NASA Technical Reports Server (NTRS)
Alhorn, D. C.; Polites, M. E.
1994-01-01
Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. A description of the experiment is given and test results that prove the concept are presented. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.
NASA Technical Reports Server (NTRS)
Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.
1992-01-01
An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.
Optical scanning tests of complex CMOS microcircuits
NASA Technical Reports Server (NTRS)
Levy, M. E.; Erickson, J. J.
1977-01-01
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.
Large-aperture space optical system testing based on the scanning Hartmann.
Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun
2017-03-10
Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.
A methodology of SiP testing based on boundary scan
NASA Astrophysics Data System (ADS)
Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo
2017-10-01
System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.
Du, Weiqi; Zhang, Gaofei; Ye, Liangchen
2016-01-01
Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390
Du, Weiqi; Zhang, Gaofei; Ye, Liangchen
2016-05-11
Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.
Feenstra, Heleen Em; Vermeulen, Ivar E; Murre, Jaap Mj; Schagen, Sanne B
2018-05-30
Online tests enable efficient self-administered assessments and consequently facilitate large-scale data collection for many fields of research. The Amsterdam Cognition Scan is a new online neuropsychological test battery that measures a broad variety of cognitive functions. The aims of this study were to evaluate the psychometric properties of the Amsterdam Cognition Scan and to establish regression-based normative data. The Amsterdam Cognition Scan was self-administrated twice from home-with an interval of 6 weeks-by 248 healthy Dutch-speaking adults aged 18 to 81 years. Test-retest reliability was moderate to high and comparable with that of equivalent traditional tests (intraclass correlation coefficients: .45 to .80; .83 for the Amsterdam Cognition Scan total score). Multiple regression analyses indicated that (1) participants' age negatively influenced all (12) cognitive measures, (2) gender was associated with performance on six measures, and (3) education level was positively associated with performance on four measures. In addition, we observed influences of tested computer skills and of self-reported amount of computer use on cognitive performance. Demographic characteristics that proved to influence Amsterdam Cognition Scan test performance were included in regression-based predictive formulas to establish demographically adjusted normative data. Initial results from a healthy adult sample indicate that the Amsterdam Cognition Scan has high usability and can give reliable measures of various generic cognitive ability areas. For future use, the influence of computer skills and experience should be further studied, and for repeated measurements, computer configuration should be consistent. The reported normative data allow for initial interpretation of Amsterdam Cognition Scan performances. ©Heleen EM Feenstra, Ivar E Vermeulen, Jaap MJ Murre, Sanne B Schagen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2018.
ERIC Educational Resources Information Center
Emerson, Maria F.; And Others
1997-01-01
The SCAN: A Screening Test for Auditory Processing Disorders was administered to 14 elementary children with a history of otitis media and 14 typical children, to evaluate the validity of the test in identifying children with central auditory processing disorder. Another experiment found that test results differed based on the testing environment…
Scan-Based Implementation of JPEG 2000 Extensions
NASA Technical Reports Server (NTRS)
Rountree, Janet C.; Webb, Brian N.; Flohr, Thomas J.; Marcellin, Michael W.
2001-01-01
JPEG 2000 Part 2 (Extensions) contains a number of technologies that are of potential interest in remote sensing applications. These include arbitrary wavelet transforms, techniques to limit boundary artifacts in tiles, multiple component transforms, and trellis-coded quantization (TCQ). We are investigating the addition of these features to the low-memory (scan-based) implementation of JPEG 2000 Part 1. A scan-based implementation of TCQ has been realized and tested, with a very small performance loss as compared with the full image (frame-based) version. A proposed amendment to JPEG 2000 Part 2 will effect the syntax changes required to make scan-based TCQ compatible with the standard.
A nonparametric spatial scan statistic for continuous data.
Jung, Inkyung; Cho, Ho Jin
2015-10-20
Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2003-01-01
We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
NASA Astrophysics Data System (ADS)
Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.
1991-03-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, M.; Campbell, D.R.; Johnson, C.W.
1991-01-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less
Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong
2013-01-01
As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.
Mouse manipulation through single-switch scanning.
Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar
2004-01-01
Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.
Knowledge-based tracking algorithm
NASA Astrophysics Data System (ADS)
Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.
1990-10-01
This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.
Golden angle based scanning for robust corneal topography with OCT
Wagner, Joerg; Goldblum, David; Cattin, Philippe C.
2017-01-01
Corneal topography allows the assessment of the cornea’s refractive power which is crucial for diagnostics and surgical planning. The use of optical coherence tomography (OCT) for corneal topography is still limited. One limitation is the susceptibility to disturbances like blinking of the eye. This can result in partially corrupted scans that cannot be evaluated using common methods. We present a new scanning method for reliable corneal topography from partial scans. Based on the golden angle, the method features a balanced scan point distribution which refines over measurement time and remains balanced when part of the scan is removed. The performance of the method is assessed numerically and by measurements of test surfaces. The results confirm that the method enables numerically well-conditioned and reliable corneal topography from partially corrupted scans and reduces the need for repeated measurements in case of abrupt disturbances. PMID:28270961
Hardwood lumber scanning tests to determine NHLA lumber grades
Philip A. Araman; Ssang-Mook Lee; A. Lynn Abbott; Matthew F. Winn
2011-01-01
This paper concerns the scanning, and grading of kiln-dried hardwood lumber. A prototype system is described that uses laser sources and a video camera to scan boards. The system automatically detects defects and wane, grades the boards, and then searches for higher value boards within the original board. The goal is to derive maximum commercial value based on current...
Nuclear scanning in necrotizing progressive ''malignant'' external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parisier, S.C.; Lucente, F.E.; Som, P.M.
1982-09-01
The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection.
A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2015-02-01
Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.
X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer
NASA Astrophysics Data System (ADS)
Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.
2016-09-01
X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.
Konda, Sanjit R; Davidovitch, Roy I; Egol, Kenneth A
2013-09-01
To report our experience with computed tomography (CT) scans to detect traumatic arthrotomies of the knee (TAK) joint based on the presence of intra-articular air. Retrospective review. Level I trauma center. Sixty-two consecutive patients (63 knees) underwent a CT scan of the knee in the emergency department and had a minimum of 14 days follow-up. Cohort of 37 patients (37 knees) from the original 62 patients who underwent a saline load test (SLT). CT scan and SLT. Positive traumatic arthrotomy of the knee (+TAK) was defined as operating room (OR) confirmation of an arthrotomy or no intra-articular air on CT scan (-iaCT) (and -SLT if performed) with follow-up revealing a septic knee. Periarticular wound equivalent to no traumatic arthrotomy (pw = (-TAK)) was defined as OR evaluation revealing no arthrotomy or -iaCT (and -SLT if performed) with follow-up revealing no septic knee. All 32 knees with intra-articular air on CT scan (+iaCT) had OR confirmation of a TAK and none of these patients had a knee infection at a mean follow-up of 140.0 ± 279.6 days. None of the 31 patients with -iaCT had a knee infection at a mean follow-up of 291.0 ± 548.1 days. Based on these results, the sensitivity and specificity of the CT scan to detect +TAK and pw = (-TAK) was 100%. In a subgroup of 37 patients that received both a CT scan and the conventional SLT, the sensitivity and specificity of the CT scan was 100% compared with 92% for the SLT (P < 0.001). CT scan performs better than the conventional SLT to detect traumatic knee arthrotomies and identify periarticular knee wounds that do not require surgical intervention and should be considered a valid diagnostic test in the appropriate clinical setting. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalski, D; Huq, M; Bednarz, G
Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same ismore » for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for 4D-based clinical technologies, can be better controlled if nonlinear-based methodology, which reflects respiration characteristic, is applied. Funding provided by Varian Medical Systems via Investigator Initiated Research Project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, L; Burmeister, J; Ye, Y
2015-06-15
Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to formmore » one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.« less
Phase 0 Trial of Itraconazole for Early-Stage Non-Small Cell Lung Cancer
2016-10-01
tissue and blood sampling in addition to magnetic resonance imaging ( MRI ) scans for biomarker analysis. At the time of surgery, resected tissue will...original proposal, these subjects underwent study-related MRI scans, skin biopsies, blood tests, treatment with itraconazole, and surgical resection...not complete serial MRIs scans. Task 2: Determine anti-angiogenic effects of itraconazole Subtask 2a: Blood-based PD studies As described in the
Shaheen, E; Mowafy, B; Politis, C; Jacobs, R
2017-12-01
Previous research proposed the use of the mandibular midline neurovascular canal structures as a forensic finger print. In their observer study, an average correct identification of 95% was reached which triggered this study. To present a semi-automatic computer recognition approach to replace the observers and to validate the accuracy of this newly proposed method. Imaging data from Computer Tomography (CT) and Cone Beam Computer Tomography (CBCT) of mandibles scanned at two different moments were collected to simulate an AM and PM situation where the first scan presented AM and the second scan was used to simulate PM. Ten cases with 20 scans were used to build a classifier which relies on voxel based matching and results with classification into one of two groups: "Unmatched" and "Matched". This protocol was then tested using five other scans out of the database. Unpaired t-testing was applied and accuracy of the computerized approach was determined. A significant difference was found between the "Unmatched" and "Matched" classes with means of 0.41 and 0.86 respectively. Furthermore, the testing phase showed an accuracy of 100%. The validation of this method pushes this protocol further to a fully automatic identification procedure for victim identification based on the mandibular midline canals structures only in cases with available AM and PM CBCT/CT data.
Chromatic dispersive confocal technology for intra-oral scanning: first in-vitro results
NASA Astrophysics Data System (ADS)
Ertl, T.; Zint, M.; Konz, A.; Brauer, E.; Hörhold, H.; Hibst, R.
2015-02-01
Various test objects, plaster models, partially equipped with extracted teeth and pig jaws representing various clinical situations of tooth preparations were used for in-vitro scanning tests with an experimental intra-oral scanning system based on chromatic-dispersive confocal technology. Scanning results were compared against data sets of the same object captured by an industrial μCT measuring system. Compared to μCT data an average error of 18 - 30 μm was achieved for a single tooth scan area and less than 40 to 60 μm error measured over the restoration + the neighbor teeth and pontic areas up to 7 units. Mean error for a full jaw is within 100 - 140 μm. The length error for a 3 - 4 unit bridge situation form contact point to contact point is below 100 μm and excellent interproximal surface coverage and prep margin clarity was achieved.
Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J
2008-06-01
Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.
Hybrid detection of lung nodules on CT scan images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.
Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithmsmore » were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.« less
Optical testing of progressive ophthalmic glasses based on galvo mirrors
NASA Astrophysics Data System (ADS)
Stuerwald, S.; Schmitt, R.
2014-03-01
In production of ophthalmic freeform optics like progressive eyeglasses, the specimens are tested according to a standardized method which is based on the measurement of the vertex power on usually less than 10 points. For a better quality management and thus to ensure more reliable and valid tests, a more comprehensive measurement approach is required. For Shack Hartmann Sensors (SHS) the dynamic range is defined by the number of micro-lenses and the resolution of the imaging sensor. Here, we present an approach for measuring wavefronts with increased dynamic range and lateral resolution by the use of a scanning procedure. Therefore, the proposed innovative setup is based on galvo mirrors that are capable of measuring the vertex power with a lateral resolution below one millimeter since this is sufficient for a functional test of progressive eyeglasses. Expressed in a more abstract way, the concept is based on a selection and thereby encoding of single sub-apertures of the wave front under test. This allows measuring the wave fronts slope consecutively in a scanning procedure. The use of high precision galvo systems allows a lateral resolution below one millimeter as well as a significant fast scanning ability. The measurement concept and performance of this method will be demonstrated for different spherical and freeformed specimens like progressive eye glasses. Furthermore, approaches for calibration of the measurement system will be characterized and the optical design of the detector will be discussed.
"Slow-scanning" in Ground-based Mid-infrared Observations
NASA Astrophysics Data System (ADS)
Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro
2018-04-01
Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.
Ernstberger, T; Buchhorn, G; Heidrich, G
2010-03-01
Intervertebral spacers are made of different materials, which can affect the postfusion magnetic resonance imaging (MRI) scans. Susceptibility artifacts, especially for metallic implants, can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and CFRP. All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (P < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (P > 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Higuchi, T.; Nishioki, N.
1997-01-01
A dual tunneling-unit scanning tunneling microscope (DTU STM) was developed for nm order length measurement with wide scan range. The crystalline lattice of highly oriented pyrolitic graphite (HOPG) was used as reference scale. A reference unit was set up on top of a test unit. The reference sample holder and the probe tip of test unit were attached to one single XY scanner on either surface, while the test sample holder was open. This enables simultaneous acquisition of wide images of HOPG and test sample. The length in test sample image was measured by counting the number of HOPG lattices.more » An inchworm actuator and an impact drive mechanism were introduced to roughly position probe tips. The XY scanner was designed to be elastic to eliminate image distortion. Some comparison experiments using two HOPG chips were carried out in air. The DTU STM is confirmed to be a stable and more powerful device for length measurement which has nanometer accuracy when covering a wide scan range up to several micrometers, and is capable of measuring comparatively large and heavy samples. {copyright} {ital 1997 American Vacuum Society.}« less
A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.
Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine
2008-04-11
Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.
Scan path entropy and arrow plots: capturing scanning behavior of multiple observers
Hooge, Ignace; Camps, Guido
2013-01-01
Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993
Rantalainen, Timo; Chivers, Paola; Beck, Belinda R; Robertson, Sam; Hart, Nicolas H; Nimphius, Sophia; Weeks, Benjamin K; McIntyre, Fleur; Hands, Beth; Siafarikas, Aris
Most imaging methods, including peripheral quantitative computed tomography (pQCT), are susceptible to motion artifacts particularly in fidgety pediatric populations. Methods currently used to address motion artifact include manual screening (visual inspection) and objective assessments of the scans. However, previously reported objective methods either cannot be applied on the reconstructed image or have not been tested for distal bone sites. Therefore, the purpose of the present study was to develop and validate motion artifact classifiers to quantify motion artifact in pQCT scans. Whether textural features could provide adequate motion artifact classification performance in 2 adolescent datasets with pQCT scans from tibial and radial diaphyses and epiphyses was tested. The first dataset was split into training (66% of sample) and validation (33% of sample) datasets. Visual classification was used as the ground truth. Moderate to substantial classification performance (J48 classifier, kappa coefficients from 0.57 to 0.80) was observed in the validation dataset with the novel texture-based classifier. In applying the same classifier to the second cross-sectional dataset, a slight-to-fair (κ = 0.01-0.39) classification performance was observed. Overall, this novel textural analysis-based classifier provided a moderate-to-substantial classification of motion artifact when the classifier was specifically trained for the measurement device and population. Classification based on textural features may be used to prescreen obviously acceptable and unacceptable scans, with a subsequent human-operated visual classification of any remaining scans. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
MRI-based intelligence quotient (IQ) estimation with sparse learning.
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.
Viability of NLCD Products From IRS-P6, And From Landsat 7 Scan-gap Data
NASA Technical Reports Server (NTRS)
Coan, Michael
2007-01-01
Landcover test on Salt Lake test site illustrates potential issues with AWiFS/LISS-III for classification of certain land cover classes (evergreen, shrub/scrub, woody wetlands, emergent wetlands). Canopy and impervious graphs of product differences from source indicate slightly lower overall accuracies (shorter peaks, wider bases) for AWiFS/LISS-III, compared to L5/L7. Inspection of individual products from canopy and impervious estimate tests revealed issues with combining AWifs quadrants, and similar but less severe effects with combining multiple dates of L7 scan gap data.
NASA Astrophysics Data System (ADS)
Suchocki, Czesław; Katzer, Jacek; Panuś, Arkadiusz
2017-06-01
Terrestrial Laser Scanner (TLS) method which is commonly used for geodetic applications has a great potential to be successfully harnessed for multiple civil engineering applications. One of the most promising uses of TLS in construction industry is remote sensing of saturation of building materials. A research programme was prepared in order to prove that harnessing TLS for such an application is viable. Results presented in the current paper are a part of a much larger research programme focused on harnessing TLS for remote sensing of saturation of building materials. The paper describes results of the tests conducted with an impulse scanner Leica C-10. Tests took place both indoors (in a stable lab conditions) and outdoors (in a real environment). There were scanned specimens of the most popular building materials in Europe. Tested specimens were dried and saturated (including capillary rising moisture). One of the tests was performed over a period of 95 hours. Basically, a concrete specimen was scanned during its setting and hardening. It was proven that absorption of a laser signal is influenced by setting and hardening of concrete. Outdoor tests were based on scanning real buildings with partially saturated facades. The saturation assessment was based on differences of values of intensity. The concept proved to be feasible and technically realistic.
[Rapid test for detection of susceptibility to cefotaxime in Enterobacteriaceae].
Jiménez-Guerra, Gemma; Hoyos-Mallecot, Yannik; Rodríguez-Granger, Javier; Navarro-Marí, José María; Gutiérrez-Fernández, José
In this work an "in house" rapid test based on the change in pH that is due to hydrolysis for detecting Enterobacteriaceae susceptible to cefotaxime is evaluated. The strains of Enterobacteriaceae from 1947 urine cultures were assessed using MicroScan panels and the "in house" test. This rapid test includes red phenol solution and cefotaxime. Using MicroScan panels, 499 Enterobacteriaceae isolates were evaluated, which included 27 isolates of Escherichia coli producing extended-spectrum beta-lactamases (ESBL), 16 isolates of Klebsiella pneumoniae ESBL and 1 isolate of Klebsiella oxytoca ESBL. The "in house" test offers the following values: sensitivity 98% and specificity 97%, with negative predictive value 100% and positive predictive value 78%. The "in house" test based on the change of pH is useful in our area for detecting presumptively cefotaxime-resistant Enterobacteriaceae strains. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Data-driven inference for the spatial scan statistic.
Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C
2011-08-02
Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
Development of a Computerized Visual Search Test
ERIC Educational Resources Information Center
Reid, Denise; Babani, Harsha; Jon, Eugenia
2009-01-01
Visual attention and visual search are the features of visual perception, essential for attending and scanning one's environment while engaging in daily occupations. This study describes the development of a novel web-based test of visual search. The development information including the format of the test will be described. The test was designed…
NASA Astrophysics Data System (ADS)
Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.
2013-02-01
To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.
CT scan range estimation using multiple body parts detection: let PACS learn the CT image content.
Wang, Chunliang; Lundström, Claes
2016-02-01
The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2% (max: 3.5%) and 1.6% (max: 5.4%) for the start and end positions, respectively. We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.
Motosugi, Utaroh; Hernando, Diego; Wiens, Curtis; Bannas, Peter; Reeder, Scott. B
2017-01-01
Purpose: To determine whether high signal-to-noise ratio (SNR) acquisitions improve the repeatability of liver proton density fat fraction (PDFF) measurements using confounder-corrected chemical shift-encoded magnetic resonance (MR) imaging (CSE-MRI). Materials and Methods: Eleven fat-water phantoms were scanned with 8 different protocols with varying SNR. After repositioning the phantoms, the same scans were repeated to evaluate the test-retest repeatability. Next, an in vivo study was performed with 20 volunteers and 28 patients scheduled for liver magnetic resonance imaging (MRI). Two CSE-MRI protocols with standard- and high-SNR were repeated to assess test-retest repeatability. MR spectroscopy (MRS)-based PDFF was acquired as a standard of reference. The standard deviation (SD) of the difference (Δ) of PDFF measured in the two repeated scans was defined to ascertain repeatability. The correlation between PDFF of CSE-MRI and MRS was calculated to assess accuracy. The SD of Δ and correlation coefficients of the two protocols (standard- and high-SNR) were compared using F-test and t-test, respectively. Two reconstruction algorithms (complex-based and magnitude-based) were used for both the phantom and in vivo experiments. Results: The phantom study demonstrated that higher SNR improved the repeatability for both complex- and magnitude-based reconstruction. Similarly, the in vivo study demonstrated that the repeatability of the high-SNR protocol (SD of Δ = 0.53 for complex- and = 0.85 for magnitude-based fit) was significantly higher than using the standard-SNR protocol (0.77 for complex, P < 0.001; and 0.94 for magnitude-based fit, P = 0.003). No significant difference was observed in the accuracy between standard- and high-SNR protocols. Conclusion: Higher SNR improves the repeatability of fat quantification using confounder-corrected CSE-MRI. PMID:28190853
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.
2008-01-01
The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.
MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject’s IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge. PMID:25822851
2013-05-01
for initial test of object coverage for these scanning trajectories. I have also acquired real data of physical phantoms by using a clinical CBCT system...scan. To test the extension of axial coverage, I car- ried out a simulated data study using numerical disk and anthropomorphic XCAT phantoms [15]. As an...imaging model in Eq. (1), I investigated the choice of data divergence, such as the Euclidean distance or Kullback - Leibler (K-L) divergence, which are
Internal and External Crisis Early Warning and Monitoring.
1980-12-01
refining EWAMS. Initial EWAMS research revolved around the testing of quantitative political indicators, the development of general scans, and the...Initial Research ...................27 3.1.1 Quantitative indicators .......... 28 03.1.2 General scans.................34 3.1.3 Computer base...generalizations reinforce the desirability of the research from the vantage point of the I&W thrust. One is the proliferation of quantitative and
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.
Gangnon, Ronald E
2012-03-01
The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution
Gangnon, Ronald E.
2011-01-01
Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118
Failure of MIBG scan to detect metastases in SDHB-mutated pediatric metastatic pheochromocytoma.
Sait, Sameer; Pandit-Taskar, Neeta; Modak, Shakeel
2017-11-01
123 I-meta-iodo benzyl guanidine (MIBG) scans are considered the gold standard imaging in neuroblastoma; however, flouro deoxy glucose positron emission tomography (FDG-PET) scans have increased sensitivity in adults with pheochromocytoma/paraganglioma. We describe a pediatric patient initially considered to have localized neuroblastoma based on anatomical imaging and 123 I-MIBG scan, but subsequent investigations revealed germline succinate dehydrogenase complex iron sulfur subunit B (SDHB) mutation-associated pheochromocytoma with multiple FDG-avid skeletal metastases. We then compared 123 I-MIBG and FDG-PET scans in children with metastatic pheochromocytoma/paraganglioma. FDG-PET was superior to 123 I-MIBG scan for the detection of skeletal metastases (median number of skeletal lesions detected 10 [range 1-30] vs. 2 [range 1-26], respectively; P = 0.005 by t-test). FDG-PET should be considered the functional scan of choice in children with pheochromocytoma/paraganglioma. © 2017 Wiley Periodicals, Inc.
Goldberg, Ilan; Gilburd, Boris; Kravitz, Martine Szyper; Kivity, Shmuel; Chaim, Berta Ben; Klein, Tirza; Schiffenbauer, Yael; Trubniykovr, Ela; Brenner, Sarah; Shoenfeld, Yehuda
2005-03-01
There are several mechanisms to describe allergic drug reactions yet the methods to diagnose them are limited. To compare several conventional clinical and laboratory methods to diagnose skin reactions to drugs to a new method of diagnosing drug reactions by the CellScan system. The study entailed 21 patients who were diagnosed as suffering from drug eruptions, and 105 healthy controls with no history of drug allergy. The drugs were classified into two groups according to suspicion of causing drug allergy: high and low. Most of the patients were on more than one drug, leading to 41 patient-drug interactions (assays). Histamine releasing test (HRT), interferon (INF)-gamma releasing test and CellScan examination were performed on lymphocytes of the patients and controls. The HRTwas interpreted as positive in 9 out of 18 (50%) patients and in 13 out of 35 (37%) assays. Based on the INF-gamma releasing test, positive results were observed in 16 out of 21 (76%) patients and in 24 out of 41 (59%) assays. In the CellScan test (CST), positive results were observed in 17 out of 21 (81%) patients and in 29 out of 41 (71%) assays. The rate of identifying the drug for eruption in the high suspicion level drugs was 9 out of 22 (41%) assays in the HRT, 20 out of 24 (83%) assays in the INF-gamma releasing test, and 21 out of 24 (87%) studies with the CellScan method. The rate of determining of the drug that caused the eruption in the low suspicion level drugs was 4 out of 13 (31 %) in the HRT, 4 out of 17 (24%) assays in the INF-gamma releasing test, and 8 out of 17 (47%) analyses in the CST. When examined in the CellScan, 99 out of 105 (94%) controls were interpreted as negative. This preliminary study indicates that the CellScan seems to be an easy and promising method for the detection of drugs responsible for adverse skin reactions. In contrast to the HRT and to the Interferon-gamma secretion test, the CellScan method is characterized by its ability to track and monitor the reaction of individual cells. By measuring the kinetic parameters of selected cells before and after adding the suspected drug, we were able to identify the culprit drug. The CellScan method had the highest sensitivity, and the interferon-gamma secretion test had the highest specificity for detection of the culprit drug. In contrast, the analysis of 105 normal control sera disclosed a high specificity of 94% for the CellScan method.
