing a population gradient of invasive species densities. All platforms reliably detected the presence of DNA, even at low target organism densities within the first hour. The two quantitative platforms (qPCR and ddPCR) produced similar estimates of DNA concentrations. The analyses completed with ddPCR was faster from sample collection through analyses and cost approximately half the expenditure of qPCR. Although a new platform for eDNA surveillance of aquatic species, ddPCR was consistent with more commonly used qPCR and a cost-effective means of estimating DNA concentrations. Use of ddPCR by researchers and managers should be considered in future eDNA surveillance applications.

  16. Comparison of Enterococcus quantitative polymerase chain reaction analysis results from midwest U.S. river samples using EPA Method 1611 and Method 1609 PCR reagents

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has provided recommended beach advisory values in its 2012 recreational water quality criteria (RWQC) for states wishing to use quantitative polymerase chain reaction (qPCR) for the monitoring of Enterococcus fecal indicator bacteria...

  17. Optimisation of techniques for quantification of Botrytis cinerea in grape berries and receptacles by quantitative polymerase chain reaction

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to Botrytis cinerea infection of grape berries have identified limitations to current techniques. In this study, four DNA extraction methods, two grinding methods, two grape or...

  18. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Lolium temulentum is a valuable model grass species for the study of stress in forage and turf grasses. Gene expression analysis by quantitative real time RT-PCR relies on the use of proper internal standards. The aim of this study was to identify and evaluate reference genes for use in real-time q...

  19. QUANTITATIVE PCR ANALYSIS OF MOLDS IN THE DUST FROM HOMES OF ASTHMATIC CHILDREN IN NORTH CAROLINA

    EPA Science Inventory

    The vacuum bag (VB) dust was analyzed by mold specific quantitative PCR. These results were compared to the analysis survey calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compa...

  20. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  1. Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR.

    PubMed

    Barrett, Angela N; Chitty, Lyn S

    2014-01-01

    Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.

  2. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant.

    PubMed

    Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F

    2017-02-07

    This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.

  3. Quantitative Detection of Viable Bifidobacterium bifidum BF-1 Cells in Human Feces by Using Propidium Monoazide and Strain-Specific Primers

    PubMed Central

    Fujimoto, Junji

    2013-01-01

    We developed a PCR-based method to detect and quantify viable Bifidobacterium bifidum BF-1 cells in human feces. This method (PMA-qPCR) uses propidium monoazide (PMA) to distinguish viable from dead cells and quantitative PCR using a BF-1-specific primer set designed from the results of randomly amplified polymorphic DNA analysis. During long-term culture (10 days), the number of viable BF-1 cells detected by counting the number of CFU on modified MRS agar, by measuring the ATP contents converted to CFU, and by using PMA-qPCR decreased from about 1010 to 106 cells/ml; in contrast, the total number of (viable and dead) BF-1 cells detected by counting 4′,6-diamidino-2-phenylindolee (DAPI)-stained cells and by using qPCR without PMA and reverse transcription-qPCR remained constant. The number of viable BF-1 cells in fecal samples detected by using PMA-qPCR was highly and significantly correlated with the number of viable BF-1 cells added to the fecal samples, within the range of 105.3 to 1010.3 cells/g feces (wet weight) (r > 0.99, P < 0.001). After 12 healthy subjects ingested 1010.3 to 1011.0 CFU of BF-1 in a fermented milk product daily for 28 days, 104.5 ± 1.5 (mean ± standard deviation [SD]) BF-1 CFU/g was detected in fecal samples by using strain-specific selective agar; in contrast, 106.2 ± 0.4 viable BF-1 cells/g were detected by using PMA-qPCR, and a total of 107.6 ± 0.7 BF-1 cells/g were detected by using qPCR without PMA. Thus, the number of viable BF-1 cells detected by PMA-qPCR was about 50 times higher (P < 0.01) than that detected by the culture-dependent method. We conclude that strain-specific PMA-qPCR can be used to quickly and accurately evaluate viable BF-1 in feces. PMID:23354719

  4. Identification of Pseudallescheria and Scedosporium species by three molecular methods.

    PubMed

    Lu, Qiaoyun; Gerrits van den Ende, A H G; Bakkers, J M J E; Sun, Jiufeng; Lackner, M; Najafzadeh, M J; Melchers, W J G; Li, Ruoyu; de Hoog, G S

    2011-03-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 10(3), and 5 × 10(2) cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species.