Ground Based Operational Testing Of Holographic Scanning Lidars : The HOLO Experiments
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason A.; Guerra, David V.; Miller, David O.; Moody, Stephen E.
2000-01-01
Two aerosol backscatter lidar measurement campaigns were conducted using two holographic scanning lidars and one zenith staring lidar for the purposes of reliability testing under field conditions three new lidar systems and to develop new scanning measurement techniques and applications. The first campaign took place near the campus of Utah State University in Logan Utah in March of 1999 and is called HOLO-1. HOLO-2 was conducted in June of 1999 on the campus of Saint Anselm College, near the city of Manchester, New Hampshire. Each campaign covered a period of approximately one week of nearly continuous observation of cloud and aerosol backscatter in the visible and near infrared by lidar, and wide field visible sky images by video camera in the daytime. The scanning capability coupled with a high rep-rate, high average power laser enables both high spatial and high temporal resolution observations that Particularly intriguing is the possibility of deriving atmospheric wind profiles from temporal analysis of aerosol backscatter spatial structure obtained by conical scan without the use of Doppler techniques.
Algee-Hewitt, Bridget F B; Wheat, Amber D
2016-05-01
The use of geometric morphometry to study cranial variation has steadily grown in appeal over the past decade in biological anthropology. Publication trends suggest that the most popular methods for three-dimensional data acquisition involve landmark-based coordinate data collection using a digitizer. Newer laser scan approaches are seeing increasing use, owing to the benefits that densely sampled data offer. While both of these methods have their utility, research that investigates their compatibility is lacking. The purpose of this project is to compare, quantitatively, craniometrics collected with a digitizer against data extracted from laser scans using the same individuals and laboratory conditions. Three-dimensional (x,y,z) coordinates and traditional inter-landmark distances (ILDs) were obtained with a Microscribe digitizer and 360° color models produced from NextEngine laser scans for 38 adult crania representing five cemeteries from the ADBOU skeletal collection in Denmark. Variance-based tests were performed to evaluate the disagreement between data collected with a digitizer and from laser scan models. Consideration was given to differences among landmarks by type, between ILDs calculated from landmark coordinates, and in morphology for the cemetery populations. Further, the reliability of laser scan data collection was assessed by intra-observer error tests. Researchers should be aware of the potential error associated with the use of Types II and III landmarks and the limitations on reliability imposed by object-to-scanner placement. This project reveals how laser scans can provide a valuable digital archive of cranial material that can be reasonably exploited for the "virtual" collection of coordinates and the calculation of ILDs. © 2015 Wiley Periodicals, Inc.
... Gallbladder scan; Biliary scan; Cholescintigraphy; HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...
... thyroid; Radioactive iodine uptake and scan test - thyroid; Nuclear scan - thyroid ... the test. Ask your provider or the radiology/nuclear medicine team performing the scan about taking precautions.
NASA Astrophysics Data System (ADS)
Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William
2012-05-01
Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.
Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.
Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero
2008-09-01
Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.
Brain SPECT scans in students with specific learning disability: Preliminary results.
Karande, S; Deshmukh, N; Rangarajan, V; Agrawal, A; Sholapurwala, R
2018-06-08
Brain single-photon emission computed tomography (SPECT) assesses brain function through measurement of regional cerebral blood flow. This study was conducted to assess whether students with newly diagnosed specific learning disability (SpLD) show any abnormalities in cerebral cortex perfusion. Cross-sectional single-arm pilot study in two tertiary care hospitals. Nine students with SpLD were enrolled. Brain SPECT scan was done twice in each student. For the first or "baseline" scan, the student was first made to sit with eyes open in a quiet, dimly lit room for a period of 30-40 min and then injected intravenously with 20 mCi of 99mTc-ECD. An hour later, "baseline scan" was conducted. After a minimum gap of 4 days, a second or "test scan" was conducted, wherein the student performed an age-appropriate curriculum-based test for a period of 30-40 min to activate the areas in central nervous system related to learning before being injected with 20 mCi of 99mTc-ECD. Cerebral cortex perfusion at rest and after activation in each student was compared qualitatively by visual analysis and quantitatively using NeuroGam TM software. Visual analysis showed reduction in regional blood flow in temporoparietal areas in both "baseline" and "test" scans. However, when normalization was attempted and comparison done by Talairach analysis using NeuroGam software, no statistically significant change in regional perfusion in temporoparietal areas was appreciated. Brain SPECT scan may serve as a robust tool to identify changes in regional brain perfusion in students with SpLD.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
DONG, DAO-RAN; HAO, MEI-NA; LI, CHENG; PENG, ZE; LIU, XIA; WANG, GUI-PING; MA, AN-LIN
2015-01-01
The aim of the present study was to investigate the combination of certain serological markers (Forns’ index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty-one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal-Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal-Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=−0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of these methods. PMID:25651500
Dong, Dao-Ran; Hao, Mei-Na; Li, Cheng; Peng, Ze; Liu, Xia; Wang, Gui-Ping; Ma, An-Lin
2015-06-01
The aim of the present study was to investigate the combination of certain serological markers (Forns' index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty‑one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal‑Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal‑Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=‑0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J; Fan, J; Gopinatha Pillai, A
Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less
Soil burial biodegradation studies of palm oil-based UV-curable films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my
The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respectmore » to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.« less
Soil burial biodegradation studies of palm oil-based UV-curable films
NASA Astrophysics Data System (ADS)
Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira
2016-01-01
The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.
NASA Technical Reports Server (NTRS)
Bruegman, Otto; Thakore, Kamal; Loewenthal, Stu; Cymerman, John
2016-01-01
The Advanced Technology Microwave Sounder (ATMS) instrument scan system on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft has experienced several randomly occurring increased torque 'events' since its on-orbit activation in November 2011. Based on a review of on-orbit telemetry data and data gathered from scan mechanism bearing life testing on the ground, the conclusion was drawn that some degradation of Teflon toroid ball retainers was occurring in the instrument Scan Drive Mechanism. A life extension program was developed and executed on-orbit with very good results to date. The life extension program consisted of reversing the mechanism for a limited number of consecutive scans every day.
Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.
2014-01-01
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application. PMID:24999715
Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu
2014-07-04
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application.
Automated aortic calcium scoring on low-dose chest computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isgum, Ivana; Rutten, Annemarieke; Prokop, Mathias
Purpose: Thoracic computed tomography (CT) scans provide information about cardiovascular risk status. These scans are non-ECG synchronized, thus precise quantification of coronary calcifications is difficult. Aortic calcium scoring is less sensitive to cardiac motion, so it is an alternative to coronary calcium scoring as an indicator of cardiovascular risk. The authors developed and evaluated a computer-aided system for automatic detection and quantification of aortic calcifications in low-dose noncontrast-enhanced chest CT. Methods: The system was trained and tested on scans from participants of a lung cancer screening trial. A total of 433 low-dose, non-ECG-synchronized, noncontrast-enhanced 16 detector row examinations of themore » chest was randomly divided into 340 training and 93 test data sets. A first observer manually identified aortic calcifications on training and test scans. A second observer did the same on the test scans only. First, a multiatlas-based segmentation method was developed to delineate the aorta. Segmented volume was thresholded and potential calcifications (candidate objects) were extracted by three-dimensional connected component labeling. Due to image resolution and noise, in rare cases extracted candidate objects were connected to the spine. They were separated into a part outside and parts inside the aorta, and only the latter was further analyzed. All candidate objects were represented by 63 features describing their size, position, and texture. Subsequently, a two-stage classification with a selection of features and k-nearest neighbor classifiers was performed. Based on the detected aortic calcifications, total calcium volume score was determined for each subject. Results: The computer system correctly detected, on the average, 945 mm{sup 3} out of 965 mm{sup 3} (97.9%) calcified plaque volume in the aorta with an average of 64 mm{sup 3} of false positive volume per scan. Spearman rank correlation coefficient was {rho}=0.960 between the system and the first observer compared to {rho}=0.961 between the two observers. Conclusions: Automatic calcium scoring in the aorta thus appears feasible with good correlation between manual and automatic scoring.« less
A note on generalized Genome Scan Meta-Analysis statistics
Koziol, James A; Feng, Anne C
2005-01-01
Background Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies. Results We provide an Edgeworth approximation to the null distribution of the weighted GSMA statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing for determining significance of GSMA results. Conclusion Theoretical considerations detailed herein can lead to clarification and simplification of testing criteria for generalizations of the GSMA statistic. PMID:15717930
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2005-01-01
We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.
The Anomalous Sentences Repetition Test: Replication and Validation Study.
ERIC Educational Resources Information Center
Weeks, David J.
1986-01-01
Presents a brief clinical test, derived from earlier neuropsychological instruments, with evidence for its reliability, interscorer agreement, and validity. The latter is based upon correlations with both CAT scan measures of cortical atrophy and ventricular enlargement, as well as correlations with seven other previously validated cognitive…
Programmable logic controller performance enhancement by field programmable gate array based design.
Patel, Dhruv; Bhatt, Jignesh; Trivedi, Sanjay
2015-01-01
PLC, the core element of modern automation systems, due to serial execution, exhibits limitations like slow speed and poor scan time. Improved PLC design using FPGA has been proposed based on parallel execution mechanism for enhancement of performance and flexibility. Modelsim as simulation platform and VHDL used to translate, integrate and implement the logic circuit in FPGA. Xilinx's Spartan kit for implementation-testing and VB has been used for GUI development. Salient merits of the design include cost-effectiveness, miniaturization, user-friendliness, simplicity, along with lower power consumption, smaller scan time and higher speed. Various functionalities and applications like typical PLC and industrial alarm annunciator have been developed and successfully tested. Results of simulation, design and implementation have been reported. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Philip A. Araman; Janice K. Wiedenbeck
1995-01-01
Automated lumber grading and yield optimization using computer controlled saws will be plausible for hardwoods if and when lumber scanning systems can reliably identify all defects by type. Existing computer programs could then be used to grade the lumber, identify the best cut-up solution, and control the sawing machines. The potential value of a scanning grading...
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
Montgomery, Sandra; Roman, Kiana; Ngyuen, Lan; Cardenas, Ana Maria; Knox, James; Tomaras, Andrew P.
2017-01-01
ABSTRACT Urinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h. PMID:28356414
Montgomery, Sandra; Roman, Kiana; Ngyuen, Lan; Cardenas, Ana Maria; Knox, James; Tomaras, Andrew P; Graf, Erin H
2017-06-01
Urinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h. Copyright © 2017 American Society for Microbiology.
Scanning-time evaluation of Digimarc Barcode
NASA Astrophysics Data System (ADS)
Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan
2015-03-01
This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.
Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J
2012-10-01
Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.
Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques.
Goodacre, Brian J; Goodacre, Charles J; Baba, Nadim Z; Kattadiyil, Mathew T
2016-08-01
Currently no data comparing the denture base adaptation of CAD-CAM and conventional denture processing techniques have been reported. The purpose of this in vitro study was to compare the denture base adaptation of pack and press, pour, injection, and CAD-CAM techniques for fabricating dentures to determine which process produces the most accurate and reproducible adaptation. A definitive cast was duplicated to create 40 gypsum casts that were laser scanned before any fabrication procedures were initiated. A master denture was made using the CAD-CAM process and was then used to create a putty mold for the fabrication of 30 standardized wax festooned dentures, 10 for each of the conventional processing techniques (pack and press, pour, injection). Scan files from 10 casts were sent to Global Dental Science, LLC for fabrication of the CAD-CAM test specimens. After specimens for each of the 4 techniques had been fabricated, they were hydrated for 24 hours and the intaglio surface laser scanned. The scan file of each denture was superimposed on the scan file of the corresponding preprocessing cast using surface matching software. Measurements were made at 60 locations, providing evaluation of fit discrepancies at the following areas: apex of the denture border, 6 mm from the denture border, crest of the ridge, palate, and posterior palatal seal. The use of median and interquartile range was used to assess accuracy and reproducibility. The Levine and Kruskal-Wallis analysis of variance was used to evaluate differences between processing techniques at the 5 specified locations (α=.05). The ranking of results based on median and interquartile range determined that the accuracy and reproducibility of the CAD-CAM technique was more consistently localized around zero at 3 of the 5 locations. Therefore, the CAD-CAM technique showed the best combination of accuracy and reproducibility among the tested fabrication techniques. The pack and press technique was more accurate at 2 of the 5 locations; however, its interquartile range (reproducibility) was the greatest of the 4 tested processing techniques. The pour technique was the most reproducible at 2 of the 5 locations; however, its accuracy was the lowest of the tested techniques. The CAD-CAM fabrication process was the most accurate and reproducible denture fabrication technique when compared with pack and press, pour, and injection denture base processing techniques. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Drug safety data mining with a tree-based scan statistic.
Kulldorff, Martin; Dashevsky, Inna; Avery, Taliser R; Chan, Arnold K; Davis, Robert L; Graham, David; Platt, Richard; Andrade, Susan E; Boudreau, Denise; Gunter, Margaret J; Herrinton, Lisa J; Pawloski, Pamala A; Raebel, Marsha A; Roblin, Douglas; Brown, Jeffrey S
2013-05-01
In post-marketing drug safety surveillance, data mining can potentially detect rare but serious adverse events. Assessing an entire collection of drug-event pairs is traditionally performed on a predefined level of granularity. It is unknown a priori whether a drug causes a very specific or a set of related adverse events, such as mitral valve disorders, all valve disorders, or different types of heart disease. This methodological paper evaluates the tree-based scan statistic data mining method to enhance drug safety surveillance. We use a three-million-member electronic health records database from the HMO Research Network. Using the tree-based scan statistic, we assess the safety of selected antifungal and diabetes drugs, simultaneously evaluating overlapping diagnosis groups at different granularity levels, adjusting for multiple testing. Expected and observed adverse event counts were adjusted for age, sex, and health plan, producing a log likelihood ratio test statistic. Out of 732 evaluated disease groupings, 24 were statistically significant, divided among 10 non-overlapping disease categories. Five of the 10 signals are known adverse effects, four are likely due to confounding by indication, while one may warrant further investigation. The tree-based scan statistic can be successfully applied as a data mining tool in drug safety surveillance using observational data. The total number of statistical signals was modest and does not imply a causal relationship. Rather, data mining results should be used to generate candidate drug-event pairs for rigorous epidemiological studies to evaluate the individual and comparative safety profiles of drugs. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Siamidis, John; Yuko, Jim
2014-01-01
The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).
NASA Technical Reports Server (NTRS)
Klein, R.
1972-01-01
A set of specially prepared digital tapes is reported which contain synchronized measurements of pilot scanning behavior, control response, and vehicle response obtained during instrument landing system approaches made in a fixed-base DC-8 transport simulator. The objective of the master tape is to provide a common data base which can be used by the research community to test theories, models, and methods for describing and analyzing control/display relations and interactions. The experimental conditions and tasks used to obtain the data and the detailed format of the tapes are described. Conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Continuous pilot eye fixations and scan traffic on the panel were measured. Both flight director and standard localizer/glide slope types of approaches were made, with both fixed and variable instrument range sensitivities.
NASA Astrophysics Data System (ADS)
Bahadirlar, Yildirim; Kaplan, Gulay B.
2004-09-01
A new preprocessing and feature extracting approach for classification of non-metallic buried objects are aimed using GPR B-scan data. A frequency-domain adaptive filter without a reference channel effectively removes the background signal resulting mostly from the discontinuity on the air-to-ground path of the electromagnetic waves. The filter only needs average of the first five A-scans as the reference signal for this elimination, and also serves for masking of the B-scan in the frequency-domain. A preprocessed GPR data with significantly suppressed clutter is then obtained by precisely positioning the Hanning window in the frequency-domain. A directional correlation function defined over a B-scan frame gives distinctive curves of buried objects. The main axis of directional correlation, on which the pivotal correlating pixels and short lines of pixels being correlated are considered, makes an angle to the scanning direction of the B-scan. This form of correlation is applied to the frame from the left-hand and the right-hand side and two over-plotted curves are obtained. Nine measures as features emphasizing directional signatures are extracted from these curves. Nine-element feature vectors are applied to the two-layer Artificial Neural Network and preliminary results over test set are promising to continue to comprehensive training and testing processes.
A machine learning approach for classification of anatomical coverage in CT
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Lo, Pechin; Ramakrishna, Bharath; Goldin, Johnathan; Brown, Matthew
2016-03-01
Automatic classification of anatomical coverage of medical images is critical for big data mining and as a pre-processing step to automatically trigger specific computer aided diagnosis systems. The traditional way to identify scans through DICOM headers has various limitations due to manual entry of series descriptions and non-standardized naming conventions. In this study, we present a machine learning approach where multiple binary classifiers were used to classify different anatomical coverages of CT scans. A one-vs-rest strategy was applied. For a given training set, a template scan was selected from the positive samples and all other scans were registered to it. Each registered scan was then evenly split into k × k × k non-overlapping blocks and for each block the mean intensity was computed. This resulted in a 1 × k3 feature vector for each scan. The feature vectors were then used to train a SVM based classifier. In this feasibility study, four classifiers were built to identify anatomic coverages of brain, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans. Each classifier was trained and tested using a set of 300 scans from different subjects, composed of 150 positive samples and 150 negative samples. Area under the ROC curve (AUC) of the testing set was measured to evaluate the performance in a two-fold cross validation setting. Our results showed good classification performance with an average AUC of 0.96.
... and abnormal cells based on metabolic activity a gallium scan, if the doctor thinks a PET might ... option. In this test, a radioactive material called gallium is injected into the body to help show ...
Three-dimensional dynamic deformation monitoring using a laser-scanning system
NASA Astrophysics Data System (ADS)
Al-Hanbali, Nedal N.; Teskey, William F.
1994-10-01
Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.
Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M
2016-06-01
This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
New scoring system for intra-abdominal injury diagnosis after blunt trauma.
Shojaee, Majid; Faridaalaee, Gholamreza; Yousefifard, Mahmoud; Yaseri, Mehdi; Arhami Dolatabadi, Ali; Sabzghabaei, Anita; Malekirastekenari, Ali
2014-01-01
An accurate scoring system for intra-abdominal injury (IAI) based on clinical manifestation and examination may decrease unnecessary CT scans, save time, and reduce healthcare cost. This study is designed to provide a new scoring system for a better diagnosis of IAI after blunt trauma. This prospective observational study was performed from April 2011 to October 2012 on patients aged above 18 years and suspected with blunt abdominal trauma (BAT) admitted to the emergency department (ED) of Imam Hussein Hospital and Shohadaye Hafte Tir Hospital. All patients were assessed and treated based on Advanced Trauma Life Support and ED protocol. Diagnosis was done according to CT scan findings, which was considered as the gold standard. Data were gathered based on patient's history, physical exam, ultrasound and CT scan findings by a general practitioner who was not blind to this study. Chi-square test and logistic regression were done. Factors with significant relationship with CT scan were imported in multivariate regression models, where a coefficient (β) was given based on the contribution of each of them. Scoring system was developed based on the obtained total β of each factor. Altogether 261 patients (80.1% male) were enrolled (48 cases of IAI). A 24-point blunt abdominal trauma scoring system (BATSS) was developed. Patients were divided into three groups including low (score<8), moderate (8≤score<12) and high risk (score≥12). In high risk group immediate laparotomy should be done, moderate group needs further assessments, and low risk group should be kept under observation. Low risk patients did not show positive CT-scans (specificity 100%). Conversely, all high risk patients had positive CT-scan findings (sensitivity 100%). The receiver operating characteristic curve indicated a close relationship between the results of CT scan and BATSS (sensitivity=99.3%). The present scoring system furnishes a high precision and reproducible diagnostic tool for BAT detection and has the potential to reduce unnecessary CT scan and cut unnecessary costs.
A non-contact time-domain scanning brain imaging system: first in-vivo results
NASA Astrophysics Data System (ADS)
Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.
2013-06-01
We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, P.; Martin, H.; Jiang, X.
Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateralmore » scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.« less
Zanotti-Fregonara, Paolo; Liow, Jeih-San; Comtat, Claude; Zoghbi, Sami S; Zhang, Yi; Pike, Victor W; Fujita, Masahiro; Innis, Robert B
2012-09-01
Image-derived input function (IDIF) from carotid arteries is an elegant alternative to full arterial blood sampling for brain PET studies. However, a recent study using blood-free IDIFs found that this method is particularly vulnerable to patient motion. The present study used both simulated and clinical [11C](R)-rolipram data to assess the robustness of a blood-based IDIF method (a method that is ultimately normalized with blood samples) with regard to motion artifacts. The impact of motion on the accuracy of IDIF was first assessed with an analytical simulation of a high-resolution research tomograph using a numerical phantom of the human brain, equipped with internal carotids. Different degrees of translational (from 1 to 20 mm) and rotational (from 1 to 15°) motions were tested. The impact of motion was then tested on the high-resolution research tomograph dynamic scans of three healthy volunteers, reconstructed with and without an online motion correction system. IDIFs and Logan-distribution volume (VT) values derived from simulated and clinical scans with motion were compared with those obtained from the scans with motion correction. In the phantom scans, the difference in the area under the curve (AUC) for the carotid time-activity curves was up to 19% for rotations and up to 66% for translations compared with the motionless simulation. However, for the final IDIFs, which were fitted to blood samples, the AUC difference was 11% for rotations and 8% for translations. Logan-VT errors were always less than 10%, except for the maximum translation of 20 mm, in which the error was 18%. Errors in the clinical scans without motion correction appeared to be minor, with differences in AUC and Logan-VT always less than 10% compared with scans with motion correction. When a blood-based IDIF method is used for neurological PET studies, the motion of the patient affects IDIF estimation and kinetic modeling only minimally.
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhong, Jiaqi; Song, Hongwei; Zhu, Lei; Wang, Jin; Zhan, Mingsheng
2014-08-01
Vibrational noise is one of the most important noises that limits the performance of the nonisotopes atom-interferometers (AIs) -based weak-equivalence-principle (WEP) -test experiment. By analyzing the vibration-induced phases, we find that, although the induced phases are not completely common, their ratio is always a constant at every experimental data point, which is not fully utilized in the traditional elliptic curve-fitting method. From this point, we propose a strategy that can greatly suppress the vibration-induced phase noise by stabilizing the Raman laser frequencies at high precision and controlling the scanning-phase ratio. The noise rejection ratio can be as high as 1015 with arbitrary dual-species AIs. Our method provides a Lissajous curve, and the shape of the curve indicates the breakdown of the weak-equivalence-principle signal. Then we manage to derive an estimator for the differential phase of the Lissajous curve. This strategy could be helpful in extending the candidates of atomic species for high-precision AIs-based WEP-test experiments.
Metallurgical characterization of experimental Ag-based soldering alloys.
Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros
2014-10-01
To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.
Metallurgical characterization of experimental Ag-based soldering alloys
Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros
2014-01-01
Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945
Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X
2012-07-01
The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying
2018-06-16
Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.
Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G
2015-06-01
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.
Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.
2015-01-01
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, P.F.
1995-04-25
An apparatus and method for ultrasonic reconstruction and testing of a non-visible turbine rotor blade attachment structure is described. The method of the invention includes positioning transducers at a first location to obtain slot region scan data corresponding to a slot region of the non-visible turbine rotor blade attachment structure, and positioning transducers at a second location to obtain straddle-mount region scan data corresponding to a straddle-mount region of the non-visible turbine rotor blade attachment structure. The shape of the non-visible turbine rotor blade attachment structure is reconstructed from the slot region scan data and the straddle-mount region scan datamore » to form reconstruction data. The reconstruction data is used to select test scan positions for ultrasonic testing. Ultrasonic testing is then performed at the selected test scan positions. 11 figs.« less
Study on digital closed-loop system of silicon resonant micro-sensor
NASA Astrophysics Data System (ADS)
Xu, Yefeng; He, Mengke
2008-10-01
Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.
Reliability Correction for Functional Connectivity: Theory and Implementation
Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L.; Liu, Hesheng
2016-01-01
Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe’s contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity. PMID:26493163
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun
2018-03-01
The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.
Lidar-based Research and Innovation at DTU Wind Energy - a Review
NASA Astrophysics Data System (ADS)
Mikkelsen, T.
2014-06-01
As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.
Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity
Song, Jie; Desphande, Alok S.; Meier, Timothy B.; Tudorascu, Dana L.; Vergun, Svyatoslav; Nair, Veena A.; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Bellec, Pierre; Prabhakaran, Vivek
2012-01-01
Resting-state functional MRI (rs-fMRI) has emerged as a powerful tool for investigating brain functional connectivity (FC). Research in recent years has focused on assessing the reliability of FC across younger subjects within and between scan-sessions. Test-retest reliability in resting-state functional connectivity (RSFC) has not yet been examined in older adults. In this study, we investigated age-related differences in reliability and stability of RSFC across scans. In addition, we examined how global signal regression (GSR) affects RSFC reliability and stability. Three separate resting-state scans from 29 younger adults (18–35 yrs) and 26 older adults (55–85 yrs) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available as part of the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 92 regions of interest (ROIs) with 5 cubic mm radius, derived from the default, cingulo-opercular, fronto-parietal and sensorimotor networks, were previously defined based on a recent study. Mean time series were extracted from each of the 92 ROIs from each scan and three matrices of z-transformed correlation coefficients were created for each subject, which were then used for evaluation of multi-scan reliability and stability. The young group showed higher reliability of RSFC than the old group with GSR (p-value = 0.028) and without GSR (p-value <0.001). Both groups showed a high degree of multi-scan stability of RSFC and no significant differences were found between groups. By comparing the test-retest reliability of RSFC with and without GSR across scans, we found significantly higher proportion of reliable connections in both groups without GSR, but decreased stability. Our results suggest that aging is associated with reduced reliability of RSFC which itself is highly stable within-subject across scans for both groups, and that GSR reduces the overall reliability but increases the stability in both age groups and could potentially alter group differences of RSFC. PMID:23227153
Study on the oxidative stability of poly a-olefin aviation lubricating base oil using PDSC method
NASA Astrophysics Data System (ADS)
Wu, N.; Fei, Y. W.; Yang, H. W.; Wang, Y. M.; Zong, Z. M.
2016-08-01
The oxidation stability of the domestic and import PAO aviation lubricating base oil was studied by the method of pressurized differential scanning calorimetry testing the initial oxidation temperature. The effects of anti-oxidants were investigated, and the best ratio of antioxidants was determined.
Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation
Ehnes, Alexander; Wenner, Yaroslava; Friedburg, Christoph; Preising, Markus N.; Bowl, Wadim; Sekundo, Walter; zu Bexten, Erdmuthe Meyer; Stieger, Knut; Lorenz, Birgit
2014-01-01
Purpose To develop and test an algorithm to segment intraretinal layers irrespectively of the actual Optical Coherence Tomography (OCT) device used. Methods The developed algorithm is based on the graph theory optimization. The algorithm's performance was evaluated against that of three expert graders for unsigned boundary position difference and thickness measurement of a retinal layer group in 50 and 41 B-scans, respectively. Reproducibility of the algorithm was tested in 30 C-scans of 10 healthy subjects each with the Spectralis and the Stratus OCT. Comparability between different devices was evaluated in 84 C-scans (volume or radial scans) obtained from 21 healthy subjects, two scans per subject with the Spectralis OCT, and one scan per subject each with the Stratus OCT and the RTVue-100 OCT. Each C-scan was segmented and the mean thickness for each retinal layer in sections of the early treatment of diabetic retinopathy study (ETDRS) grid was measured. Results The algorithm was able to segment up to 11 intraretinal layers. Measurements with the algorithm were within the 95% confidence interval of a single grader and the difference was smaller than the interindividual difference between the expert graders themselves. The cross-device examination of ETDRS-grid related layer thicknesses highly agreed between the three OCT devices. The algorithm correctly segmented a C-scan of a patient with X-linked retinitis pigmentosa. Conclusions The segmentation software provides device-independent, reliable, and reproducible analysis of intraretinal layers, similar to what is obtained from expert graders. Translational Relevance Potential application of the software includes routine clinical practice and multicenter clinical trials. PMID:24820053
Accuracy in Dental Medicine, A New Way to Measure Trueness and Precision
Ender, Andreas; Mehl, Albert
2014-01-01
Reference scanners are used in dental medicine to verify a lot of procedures. The main interest is to verify impression methods as they serve as a base for dental restorations. The current limitation of many reference scanners is the lack of accuracy scanning large objects like full dental arches, or the limited possibility to assess detailed tooth surfaces. A new reference scanner, based on focus variation scanning technique, was evaluated with regards to highest local and general accuracy. A specific scanning protocol was tested to scan original tooth surface from dental impressions. Also, different model materials were verified. The results showed a high scanning accuracy of the reference scanner with a mean deviation of 5.3 ± 1.1 µm for trueness and 1.6 ± 0.6 µm for precision in case of full arch scans. Current dental impression methods showed much higher deviations (trueness: 20.4 ± 2.2 µm, precision: 12.5 ± 2.5 µm) than the internal scanning accuracy of the reference scanner. Smaller objects like single tooth surface can be scanned with an even higher accuracy, enabling the system to assess erosive and abrasive tooth surface loss. The reference scanner can be used to measure differences for a lot of dental research fields. The different magnification levels combined with a high local and general accuracy can be used to assess changes of single teeth or restorations up to full arch changes. PMID:24836007
Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls
Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.
2013-01-01
As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950
NASA Astrophysics Data System (ADS)
Geiger, Benjamin; Hawkins, Samuel; Hall, Lawrence O.; Goldgof, Dmitry B.; Balagurunathan, Yoganand; Gatenby, Robert A.; Gillies, Robert J.
2016-03-01
Pulmonary nodules are effectively diagnosed in CT scans, but determining their malignancy has been a challenge. The rate of change of the volume of a pulmonary nodule is known to be a prognostic factor for cancer development. In this study, we propose that other changes in imaging characteristics are similarly informative. We examined the combination of image features across multiple CT scans, taken from the National Lung Screening Trial, with individual scans of the same patient separated by approximately one year. By subtracting the values of existing features in multiple scans for the same patient, we were able to improve the ability of existing classification algorithms to determine whether a nodule will become malignant. We trained each classifier on 83 nodules determined to be malignant by biopsy and 172 nodules determined to be benign by their clinical stability through two years of no change; classifiers were tested on 77 malignant and 144 benign nodules, using a set of features that in a test-retest experiment were shown to be stable. An accuracy of 83.71% and AUC of 0.814 were achieved with the Random Forests classifier on a subset of features determined to be stable via test-retest reproducibility analysis, further reduced with the Correlation-based Feature Selection algorithm.
SNPP VIIRS Spectral Bands Co-Registration and Spatial Response Characterization
NASA Technical Reports Server (NTRS)
Lin, Guoqing; Tilton, James C.; Wolfe, Robert E.; Tewari, Krishna P.; Nishihama, Masahiro
2013-01-01
The Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on 28 October 2011. The VIIRS has 5 imagery spectral bands (I-bands), 16 moderate resolution spectral bands (M-bands) and a panchromatic day/night band (DNB). Performance of the VIIRS spatial response and band-to-band co-registration (BBR) was measured through intensive pre-launch tests. These measurements were made in the non-aggregated zones near the start (or end) of scan for the I-bands and M-bands and for a limited number of aggregation modes for the DNB in order to test requirement compliance. This paper presents results based on a recently re-processed pre-launch test data. Sensor (detector) spatial impulse responses in the scan direction are parameterized in terms of ground dynamic field of view (GDFOV), horizontal spatial resolution (HSR), modulation transfer function (MTF), ensquared energy (EE) and integrated out-of-pixel (IOOP) spatial response. Results are presented for the non-aggregation, 2-sample and 3-sample aggregation zones for the I-bands and M-bands, and for a limited number of aggregation modes for the DNB. On-orbit GDFOVs measured for the 5 I-bands in the scan direction using a straight bridge are also presented. Band-to-band co-registration (BBR) is quantified using the prelaunch measured band-to-band offsets. These offsets may be expressed as fractions of horizontal sampling intervals (HSIs), detector spatial response parameters GDFOV or HSR. BBR bases on HSIs in the non-aggregation, 2-sample and 3-sample aggregation zones are presented. BBR matrices based on scan direction GDFOV and HSR are compared to the BBR matrix based on HSI in the non-aggregation zone. We demonstrate that BBR based on GDFOV is a better representation of footprint overlap and so this definition should be used in BBR requirement specifications. We propose that HSR not be used as the primary image quality indicator, since we show that it is neither an adequate representation of the size of sensor spatial response nor an adequate measure of imaging quality.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2015-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2014-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Value of gallbladder B-scan ultrasonography.
Tabrisky, J; Lindstrom, R R; Herman, M W; Castagna, J; Sarti, D
1975-05-01
The gallbladder B-scans of 20 patients who had subsequent surgery were separated into three categories based upon certain sonographic criteria. Our data, in this limited series, revealed gallbladder pathology in each patient who had any one or combination of the following scan characteristics: (1) internal echos, (2) irregular wall, or (3) absence of recognizable gallbladder sonolucency. The category which demonstrated a normal sonographic gallbladder, namely a smooth wall and no internal echos, contained a number of false negatives which proved to have either small stone cholelithiasis or extraphepatic ductal obstruction. Within the described limitations, the B-scan can be a valuable test in confirming the significance of a radiographically nonvisualized gallbladder or in detecting a biliary tract lesion in a patient with a disease entity that precludes radiographic visualization by conventional techniques.
Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform
NASA Astrophysics Data System (ADS)
Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer
2017-02-01
Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.
Evaluation of mechanical and thermal properties of commonly used denture base resins.
Phoenix, Rodney D; Mansueto, Michael A; Ackerman, Neal A; Jones, Robert E
2004-03-01
The purpose of this investigation was to evaluate and compare the mechanical and thermal properties of 6 commonly used polymethyl methacrylate denture base resins. Sorption, solubility, color stability, adaptation, flexural stiffness, and hardness were assessed to determine compliance with ADA Specification No. 12. Thermal assessments were performed using differential scanning calorimetry and dynamic mechanical analysis. Results were assessed using statistical and observational analyses. All materials satisfied ADA requirements for sorption, solubility, and color stability. Adaptation testing indicated that microwave-activated systems provided better adaptation to associated casts than conventional heat-activated resins. According to flexural testing results, microwaveable resins were relatively stiff, while rubber-modified resins were more flexible. Differential scanning calorimetry indicated that microwave-activated systems were more completely polymerized than conventional heat-activated materials. The microwaveable resins displayed better adaptation, greater stiffness, and greater surface hardness than other denture base resins included in this investigation. Elastomeric toughening agents yielded decreased stiffness, decreased surface hardness, and decreased glass transition temperatures.
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...
2016-10-18
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
Atom Optics for Bose-Einstein Condensates (BEC)
2012-04-25
Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching
NASA Astrophysics Data System (ADS)
Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.
2015-04-01
To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.
A Boundary Scan Test Vehicle for Direct Chip Attach Testing
NASA Technical Reports Server (NTRS)
Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji
2000-01-01
To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.
Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-01-01
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shijun; Yao Jianhua; Liu Jiamin
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less
Space Subdivision in Indoor Mobile Laser Scanning Point Clouds Based on Scanline Analysis.
Zheng, Yi; Peter, Michael; Zhong, Ruofei; Oude Elberink, Sander; Zhou, Quan
2018-06-05
Indoor space subdivision is an important aspect of scene analysis that provides essential information for many applications, such as indoor navigation and evacuation route planning. Until now, most proposed scene understanding algorithms have been based on whole point clouds, which has led to complicated operations, high computational loads and low processing speed. This paper presents novel methods to efficiently extract the location of openings (e.g., doors and windows) and to subdivide space by analyzing scanlines. An opening detection method is demonstrated that analyses the local geometric regularity in scanlines to refine the extracted opening. Moreover, a space subdivision method based on the extracted openings and the scanning system trajectory is described. Finally, the opening detection and space subdivision results are saved as point cloud labels which will be used for further investigations. The method has been tested on a real dataset collected by ZEB-REVO. The experimental results validate the completeness and correctness of the proposed method for different indoor environment and scanning paths.
Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane
2017-01-01
Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434
Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane
2017-09-14
Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.
2012-01-01
A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.
Cotton phenotyping with lidar from a track-mounted platform
NASA Astrophysics Data System (ADS)
French, Andrew N.; Gore, Michael A.; Thompson, Alison
2016-05-01
High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at <1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). Scanning data mapped the canopy heights and widths, and detected cotton bolls.
Methods and apparatus for laser beam scanners with different actuating mechanisms
NASA Astrophysics Data System (ADS)
Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei
2009-07-01
In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.
Knowledge-based automated technique for measuring total lung volume from CT
NASA Astrophysics Data System (ADS)
Brown, Matthew S.; McNitt-Gray, Michael F.; Mankovich, Nicholas J.; Goldin, Jonathan G.; Aberle, Denise R.
1996-04-01
A robust, automated technique has been developed for estimating total lung volumes from chest computed tomography (CT) images. The technique includes a method for segmenting major chest anatomy. A knowledge-based approach automates the calculation of separate volumes of the whole thorax, lungs, and central tracheo-bronchial tree from volumetric CT data sets. A simple, explicit 3D model describes properties such as shape, topology and X-ray attenuation, of the relevant anatomy, which constrain the segmentation of these anatomic structures. Total lung volume is estimated as the sum of the right and left lungs and excludes the central airways. The method requires no operator intervention. In preliminary testing, the system was applied to image data from two healthy subjects and four patients with emphysema who underwent both helical CT and pulmonary function tests. To obtain single breath-hold scans, the healthy subjects were scanned with a collimation of 5 mm and a pitch of 1.5, while the emphysema patients were scanned with collimation of 10 mm at a pitch of 2.0. CT data were reconstructed as contiguous image sets. Automatically calculated volumes were consistent with body plethysmography results (< 10% difference).
Young, David W
2015-11-01
Historically, hospital departments have computed the costs of individual tests or procedures using the ratio of cost to charges (RCC) method, which can produce inaccurate results. To determine a more accurate cost of a test or procedure, the activity-based costing (ABC) method must be used. Accurate cost calculations will ensure reliable information about the profitability of a hospital's DRGs.
Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry
NASA Astrophysics Data System (ADS)
Krstajić, Nikola; Doran, Simon J.
2006-12-01
This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.
NASA Astrophysics Data System (ADS)
Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.
2012-12-01
We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.
Scan-based volume animation driven by locally adaptive articulated registrations.
Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S
2011-03-01
This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE
CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
NASA Astrophysics Data System (ADS)
Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.
2008-05-01
At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.
Digital micromirror device based ophthalmoscope with concentric circle scanning.
Damodaran, Mathi; Vienola, Kari V; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F
2017-05-01
Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast.
Digital micromirror device based ophthalmoscope with concentric circle scanning
Damodaran, Mathi; Vienola, Kari V.; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.
2017-01-01
Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast. PMID:28663905
Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen
2016-07-04
To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.
Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F
2010-07-19
A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.
2010-01-01
Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827
NASA Astrophysics Data System (ADS)
Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye
2015-03-01
Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.
Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less
Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
Kahi, A K; Hirooka, H
2005-09-01
Deterministic simulation was used to evaluate 10 breeding schemes for genetic gain and profitability and in the context of maximizing returns from investment in Japanese Black cattle breeding. A breeding objective that integrated the cow-calf and feedlot segments was considered. Ten breeding schemes that differed in the records available for use as selection criteria were defined. The schemes ranged from one that used carcass traits currently available to Japanese Black cattle breeders (Scheme 1) to one that also included linear measurements and male and female reproduction traits (Scheme 10). The latter scheme represented the highest level of performance recording. In all breeding schemes, sires were chosen from the proportion selected during the first selection stage (performance testing), modeling a two-stage selection process. The effect on genetic gain and profitability of varying test capacity and number of progeny per sire and of ultrasound scanning of live animals was examined for all breeding schemes. Breeding schemes that selected young bulls during performance testing based on additional individual traits and information on carcass traits from their relatives generated additional genetic gain and profitability. Increasing test capacity resulted in an increase in genetic gain in all schemes. Profitability was optimal in Scheme 2 (a scheme similar to Scheme 1, but selection of young bulls also was based on information on carcass traits from their relatives) to 10 when 900 to 1,000 places were available for performance testing. Similarly, as the number of progeny used in the selection of sires increased, genetic gain first increased sharply and then gradually in all schemes. Profit was optimal across all breeding schemes when sires were selected based on information from 150 to 200 progeny. Additional genetic gain and profitability were generated in each breeding scheme with ultrasound scanning of live animals for carcass traits. Ultrasound scanning of live animals was more important than the addition of any other traits in the selection criteria. These results may be used to provide guidance to Japanese Black cattle breeders.
Memarian, Negar; Venetsanopoulos, Anastasios N; Chau, Tom
2011-01-01
This study reports a client-centred development of a non-contact access switch based on an infrared thermal imaging of mouth opening-closing activity of an individual with severe spastic quadriplegic cerebral palsy. Over a 6-month period, the client participated in five test sessions to inform the development of an infrared thermal switch. The client completed eight stimulus-response trials (switch test) and eight word-matching trials (scan test) using the infrared thermal switch and provided subjective feedback throughout. For the switch test, the client achieved an average correct activation rate of 90% and average response time of 2.4 s. His mean correct activation rate on the scan test improved from 65 to 80% over the course of system development, with an average response time of 11.7 s. An infrared thermography switch tuned to a client's extant orofacial gestures is a practical non-invasive access solution and warrants further research in clients with severe physical disability.
NASA Astrophysics Data System (ADS)
Shahriari, D.; Zolfaghari, A.; Masoumi, F.
2011-01-01
Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.
NASA Astrophysics Data System (ADS)
Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean
2017-02-01
Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.
Application of Laser Scanning for Creating Geological Documentation
NASA Astrophysics Data System (ADS)
Buczek, Michał; Paszek, Martyna; Szafarczyk, Anna
2018-03-01
A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR) can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud) in combination with the photographs. The results were compared with the geological cross-section.
NASA Astrophysics Data System (ADS)
Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos
2016-11-01
We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.
Ground-Based Calibration Of A Microwave Landing System
NASA Technical Reports Server (NTRS)
Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando
1996-01-01
System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.
Automatic detection of cardiovascular risk in CT attenuation correction maps in Rb-82 PET/CTs
NASA Astrophysics Data System (ADS)
Išgum, Ivana; de Vos, Bob D.; Wolterink, Jelmer M.; Dey, Damini; Berman, Daniel S.; Rubeaux, Mathieu; Leiner, Tim; Slomka, Piotr J.
2016-03-01
CT attenuation correction (CTAC) images acquired with PET/CT visualize coronary artery calcium (CAC) and enable CAC quantification. CAC scores acquired with CTAC have been suggested as a marker of cardiovascular disease (CVD). In this work, an algorithm previously developed for automatic CAC scoring in dedicated cardiac CT was applied to automatic CAC detection in CTAC. The study included 134 consecutive patients undergoing 82-Rb PET/CT. Low-dose rest CTAC scans were acquired (100 kV, 11 mAs, 1.4mm×1.4mm×3mm voxel size). An experienced observer defined the reference standard with the clinically used intensity level threshold for calcium identification (130 HU). Five scans were removed from analysis due to artifacts. The algorithm extracted potential CAC by intensity-based thresholding and 3D connected component labeling. Each candidate was described by location, size, shape and intensity features. An ensemble of extremely randomized decision trees was used to identify CAC. The data set was randomly divided into training and test sets. Automatically identified CAC was quantified using volume and Agatston scores. In 33 test scans, the system detected on average 469mm3/730mm3 (64%) of CAC with 36mm3 false positive volume per scan. The intraclass correlation coefficient for volume scores was 0.84. Each patient was assigned to one of four CVD risk categories based on the Agatston score (0-10, 11-100, 101-400, <400). The correct CVD category was assigned to 85% of patients (Cohen's linearly weighted κ0.82). Automatic detection of CVD risk based on CAC scoring in rest CTAC images is feasible. This may enable large scale studies evaluating clinical value of CAC scoring in CTAC data.
Optoelectronic scanning system upgrade by energy center localization methods
NASA Astrophysics Data System (ADS)
Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.
2016-11-01
A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.
Angiography with a multifunctional line scanning ophthalmoscope
Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba
2012-01-01
Abstract. A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes. PMID:22463040
Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas
2012-05-01
Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.
Self-motivated visual scanning predicts flexible navigation in a virtual environment.
Ploran, Elisabeth J; Bevitt, Jacob; Oshiro, Jaris; Parasuraman, Raja; Thompson, James C
2014-01-01
The ability to navigate flexibly (e.g., reorienting oneself based on distal landmarks to reach a learned target from a new position) may rely on visual scanning during both initial experiences with the environment and subsequent test trials. Reliance on visual scanning during navigation harkens back to the concept of vicarious trial and error, a description of the side-to-side head movements made by rats as they explore previously traversed sections of a maze in an attempt to find a reward. In the current study, we examined if visual scanning predicted the extent to which participants would navigate to a learned location in a virtual environment defined by its position relative to distal landmarks. Our results demonstrated a significant positive relationship between the amount of visual scanning and participant accuracy in identifying the trained target location from a new starting position as long as the landmarks within the environment remain consistent with the period of original learning. Our findings indicate that active visual scanning of the environment is a deliberative attentional strategy that supports the formation of spatial representations for flexible navigation.
Effects of surface chemistry on hot corrosion life
NASA Technical Reports Server (NTRS)
Fryxell, R. E.; Gupta, B. K.
1984-01-01
Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination.
NASA Astrophysics Data System (ADS)
Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.
2017-02-01
The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.
Mobile 3D laser scanning technology application in the surveying of urban underground rail transit
NASA Astrophysics Data System (ADS)
Han, Youmei; Yang, Bogang; Zhen, Yinan
2016-11-01
Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.
Spatial scan statistics for detection of multiple clusters with arbitrary shapes.
Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray
2016-12-01
In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.
Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia
Fan, Yuzhou; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining
2017-01-01
Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a “virtual organ” from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times—thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted. PMID:29410714
Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia.
Fan, Yuzhou; Luo, Liangping; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining; Fan, Yifang
2017-01-01
Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a "virtual organ" from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times-thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted.
Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W
2006-02-01
The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.
Metallurgical and electrochemical characterization of contemporary silver-based soldering alloys.
Ntasi, Argyro; Al Jabbari, Youssef; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros
2014-05-01
To investigate the microstructure, hardness, and electrochemical behavior of four contemporary Ag-based soldering alloys used for manufacturing orthodontic appliances. The Ag-based alloys tested were Dentaurum Universal Silver Solder (DEN), Orthodontic Solders (LEO), Ortho Dental Universal Solder (NOB), and Silver Solder (ORT). Five disk-shaped specimens were produced for each alloy, and after metallographic preparation their microstructural features, elemental composition, and hardness were determined by scanning electron microscopy with energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, and Vickers hardness testing. The electrochemical properties were evaluated by anodic potentiodynamic scanning in 0.9% NaCl and Ringer's solutions. Hardness, corrosion current (Icorr), and corrosion potential (Ecorr) were statistically analyzed by one-way analysis of variance and Tukey test (α=.05). EDX analysis showed that all materials belong to the Ag-Zn-Cu ternary system. Three different mean atomic contrast phases were identified for LEO and ORT and two for DEN and NOB. According to XRD analysis, all materials consisted of Ag-rich and Cu-rich face-centered cubic phases. Hardness testing classified the materials in descending order as follows: DEN, 155±3; NOB, 149±3; ORT, 141±4; and LEO, 136±8. Significant differences were found for Icorr of NOB in Ringer's solution and Ecorr of DEN in 0.9% NaCl solution. Ag-based soldering alloys demonstrate great diversity in their elemental composition, phase size and distribution, hardness, and electrochemical properties. These differences may anticipate variations in their clinical performance.
Fabrication of custom-shaped grafts for cartilage regeneration.
Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L
2010-10-01
to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths.
CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...
Performance characterization of a single bi-axial scanning MEMS mirror-based head-worn display
NASA Astrophysics Data System (ADS)
Liang, Minhua
2002-06-01
The NomadTM Personal Display System is a head-worn display (HWD) with a see-through, high-resolution, high-luminance display capability. It is based on a single bi-axial scanning MEMS mirror. In the Nomad HWD system, a red laser diode emits a beam of light that is scanned bi-axially by a single MEMS mirror. A diffractive beam diffuser and an ocular expand the beam to form a 12mm exit pupil for comfortable viewing. The Nomad display has an SVGA (800x600) resolution, 60Hz frame rate, 23-degree horizontal field of view (FOV) and 3:4 vertical to horizontal aspect ratio, a luminance of 800~900 foot-Lamberts, see-through capability, 30mm eye-relief distance, and 1-foot to infinity focusing adjustment. We have characterized the performance parameters, such as field of view, distortion, contrast ratio (4x4 black and white checker board), modulation depth, exit pupil size, eye relief distance, maximum luminance, dynamic range ratio (full-on-to-full-off ratio), dimming ratio, and luminance uniformity at image plane. The Class-1 eye-safety requirements per IEC 60825-1 Amendment 2 (CDRH Laser Notice No. 50) are analyzed and verified by experiments. The paper describes all of the testing methods and set-ups as well as the representative test results. The test results demonstrate that the Nomad display is an eye-safe display product with good image quality and good user ergonomics.
Advancing the Adverse Outcome Pathway Framework - an International Horizon Scanning Approach
The ability of scientists to conduct whole organism toxicity tests to understand chemical safety has been significantly outpaced by the rapid synthesis of new chemicals. Therefore, to increase efficiencies in chemical risk assessment, scientists are turning to mechanistic-based ...
Application of the SRI cloud-tracking technique to rapid-scan GOES observations
NASA Technical Reports Server (NTRS)
Wolf, D. E.; Endlich, R. M.
1980-01-01
An automatic cloud tracking system was applied to multilayer clouds associated with severe storms. The method was tested using rapid scan observations of Hurricane Eloise obtained by the GOES satellite on 22 September 1975. Cloud tracking was performed using clustering based either on visible or infrared data. The clusters were tracked using two different techniques. The data of 4 km and 8 km resolution of the automatic system yielded comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System.
Early ultrasonographic diagnosis of hereditary retinoblastoma.
Pierro, L; Capoferri, C; Brancato, R
1991-01-01
A hereditary retinoblastoma (RTB) was identified by ocular echography in a newborn, whose predisposition to RTB had been assessed based on the family history and DNA testing of the chorionic villi at the eighth week of pregnancy. Ultrasonography was performed during pregnancies without an abnormality being demonstrated. On the third day of life a B-scan examination showed a small membranous lesion in the nasal parapapillary area, whilst on A-scan, the lesion appeared as a hyperreflective peak. Thanks to its early identification, the tumor was successfully treated by photocoagulation.
Lima, Paulo Autran Leite; Resende, Cristiane Xavier; Soares, Glória Dulce de Almeida; Anselme, Karine; Almeida, Luís Eduardo
2013-08-01
This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2±0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7±2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mubarok, S.; Lubis, L. E.; Pawiro, S. A.
2016-03-01
Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.
Recording and wear characteristics of 4 and 8 mm helical scan tapes
NASA Technical Reports Server (NTRS)
Peter, Klaus J.; Speliotis, Dennis E.
1993-01-01
Performance data of media on helical scan tape systems (4 and 8 mm) is presented and various types of media are compared. All measurements were performed on a standard MediaLogic model ML4500 Tape Evaluator System with a Flash Converter option for time based measurements. The 8 mm tapes are tested on an Exabyte 8200 drive and 4 mm tapes on an Archive Python drive; in both cases, the head transformer is directly connected to a Media Logic Read/Write circuit and test electronics. The drive functions only as a tape transport and its data recover circuits are not used. Signal to Noise, PW 50, Peak Shift and Wear Test data is used to compare the performance of MP (metal particle), BaFe, and metal evaporate (ME). ME tape is the clear winner in magnetic performance but its susceptibility to wear and corrosion, make it less than ideal for data storage.
A Novel Application for the Cavalieri Principle: A Stereological and Methodological Study
Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin
2009-01-01
Objective The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. Materials and Methods In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. Results There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). Conclusion This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method. PMID:25610077
A novel application for the cavalieri principle: a stereological and methodological study.
Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin
2009-08-01
The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method.
Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.
1979-11-01
Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.
Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications
Nady, Norhan; Kandil, Sherif H.
2018-01-01
In this work, a chitosan–gelatin–ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan–gelatin–ferulic acid blend. Glycerol was tested as a plasticizer. The thickness, mechanical strength, static water contact angle and water uptake of the prepared films were determined. Also, the prepared films were characterized using different analysis techniques such as Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Acetic acid produced continuous compact surfaces that are not recommended for testing in biomedical applications. The plasticized chitosan–gelatin–ferulic acid blend, using formic acid solvent, produced novel hexagonal porous films with a pore size of around 10–14 µm. This blend is recommended for preparing films (scaffolds) for testing in biomedical applications as it has the advantage of a decreased thickness. PMID:29301357
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.
Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M
2006-06-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry
Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.
2007-01-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900
Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B
2010-12-01
Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.
NASA Astrophysics Data System (ADS)
Belkacemi, Mohamed; Stolz, Christophe; Mathieu, Alexandre; Lemaitre, Guillaume; Massich, Joan; Aubreton, Olivier
2015-11-01
Today, industries ensure the quality of their manufactured products through computer vision techniques and nonconventional imaging. Three-dimensional (3-D) scanners and nondestructive testing (NDT) systems are commonly used independently for such applications. Furthermore, these approaches combined constitute hybrid systems, providing a 3-D reconstruction and NDT analysis. These systems, however, suffer from drawbacks such as errors during the data fusion and higher cost for manufacturers. In an attempt to solve these problems, a single active thermography system based on scanning-from-heating is proposed in this paper. In addition to 3-D digitization of the object, our contributions are twofold: (1) the nonthrough defect detection for a homogeneous metallic object and (2) fiber orientation assessment for a long fiber composite material. The experiments on steel and aluminum plates show that our method achieves the detection of nonthrough defects. Additionally, the estimation of the fiber orientation is evaluated on carbon-fiber composite material.
NASA Astrophysics Data System (ADS)
Carrea, Dario; Abellan, Antonio; Humair, Florian; Matasci, Battista; Derron, Marc-Henri; Jaboyedoff, Michel
2016-03-01
Ground-based LiDAR has been traditionally used for surveying purposes via 3D point clouds. In addition to XYZ coordinates, an intensity value is also recorded by LiDAR devices. The intensity of the backscattered signal can be a significant source of information for various applications in geosciences. Previous attempts to account for the scattering of the laser signal are usually modelled using a perfect diffuse reflection. Nevertheless, experience on natural outcrops shows that rock surfaces do not behave as perfect diffuse reflectors. The geometry (or relief) of the scanned surfaces plays a major role in the recorded intensity values. Our study proposes a new terrestrial LiDAR intensity correction, which takes into consideration the range, the incidence angle and the geometry of the scanned surfaces. The proposed correction equation combines the classical radar equation for LiDAR with the bidirectional reflectance distribution function of the Oren-Nayar model. It is based on the idea that the surface geometry can be modelled by a relief of multiple micro-facets. This model is constrained by only one tuning parameter: the standard deviation of the slope angle distribution (σslope) of micro-facets. Firstly, a series of tests have been carried out in laboratory conditions on a 2 m2 board covered by black/white matte paper (perfect diffuse reflector) and scanned at different ranges and incidence angles. Secondly, other tests were carried out on rock blocks of different lithologies and surface conditions. Those tests demonstrated that the non-perfect diffuse reflectance of rock surfaces can be practically handled by the proposed correction method. Finally, the intensity correction method was applied to a real case study, with two scans of the carbonate rock outcrop of the Dents-du-Midi (Swiss Alps), to improve the lithological identification for geological mapping purposes. After correction, the intensity values are proportional to the intrinsic material reflectance and are independent from range, incidence angle and scanned surface geometry. The corrected intensity values significantly improve the material differentiation.
Construction and testing of a Scanning Laser Radar (SLR), phase 2
NASA Technical Reports Server (NTRS)
Flom, T.; Coombes, H. D.
1971-01-01
The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.
NASA Astrophysics Data System (ADS)
Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.
2018-03-01
Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.
SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, K; Liu, B
Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less
Improving Inpatient Surveys: Web-Based Computer Adaptive Testing Accessed via Mobile Phone QR Codes
2016-01-01
Background The National Health Service (NHS) 70-item inpatient questionnaire surveys inpatients on their perceptions of their hospitalization experience. However, it imposes more burden on the patient than other similar surveys. The literature shows that computerized adaptive testing (CAT) based on item response theory can help shorten the item length of a questionnaire without compromising its precision. Objective Our aim was to investigate whether CAT can be (1) efficient with item reduction and (2) used with quick response (QR) codes scanned by mobile phones. Methods After downloading the 2008 inpatient survey data from the Picker Institute Europe website and analyzing the difficulties of this 70-item questionnaire, we used an author-made Excel program using the Rasch partial credit model to simulate 1000 patients’ true scores followed by a standard normal distribution. The CAT was compared to two other scenarios of answering all items (AAI) and the randomized selection method (RSM), as we investigated item length (efficiency) and measurement accuracy. The author-made Web-based CAT program for gathering patient feedback was effectively accessed from mobile phones by scanning the QR code. Results We found that the CAT can be more efficient for patients answering questions (ie, fewer items to respond to) than either AAI or RSM without compromising its measurement accuracy. A Web-based CAT inpatient survey accessed by scanning a QR code on a mobile phone was viable for gathering inpatient satisfaction responses. Conclusions With advances in technology, patients can now be offered alternatives for providing feedback about hospitalization satisfaction. This Web-based CAT is a possible option in health care settings for reducing the number of survey items, as well as offering an innovative QR code access. PMID:26935793
Improving Inpatient Surveys: Web-Based Computer Adaptive Testing Accessed via Mobile Phone QR Codes.
Chien, Tsair-Wei; Lin, Weir-Sen
2016-03-02
The National Health Service (NHS) 70-item inpatient questionnaire surveys inpatients on their perceptions of their hospitalization experience. However, it imposes more burden on the patient than other similar surveys. The literature shows that computerized adaptive testing (CAT) based on item response theory can help shorten the item length of a questionnaire without compromising its precision. Our aim was to investigate whether CAT can be (1) efficient with item reduction and (2) used with quick response (QR) codes scanned by mobile phones. After downloading the 2008 inpatient survey data from the Picker Institute Europe website and analyzing the difficulties of this 70-item questionnaire, we used an author-made Excel program using the Rasch partial credit model to simulate 1000 patients' true scores followed by a standard normal distribution. The CAT was compared to two other scenarios of answering all items (AAI) and the randomized selection method (RSM), as we investigated item length (efficiency) and measurement accuracy. The author-made Web-based CAT program for gathering patient feedback was effectively accessed from mobile phones by scanning the QR code. We found that the CAT can be more efficient for patients answering questions (ie, fewer items to respond to) than either AAI or RSM without compromising its measurement accuracy. A Web-based CAT inpatient survey accessed by scanning a QR code on a mobile phone was viable for gathering inpatient satisfaction responses. With advances in technology, patients can now be offered alternatives for providing feedback about hospitalization satisfaction. This Web-based CAT is a possible option in health care settings for reducing the number of survey items, as well as offering an innovative QR code access.
Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.
Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus
2014-01-01
Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.
Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case
NASA Astrophysics Data System (ADS)
Wertz, John; Homa, Laura; Welter, John; Sparkman, Daniel; Aldrin, John
2018-04-01
The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the computational expense of modeling the ultrasonic waves within composites is a major hurdle to implementation. A surrogate forward model with sufficient accuracy and greater computational efficiency is therefore critical to enabling model-based inversion and damage characterization. In this work, a surrogate model is developed on the simulated ultrasonic response from delamination-like structures placed at different locations within a representative composite layup. The resulting B-scans are decomposed via the chirplet transform, and a Gaussian process model is trained on the chirplet parameters. The quality of the surrogate is tested by comparing the B-scan for a delamination configuration not represented within the training data set. The estimated B-scan has a maximum error of ˜15% for an estimated reduction in computational runtime of ˜95% for 200 function calls. This considerable reduction in computational expense makes full 3D characterization of impact damage tractable.
NASA Astrophysics Data System (ADS)
Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin
2016-10-01
X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.
Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.
He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong
2016-01-01
We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.
Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs
NASA Astrophysics Data System (ADS)
Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.
2016-03-01
We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.
Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...
An elastography method based on the scanning contact resonance of a piezoelectric cantilever
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Ji; Li, Faxin, E-mail: lifaxin@pku.edu.cn
2013-12-15
Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which themore » sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.« less
Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology
Clinton, Lani K.; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J.
2016-01-01
The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. PMID:27558176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.
2011-12-15
Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided dosesmore » over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.« less
Complete-arch accuracy of intraoral scanners.
Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling
2018-04-30
Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.
2018-02-01
Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5 ⩽ N ⩽ 9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5 ± 4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while achieving mean model residual within 0.5 mm.
NASA Astrophysics Data System (ADS)
Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.
2010-08-01
This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.
The beam test of muon detector parameters for the SHiP experiment at CERN
NASA Astrophysics Data System (ADS)
Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.
2018-01-01
Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.
Diagnostic accuracy of tablet-based software for the detection of concussion.
Yang, Suosuo; Flores, Benjamin; Magal, Rotem; Harris, Kyrsti; Gross, Jonathan; Ewbank, Amy; Davenport, Sasha; Ormachea, Pablo; Nasser, Waleed; Le, Weidong; Peacock, W Frank; Katz, Yael; Eagleman, David M
2017-01-01
Despite the high prevalence of traumatic brain injuries (TBI), there are few rapid and straightforward tests to improve its assessment. To this end, we developed a tablet-based software battery ("BrainCheck") for concussion detection that is well suited to sports, emergency department, and clinical settings. This article is a study of the diagnostic accuracy of BrainCheck. We administered BrainCheck to 30 TBI patients and 30 pain-matched controls at a hospital Emergency Department (ED), and 538 healthy individuals at 10 control test sites. We compared the results of the tablet-based assessment against physician diagnoses derived from brain scans, clinical examination, and the SCAT3 test, a traditional measure of TBI. We found consistent distributions of normative data and high test-retest reliability. Based on these assessments, we defined a composite score that distinguishes TBI from non-TBI individuals with high sensitivity (83%) and specificity (87%). We conclude that our testing application provides a rapid, portable testing method for TBI.
Optimal sequence of tests for the mediastinal staging of non-small cell lung cancer.
Luque, Manuel; Díez, Francisco Javier; Disdier, Carlos
2016-01-26
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer and the most difficult to predict. When there are no distant metastases, the optimal therapy depends mainly on whether there are malignant lymph nodes in the mediastinum. Given the vigorous debate among specialists about which tests should be used, our goal was to determine the optimal sequence of tests for each patient. We have built an influence diagram (ID) that represents the possible tests, their costs, and their outcomes. This model is equivalent to a decision tree containing millions of branches. In the first evaluation, we only took into account the clinical outcomes (effectiveness). In the second, we used a willingness-to-pay of € 30,000 per quality adjusted life year (QALY) to convert economic costs into effectiveness. We assigned a second-order probability distribution to each parameter in order to conduct several types of sensitivity analysis. Two strategies were obtained using two different criteria. When considering only effectiveness, a positive computed tomography (CT) scan must be followed by a transbronchial needle aspiration (TBNA), an endobronchial ultrasound (EBUS), and an endoscopic ultrasound (EUS). When the CT scan is negative, a positron emission tomography (PET), EBUS, and EUS are performed. If the TBNA or the PET is positive, then a mediastinoscopy is performed only if the EBUS and EUS are negative. If the TBNA or the PET is negative, then a mediastinoscopy is performed only if the EBUS and the EUS give contradictory results. When taking into account economic costs, a positive CT scan is followed by a TBNA; an EBUS is done only when the CT scan or the TBNA is negative. This recommendation of performing a TBNA in certain cases should be discussed by the pneumology community because TBNA is a cheap technique that could avoid an EBUS, an expensive test, for many patients. We have determined the optimal sequence of tests for the mediastinal staging of NSCLC by considering sensitivity, specificity, and the economic cost of each test. The main novelty of our study is the recommendation of performing TBNA whenever the CT scan is positive. Our model is publicly available so that different experts can populate it with their own parameters and re-examine its conclusions. It is therefore proposed as an evidence-based instrument for reaching a consensus.
Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen
2016-01-01
The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-01-01
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-12-24
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.
Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters
NASA Astrophysics Data System (ADS)
Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada
2011-01-01
We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.
NASA Astrophysics Data System (ADS)
Bechtold, S.; Höfle, B.
2016-06-01
In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.
Liu, Jiayou; O'Connor, Thomas; Beall, Melissa; Chandrashekar, Ramaswamy; Lappin, Michael
2016-01-01
Feline leukemia virus (FeLV) is a potentially life-threatening oncogenic retrovirus. The p27 viral core protein is produced by the virus in infected feline cells, is found in the cytoplasm in several blood cells and can be free in the serum and plasma. ELISA or particle-based immunoassay are commonly used to detect the presence of the p27 core protein in samples obtained from blood. The objective of this study was to compare the performance of several in-clinic tests: the SNAP Feline Triple Test (IDEXX Laboratories), the WITNESS FeLV-FIV Test (Zoetis) and the VetScan Feline FeLV/FIV Rapid Test (Abaxis). The sample population (100 positive, 105 negative samples) consisted of serum and plasma samples submitted to IDEXX's worldwide reference laboratory for feline retrovirus testing. Virus isolation and reverse transcriptase PCR results were not available and so samples were judged to be positive or negative based on the results of the ViraCHEK FeLV (Zoetis) microtiter plate assay. The percentage of samples positive and negative for FeLV p27 antigen using the three in-clinic tests compared with the ViraCHEK method were as follows: IDEXX Feline Triple (positive 98.0%, negative 100%); Zoetis WITNESS (positive 79.0%, negative 97.1%); Abaxis VetScan (positive 73.0%, negative 97.1%). The SNAP Feline Triple Test demonstrated a high level of agreement for FeLV-positive and FeLV-negative samples when assessed in this model. Results of FeLV assays can vary among tests.
Evaluation of portable CT scanners for otologic image-guided surgery
Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F
2011-01-01
Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768
Considerations for ultrasonic testing application for on-orbit NDE
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.
SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardan, R; Popple, R
2015-06-15
Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less
Nondestructive Testing Information Analysis Center, 1979.
1980-09-01
transmission and reflectometry Ultrasonic imaging Spectrum analysis Acoustic emission * LIQUID PENETRANT TESTING Dye penetrants Fluorescent penetrants...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, and the monthly Engineering Index and Science Abstracts. New books
Multisite Reliability of MR-Based Functional Connectivity
Noble, Stephanie; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen M.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Cannon, Tyrone D.; Constable, R. Todd
2016-01-01
Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0.17), but increases with increasing scan duration (ICC=0.21–0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations is necessary to increase the reliability of connectivity estimates at the single-subject level. PMID:27746386
Office-based ultrasound screening for abdominal aortic aneurysm
Blois, Beau
2012-01-01
Abstract Objective To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). Design A prospective observational study. Consecutive patients were approached by nonphysician staff. Setting Rural family physician offices in Grand Forks and Revelstoke, BC. Participants The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. Main outcome measures A focused “quick screen,” which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (ie, a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Results Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Conclusion Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of-care ultrasound technology. The screening test can be completed within the time constraints of a busy family practice office visit. The benefit of screening for AAA in rural patients might be great if local diagnostic ultrasound service and emergent transport to a vascular surgeon are not available. PMID:22518906
Office-based ultrasound screening for abdominal aortic aneurysm.
Blois, Beau
2012-03-01
To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). A prospective observational study. Consecutive patients were approached by nonphysician staff. Rural family physician offices in Grand Forks and Revelstoke, BC. The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. A focused “quick screen”, which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (i.e., a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of- care ultrasound technology. The screening test can be completed within the time constraints of a busy family practice office visit. The benefit of screening for AAA in rural patients might be great if local diagnostic ultrasound service and emergent transport to a vascular surgeon are not available.
A log-Weibull spatial scan statistic for time to event data.
Usman, Iram; Rosychuk, Rhonda J
2018-06-13
Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.
Low-Frequency Fluctuations of the Resting Brain: High Magnitude Does Not Equal High Reliability
Jia, Wenbin; Liao, Wei; Li, Xun; Huang, Huiyuan; Yuan, Jianhua; Zang, Yu-Feng; Zhang, Han
2015-01-01
The amplitude of low-frequency fluctuation (ALFF) measures low-frequency oscillations of the blood-oxygen-level-dependent signal, characterizing local spontaneous activity during the resting state. ALFF is a commonly used measure for resting-state functional magnetic resonance imaging (rs-fMRI) in numerous basic and clinical neuroscience studies. Using a test-retest rs-fMRI dataset consisting of 21 healthy subjects and three repetitive scans, we found that several key brain regions with high ALFF intensities (or magnitude) had poor reliability. Such regions included the posterior cingulate cortex, the medial prefrontal cortex in the default mode network, parts of the right and left thalami, and the primary visual and motor cortices. The above finding was robust with regard to different sample sizes (number of subjects), different scanning parameters (repetition time) and variations of test-retest intervals (i.e., intra-scan, intra-session, and inter-session reliability), as well as with different scanners. Moreover, the qualitative, map-wise results were validated further with a region-of-interest-based quantitative analysis using “canonical” coordinates as reported previously. Therefore, we suggest that the reliability assessments be incorporated in future ALFF studies, especially for the brain regions with a large ALFF magnitude as listed in our paper. Splitting single data into several segments and assessing within-scan “test-retest” reliability is an acceptable alternative if no “real” test-retest datasets are available. Such evaluations might become more necessary if the data are collected with clinical scanners whose performance is not as good as those that are used for scientific research purposes and are better maintained because the lower signal-to-noise ratio may further dampen ALFF reliability. PMID:26053265
Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock
2017-01-01
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.
Antonescu, I; Baldini, G; Watson, D; Kaneva, P; Fried, G M; Khwaja, K; Vassiliou, M C; Carli, F; Feldman, L S
2013-12-01
Postoperative urinary retention (POUR) is a common complication of ambulatory inguinal herniorraphy, with an incidence reaching 38%, and many surgeons require patients to void before discharge. This study aimed to assess whether the implementation of a bladder scan-based voiding protocol reduces the time until discharge after ambulatory inguinal herniorraphy without increasing the rate of POUR. As part of a perioperative care pathway, a protocol was implemented to standardize decision making after elective inguinal hernia repair (February 2012). Patients were assessed with a bladder scan, and those with <600 mL of urine were discharged home, whereas those with more than 600 mL of urine had an in-and-out catheterization before discharge. The patients received written information about urinary symptoms and instructions to present to the emergency department if they were unable to void at home. An audit of scheduled outpatient inguinal hernia repairs between October 2011 and July 2012 was performed. Comparisons were made using the t test, Fisher's exact test, and Wilcoxon rank sum test where appropriate. Statistical significance was defined a priori as a p value lower than 0.05. During the study period, 124 patients underwent hernia repair: 60 before and 64 after implementation of the protocol. The findings showed no significant differences in patient characteristics, laparoscopic approach (35 vs. 33%; p = 0.80), proportion receiving general anesthesia (70 vs. 73%; p = 0.67), or amount of intravenous fluids given (793 vs. 663 mL; p = 0.07). The proportion of patients voiding before discharge was higher after protocol implementation (73 vs. 89%; p = 0.02). The protocol had no impact on median time to discharge (190 vs. 205 min; p = 0.60). Only one patient in each group presented to the emergency department with POUR (2%). After ambulatory inguinal herniorraphy, implementation of a bladder scan-based voiding protocol did not result in earlier discharge. The incidence of POUR was lower than reported in the literature.
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B
2018-02-01
Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.
Multi-point laser coherent detection system and its application on vibration measurement
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.
2015-05-01
Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.
Multi-scale imaging and elastic simulation of carbonates
NASA Astrophysics Data System (ADS)
Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed
2016-05-01
Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.
Shamata, Awatif; Thompson, Tim
2018-05-10
Non-contact three-dimensional (3D) surface scanning has been applied in forensic medicine and has been shown to mitigate shortcoming of traditional documentation methods. The aim of this paper is to assess the efficiency of structured light 3D surface scanning in recording traumatic injuries of live cases in clinical forensic medicine. The work was conducted in Medico-Legal Centre in Benghazi, Libya. A structured light 3D surface scanner and ordinary digital camera with close-up lens were used to record the injuries and to have 3D and two-dimensional (2D) documents of the same traumas. Two different types of comparison were performed. Firstly, the 3D wound documents were compared to 2D documents based on subjective visual assessment. Additionally, 3D wound measurements were compared to conventional measurements and this was done to determine whether there was a statistical significant difference between them. For this, Friedman test was used. The study established that the 3D wound documents had extra features over the 2D documents. Moreover; the 3D scanning method was able to overcome the main deficiencies of the digital photography. No statistically significant difference was found between the 3D and conventional wound measurements. The Spearman's correlation established strong, positive correlation between the 3D and conventional measurement methods. Although, the 3D surface scanning of the injuries of the live subjects faced some difficulties, the 3D results were appreciated, the validity of 3D measurements based on the structured light 3D scanning was established. Further work will be achieved in forensic pathology to scan open injuries with depth information. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.