  5. Identification of Pseudallescheria and Scedosporium Species by Three Molecular Methods▿

    PubMed Central

    Lu, Qiaoyun; Gerrits van den Ende, A. H. G.; Bakkers, J. M. J. E.; Sun, Jiufeng; Lackner, M.; Najafzadeh, M. J.; Melchers, W. J. G.; Li, Ruoyu; de Hoog, G. S.

    2011-01-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 103, and 5 × 102 cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species. PMID:21177887

  6. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and potentially quantitative almond detection. This PCR method detects almond at a level where severe allergic reactions should not be expected for the majority of the almond allergic individuals. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    PubMed

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  8. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    PubMed

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  9. Development of multiplex PCR assay for authentication of Cornu Cervi Pantotrichum in traditional Chinese medicine based on cytochrome b and C oxidase subunit 1 genes.

    PubMed

    Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua

    2016-07-01

    This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.

  10. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes.

    PubMed

    Bassler, H A; Flood, S J; Livak, K J; Marmaro, J; Knorr, R; Batt, C A

    1995-10-01

    A PCR-based assay for Listeria monocytogenes that uses the hydrolysis of an internal fluorogenic probe to monitor the amplification of the target has been formatted. The fluorogenic 5' nuclease PCR assay takes advantage of the endogenous 5' --> 3' nuclease activity of Taq DNA polymerase to digest a probe which is labelled with two fluorescent dyes and hybridizes to the amplicon during PCR. When the probe is intact, the two fluorophores interact such that the emission of the reporter dye is quenched. During amplification, the probe is hydrolyzed, relieving the quenching of the reporter and resulting in an increase in its fluorescence intensity. This change in reporter dye fluorescence is quantitative for the amount of PCR product and, under appropriate conditions, for the amount of template. We have applied the fluorogenic 5' nuclease PCR assay to detect L. monocytogenes, using an 858-bp amplicon of hemolysin (hlyA) as the target. Maximum sensitivity was achieved by evaluating various fluorogenic probes and then optimizing the assay components and cycling parameters. With crude cell lysates, the total assay could be completed in 3 h with a detection limit of approximately 50 CFU. Quantification was linear over a range of 5 x 10(1) to 5 x 10(5) CFU.

  11. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains.

    PubMed

    Mehle, Nataša; Dobnik, David; Ravnikar, Maja; Pompe Novak, Maruša

    2018-05-03

    RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.

  12. Allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), a powerful method for diagnosing loss of imprinting of the 11p15 region in Russell Silver and Beckwith Wiedemann syndromes.

    PubMed

    Azzi, Salah; Steunou, Virginie; Rousseau, Alexandra; Rossignol, Sylvie; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Marilyne; Gicquel, Christine; Le Bouc, Yves; Netchine, Irène

    2011-02-01

    Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method. © 2011 Wiley-Liss, Inc.

  13. MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR.

    PubMed

    Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo

    2015-11-16

    Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification.

    PubMed

    Weng, Jui-Hong; Chen, Lin-Chi

    2018-02-15

    The increasing needs of point-of-care diagnostics, quarantine of epidemic pathogens, and prevention of terrorism's bio-attacks have promised the future of portable real-time quantitative polymerase chain reaction (qPCR) sensors. This work aims at developing a highly sensitive and low-cost light emitting diode (LED)-based epifluorescence sensor module for qPCR sensor development and relevant bioassay applications. Inspired by the light stop design and dark-field detection of microscopes, this paper first reports a compact confocal LED epifluorescence sensor using a light stop with an arc-shaped aperture for enhancing the flexibility of quick DNA and PCR detection. The sensor features the advantages of the dichroic mirror-free and confocal (shared-focus) characteristics, which benefits size reduction and minimal optics used. It also allows extension to integrate with in situ real-time PCR thermal cycling since the sample slide is placed apart from the epi-sensing module. The epifluorescence sensor can detect as low as sub-ng/μL standard DNA and 10 1 copies of Salmonella typhimurium InvA gene sequences (cloned in E. coli and after 30-cycle PCR) with SYBR ® Green I from non-purified culture samples, having highly sensitive and specific signal responses comparable with that of a commercial qPCR instrument. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A comparative kinetic RT/-PCR strategy for the quantitation of mRNAs in microdissected human renal biopsy specimens.

    PubMed

    Del Prete, D; Forino, M; Gambaro, G; D'Angelo, A; Baggio, B; Anglani, F

    1998-01-01

    Molecular biology techniques, to be applicable to a diagnostic renal biopsy specimen, should (1) be highly sensitive to be performed on a very small quantity of tissue; (2) be quantitative because they have to analyze genes normally expressed in the tissue and (3) allow the analysis of as large a number of genes as possible. Among different methods, only the reverse-transcriptase polymerase chain reaction (RT/-PCR) might comply with previous requisites, but the few RT/-PCR examples on renal biopsies in the literature do not allow starting RNA quantification and quality control; furthermore they have the drawback of analyzing only few genes. In an ongoing study to assess the expression of a number of genes in glomeruli and in tubulointerstitium of patients with different nephropathies, we developed a comparative RT/-PCR kinetic strategy based on the purification and quantification of total glomerular and tubulointerstitial RNA and on the use of an internal standard, the housekeeping gene G3PDH. We demonstrate that in microdissected diagnostic renal biopsies (1) glomerular and interstitial starting RNA can be quantified; (2) the G3PDH gene may be used both as an internal standard and as an indirect marker of RNA integrity; (3) as low as 28 ng of total RNA is sufficient to obtain PCR products of eight genes, and (4) it is worth to operate on microdissected biopsy specimens because of the different expression of genes in the two renal compartments.

  16. Rapid quantification of soilborne pathogen communities in wheat-based long-term field experiments

    USDA-ARS?s Scientific Manuscript database

    Traditional isolation and quantification of inoculum density is difficult for most soilborne pathogens. Quantitative PCR methods have been developed to rapidly identify and quantify many of these pathogens using a single DNA extract from soil. Rainfed experiments operated continuously for up to 84 y...

  17. QUANTITATIVE MEASUREMENT OF STACHYBOTRYS CHARTARUM CONIDIA USING REAL TIME DETECTION OF PCR PRODUCTS WITH THE TAQMAN TM FLUOROGENIC PROBE SYSTEM

    EPA Science Inventory

    The occurence of Stachybotrys chartarum in indoor environments has been associated with a number of human health concerns, including fatal pulmonary haemosiderosis in infants. Currently used culture-based and microscopic methods of fungal species identification are poorly suited ...

  18. The principle and application of new PCR Technologies

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Cao, Yue; Ji, Yubin

    2017-12-01

    Polymerase chain reaction (PCR) is essentially a selective DNA amplification technique commonlyapplied for genetic testing and molecular diagnosis because of its high specificity and sensitivity.PCR technologies as the key of molecular biology, has realized that the qualitative detection of absolute quantitative has been changed. It has produced a variety of new PCR technologies, such as extreme PCR, photonic PCR, o-amplification at lower denaturation temperature PCR, nanoparticle PCR and so on. In this paper, the principle and application of PCR technologies are reviewed, and its development is prospected too.

  19. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    PubMed

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  20. Quantitative analysis of SMN1 gene and estimation of SMN1 deletion carrier frequency in Korean population based on real-time PCR.

    PubMed

    Lee, Tae-Mi; Kim, Sang-Wun; Lee, Kwang-Soo; Jin, Hyun-Seok; Koo, Soo Kyung; Jo, Inho; Kang, Seongman; Jung, Sung-Chul

    2004-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder, caused by homozygous absence of the survival motor neuron gene (SMN1) in approximately 94% of patients. Since most carriers have only one SMN1 gene copy, several SMN1 quantitative analyses have been used for the SMA carrier detection. We developed a reliable quantitative real-time PCR with SYBR Green I dye and studied 13 patients with SMA and their 24 parents, as well as 326 healthy normal individuals. The copy number of the SMN1 gene was determined by the comparative threshold cycle (Ct) method and albumin was used as a reference gene. The homozygous SMN1 deletion ratio of patients was 0.00 and the hemizygous SMN1 deletion ratio of parents ranged from 0.39 to 0.59. The deltadelta Ct ratios of 7 persons among 326 normal individuals were within the carrier range, 0.41-0.57. According to these data, we estimated the carrier and disease prevalence of SMA at 1/47 and 1/8,496 in Korean population, respectively. These data indicated that there would be no much difference in disease prevalence of SMA compared with western countries. Since the prevalence of SMA is higher than other autosomal recessive disorders, the carrier detection method using real-time PCR could be a useful tool for genetic counseling.

Top