2006-02-01
Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.
Life without Scan-Tron: Tests as Thinking.
ERIC Educational Resources Information Center
Posner, Richard
1987-01-01
Claims that written tests are superior to objective, scan-tron tests in literature, composition, and vocabulary because they require students to think on paper. Describes the following types of in-class written tests and examines the advantages of each: literary essay, topical composition, imitation, brief answer, timed rewrites, and vocabulary…
Evaluation of Electrochemical Methods for Electrolyte Characterization
NASA Technical Reports Server (NTRS)
Heidersbach, Robert H.
2001-01-01
This report documents summer research efforts in an attempt to develop an electrochemical method of characterizing electrolytes. The ultimate objective of the characterization would be to determine the composition and corrosivity of Martian soil. Results are presented using potentiodynamic scans, Tafel extrapolations, and resistivity tests in a variety of water-based electrolytes.
Implementation of a Program for the Prevention of Learning Disabilities.
ERIC Educational Resources Information Center
Silver, Archie A.
The paper describes Florida's SEARCH and TEACH program designed to prevent learning disabilities and their emotional consequences in children. SEARCH, a scanning test to identify kindergarten children at risk for problems with academic learning, is based upon the importance of age appropriate functions of spatial orientation and temporal…
Neuropsychological Testing Predicts Cerebrospinal Fluid Aβ in Mild Cognitive Impairment (MCI)
Kandel, Benjamin M.; Avants, Brian B.; Gee, James C.; Arnold, Steven E.; Wolk, David A.
2015-01-01
Background Psychometric tests predict conversion of Mild Cognitive Impairment (MCI) to probable Alzheimer's Disease (AD). Because the definition of clinical AD relies on those same psychometric tests, the ability of these tests to identify underlying AD pathology remains unclear. Objective To determine the degree to which psychometric testing predicts molecular evidence of AD amyloid pathology, as indicated by CSF Aβ1–42, in patients with MCI, as compared to neuroimaging biomarkers. Methods We identified 408 MCI subjects with CSF Aβ levels, psychometric test data, FDG-PET scans, and acceptable volumetric MR scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We used psychometric tests and imaging biomarkers in univariate and multivariate models to predict Aβ status. Results The 30-minute delayed recall score of the Rey Auditory Verbal Learning Test (AVLT) was the best predictor of Aβ status among the psychometric tests, achieving an AUC of 0.67±0.02 and odds ratio of 2.5±0.4. FDG-PET was the best imaging-based biomarker (AUC 0.67±0.03, OR 3.2±1.2), followed by hippocampal volume (AUC 0.64±0.02,,OR 2.4±0.3). A multivariate analysis based on the psychometric tests improved on the univariate predictors, achieving an AUC of 0.68±0.03 (OR 3.38±1.2). Adding imaging biomarkers to the multivariate analysis did not improve the AUC. Conclusion Psychometric tests perform as well as imaging biomarkers to predict presence of molecular markers of AD pathology in MCI patients and should be considered in the determination of the likelihood that MCI is due to AD. PMID:25881908
Whole-machine calibration approach for phased array radar with self-test
NASA Astrophysics Data System (ADS)
Shen, Kai; Yao, Zhi-Cheng; Zhang, Jin-Chang; Yang, Jian
2017-06-01
The performance of the missile-borne phased array radar is greatly influenced by the inter-channel amplitude and phase inconsistencies. In order to ensure its performance, the amplitude and the phase characteristics of radar should be calibrated. Commonly used methods mainly focus on antenna calibration, such as FFT, REV, etc. However, the radar channel also contains T / R components, channels, ADC and messenger. In order to achieve on-based phased array radar amplitude information for rapid machine calibration and compensation, we adopt a high-precision plane scanning test platform for phase amplitude test. A calibration approach for the whole channel system based on the radar frequency source test is proposed. Finally, the advantages and the application prospect of this approach are analysed.
NASA Astrophysics Data System (ADS)
Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.
2011-02-01
Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.
Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.
Dalponte, Michele; Coomes, David A
2016-10-01
Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks ( r 2 = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.
Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš
2015-05-01
Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches produced high-resolution photorealistic, real sized or easy to calibrate 3D surface models. Both methods equally failed when the scanned body surface was covered with body hair or reflective moist areas. Still, it can be concluded that single camera close range photogrammetry and optical surface scanning using Vectra H1 scanner represent relatively low-cost solutions which were shown to be beneficial for postmortem body documentation in forensic pathology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Targeting regional pediatric congenital hearing loss using a spatial scan statistic.
Bush, Matthew L; Christian, Warren Jay; Bianchi, Kristin; Lester, Cathy; Schoenberg, Nancy
2015-01-01
Congenital hearing loss is a common problem, and timely identification and intervention are paramount for language development. Patients from rural regions may have many barriers to timely diagnosis and intervention. The purpose of this study was to examine the spatial and hospital-based distribution of failed infant hearing screening testing and pediatric congenital hearing loss throughout Kentucky. Data on live births and audiological reporting of infant hearing loss results in Kentucky from 2009 to 2011 were analyzed. The authors used spatial scan statistics to identify high-rate clusters of failed newborn screening tests and permanent congenital hearing loss (PCHL), based on the total number of live births per county. The authors conducted further analyses on PCHL and failed newborn hearing screening tests, based on birth hospital data and method of screening. The authors observed four statistically significant (p < 0.05) high-rate clusters with failed newborn hearing screenings in Kentucky, including two in the Appalachian region. Hospitals using two-stage otoacoustic emission testing demonstrated higher rates of failed screening (p = 0.009) than those using two-stage automated auditory brainstem response testing. A significant cluster of high rate of PCHL was observed in Western Kentucky. Five of the 54 birthing hospitals were found to have higher relative risk of PCHL, and two of those hospitals are located in a very rural region of Western Kentucky within the cluster. This spatial analysis in children in Kentucky has identified specific regions throughout the state with high rates of congenital hearing loss and failed newborn hearing screening tests. Further investigation regarding causative factors is warranted. This method of analysis can be useful in the setting of hearing health disparities to focus efforts on regions facing high incidence of congenital hearing loss.
Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon
2015-01-01
The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292
Setup of a photomultiplier tube test bench for LHAASO-KM2A
NASA Astrophysics Data System (ADS)
Wang, Xu; Zhang, Zhong-Quan; Tian, Ye; Du, Yan-Yan; Zhao, Xiao; Shen, Fu-Wang; Li, Chang-Yu; Sun, Yan-Sheng; Feng, Cun-Feng
2016-08-01
To fulfill the requirements for testing the photomultiplier tubes (PMTs) of the electromagnetic detector at the Large High Altitude Air Shower Observatory (LHAASO), a multi-functional PMT test bench with a two-dimensional scanning system has been developed. With this 2D scanning system, 16 PMTs can be scanned simultaneously for characteristics tests, including uniformity, cathode transit time difference, single photo-electron spectrum, gain vs. high voltage, linear behavior and dark noise. The programmable hardware and intelligent software of the test bench make it convenient to use and provide reliable results. The test methods are described in detail and primary results are presented. Supported by NSFC (11075096) SDNFS (ZR2011AM007), China
Spatially scanned two-color mid-infrared interferometer for FTU
NASA Astrophysics Data System (ADS)
Canton, A.; Innocente, P.; Martini, S.; Tasinato, L.; Tudisco, O.
2001-01-01
The design of a scanning beam two-color mid-infrared (MIR) interferometer is presented. The diagnostic is being developed for the Frascati Tokamak Upgrade (FTU) which calls for a new interferometer to perform detailed study of advanced confinement regimes in D-shaped plasmas. After performing a feasibility study and a prototype test, we designed a scanning interferometer based on a resonant tilting mirror providing 40 chords of ≈1 cm diameter and a full profile every 62 μs. Such a high number of chords is obtained with a very simple optical scheme, resulting in a system which is compact, low cost, and easy to align. An important feature of the interferometer is its higher immunity to fringe jumps compared to conventional far infrared (FIR) systems. Three main factors contribute to that: the high critical density associated to MIR beams, the large bandwidth provided by 40 MHz heterodyne detection, and the fact that each scan provides a "self-consistent" profile.
A scanning tunneling microscope for a dilution refrigerator.
Marz, M; Goll, G; Löhneysen, H v
2010-04-01
We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approximately 30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe(2) has been imaged with atomic resolution down to T approximately 50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe(2) in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence proportional to 1/square root of B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.
Design of a high-speed electrochemical scanning tunneling microscope.
Yanson, Y I; Schenkel, F; Rost, M J
2013-02-01
In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.
NASA Astrophysics Data System (ADS)
Hervind, Widyaningsih, Y.
2017-07-01
Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene-Donnelly, K; Ogden, K
Purpose: To evaluate the impact of commercially available extension plates on Hounsfield Unit (HU) values in the ACR CT accreditation phantom (Model 464, Gammex Inc., Middleton, Wi). The extension plates are intended to improve water HU values in scanners where the traditional solution involves scanning the phantom with an adjacent water or CTDI phantom. Methods: The Model 464 phantom was scanned on 9 different CT scanners at 8 separate sites representing 16 and 64 slice MDCT technology from four CT manufacturers. The phantom was scanned with and without the extension plates (Gammex 464 EXTPLT-KIT) in helical and axial modes. Amore » water phantom was also scanned to verify water HU calibration. Technique was 120 kV tube potential, 350 mAs, and 210 mm display field of view. Slice thickness and reconstruction algorithm were based on site clinical protocols. The widest available beam collimation was used. Regions of interest were drawn on the HU test objects in Module 1 of the phantom and mean values recorded. Results: For all axial mode scans, water HU values were within limits with or without the extension plates. For two scanners (both Lightspeed VCT, GE Medical Systems, Waukesha WI), axial mode bone HU values were above the specified range both with and without the extension plates though they were closer to the specified range with the plates installed. In helical scan mode, two scanners (both GE Lightspeed VCT) had water HU values above the specified range without the plates installed. With the plates installed, the water HU values were within range for all scanners in all scan modes. Conclusion: Using the plates, the Lightspeed VCT scanners passed the water HU test when scanning in helical mode. The benefit of the extension plates was evident in helical mode scanning with GE scanners using a nominal 4 cm beam. Disclosure: The extension plates evaluated in this work were provided free of charge to the authors. The authors have no other financial interest in Gammex Inc.« less
Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Bowden, William
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.
A spatial scan statistic for compound Poisson data.
Rosychuk, Rhonda J; Chang, Hsing-Ming
2013-12-20
The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.
Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.
Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J
2016-11-01
The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Fabrication of Custom-Shaped Grafts for Cartilage Regeneration
Koo, Seungbum; Hargreaves, Brian A.; Gold, Garry E.; Dragoo, Jason L.
2011-01-01
Transplantation of engineered cartilage grafts is a promising method to treat diseased articular cartilage. The interfacial areas between the graft and the native tissues play an important role in the successful integration of the graft to adjacent native tissues. The purposes of the study were to create a custom shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4±0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04±0.19 mm. Custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology, which may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths. PMID:21058268
... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...
Lignin-based Biochar/graphene Oxide Composites as Supercapacitor Electrode Materials
NASA Astrophysics Data System (ADS)
Cai, Z.; Jiang, C.; Xiao, X. F.; Zhang, Y. S.; Liang, L.
2018-05-01
The lignin-based biochar/graphene composites were effectively obtained via an easy and rapid co-precipitation method. The chemical structure, microstructure, electrochemical properties of lignin/graphene oxide composites before and after carbonization were investigated by Fourier transformation infrared spectrum (FTIR), Scanning electron microscope (SEM), x-ray diffraction (XRD) and cyclic voltammetry (CV). FTIR results confirmed that the oxygen-containing groups of lignin, GO and their composites were partly removed after 800 °C carbonization and GO had a positive impact on the formation of graphitic structure for lignin. XRD results showed that lignin could completely block the restacking of GO sheets. The electrochemical test presented that lignin/graphene oxide composites exhibited a typical CV curve and the specific capacitance reached ∼103F/g at a scan rate of 20mv/s.
Ferrando, Carlos; Romero, Carolina; Tusman, Gerardo; Suarez-Sipmann, Fernando; Canet, Jaume; Dosdá, Rosa; Valls, Paola; Villena, Abigail; Serralta, Ferran; Jurado, Ana; Carrizo, Juan; Navarro, Jose; Parrilla, Cristina; Romero, Jose E; Pozo, Natividad; Soro, Marina; Villar, Jesús; Belda, Francisco Javier
2017-01-01
Objective To assess the diagnostic accuracy of peripheral capillary oxygen saturation (SpO2) while breathing room air for 5 min (the ‘Air-Test’) in detecting postoperative atelectasis. Design Prospective cohort study. Diagnostic accuracy was assessed by measuring the agreement between the index test and the reference standard CT scan images. Setting Postanaesthetic care unit in a tertiary hospital in Spain. Participants Three hundred and fifty patients from 12 January to 7 February 2015; 170 patients scheduled for surgery under general anaesthesia who were admitted into the postsurgical unit were included. Intervention The Air-Test was performed in conscious extubated patients after a 30 min stabilisation period during which they received supplemental oxygen therapy via a venturi mask. The Air-Test was defined as positive when SpO2 was ≤96% and negative when SpO2 was ≥97%. Arterial blood gases were measured in all patients at the end of the Air-Test. In the subsequent 25 min, the presence of atelectasis was evaluated by performing a CT scan in 59 randomly selected patients. Main outcome measures The primary study outcome was assessment of the accuracy of the Air-Test for detecting postoperative atelectasis compared with the reference standard. The secondary outcome was the incidence of positive Air-Test results. Results The Air-Test diagnosed postoperative atelectasis with an area under the receiver operating characteristic curve of 0.90 (95% CI 0.82 to 0.98) with a sensitivity of 82.6% and a specificity of 87.8%. The presence of atelectasis was confirmed by CT scans in all patients (30/30) with positive and in 5 patients (17%) with negative Air-Test results. Based on the Air-Test, postoperative atelectasis was present in 36% of the patients (62 out of 170). Conclusion The Air-Test may represent an accurate, simple, inexpensive and non-invasive method for diagnosing postoperative atelectasis. Trial Registration NCT02650037. PMID:28554935
Analysis of the regimes in the scanner-based laser hardening process
NASA Astrophysics Data System (ADS)
Martínez, S.; Lamikiz, A.; Ukar, E.; Calleja, A.; Arrizubieta, J. A.; Lopez de Lacalle, L. N.
2017-03-01
Laser hardening is becoming a consolidated process in different industrial sectors such as the automotive industry or in the die and mold industry. The key to ensure the success in this process is to control the surface temperature and the hardened layer thickness. Furthermore, the development of reliable scanners, based on moving optics for guiding high power lasers at extremely fast speeds allows the rapid motion of laser spots, resulting on tailored shapes of swept areas by the laser. If a scanner is used to sweep a determined area, the laser energy density distribution can be adapted by varying parameters such us the scanning speed or laser power inside this area. Despite its advantages in terms of versatility, the use of scanners for the laser hardening process has not yet been introduced in the thermal hardening industry because of the difficulty of the temperature control and possible non-homogeneous hardness thickness layers. In the present work the laser hardening process with scanning optics applied to AISI 1045 steel has been studied, with special emphasis on the influence of the scanning speed and the results derived from its variation, the evolution of the hardened layer thickness and different strategies for the control of the process temperature. For this purpose, the hardened material has been studied by measuring microhardness at different points and the shape of the hardened layer has also been evaluated. All tests have been performed using an experimental setup designed to keep a nominal temperature value using a closed-loop control. The tests results show two different regimes depending on the scanning speed and feed rate values. The experimental results conclusions have been validated by means of thermal simulations at different conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, Richard B.; Lamothe, Margaret E.
2013-05-30
This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and themore » test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.« less
A degradation-based sorting method for lithium-ion battery reuse.
Chen, Hao; Shen, Julia
2017-01-01
In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells.
NASA Astrophysics Data System (ADS)
Sudarsono, S.; Purwanto; Sudarsono, Johny W.
2018-02-01
In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.
... Overview of Imaging Tests Angiography Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Plain X-Rays Radionuclide Scanning ... and radionuclide scanning Sound waves, as in ultrasonography Magnetic fields, as in magnetic resonance imaging (MRI) Substances ...
Trends in PET Scan Usage for Imaging of Patients Diagnosed With Nonmetastatic Urologic Cancer.
Adejoro, Oluwakayode; Alishahi, Amin; Soubra, Ayman; Konety, Badrinath
2016-02-01
The precise utility of positron emission tomography (PET) scanning for urologic cancers is not well defined. We examined the trends of usage in a population-based data set. PET scans were performed in 3.60% of patients with bladder cancer, 1.09% of those with prostate cancer, and 5.32% of those with renal cell carcinoma. This selective usage might be driven by reimbursement constraints or identification of appropriate medical indications. Positron emission tomography (PET) scanning is increasingly being used for imaging a variety of cancers, including urologic cancers. The precise utility of PET scanning for bladder cancer, prostate cancer, and renal cell carcinoma (RCC) is not yet well known. We examined the trends in PET scan usage for 3 cancers using a large population-based data set. We analyzed all individuals identified with a diagnosis of nonmetastatic bladder cancer, prostate cancer, and RCC from the Surveillance, Epidemiology, and End Results-Medicare data set for 2004 to 2009 with follow-up data available to 2010. Logistic regression analysis and χ(2) and trend tests were performed to determine the predictors of performing PET scanning. Separate models were run for each of the cancer diagnoses. All analyses were performed using SAS, version 9.3, and P < .05 was considered significant. We identified 20,865, 70,414, and 7007 patients with a diagnosis of bladder cancer, prostate cancer, and RCC, respectively, from 2004 to 2009. PET scans had been performed for 3.60% of patients with bladder cancer, 1.09% of those with prostate cancer, and 5.32% of those with RCC. On regression analysis, a more recent year of diagnosis, younger age, and high stage or grade were predictors of PET scan usage for patients with bladder cancer and RCC. A higher Gleason score and higher D'Amico risk group predicted imaging with prostate cancer. The usage of PET scanning for bladder cancer, prostate cancer, and RCC is increasing but still very selective. The selective use might be driven by a combination of reimbursement constraints and careful identification of the appropriate medical indication. Copyright © 2016 Elsevier Inc. All rights reserved.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
NASA Technical Reports Server (NTRS)
Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.
1974-01-01
A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.
A scan-angle correction for thermal infrared multispectral data using side lapping images
Watson, K.
1996-01-01
Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.
Allegaert, Karel; Casteels, Kristina; van Gorp, Ilse; Bogaert, Guy
2014-01-01
Introduction Body temperature measurement in children is of clinical relevance. Although rectal measurement is the gold standard, less invasive tools have become available. We aimed to describe the accuracy of tympanic, infrared skin, or temporal artery scan thermometers compared with rectal measurement to reflect core temperature. Methods Rectal (Filac 3000; Covidien, Mechelen, Belgium), tympanic (AccuSystem Genius2 Typmanic Infrared Ear Thermometer, Covidien, Mechelen, Belgium), temporal artery scan (Exergen, Exergen Corp, Watertown, Massachusetts), and infrared (ThermoFlash Contactless Medical Electronic Thermometer, Visiomedlab, Paris, France) body temperature measurements were randomly performed and readings were collected once. Temperature readings were described as median and range, and observations were compared with rectal temperature readings (using Wilcoxon, Bland-Altman, sensitivity, and specificity tests). The child’s comfort was assessed by the child, parent, and nurse (using Likert scales) and ease of use was assessed by nurses (using visual analog scale). Results Based on observations in 294 (median age = 3.2 years, range = 0.02–17 years) children, the mean difference was 0.49°C (tympanic scan; P < 0.0001), 0.34°C (infrared skin scan; P < 0.0001), and 0°C (temporal artery scan; P = 0.9288), respectively, when compared with rectal temperature readings. Based on visual inspection of Bland-Altman plots, all tools overestimated the temperature at lower body temperature and underestimated the temperature at higher body temperature, resulting in a sensitivity of 22% to 41% and a specificity of 98% to 100% for rectal temperatures above 38°C. The Likert scale scores and the visual analog scale scores for rectal measurement were only slightly higher when compared with the other methods. Conclusions All noninvasive techniques underperformed compared with rectal measurement. The temporal artery scan deviations were smallest, but all noninvasive techniques overestimate lower temperatures and underestimate higher temperatures compared with rectal measurement. In our hands, temporal artery scan measurement seems to be second best, but not yet ideal. PMID:25067984
Access-in-turn test architecture for low-power test application
NASA Astrophysics Data System (ADS)
Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun
2017-03-01
This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.
Transverse compression of PPTA fibers
NASA Astrophysics Data System (ADS)
Singletary, James
2000-07-01
Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.
A new spherical scanning system for infrared reflectography of paintings
NASA Astrophysics Data System (ADS)
Gargano, M.; Cavaliere, F.; Viganò, D.; Galli, A.; Ludwig, N.
2017-03-01
Infrared reflectography is an imaging technique used to visualize the underdrawings of ancient paintings; it relies on the fact that most pigment layers are quite transparent to infrared radiation in the spectral band between 0.8 μm and 2.5 μm. InGaAs sensor cameras are nowadays the most used devices to visualize the underdrawings but due to the small size of the detectors, these cameras are usually mounted on scanning systems to record high resolution reflectograms. This work describes a portable scanning system prototype based on a peculiar spherical scanning system built through a light weight and low cost motorized head. The motorized head was built with the purpose of allowing the refocusing adjustment needed to compensate the variable camera-painting distance during the rotation of the camera. The prototype has been tested first in laboratory and then in-situ for the Giotto panel "God the Father with Angels" with a 256 pixel per inch resolution. The system performance is comparable with that of other reflectographic devices with the advantage of extending the scanned area up to 1 m × 1 m, with a 40 min scanning time. The present configuration can be easily modified to increase the resolution up to 560 pixels per inch or to extend the scanned area up to 2 m × 2 m.
2017-01-01
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597
Reinstein, Dan Z.; Archer, Timothy J.; Silverman, Ronald H.; Coleman, D. Jackson
2008-01-01
Purpose To determine the accuracy, repeatability, and reproducibility of measurement of lateral dimensions using the Artemis (Ultralink LLC) very high-frequency (VHF) digital ultrasound (US) arc scanner. Setting London Vision Clinic, London, United Kingdom. Methods A test object was measured first with a micrometer and then with the Artemis arc scanner. Five sets of 10 consecutive B-scans of the test object were performed with the scanner. The test object was removed from the system between each scan set. One expert observer and one newly trained observer separately measured the lateral dimension of the test object. Two-factor analysis of variance was performed. The accuracy was calculated as the average bias of the scan set averages. The repeatability and reproducibility coefficients were calculated. The coefficient of variation (CV) was calculated for repeatability and reproducibility. Results The test object was measured to be 10.80 mm wide. The mean lateral dimension bias was 0.00 mm. The repeatability coefficient was 0.114 mm. The reproducibility coefficient was 0.026 mm. The repeatability CV was 0.38%, and the reproducibility CV was 0.09%. There was no statistically significant variation between observers (P = .0965). There was a statistically significant variation between scan sets (P = .0036) attributed to minor vertical changes in the alignment of the test object between consecutive scan sets. Conclusion The Artemis VHF digital US arc scanner obtained accurate, repeatable, and reproducible measurements of lateral dimensions of the size commonly found in the anterior segment. PMID:17081860
Testing the Capacity of the National Biological Dose Response Plan (NBDRP) EX40801
2009-11-01
Blood Collection All donors were volunteers that willingly responded to an advertising call for participation in a research proposal approved by...Scorers from the same laboratory are shown in the same colour . In Figure 2, the dose estimates based on QuickScan are shown. Figure 3 shows the doses
Right-Hemispheric Cortical Contributions to Language Ability in Healthy Adults
ERIC Educational Resources Information Center
Van Ettinger-Veenstra, Helene; Ragnehed, Mattias; McAllister, Anita; Lundberg, Peter; Engstrom, Maria
2012-01-01
In this study we investigated the correlation between individual linguistic ability based on performance levels and their engagement of typical and atypical language areas in the brain. Eighteen healthy subjects between 21 and 64 years participated in language ability tests, and subsequent functional MRI scans measuring brain activity in response…
Biochemistry and Molecular Biology Techniques for Person Characterization
ERIC Educational Resources Information Center
Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen
2008-01-01
Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…
MNE Scan: Software for real-time processing of electrophysiological data.
Esch, Lorenz; Sun, Limin; Klüber, Viktor; Lew, Seok; Baumgarten, Daniel; Grant, P Ellen; Okada, Yoshio; Haueisen, Jens; Hämäläinen, Matti S; Dinh, Christoph
2018-06-01
Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Fetal brain volumetry through MRI volumetric reconstruction and segmentation
Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.
2013-01-01
Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848
Mathematical modeling of tomographic scanning of cylindrically shaped test objects
NASA Astrophysics Data System (ADS)
Kapranov, B. I.; Vavilova, G. V.; Volchkova, A. V.; Kuznetsova, I. S.
2018-05-01
The paper formulates mathematical relationships that describe the length of the radiation absorption band in the test object for the first generation tomographic scan scheme. A cylindrically shaped test object containing an arbitrary number of standard circular irregularities is used to perform mathematical modeling. The obtained mathematical relationships are corrected with respect to chemical composition and density of the test object material. The equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when passing through the test object. An algorithm to calculate the radiation flux intensity is provided. The presented graphs describe the dependence of the change in the γ-quantum flux intensity on the change in the radiation source position and the scanning angle of the test object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, S.M.; Brinkar, C.J.; Rao, S.M.
We are testing an anti-weathering preservation strategy that is specific to limestone surfaces. The strategy involves the application of a mineral-specific, bifunctional, passivating/coupling agent that binds to both the limestone surface and to the consolidating inorganic polymer matrix. The sol-gel based reactions form composite materials with desirable conservation and anti-weathering properties. We present the results of our efforts, the highlights of which are: (1) scanning probe microscopy of moisture-free calcite crystals treated with the trisilanol form of silylalkylaminocarboxylate (SAAC), reveals porous agglomerates that offer no significant resistance to the mild leaching action of deionized water. When the crystals are furthermore » consolidated with a silica-based consolidant (A2**), no dissolution is seen although the positive role of the passivant molecule is not yet delineated. (2) Modulus of rupture tests on limestone cores treated with an aminoalkylsilane (AEAPS) and A2** showed a 25-35% increase in strength compared to the untreated samples. (3) Environmental scanning electron microscopy of treated limestone subjected to a concentrated acid attack showed degradation of the surface except in areas where thick layers of the consolidant were deposited.« less
Terslev, Lene; Naredo, Esperanza; Aegerter, Philippe; Wakefield, Richard J; Backhaus, Marina; Balint, Peter; Bruyn, George A W; Iagnocco, Annamaria; Jousse-Joulin, Sandrine; Schmidt, Wolfgang A; Szkudlarek, Marcin; Conaghan, Philip G; Filippucci, Emilio
2017-01-01
Objectives To test the reliability of new ultrasound (US) definitions and quantification of synovial hypertrophy (SH) and power Doppler (PD) signal, separately and in combination, in a range of joints in patients with rheumatoid arthritis (RA) using the European League Against Rheumatisms–Outcomes Measures in Rheumatology (EULAR-OMERACT) combined score for PD and SH. Methods A stepwise approach was used: (1) scoring static images of metacarpophalangeal (MCP) joints in a web-based exercise and subsequently when scanning patients; (2) scoring static images of wrist, proximal interphalangeal joints, knee and metatarsophalangeal joints in a web-based exercise and subsequently when scanning patients using different acquisitions (standardised vs usual practice). For reliability, kappa coefficients (κ) were used. Results Scoring MCP joints in static images showed substantial intraobserver variability but good to excellent interobserver reliability. In patients, intraobserver reliability was the same for the two acquisition methods. Interobserver reliability for SH (κ=0.87) and PD (κ=0.79) and the EULAR-OMERACT combined score (κ=0.86) were better when using a ‘standardised’ scan. For the other joints, the intraobserver reliability was excellent in static images for all scores (κ=0.8–0.97) and the interobserver reliability marginally lower. When using standardised scanning in patients, the intraobserver was good (κ=0.64 for SH and the EULAR-OMERACT combined score, 0.66 for PD) and the interobserver reliability was also good especially for PD (κ range=0.41–0.92). Conclusion The EULAR-OMERACT score demonstrated moderate-good reliability in MCP joints using a standardised scan and is equally applicable in non-MCP joints. This scoring system should underpin improved reliability and consequently the responsiveness of US in RA clinical trials. PMID:28948984
A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk
Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less
Giménez, Beatriz; Pradíes, Guillermo; Martínez-Rus, Francisco; Özcan, Mutlu
2015-01-01
To evaluate the accuracy of two digital impression systems based on the same technology but different postprocessing correction modes of customized software, with consideration of several clinical parameters. A maxillary master model with six implants located in the second molar, second premolar, and lateral incisor positions was fitted with six cylindrical scan bodies. Scan bodies were placed at different angulations or depths apical to the gingiva. Two experienced and two inexperienced operators performed scans with either 3D Progress (MHT) or ZFX Intrascan (Zimmer Dental). Five different distances between implants (scan bodies) were measured, yielding five data points per impression and 100 per impression system. Measurements made with a high-accuracy three-dimensional coordinate measuring machine (CMM) of the master model acted as the true values. The values obtained from the digital impressions were subtracted from the CMM values to identify the deviations. The differences between experienced and inexperienced operators and implant angulation and depth were compared statistically. Experience of the operator, implant angulation, and implant depth were not associated with significant differences in deviation from the true values with both 3D Progress and ZFX Intrascan. Accuracy in the first scanned quadrant was significantly better with 3D Progress, but ZFX Intrascan presented better accuracy in the full arch. Neither of the two systems tested would be suitable for digital impression of multiple-implant prostheses. Because of the errors, further development of both systems is required.
Lateral resolution testing of a novel developed confocal microscopic imaging system
NASA Astrophysics Data System (ADS)
Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun
2015-10-01
Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.
Physical properties of concrete made with Apollo 16 lunar soil sample
NASA Technical Reports Server (NTRS)
Lin, T. D.; Love, H.; Stark, D.
1992-01-01
This paper describes the first phase of the long-term investigation for the construction of concrete lunar bases. In this phase, petrographic and scanning electron microscope examinations showed that the morphology and elemental composition of the lunar soil made it suitable for use as a fine aggregate for concrete. Based on this finding, calcium aluminate cement and distilled water were mixed with the lunar soil to fabricate test specimens. The test specimens consisted of a 1-in cube, a 1/2-in cube, and three 0.12 x 0.58 x 3.15-in beam specimens. Tests were performed on these specimens to determine compressive strength, modulus of rupture, modulus of elasticity, and thermal coefficient of expansion. Based on examination of the material and test results, it is concluded that lunar soil can be used as a fine aggregate for concrete.
Characterisation of Intensity Values on Terrestrial Laser Scanning for Recording Enhancement
NASA Astrophysics Data System (ADS)
Balaguer-Puig, M.; Molada-Tebar, A.; Marqués-Mateu, A.; Lerma, J. L.
2017-08-01
Mapping surveys based on terrestrial laser scanning (TLS) are common nowadays for different purposes such as documentation of cultural heritage assets. The chance to extract relevant information from TLS surveys depends not only on the fast acquisition of XYZ coordinates, but also on the meaningful intensity values of the fired objects. TLS behaviour depends on several known factors such as distance, texture, roughness, colour and albedo. This paper seeks to find out the mathematical relationship between the TLS intensity values and the colorimetric data using a colour chart. In order to do so, objective colour specification based on well-known colour spaces is needed. The approach used here started with scanning a colour chart containing a number of colour patches with known chromatic and reflection characteristics. After several transformations, the results allowed us to characterise the intensity behaviour of a time-of-flight laser scanner. The characterisation of the intensity values are tested indoor on the colour chart and outdoor on an archaeological shelter. Promising results are obtained to enhance the behaviour of the intensity values coming from the TLS.
Automated Agatston score computation in non-ECG gated CT scans using deep learning
NASA Astrophysics Data System (ADS)
Cano-Espinosa, Carlos; González, Germán.; Washko, George R.; Cazorla, Miguel; San José Estépar, Raúl
2018-03-01
Introduction: The Agatston score is a well-established metric of cardiovascular disease related to clinical outcomes. It is computed from CT scans by a) measuring the volume and intensity of the atherosclerotic plaques and b) aggregating such information in an index. Objective: To generate a convolutional neural network that inputs a non-contrast chest CT scan and outputs the Agatston score associated with it directly, without a prior segmentation of Coronary Artery Calcifications (CAC). Materials and methods: We use a database of 5973 non-contrast non-ECG gated chest CT scans where the Agatston score has been manually computed. The heart of each scan is cropped automatically using an object detector. The database is split in 4973 cases for training and 1000 for testing. We train a 3D deep convolutional neural network to regress the Agatston score directly from the extracted hearts. Results: The proposed method yields a Pearson correlation coefficient of r = 0.93; p <= 0.0001 against manual reference standard in the 1000 test cases. It further stratifies correctly 72.6% of the cases with respect to standard risk groups. This compares to more complex state-of-the-art methods based on prior segmentations of the CACs, which achieve r = 0.94 in ECG-gated pulmonary CT. Conclusions: A convolutional neural network can regress the Agatston score from the image of the heart directly, without a prior segmentation of the CACs. This is a new and simpler paradigm in the Agatston score computation that yields similar results to the state-of-the-art literature.
Pourmand, Ali; Woodward, Christina; Shokoohi, Hamid; King, Jordan B; Taheri, M Reza; King, Jackson; Lawrence, Christopher
2018-01-01
Context Web-based learning (WBL) modules are effectively used to improve medical education curriculum; however, they have not been evaluated to improve head computed tomography (CT) scan interpretation in an emergency medicine (EM) setting. Objective To evaluate the effectiveness of a WBL module to aid identification of cranial structures on CT and to improve ability to distinguish between normal and abnormal findings. Design Prospective, before-and-after trial in the Emergency Department of an academic center. Baseline head CT knowledge was assessed via a standardized test containing ten head CT scans, including normal scans and those showing hemorrhagic stroke, trauma, and infection (abscess). All trainees then participated in a WBL intervention. Three weeks later, they were given the same ten CT scans to evaluate in a standardized posttest. Main Outcome Measures Improvement in test scores. Results A total of 131 EM clerkship students and 32 EM residents were enrolled. Pretest scores correlated with stage of training, with students and first-year residents demonstrating the lowest scores. Overall, there was a significant improvement in percentage of correctly classified CT images after the training intervention from a mean pretest score of 32% ± 12% to posttest score of 67% ± 13% (mean improvement = 35% ± 13%, p < 0.001). Among subsets by training level, all subgroups except first-year residents demonstrated a statistically significant increase in scores after the training. Conclusion Incorporating asynchronous WBL modules into EM clerkship and residency curriculum provides early radiographic exposure in their clinical training and can enhance diagnostic head CT scan interpretation. PMID:29272248
Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying
2016-01-25
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.
Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying
2016-01-01
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870
Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets
Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen
2016-01-01
Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964
Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960
Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav
2017-01-01
Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.
Mikrut, Sławomir; Kohut, Piotr; Pyka, Krystian; Tokarczyk, Regina; Barszcz, Tomasz; Uhl, Tadeusz
2016-01-01
The paper contains a survey of mobile scanning systems for measuring the railway clearance gauge. The research was completed as part of the project carried out for the PKP (PKP Polish Railway Lines S.A., Warsaw, Poland) in 2011–2013. The authors conducted experiments, including a search for the latest solutions relating to mobile measurement systems that meet the basic requirement. At the very least, these solutions needed to be accurate and have the ability for quick retrieval of data. In the paper, specifications and the characteristics of the component devices of the scanning systems are described. Based on experiments, the authors did some examination of the selected mobile systems to be applied for measuring the clearance gauge. The Riegl (VMX-250) and Z+F (Zoller + Fröhlich) Solution were tested. Additional test measurements were carried out within a 30-kilometer section of the Warsaw-Kraków route. These measurements were designed so as to provide various elements of the railway infrastructure, the track geometry and the installed geodetic control network. This ultimately made it possible to reduce the time for the preparation of geodetic reference measurements for the testing of the accuracy of the selected systems. Reference measurements included the use of the polar method to select profiles perpendicular to the axis of the track. In addition, the coordinates selected were well defined as measuring points of the objects of the infrastructure of the clearance gauge. All of the tested systems meet the accuracy requirements initially established (within the range of 2 cm as required by the PKP). The tested systems have shown their advantages and disadvantages. PMID:27187400
Mohunta, Vrinda V; McGlumphy, Edwin A; Kim, Do-Gyoon; Azer, Shereen S
To select an ideal interocclusal record material for cone beam computed tomography (CBCT)-guided implant surgery based on the material's radiodensity on the scan. Twelve commonly used interocclusal record materials were used for this investigation: two were waxes, one was polyether, and nine were polyvinyl-siloxane-type materials. A scan template was fabricated by duplicating existing dentures in Ortho-Jet acrylic resin mixed with 30% barium powder for the teeth and 10% barium powder for the denture base between the teeth and the tissue. An interocclusal record was fabricated with each material, and the same template was used to obtain a CBCT scan with an ICAT machine (Imaging Sciences International) at 0.3 voxel and 14-bit depth settings. Twelve CBCT scans were obtained and analyzed. The radiopacity of the barium teeth was used as a control and was compared with the opacity of the 12 materials using a paired t test. A post hoc analysis of variance (ANOVA) test was used to compare the densities of the various materials with each other. There was a statistically significant difference between the radiopacity of barium teeth (gray value: 1,959.475) and that of Modelling Wax (gray value: 750; P = .0026), Aluwax (gray value: 795.22; P = .0022), Blu-Bite CT (gray value: 1,105; P = .005), Ramitec (gray value: 1,105.3; P = .08), Memosil 2 (gray value: 1,202; P = .01) followed by Reprosil (gray value: 1,407.73; P = .01). Compared with the barium teeth, there was no statistically significant difference between the densities of Futar D (gray value: 1,866.5; P = .51), Jet Bite (gray value: 1,660.04; P = .08), Lab-Putty (gray value: 1,402.14; P = .19), and Memoreg 2 (gray value: 1,754.72; P = .1). The highest radiodensity was seen with Blu-Mousse (gray value: 2,949; P = .007) and Take 1 (gray value: 2,229.85; P = .025), which were also significantly different from the density of the barium teeth but in the opposite direction, making them more opaque. Within the limitations of this in vitro study, the most radiolucent appearance of Modelling Wax, Aluwax, Memosil 2, Blu-Bite CT, and Ramitec made them the suitable materials of choice of those tested, as the interocclusal registration record during CBCT scanning allowed clear visualization of barium teeth.
A Real-Time High Performance Data Compression Technique For Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.
2000-01-01
A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.
Comprehensive Mutation Scanning of LMNA in 268 Patients With Lone Atrial Fibrillation
Brauch, Katharine M.; Chen, Lin Y.; Olson, Timothy M.
2009-01-01
Atrial fibrillation (AF) is a heritable, genetically heterogeneous disorder. To identify gene defects that cause or confer susceptibility to AF, a cohort of 268 unrelated patients with idiopathic forms of familial and sporadic AF was recruited. LMNA, encoding the nuclear membrane proteins, lamin A/C, was selected as a candidate gene for lone AF based on its established association with a syndrome of dilated cardiomyopathy, conduction system disease, and AF. Comprehensive mutation scanning identified only 1 potentially pathogenic mutation. In conclusion, LMNA mutations rarely cause lone AF and routine genetic testing of LMNA in these patients does not appear warranted. PMID:19427440
Nanospectrofluorometry inside single living cell by scanning near-field optical microscopy
NASA Astrophysics Data System (ADS)
Lei, F. H.; Shang, G. Y.; Troyon, M.; Spajer, M.; Morjani, H.; Angiboust, J. F.; Manfait, M.
2001-10-01
Near-field fluorescence spectra with subdiffraction limit spatial resolution have been taken in the proximity of mitochondrial membrane inside breast adenocarcinoma cells (MCF7) treated with the fluorescent dye (JC-1) by using a scanning near-field optical microscope coupled with a confocal laser microspectrofluorometer. The probe-sample distance control is based on a piezoelectric bimorph shear force sensor having a static spring constant k=5 μN/nm and a quality factor Q=40 in a physiological medium of viscosity η=1.0 cp. The sensitivity of the force sensor has been tested by imaging a MCF7 cell surface.
Kook, Michael S; Cho, Hyun-soo; Seong, Mincheol; Choi, Jaewan
2005-11-01
To evaluate the ability of scanning laser polarimetry parameters and a novel deviation map algorithm to discriminate between healthy and early glaucomatous eyes with localized visual field (VF) defects confined to one hemifield. Prospective case-control study. Seventy glaucomatous eyes with localized VF defects and 66 normal controls. A Humphrey field analyzer 24-2 full-threshold test and scanning laser polarimetry with variable corneal compensation were used. We assessed the sensitivity and specificity of scanning laser polarimetry parameters, sensitivity and cutoff values for scanning laser polarimetry deviation map algorithms at different specificity values (80%, 90%, and 95%) in the detection of glaucoma, and correlations between the algorithms of scanning laser polarimetry and of the pattern deviation derived from Humphrey field analyzer testing. There were significant differences between the glaucoma group and normal subjects in the mean parametric values of the temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and TSNIT standard deviation (SD) (P<0.05). The sensitivity and specificity of each scanning laser polarimetry variable was as follows: TSNIT, 44.3% (95% confidence interval [CI], 39.8%-49.8%) and 100% (95.4%-100%); superior average, 30% (25.5%-34.5%) and 97% (93.5%-100%); inferior average, 45.7% (42.2%-49.2%) and 100% (95.8%-100%); and TSNIT SD, 30% (25.9%-34.1%) and 97% (93.2%-100%), respectively (when abnormal was defined as P<0.05). Based on nerve fiber indicator cutoff values of > or =30 and > or =51 to indicate glaucoma, sensitivities were 54.3% (50.1%-58.5%) and 10% (6.4%-13.6%), and specificities were 97% (93.2%-100%) and 100% (95.8%-100%), respectively. The range of areas under the receiver operating characteristic curves using the scanning laser polarimetry deviation map algorithm was 0.790 to 0.879. Overall sensitivities combining each probability scale and severity score at 80%, 90%, and 95% specificities were 90.0% (95% CI, 86.4%-93.6%), 71.4% (67.4%-75.4%), and 60.0% (56.2%-63.8%), respectively. There was a statistically significant correlation between the scanning laser polarimetry severity score and the VF severity score (R2 = 0.360, P<0.001). Scanning laser polarimetry parameters may not be sufficiently sensitive to detect glaucomatous patients with localized VF damage. Our algorithm using the scanning laser polarimetry deviation map may enhance the understanding of scanning laser polarimetry printouts in terms of the locality, deviation size, and severity of localized retinal nerve fiber layer defects in eyes with localized VF loss.
... symptoms. They may test your senses, balance, reflexes, memory, and thinking. In some cases, the doctor will order tests to scan your brain. These include a computed tomography (CT) or magnetic resonance imaging (MRI) scan. They take a picture of your ...
Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P
2015-03-01
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.
Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian
2016-05-01
Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls
NASA Astrophysics Data System (ADS)
Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra
2017-08-01
The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.
Classification of SD-OCT volumes for DME detection: an anomaly detection approach
NASA Astrophysics Data System (ADS)
Sankar, S.; Sidibé, D.; Cheung, Y.; Wong, T. Y.; Lamoureux, E.; Milea, D.; Meriaudeau, F.
2016-03-01
Diabetic Macular Edema (DME) is the leading cause of blindness amongst diabetic patients worldwide. It is characterized by accumulation of water molecules in the macula leading to swelling. Early detection of the disease helps prevent further loss of vision. Naturally, automated detection of DME from Optical Coherence Tomography (OCT) volumes plays a key role. To this end, a pipeline for detecting DME diseases in OCT volumes is proposed in this paper. The method is based on anomaly detection using Gaussian Mixture Model (GMM). It starts with pre-processing the B-scans by resizing, flattening, filtering and extracting features from them. Both intensity and Local Binary Pattern (LBP) features are considered. The dimensionality of the extracted features is reduced using PCA. As the last stage, a GMM is fitted with features from normal volumes. During testing, features extracted from the test volume are evaluated with the fitted model for anomaly and classification is made based on the number of B-scans detected as outliers. The proposed method is tested on two OCT datasets achieving a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, experiments show that the proposed method achieves better classification performances than other recently published works.
Strategies for Implementing Cell-Free DNA Testing.
Cuckle, Howard
2016-06-01
Maternal plasma cell-free (cf) DNA testing has higher discriminatory power for aneuploidy than any conventional multi-marker screening test. Several strategies have been suggested for introducing it into clinical practice. Secondary cfDNA, restricted only to women with positive conventional screening test, is generally cost saving and minimizes the need for invasive prenatal diagnosis but leads to a small loss in detection. Primary cfDNA, replacing conventional screening or retaining the nuchal translucency scan, is not currently cost-effective for third-party payers. Contingent cfDNA, testing about 20% of women with the highest risks based on a conventional test, is the preferred approach. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, Alexandra; Armato, Samuel G.; Castillo, Richard
2015-04-01
Purpose: To assess the relationship between radiation dose and change in a set of mathematical intensity- and texture-based features and to determine the ability of texture analysis to identify patients who develop radiation pneumonitis (RP). Methods and Materials: A total of 106 patients who received radiation therapy (RT) for esophageal cancer were retrospectively identified under institutional review board approval. For each patient, diagnostic computed tomography (CT) scans were acquired before (0-168 days) and after (5-120 days) RT, and a treatment planning CT scan with an associated dose map was obtained. 32- × 32-pixel regions of interest (ROIs) were randomly identifiedmore » in the lungs of each pre-RT scan. ROIs were subsequently mapped to the post-RT scan and the planning scan dose map by using deformable image registration. The changes in 20 feature values (ΔFV) between pre- and post-RT scan ROIs were calculated. Regression modeling and analysis of variance were used to test the relationships between ΔFV, mean ROI dose, and development of grade ≥2 RP. Area under the receiver operating characteristic curve (AUC) was calculated to determine each feature's ability to distinguish between patients with and those without RP. A classifier was constructed to determine whether 2- or 3-feature combinations could improve RP distinction. Results: For all 20 features, a significant ΔFV was observed with increasing radiation dose. Twelve features changed significantly for patients with RP. Individual texture features could discriminate between patients with and those without RP with moderate performance (AUCs from 0.49 to 0.78). Using multiple features in a classifier, AUC increased significantly (0.59-0.84). Conclusions: A relationship between dose and change in a set of image-based features was observed. For 12 features, ΔFV was significantly related to RP development. This study demonstrated the ability of radiomics to provide a quantitative, individualized measurement of patient lung tissue reaction to RT and assess RP development.« less
Development of surface metrology for the Giant Magellan Telescope primary mirror
NASA Astrophysics Data System (ADS)
Burge, J. H.; Davison, W.; Martin, H. M.; Zhao, C.
2008-07-01
The Giant Magellan Telescope achieves 25 meter aperture and modest length using an f/0.7 primary mirror made from 8.4 meter diameter segments. The systems that will be used for measuring the aspheric optical surfaces of these mirrors are in the final phase of development. This paper discusses the overall metrology plan and shows details for the development of the principal test system - a system that uses mirrors and holograms to provide a null interferometric test of the surface. This system provides a full aperture interferometric measurement of the off-axis segments by compensating the 14.5 mm aspheric departure with a tilted 3.8-m diameter powered mirror, a 77 cm tilted mirror, and a computer generated hologram. The interferometric measurements are corroborated with a scanning slope measurement from a scanning pentaprism system and a direct measurement system based on a laser tracker.
Enhancer scanning to locate regulatory regions in genomic loci
Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.
2016-01-01
The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467
... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...
... or intestines Breathing problems Exams and Tests Your health care provider will ask you about your medical history and do a physical exam. Other tests may include: X-rays CT scan MRI PET scan If your provider suspects cancer, you might ...
Magnetic Resonance Imaging (MRI)
... MoreBMI Calculator Complete Blood Count (CBC)Blood Test: Lipid PanelRapid Strep TestPelvic UltrasoundAbdominal UltrasoundCT Head ScanPap Smear ( ... because it can provide images of internal body structures. It is more like a CT scan than ...
Microwave scanning beam approach and landing system phased array antenna.
DOT National Transportation Integrated Search
1971-09-01
The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...
40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.
Code of Federal Regulations, 2013 CFR
2013-07-01
... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...
40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.
Code of Federal Regulations, 2012 CFR
2012-07-01
... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...
40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.
Code of Federal Regulations, 2014 CFR
2014-07-01
... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...
40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.
Code of Federal Regulations, 2011 CFR
2011-07-01
... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...
40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.
Code of Federal Regulations, 2010 CFR
2010-07-01
... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...
NASA Astrophysics Data System (ADS)
Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.
2002-01-01
ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.
Development of a computerized visual search test.
Reid, Denise; Babani, Harsha; Jon, Eugenia
2009-09-01
Visual attention and visual search are the features of visual perception, essential for attending and scanning one's environment while engaging in daily occupations. This study describes the development of a novel web-based test of visual search. The development information including the format of the test will be described. The test was designed to provide an alternative to existing cancellation tests. Data from two pilot studies will be reported that examined some aspects of the test's validity. To date, our assessment of the test shows that it discriminates between healthy and head-injured persons. More research and development work is required to examine task performance changes in relation to task complexity. It is suggested that the conceptual design for the test is worthy of further investigation.
Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation
NASA Astrophysics Data System (ADS)
Chiariotti, P.; Martarelli, M.; Castellini, P.
2017-03-01
Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.
A degradation-based sorting method for lithium-ion battery reuse
Chen, Hao
2017-01-01
In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells. PMID:29023485
Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline
Wang, Jiahui; Vachet, Clement; Rumple, Ashley; Gouttard, Sylvain; Ouziel, Clémentine; Perrot, Emilie; Du, Guangwei; Huang, Xuemei; Gerig, Guido; Styner, Martin
2014-01-01
Automated segmenting and labeling of individual brain anatomical regions, in MRI are challenging, due to the issue of individual structural variability. Although atlas-based segmentation has shown its potential for both tissue and structure segmentation, due to the inherent natural variability as well as disease-related changes in MR appearance, a single atlas image is often inappropriate to represent the full population of datasets processed in a given neuroimaging study. As an alternative for the case of single atlas segmentation, the use of multiple atlases alongside label fusion techniques has been introduced using a set of individual “atlases” that encompasses the expected variability in the studied population. In our study, we proposed a multi-atlas segmentation scheme with a novel graph-based atlas selection technique. We first paired and co-registered all atlases and the subject MR scans. A directed graph with edge weights based on intensity and shape similarity between all MR scans is then computed. The set of neighboring templates is selected via clustering of the graph. Finally, weighted majority voting is employed to create the final segmentation over the selected atlases. This multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline employing BatchMake for its pipeline scripting, developed at the Neuro Image Research and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg performs N4 intensity inhomogeneity correction, rigid registration to a common template space, automated brain tissue classification based skull-stripping, and the multi-atlas segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans. The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures. PMID:24567717
Infrared Submillimeter and Radio Astronomy Research and Analysis Program
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2000-01-01
This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.
Chalmers, E V; McIntyre, G T; Wang, W; Gillgrass, T; Martin, C B; Mossey, P A
2016-09-01
This study was undertaken to evaluate intraoral 3D scans for assessing dental arch relationships and obtain patient/parent perceptions of impressions and intraoral 3D scanning. Forty-three subjects with nonsyndromic unilateral cleft lip and palate (UCLP) had impressions taken for plaster models. These and the teeth were scanned using the R700 Orthodontic Study Model Scanner and Trios® Digital Impressions Scanner (3Shape A/S, Copenhagen, Denmark) to create indirect and direct digital models. All model formats were scored by three observers on two occasions using the GOSLON and modified Huddart Bodenham (MHB) indices. Participants and parents scored their perceptions of impressions and scanning from 1 (very good) to 5 (very bad). Intra- and interexaminer reliability were tested using GOSLON and MHB data (Cronbach's Alpha >0.9). Bland and Altman plots were created for MHB data, with each model medium (one-sample t tests, P < .05) and questionnaire data (Wilcoxon signed ranks P < .05) tested. Intra- and interexaminer reliability (>0.9) were good for all formats with the direct digital models having the lowest interexaminer differences. Participants had higher ratings for scanning comfort (84.8%) than impressions (44.2%) (P < .05) and for scanning time (56.6%) than impressions (51.2%) (P > .05). None disliked scanning, but 16.3% disliked impressions. Data for parents and children positively correlated (P < .05). Reliability of scoring dental arch relationships using intraoral 3D scans was superior to indirect digital and to plaster models; Subjects with UCLP preferred intra-oral 3D scanning to dental impressions, mirrored by parents/carers; This study supports the replacement of conventional impressions with intra-oral 3D scans in longitudinal evaluations of the outcomes of cleft care.
Probe compensation in cylindrical near-field scanning: A novel simulation methodology
NASA Technical Reports Server (NTRS)
Hussein, Ziad A.; Rahmat-Samii, Yahya
1993-01-01
Probe pattern compensation is essential in near-field scanning geometry, where there is a great need to accurately know far-field patterns at wide angular range. This paper focuses on a novel formulation and computer simulation to determine the precise need for and effect of probe compensation in cylindrical near-field scanning. The methodology is applied to a linear test array antenna and the NASA scatterometer radar antenna. The formulation is based on representing the probe by its equivalent tangential magnetic currents. The interaction between the probe equivalent aperture currents and the test antenna fields is obtained with the application of a reciprocity theorem. This allows us to obtain the probe vector output pickup integral which is proportional to the amplitude and phase of the electric field induced in the probe aperture with respect to its position to the test antenna. The integral is evaluated for each probe position on the required sampling point on a cylindrical near-field surface enclosing the antenna. The use of a hypothetical circular-aperture probe with a different radius permits us to derive closed-form expressions for its far-field radiation patterns. These results, together with the probe vector output pickup, allow us to perform computer simulated synthetic measurements. The far-field patterns of the test antenna are formulated based on cylindrical wave expansions of both the probe and test antenna fields. In the limit as the probe radius becomes very small, the probe vector output is the direct response of the near-field at a point, and no probe compensation is needed. Useful results are generated to compare the far-field pattern of the test antenna constructed from the knowledge of the simulated near-field with and without probe pattern compensation and the exact results. These results are important since they clearly illustrate the angular range over which probe compensation is needed. It has been found that a probe with an aperture radius of 0.25(lambda), 0.5(lambda), and 1(lambda) needs a little probe compensation, if any, near the test antenna main beam. In addition, a probe with low directivity may provide a better signal-to-noise ratio than a highly directive one. This is evident in test antenna patterns without probe compensation at wide angles.
Method for sequencing DNA base pairs
Sessler, Andrew M.; Dawson, John
1993-01-01
The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.
Compact sensitive instrument for direct ultrasonic visualization of defects.
Bar-Cohen, Y; Ben-Joseph, B; Harnik, E
1978-12-01
A simple ultrasonic imaging cell based on the confocal combination of a plano-concave lens and a concave spherical mirror is described. When used in conjunction with a stroboscopic schlieren visualization system, it has the main attributes of a practical nondestructive testing instrument: it is compact, relatively inexpensive, and simple to operate; its sensitivity is fair, resolution and fidelity are good; it has a fairly large field of view and a test piece can be readily scanned. The scope of its applicability is described and discussed.
Suspected pulmonary embolism and lung scan interpretation: Trial of a Bayesian reporting method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, D.M.; Philbrick, J.T.; Schoonover, F.W.
The objective of this research is to determine whether a Bayesian method of lung scan (LS) reporting could influence the management of patients with suspected pulmonary embolism (PE). The study is performed by the following: (1) A descriptive study of the diagnostic process for suspected PE using the new reporting method; (2) a non-experimental evaluation of the reporting method comparing prospective patients and historical controls; and (3) a survey of physicians' reactions to the reporting innovation. Of 148 consecutive patients enrolled at the time of LS, 129 were completely evaluated; 75 patients scanned the previous year served as controls. Themore » LS results of patients with suspected PE were reported as posttest probabilities of PE calculated from physician-provided pretest probabilities and the likelihood ratios for PE of LS interpretations. Despite the Bayesian intervention, the confirmation or exclusion of PE was often based on inconclusive evidence. PE was considered by the clinician to be ruled out in 98% of patients with posttest probabilities less than 25% and ruled in for 95% of patients with posttest probabilities greater than 75%. Prospective patients and historical controls were similar in terms of tests ordered after the LS (e.g., pulmonary angiography). Patients with intermediate or indeterminate lung scan results had the highest proportion of subsequent testing. Most physicians (80%) found the reporting innovation to be helpful, either because it confirmed clinical judgement (94 cases) or because it led to additional testing (7 cases). Despite the probabilistic guidance provided by the study, the diagnosis of PE was often neither clearly established nor excluded. While physicians appreciated the innovation and were not confused by the terminology, their clinical decision making was not clearly enhanced.« less
Stürenburg, Enno; Lang, Melanie; Horstkotte, Matthias A; Laufs, Rainer; Mack, Dietrich
2004-11-01
We aimed to assess the performance of the MicroScan ESBL plus confirmation panel using a series of 87 oxyimino-cephalosporin-resistant Gram-negative bacilli of various species. Organisms tested included 57 extended-spectrum beta-lactamase (ESBL) strains comprising Enterobacter aerogenes (3), Enterobacter cloacae (10), Escherichia coli (11), Klebsiella pneumoniae (26), Klebsiella oxytoca (3) and Proteus mirabilis (4). Also included were 30 strains resistant to oxyimino cephalosporins but lacking ESBLs, which were characterized with other resistance mechanisms, such as inherent clavulanate susceptibility in Acinetobacter spp. (4), hyperproduction of AmpC enzyme in Citrobacter freundii (2), E. aerogenes (3), E. cloacae (3), E. coli (4), Hafnia alvei (1) and Morganella morganii (1), production of plasmid-mediated AmpC beta-lactamase in K. pneumoniae (3) and E. coli (3) or hyperproduction of K1 enzyme in K. oxytoca (6). The MicroScan MIC-based clavulanate synergy correctly classified 50 of 57 ESBL strains as ESBL-positive and 23 of 30 non-ESBL strains as ESBL-negative (yielding a sensitivity of 88% and a specificity of 76.7%, respectively). False negatives among ESBL producers were highest with Enterobacter spp. due to masking interactions between ESBL and AmpC beta-lactamases. False-positive classifications occurred in two Acinetobacter spp., one E. coli producing plasmid-mediated AmpC beta-lactamase and two K. oxytoca hyperproducing their chromosomal K1 beta-lactamase. The MicroScan clavulanate synergy test proved to be a valuable tool for ESBL confirmation. However, this test has limitations in detecting ESBLs in Enterobacter spp. and in discriminating ESBL-related resistance from the K1 enzyme and from inherent clavulanate susceptibility in Acinetobacter spp.
Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Lux, James P.
2014-01-01
The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components.
Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data
Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark
2010-01-01
Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815
Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software
NASA Astrophysics Data System (ADS)
Roşu, Şerban; Ianeş, Emilia; Roşu, Doina
2010-09-01
This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.
NASA Astrophysics Data System (ADS)
Sattarpanah Karganroudi, Sasan
The competitive industrial market demands manufacturing companies to provide the markets with a higher quality of production. The quality control department in industrial sectors verifies geometrical requirements of products with consistent tolerances. These requirements are presented in Geometric Dimensioning and Tolerancing (GD&T) standards. However, conventional measuring and dimensioning methods for manufactured parts are time-consuming and costly. Nowadays manual and tactile measuring methods have been replaced by Computer-Aided Inspection (CAI) methods. The CAI methods apply improvements in computational calculations and 3-D data acquisition devices (scanners) to compare the scan mesh of manufactured parts with the Computer-Aided Design (CAD) model. Metrology standards, such as ASME-Y14.5 and ISO-GPS, require implementing the inspection in free-state, wherein the part is only under its weight. Non-rigid parts are exempted from the free-state inspection rule because of their significant geometrical deviation in a free-state with respect to the tolerances. Despite the developments in CAI methods, inspection of non-rigid parts still remains a serious challenge. Conventional inspection methods apply complex fixtures for non-rigid parts to retrieve the functional shape of these parts on physical fixtures; however, the fabrication and setup of these fixtures are sophisticated and expensive. The cost of fixtures has doubled since the client and manufacturing sectors require repetitive and independent inspection fixtures. To eliminate the need for costly and time-consuming inspection fixtures, fixtureless inspection methods of non-rigid parts based on CAI methods have been developed. These methods aim at distinguishing flexible deformations of parts in a free-state from defects. Fixtureless inspection methods are required to be automatic, reliable, reasonably accurate and repeatable for non-rigid parts with complex shapes. The scan model, which is acquired as point clouds, represent the shape of a part in a free-state. Afterward, the inspection of defects is performed by comparing the scan and CAD models, but these models are presented in different coordinate systems. Indeed, the scan model is presented in the measurement coordinate system whereas the CAD model is introduced in the designed coordinate system. To accomplish the inspection and facilitate an accurate comparison between the models, the registration process is required to align the scan and CAD models in a common coordinate system. The registration includes a virtual compensation for the flexible deformation of the parts in a free-state. Then, the inspection is implemented as a geometrical comparison between the CAD and scan models. This thesis focuses on developing automatic and accurate fixtureless CAI methods for non-rigid parts along with assessing the robustness of the methods. To this end, an automatic fixtureless CAI method for non-rigid parts based on filtering registration points is developed to identify and quantify defects more accurately on the surface of scan models. The flexible deformation of parts in a free-state in our developed automatic fixtureless CAI method is compensated by applying FE non-rigid Registration (FENR) to deform the CAD model towards the scan mesh. The displacement boundary conditions (BCs) for FENR are determined based on the corresponding sample points, which are generated by the Generalized Numerical Inspection Fixture (GNIF) method on the CAD and scan models. These corresponding sample points are evenly distributed on the surface of the models. The comparison between this deformed CAD model and the scan mesh intend to evaluate and quantify the defects on the scan model. However, some sample points can be located close or on defect areas which result in an inaccurate estimation of defects. These sample points are automatically filtered out in our CAI method based on curvature and von Mises stress criteria. Once filtered out, the remaining sample points are used in a new FENR, which allows an accurate evaluation of defects with respect to the tolerances. The performance and robustness of all CAI methods are generally required to be assessed with respect to the actual measurements. This thesis also introduces a new validation metric for Verification and Validation (V&V) of CAI methods based on ASME recommendations. The developed V&V approach uses a nonparametric statistical hypothesis test, namely the Kolmogorov-Smirnov (K-S) test. In addition to validating the defects size, the K-S test allows a deeper evaluation based on distance distribution of defects. The robustness of CAI method with respect to uncertainties such as scanning noise is quantitatively assessed using the developed validation metric. Due to the compliance of non-rigid parts, a geometrically deviated part can still be assembled in the assembly-state. This thesis also presents a fixtureless CAI method for geometrically deviated (presenting defects) non-rigid parts to evaluate the feasibility of mounting these parts in the functional assembly-state. Our developed Virtual Mounting Assembly-State Inspection (VMASI) method performs a non-rigid registration to virtually mount the scan mesh in assembly-state. To this end, the point clouds of scan model representing the part in a free-state is deformed to meet the assembly constraints such as fixation position (e.g. mounting holes). In some cases, the functional shape of a deviated part can be retrieved by applying assembly loads, which are limited to permissible loads, on the surface of the part. The required assembly loads are estimated through our developed Restraining Pressures Optimization (RPO) aiming at displacing the deviated scan model to achieve the tolerance for mounting holes. Therefore, the deviated scan model can be assembled if the mounting holes on the predicted functional shape of scan model attain the tolerance range. Different industrial parts are used to evaluate the performance of our developed methods in this thesis. The automatic inspection for identifying different types of small (local) and big (global) defects on the parts results in an accurate evaluation of defects. The robustness of this inspection method is also validated with respect to different levels of scanning noise, which shows promising results. Meanwhile, the VMASI method is performed on various parts with different types of defects, which concludes that in some cases the functional shape of deviated parts can be retrieved by mounting them on a virtual fixture in assembly-state under restraining loads.
Can Changes in Eye Movement Scanning Alter the Age-Related Deficit in Recognition Memory?
Chan, Jessica P. K.; Kamino, Daphne; Binns, Malcolm A.; Ryan, Jennifer D.
2011-01-01
Older adults typically exhibit poorer face recognition compared to younger adults. These recognition differences may be due to underlying age-related changes in eye movement scanning. We examined whether older adults’ recognition could be improved by yoking their eye movements to those of younger adults. Participants studied younger and older faces, under free viewing conditions (bases), through a gaze-contingent moving window (own), or a moving window which replayed the eye movements of a base participant (yoked). During the recognition test, participants freely viewed the faces with no viewing restrictions. Own-age recognition biases were observed for older adults in all viewing conditions, suggesting that this effect occurs independently of scanning. Participants in the bases condition had the highest recognition accuracy, and participants in the yoked condition were more accurate than participants in the own condition. Among yoked participants, recognition did not depend on age of the base participant. These results suggest that successful encoding for all participants requires the bottom-up contribution of peripheral information, regardless of the locus of control of the viewer. Although altering the pattern of eye movements did not increase recognition, the amount of sampling of the face during encoding predicted subsequent recognition accuracy for all participants. Increased sampling may confer some advantages for subsequent recognition, particularly for people who have declining memory abilities. PMID:21687460
PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking
White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders
2010-01-01
Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
Tibesku, C O; Innocenti, B; Wong, P; Salehi, A; Labey, L
2012-02-01
Long-term success of contemporary total knee replacements relies to a large extent on proper implant alignment. This study was undertaken to test whether specimen-matched cutting blocks based on computed axial tomography (CT) scans could provide accurate rotational alignment of the femoral component. CT scans of five fresh frozen full leg cadaver specimens, equipped with infrared reflective markers, were used to produce a specimen-matched femoral cutting block. Using those blocks, the bone cuts were made to implant a bi-compartmental femoral component. Rotational alignment of the components in the horizontal plane was determined using an optical measurement system and compared with all relevant rotational reference axes identified on the CT scans. Average rotational alignment for the bi-compartmental component in the horizontal plane was 1.9° (range 0°-6.3°; standard deviation 2.6°). One specimen that showed the highest deviation from the planned alignment also featured a completely degraded medial articular surface. The CT-based specimen-matched cutting blocks achieved good rotational alignment accuracy except for one specimen with badly damaged cartilage. In such cases, imaging techniques that visualize the cartilage layer might be more suitable to design cutting blocks, as they will provide a better fit and increased surface support.
Medical Device for Automated Prick Test Reading.
Justo, Xabier; Diaz, Inaki; Gil, Jorge Juan; Gastaminza, Gabriel
2018-05-01
Allergy tests are routinely performed in most hospitals everyday. However, measuring the outcomes of these tests is still a very laborious manual task. Current methods and systems lack of precision and repeatability. This paper presents a novel mechatronic system that is able to scan a patient's entire arm and provide allergists with precise measures of wheals for diagnosis. The device is based on 3-D laser technology and specific algorithms have been developed to process the information gathered. This system aims to automate the reading of skin prick tests and make gains in speed, accuracy, and reliability. Several experiments have been performed to evaluate the performance of the system.
Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans
NASA Astrophysics Data System (ADS)
Banh, Diem Phuc T.; Kyprianou, Iacovos S.; Paquerault, Sophie; Myers, Kyle J.
2007-03-01
We developed an algorithm based on a rule-based threshold framework to segment the coronary arteries from angiographic computed tomography (CTA) data. Computerized segmentation of the coronary arteries is a challenging procedure due to the presence of diverse anatomical structures surrounding the heart on cardiac CTA data. The proposed algorithm incorporates various levels of image processing and organ information including region, connectivity and morphology operations. It consists of three successive stages. The first stage involves the extraction of the three-dimensional scaffold of the heart envelope. This stage is semiautomatic requiring a reader to review the CTA scans and manually select points along the heart envelope in slices. These points are further processed using a surface spline-fitting technique to automatically generate the heart envelope. The second stage consists of segmenting the left heart chambers and coronary arteries using grayscale threshold, size and connectivity criteria. This is followed by applying morphology operations to further detach the left and right coronary arteries from the aorta. In the final stage, the 3D vessel tree is reconstructed and labeled using an Isolated Connected Threshold technique. The algorithm was developed and tested on a patient coronary artery CTA that was graciously shared by the Department of Radiology of the Massachusetts General Hospital. The test showed that our method constantly segmented the vessels above 79% of the maximum gray-level and automatically extracted 55 of the 58 coronary segments that can be seen on the CTA scan by a reader. These results are an encouraging step toward our objective of generating high resolution models of the male and female heart that will be subsequently used as phantoms for medical imaging system optimization studies.
Model-based damage evaluation of layered CFRP structures
NASA Astrophysics Data System (ADS)
Munoz, Rafael; Bochud, Nicolas; Rus, Guillermo; Peralta, Laura; Melchor, Juan; Chiachío, Juan; Chiachío, Manuel; Bond, Leonard J.
2015-03-01
An ultrasonic evaluation technique for damage identification of layered CFRP structures is presented. This approach relies on a model-based estimation procedure that combines experimental data and simulation of ultrasonic damage-propagation interactions. The CFPR structure, a [0/90]4s lay-up, has been tested in an immersion through transmission experiment, where a scan has been performed on a damaged specimen. Most ultrasonic techniques in industrial practice consider only a few features of the received signals, namely, time of flight, amplitude, attenuation, frequency contents, and so forth. In this case, once signals are captured, an algorithm is used to reconstruct the complete signal waveform and extract the unknown damage parameters by means of modeling procedures. A linear version of the data processing has been performed, where only Young modulus has been monitored and, in a second nonlinear version, the first order nonlinear coefficient β was incorporated to test the possibility of detection of early damage. The aforementioned physical simulation models are solved by the Transfer Matrix formalism, which has been extended from linear to nonlinear harmonic generation technique. The damage parameter search strategy is based on minimizing the mismatch between the captured and simulated signals in the time domain in an automated way using Genetic Algorithms. Processing all scanned locations, a C-scan of the parameter of each layer can be reconstructed, obtaining the information describing the state of each layer and each interface. Damage can be located and quantified in terms of changes in the selected parameter with a measurable extension. In the case of the nonlinear coefficient of first order, evidence of higher sensitivity to damage than imaging the linearly estimated Young Modulus is provided.
Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.
Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard
2015-08-01
This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.
Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S
2002-08-01
An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.
Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.
Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W
2018-04-01
Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.
Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint
NASA Astrophysics Data System (ADS)
Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.
2017-09-01
For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.
Giménez, Beatriz; Özcan, Mutlu; Martínez-Rus, Francisco; Pradíes, Guillermo
2014-01-01
To evaluate the accuracy of a digital impression system based on parallel confocal red laser technology, taking into consideration clinical parameters such as operator experience and angulation and depth of implants. A maxillary master model with six implants (located bilaterally in the second molar, second premolar, and lateral incisor positions) was fitted with six polyether ether ketone scan bodies. One second premolar implant was placed with 30 degrees of mesial angulation; the opposite implant was positioned with 30 degrees of distal angulation. The lateral incisor implants were placed 2 or 4 mm subgingivally. Two experienced and two inexperienced operators performed intraoral scanning. Five different interimplant distances were then measured. The files obtained from the scans were imported with reverse-engineering software. Measurements were then made with a coordinate measurement machine, with values from the master model used as reference values. The deviations from the actual values were then calculated. The differences between experienced and inexperienced operators and the effects of different implant angulations and depths were compared statistically. Overall, operator 3 obtained significantly less accurate results. The angulated implants did not significantly influence accuracy compared to the parallel implants. Differences were found in the amount of error in the different quadrants. The second scanned quadrant had significantly worse results than the first scanned quadrant. Impressions of the implants placed at the tissue level were less accurate than implants placed 2 and 4 mm subgingivally. The operator affected the accuracy of measurements, but the performance of the operator was not necessarily dependent on experience. Angulated implants did not decrease the accuracy of the digital impression system tested. The scanned distance affected the predictability of the accuracy of the scanner, and the error increased with the increased length of the scanned section.
NASA Technical Reports Server (NTRS)
Chen, Chung-Hsing
1992-01-01
In this thesis, a behavioral-level testability analysis approach is presented. This approach is based on analyzing the circuit behavioral description (similar to a C program) to estimate its testability by identifying controllable and observable circuit nodes. This information can be used by a test generator to gain better access to internal circuit nodes and to reduce its search space. The results of the testability analyzer can also be used to select test points or partial scan flip-flops in the early design phase. Based on selection criteria, a novel Synthesis for Testability approach call Test Statement Insertion (TSI) is proposed, which modifies the circuit behavioral description directly. Test Statement Insertion can also be used to modify circuit structural description to improve its testability. As a result, Synthesis for Testability methodology can be combined with an existing behavioral synthesis tool to produce more testable circuits.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.
2004-01-01
An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.
Comparison of avian biochemical test results with Abaxis VetScan and Hitachi 911 analyzers.
Greenacre, Cheryl B; Flatland, Bente; Souza, Marcy J; Fry, Michael M
2008-12-01
To compare results of clinical biochemical analysis using an Abaxis VetScan bench-top analyzer with reagents specifically marketed for avian use and a Hitachi 911 analyzer, plasma (both methods) and whole blood (VetScan method) samples from 20 clinically healthy Hispaniolan Amazon parrots (Amazona ventralis) were analyzed. Correlation between methods was very high (r = 0.9-1.0) for aspartate aminotransferase (AST), calcium, glucose, and uric acid; high (r = 0.7-0.89) for creatine kinase (CK), phosphorus, potassium, and total protein; moderate (r = 0.5-0.69) for globulin; and low (r = 0.3-0.49) for albumin and sodium. VetScan analyzer results for globulin, sodium, and uric acid had a constant negative bias (values below those from the Hitachi method). Based on difference plot analysis, results for AST, calcium, CK, and glucose are comparable. Because 16 of 20 values fell below the lower detection limit of the VetScan analyzer, bile acid data were excluded from analysis. By using a relatively small sample size (0.1 ml whole blood or plasma), the VetScan analyzer offers rapid in-house results, compact size, and ease of operation. For 4 of the most clinically relevant biochemical analytes used in avian medicine (AST, calcium, CK, glucose), it offers reliable values. For an additional 4 analytes (phosphorous, potassium, total protein, uric acid), establishing analyzer-specific reference intervals is recommended. Neither the VetScan nor the Hitachi method is recommended to assess albumin and globulin concentrations.
Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung
2014-03-01
The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.
Nondestructive Testing Information Analysis Center, 1982.
1983-03-01
RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the
Moore, Amanda M; Dameron, Arrelaine A; Mantooth, Brent A; Smith, Rachel K; Fuchs, Daniel J; Ciszek, Jacob W; Maya, Francisco; Yao, Yuxing; Tour, James M; Weiss, Paul S
2006-02-15
Six customized phenylene-ethynylene-based oligomers have been studied for their electronic properties using scanning tunneling microscopy to test hypothesized mechanisms of stochastic conductance switching. Previously suggested mechanisms include functional group reduction, functional group rotation, backbone ring rotation, neighboring molecule interactions, bond fluctuations, and hybridization changes. Here, we test these hypotheses experimentally by varying the molecular designs of the switches; the ability of the molecules to switch via each hypothetical mechanism is selectively engineered into or out of each molecule. We conclude that hybridization changes at the molecule-surface interface are responsible for the switching we observe.
Moosberg, Helena; Lagerblad, Björn; Forssberg, Eric
2003-02-01
This investigation has been made in order to make it possible to increase the use of by-products in cement-based materials. Use of by-products requires a screening procedure that will reliably determine their impact on concrete. A test procedure was developed. The most important properties were considered to be strength development, shrinkage, expansion and workability. The methods used were calorimetry, flow table tests, F-shape measurements, measurements of compressive and flexural strength and shrinkage/expansion measurements. Scanning electron microscopy was used to verify some results. Twelve by-products were collected from Swedish metallurgical and mineral industries and classified according to the test procedure. The investigation showed that the test procedure clearly screened out the materials that can be used in the production of concrete from the unsuitable ones.
TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Wight; G.A. Moore; S.C. Taylor
2008-10-01
This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculationsmore » for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.« less
Zhang, X Y; Li, H; Zhao, Y J; Wang, Y; Sun, Y C
2016-07-01
To quantitatively evaluate the quality and accuracy of three-dimensional (3D) data acquired by using two kinds of structure intra-oral scanner to scan the typical teeth crown preparations. Eight typical teeth crown preparations model were scanned 3 times with two kinds of structured light intra-oral scanner(A, B), as test group. A high precision model scanner were used to scan the model as true value group. The data above the cervical margin was extracted. The indexes of quality including non-manifold edges, the self-intersections, highly-creased edges, spikes, small components, small tunnels, small holes and the anount of triangles were measured with the tool of mesh doctor in Geomagic studio 2012. The scanned data of test group were aligned to the data of true value group. 3D deviations of the test group compared with true value group were measured for each scanned point, each preparation and each group. Independent-samples Mann-Whitney U test was applied to analyze 3D deviations for each scanned point of A and B group. Correlation analysis was applied to index values and 3D deviation values. The total number of spikes in A group was 96, and that in B group and true value group were 5 and 0 respectively. Trueness: A group 8.0 (8.3) μm, B group 9.5 (11.5) μm(P>0.05). Correlation analysis of the number of spikes with data precision of A group was r=0.46. In the study, the qulity of the scanner B is better than scanner A, the difference of accuracy is not statistically significant. There is correlation between quality and data precision of the data scanned with scanner A.
Automatic corpus callosum segmentation for standardized MR brain scanning
NASA Astrophysics Data System (ADS)
Xu, Qing; Chen, Hong; Zhang, Li; Novak, Carol L.
2007-03-01
Magnetic Resonance (MR) brain scanning is often planned manually with the goal of aligning the imaging plane with key anatomic landmarks. The planning is time-consuming and subject to inter- and intra- operator variability. An automatic and standardized planning of brain scans is highly useful for clinical applications, and for maximum utility should work on patients of all ages. In this study, we propose a method for fully automatic planning that utilizes the landmarks from two orthogonal images to define the geometry of the third scanning plane. The corpus callosum (CC) is segmented in sagittal images by an active shape model (ASM), and the result is further improved by weighting the boundary movement with confidence scores and incorporating region based refinement. Based on the extracted contour of the CC, several important landmarks are located and then combined with landmarks from the coronal or transverse plane to define the geometry of the third plane. Our automatic method is tested on 54 MR images from 24 patients and 3 healthy volunteers, with ages ranging from 4 months to 70 years old. The average accuracy with respect to two manually labeled points on the CC is 3.54 mm and 4.19 mm, and differed by an average of 2.48 degrees from the orientation of the line connecting them, demonstrating that our method is sufficiently accurate for clinical use.
NASA Astrophysics Data System (ADS)
Ryou, Heonjune
2011-12-01
In this study Dynamic Mechanical Analysis (DMA) was applied to dentin, the macro hybrid layer and intact hybrid layers of the bonded dental restorative interface using nanoindentation. Both intertubular and peritubular dentin were evaluated by DMA using discrete and scanning mode nanoindentation. The complex (E*), loss (E"), and storage (E') moduli were quantified over a range of indentation loads and scanning frequencies. The storage modulus of the peritubular cuff (22.19 GPa
Large photocathode 20-inch PMT testing methods for the JUNO experiment
NASA Astrophysics Data System (ADS)
Anfimov, N.
2017-06-01
The 20 kt Liquid Scintillator (LS) JUNO detector is being constructed by the International Collaboration in China, with the primary goal of addressing the question of neutrino mass ordering (hierarchy). The main challenge for JUNO is to achieve a record energy resolution, ~ 3% at 1 MeV of energy released in the LS, which is required to perform the neutrino mass hierarchy determination. About 20 000 large 20'' PMTs with high Photon Detection Efficiency (PDE) and good photocathode uniformity will ensure an approximately 80% surface coverage of the JUNO detector. The JUNO collaboration is preparing equipment for the mass tests of all PMTs using 4 dedicated containers. Each container consists of 36 drawers. Each drawer will test a single PMT. This approach allows us to test 144 PMTs in parallel. The primary measurement in the container will be the PMT response to illumination of its photocathode by a low-intensity uniform light. Each of the 20000 PMTs will undergo the container test. Additionally, a dedicated scanning system was constructed for sampled tests of PMTs that allows us to study the variation of the PDE over the entire PMT photocathode surface. A sophisticated laboratory for PMT testing was recently built. It includes a dark room where the scanning station is housed. The core of the scanning station is a rotating frame with 7 LED sources of calibrated short light flashes that are placed along the photocathode surface covering zenith angles from the top of a PMT to its equator. It allows for the testing of individual PMTs in all relevant aspects by scanning the photocathode and identifying any potential problems. The collection efficiency of a large PMT is known to be very sensitive to the Earth Magnetic Field (EMF), therefore, understanding the necessary level of EMF suppression is crucial for the JUNO Experiment. A dark room with Helmholtz coils compensating the EMF components is available for these tests at a JUNO facility. The Hamamatsu R12860 20'' PMT is a candidate for the JUNO experiment. In this article the container design and mass-testing method, the scanning setup and scanning method are briefly described and preliminary results for performance test of this PMT are reported.
Ferrando, Carlos; Romero, Carolina; Tusman, Gerardo; Suarez-Sipmann, Fernando; Canet, Jaume; Dosdá, Rosa; Valls, Paola; Villena, Abigail; Serralta, Ferran; Jurado, Ana; Carrizo, Juan; Navarro, Jose; Parrilla, Cristina; Romero, Jose E; Pozo, Natividad; Soro, Marina; Villar, Jesús; Belda, Francisco Javier
2017-05-29
To assess the diagnostic accuracy of peripheral capillary oxygen saturation (SpO 2 ) while breathing room air for 5 min (the 'Air-Test') in detecting postoperative atelectasis. Prospective cohort study. Diagnostic accuracy was assessed by measuring the agreement between the index test and the reference standard CT scan images. Postanaesthetic care unit in a tertiary hospital in Spain. Three hundred and fifty patients from 12 January to 7 February 2015; 170 patients scheduled for surgery under general anaesthesia who were admitted into the postsurgical unit were included. The Air-Test was performed in conscious extubated patients after a 30 min stabilisation period during which they received supplemental oxygen therapy via a venturi mask. The Air-Test was defined as positive when SpO 2 was ≤96% and negative when SpO 2 was ≥97%. Arterial blood gases were measured in all patients at the end of the Air-Test. In the subsequent 25 min, the presence of atelectasis was evaluated by performing a CT scan in 59 randomly selected patients. The primary study outcome was assessment of the accuracy of the Air-Test for detecting postoperative atelectasis compared with the reference standard. The secondary outcome was the incidence of positive Air-Test results. The Air-Test diagnosed postoperative atelectasis with an area under the receiver operating characteristic curve of 0.90 (95% CI 0.82 to 0.98) with a sensitivity of 82.6% and a specificity of 87.8%. The presence of atelectasis was confirmed by CT scans in all patients (30/30) with positive and in 5 patients (17%) with negative Air-Test results. Based on the Air-Test, postoperative atelectasis was present in 36% of the patients (62 out of 170). The Air-Test may represent an accurate, simple, inexpensive and non-invasive method for diagnosing postoperative atelectasis. NCT02650037. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Method for sequencing DNA base pairs
Sessler, A.M.; Dawson, J.
1993-12-14
The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.
Value of brain scanning in the management of strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunes, J.L.; Schlesinger, E.B.; Michelsen, W.J.
1975-01-01
The usefulness of brain scanning in the diagnosis and management of strokes was evaluated in 313 serial cases. Of 38 patients with transient ischemic attacks (TIAs), only one had a positive test. The optimal time for scanning completed strokes was between seven and 14 days after onset. The pattern of uptake was characteristic of a vascular lesion in 76.8 percent. When uptake was indistinguishable from tumor, follow-up scans were useful. Patients with negative scans in the second week have a significantly better prognosis than the ones with a positive study. Cerebral angiography and brain scan correlated well in 56 patientsmore » who had both tests performed. The postmortem findings in 12 cases again emphasize the importance of the correct timing of the study, and the fact that a brain scan does not usually demonstrate lesions smaller than 2 cm in diameter. It is concluded that the brain scan represents a useful tool in the diagnosis of strokes and helps in predicting the degree of recovery following a vascular insult.« less
Arterial tree tracking from anatomical landmarks in magnetic resonance angiography scans
NASA Astrophysics Data System (ADS)
O'Neil, Alison; Beveridge, Erin; Houston, Graeme; McCormick, Lynne; Poole, Ian
2014-03-01
This paper reports on arterial tree tracking in fourteen Contrast Enhanced MRA volumetric scans, given the positions of a predefined set of vascular landmarks, by using the A* algorithm to find the optimal path for each vessel based on voxel intensity and a learnt vascular probability atlas. The algorithm is intended for use in conjunction with an automatic landmark detection step, to enable fully automatic arterial tree tracking. The scan is filtered to give two further images using the top-hat transform with 4mm and 8mm cubic structuring elements. Vessels are then tracked independently on the scan in which the vessel of interest is best enhanced, as determined from knowledge of typical vessel diameter and surrounding structures. A vascular probability atlas modelling expected vessel location and orientation is constructed by non-rigidly registering the training scans to the test scan using a 3D thin plate spline to match landmark correspondences, and employing kernel density estimation with the ground truth center line points to form a probability density distribution. Threshold estimation by histogram analysis is used to segment background from vessel intensities. The A* algorithm is run using a linear cost function constructed from the threshold and the vascular atlas prior. Tracking results are presented for all major arteries excluding those in the upper limbs. An improvement was observed when tracking was informed by contextual information, with particular benefit for peripheral vessels.
StarScan: a web server for scanning small RNA targets from degradome sequencing data.
Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu
2015-07-01
Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Kano, Takuya; Koyasu, Hiromi; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Matsuo, Masayuki; Fujita, Hiroshi
2017-03-01
This paper describes a novel approach for the automatic assessment of breast density in non-contrast three-dimensional computed tomography (3D CT) images. The proposed approach trains and uses a deep convolutional neural network (CNN) from scratch to classify breast tissue density directly from CT images without segmenting the anatomical structures, which creates a bottleneck in conventional approaches. Our scheme determines breast density in a 3D breast region by decomposing the 3D region into several radial 2D-sections from the nipple, and measuring the distribution of breast tissue densities on each 2D section from different orientations. The whole scheme is designed as a compact network without the need for post-processing and provides high robustness and computational efficiency in clinical settings. We applied this scheme to a dataset of 463 non-contrast CT scans obtained from 30- to 45-year-old-women in Japan. The density of breast tissue in each CT scan was assigned to one of four categories (glandular tissue within the breast <25%, 25%-50%, 50%-75%, and >75%) by a radiologist as ground truth. We used 405 CT scans for training a deep CNN and the remaining 58 CT scans for testing the performance. The experimental results demonstrated that the findings of the proposed approach and those of the radiologist were the same in 72% of the CT scans among the training samples and 76% among the testing samples. These results demonstrate the potential use of deep CNN for assessing breast tissue density in non-contrast 3D CT images.
Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M
2018-01-01
We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.
Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Duker, Jay S; Fujimoto, James G; Schuman, Joel S; Rehg, James M
2011-10-21
To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module.
Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.
Tomita, Naofumi; Cheung, Yvonne Y; Hassanpour, Saeed
2018-07-01
Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists. Copyright © 2018 Elsevier Ltd. All rights reserved.
2013-01-01
Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511
NASA Astrophysics Data System (ADS)
Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong
2014-01-01
This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.
Liu, Yu-Ying; Chen, Mei; Wollstein, Gadi; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.; Rehg, James M.
2011-01-01
Purpose. To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. Methods. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. Results. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. Conclusions. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module. PMID:21911579
SCaN Testbed Software Development and Lessons Learned
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Varga, Denise M.
2012-01-01
National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.
Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase II)
DOT National Transportation Integrated Search
2014-10-01
The preliminary technical approach and scan plans developed during phase I of this research was implemented on testing four butt-weld specimens. The ray path analysis carried out to develop the scan plans and the preliminary data analysis indicated t...
Miniaturized diffraction based interferometric distance measurement sensor
NASA Astrophysics Data System (ADS)
Kim, Byungki
In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.
Evaluating causes of error in landmark-based data collection using scanners
Shearer, Brian M.; Cooke, Siobhán B.; Halenar, Lauren B.; Reber, Samantha L.; Plummer, Jeannette E.; Delson, Eric
2017-01-01
In this study, we assess the precision, accuracy, and repeatability of craniodental landmarks (Types I, II, and III, plus curves of semilandmarks) on a single macaque cranium digitally reconstructed with three different surface scanners and a microCT scanner. Nine researchers with varying degrees of osteological and geometric morphometric knowledge landmarked ten iterations of each scan (40 total) to test the effects of scan quality, researcher experience, and landmark type on levels of intra- and interobserver error. Two researchers additionally landmarked ten specimens from seven different macaque species using the same landmark protocol to test the effects of the previously listed variables relative to species-level morphological differences (i.e., observer variance versus real biological variance). Error rates within and among researchers by scan type were calculated to determine whether or not data collected by different individuals or on different digitally rendered crania are consistent enough to be used in a single dataset. Results indicate that scan type does not impact rate of intra- or interobserver error. Interobserver error is far greater than intraobserver error among all individuals, and is similar in variance to that found among different macaque species. Additionally, experience with osteology and morphometrics both positively contribute to precision in multiple landmarking sessions, even where less experienced researchers have been trained in point acquisition. Individual training increases precision (although not necessarily accuracy), and is highly recommended in any situation where multiple researchers will be collecting data for a single project. PMID:29099867
NASA Astrophysics Data System (ADS)
Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; Ciganovich, Nick N.; Dedecker, Ralph G.; Dutcher, Steven; Ellington, Scott D.; Garcia, Raymond K.; Howell, H. Benjamin; Laporte, Daniel D.; Mango, Stephen A.; Pagano, Thomas S.; Taylor, Joe K.; van Delst, Paul; Vinson, Kenneth H.; Werner, Mark W.
2006-05-01
The ability to accurately validate high-spectral resolution infrared radiance measurements from space using comparisons with a high-altitude aircraft spectrometer has been successfully demonstrated. The demonstration is based on a 21 November 2002 underflight of the AIRS on the NASA Aqua spacecraft by the Scanning-HIS on the NASA ER-2 high-altitude aircraft. A comparison technique which accounts for the different viewing geometries and spectral characteristics of the two sensors is introduced, and accurate comparisons are made for AIRS channels throughout the infrared spectrum. Resulting brightness temperature differences are found to be 0.2 K or less for most channels. Both the AIRS and the Scanning-HIS calibrations are expected to be very accurate (formal 3-sigma estimates are better than 1 K absolute brightness temperature for a wide range of scene temperatures), because high spectral resolution offers inherent advantages for absolute calibration and because they make use of high-emissivity cavity blackbodies as onboard radiometric references. AIRS also has the added advantage of a cold space view, and the Scanning-HIS calibration has recently benefited from the availability of a zenith view from high-altitude flights. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecraft (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. The validation role for accurately calibrated aircraft spectrometers also includes application to broadband instruments and linking the calibrations of similar instruments on different spacecraft. It is expected that aircraft flights of the Scanning-HIS and its close cousin the NPOESS Airborne Sounder Test Bed (NAST) will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the missions.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-05-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-07-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
Performance of the NIRS fast scanning system for heavy-ion radiotherapy.
Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji
2010-11-01
A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.
Bone scan as a screening test for missed fractures in severely injured patients.
Lee, K-J; Jung, K; Kim, J; Kwon, J
2014-12-01
In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.
Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise, and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In Summer 2013, a vertically profiling Leosphere WindCube lidar and threemore » Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a “virtual tower” above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure highresolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.« less
NASA Astrophysics Data System (ADS)
Li, Haijun; Li, Gaoming; Duan, Xiyu; Wang, Thomas D.
2017-02-01
Aimed to build a dual-axes confocal endomicroscope with an outer diameter of 5.5mm for in-vivo imaging applications, an electrostatic MEMS scanner has been developed to enable two dimensional (2D) light scanning in either horizontal plane or vertical cross-sectional plane. The device has a compact structure design to match the dual axes confocal architecture in the probe without blocking the collimated light beams of excitation and collection, and a cutting-free silicon-on-insulator(SOI) micromachining process is used for the fabrication. A novel lever-based gimbal-like mechanism is employed to enable three degrees of freedom motions for lateral and axial light scanning, and its geometry is optimized for achieving large deflection with high scanning speed. Based on parametric excitation, the device can work in resonant modes. Testing result shows that, up to +/-27° optical deflection angle for inner axis torsion motion with a frequency of 4.9kHz, up to +/-28.5° optical deflection angle for outer axis torsion motion with a frequency of 0.65kHz and 360μm stroke for out-of-plane translation motion with a frequency of 0.53kHz are achieved with <60V driving voltage. Based on these results, 2D imaging with frame rate of 5 10Hz and large field of view (1000μm x 1000μm in horizontal plane and 1000μm x 400μm in vertical plane) can be enabled by this scanner.
Tondare, Vipin N; Villarrubia, John S; Vlada R, András E
2017-10-01
Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.
A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.
Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier
2018-01-11
Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.
Guo, Junfeng; Wang, Chao; Chan, Kung-Sik; Jin, Dakai; Saha, Punam K; Sieren, Jered P; Barr, R G; Han, MeiLan K; Kazerooni, Ella; Cooper, Christopher B; Couper, David; Newell, John D; Hoffman, Eric A
2016-05-01
A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dual source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [-6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors' results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Junfeng; Newell, John D.; Wang, Chao
Purpose: A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Methods: Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dualmore » source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. Results: This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [−6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Conclusions: Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors’ results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.« less
Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.
Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin
2017-08-01
The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at p<0.05. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, and a halogen light source was an option to polymerize bulk-fill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials.
Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun
2018-03-27
The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.
Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials
NASA Astrophysics Data System (ADS)
Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun
2018-03-01
The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Lane, John E.; Kasparis, Takis; Jones, W. Linwood; Metzger, Philip T.
2009-01-01
Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.
Mayer, Sabine; Boschung, Markus; Butterweck, Gernot; Assenmacher, Frank; Hohmann, Eike
2016-09-01
Since 2008 the Paul Scherrer Institute (PSI) has been using a microscope-based automatic scanning system for assessing personal neutron doses with a dosemeter based on PADC. This scanning system, known as TASLImage, includes a comprehensive characterisation of tracks. The distributions of several specific track characteristics such as size, shape and optical density are compared with a reference set to discriminate tracks of alpha particles and non-track background. Due to the dosemeter design at PSI, it is anticipated that radon should not significantly contribute to the creation of additional tracks in the PADC detector. The present study tests the stability of the neutron dose determination algorithm of the personal neutron dosemeter system in operation at PSI at different radon gas exposures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Multicystic mesothelioma--a rare case of ascites: case report.
Manuc, M; Lamatic, C; Pop, C; Dobrea, C; Becheanu, G; Grasu, M; Iosif, D; Diculescu, M
2007-01-01
We present the case of a 37-year-old male, admitted to our clinic with abdominal tenderness, right supraclavicular tumour, and ascites. The presence of ascites was incidentally reported 6 years before, but no other evaluation was done at that moment or during this period. Abdominal ultrasound and CT scan revealed moderate ascites, perivascular adenopathies, and multiple abdominal cystic lesions, while thoracic CT scan revealed the same lesions in mediastinum. Laboratory data were within normal limits, including the tumoral markers, and the tests for hydatid cysts. A biopsy from the right supraclavicular nodule was performed, and based on usual and immunohistochemical stains (calretinin, mesotheline, CK 5/6, CK 7, CK18 diffusely positive in mesothelial cells, and CEA -M, bcl-2 and vimentin negative), suggested the diagnosis of mesothelioma. Based on these results, the diagnosis of "multicystic mesothelioma" was made. The patient was referred for surgery.
Evaluation of scanning earth sensor mechanism on engineering test satellite 4
NASA Technical Reports Server (NTRS)
Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.
1983-01-01
The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.
Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid
NASA Astrophysics Data System (ADS)
Wang, Tao; Reddy, Ramana G.
2017-03-01
MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling
2016-05-01
Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less
Qian, Shinan
2011-01-01
Nmore » anoradian Surface Profilers (SPs) are required for state-of-the-art synchrotron radiation optics and high-precision optical measurements. ano-radian accuracy must be maintained in the large-angle test range. However, the beams' notable lateral motions during tests of most operating profilers, combined with the insufficiencies of their optical components, generate significant errors of ∼ 1 μ rad rms in the measurements. The solution to nano-radian accuracy for the new generation of surface profilers in this range is to apply a scanning optical head, combined with nontilted reference beam. I describe here my comparison of different scan modes and discuss some test results.« less
Programmed Multiphasic Health Testing
NASA Technical Reports Server (NTRS)
Hershberg, P. I.
1970-01-01
Multiphase health screening procedures are advocated for detection and prevention of disease at an early stage through risk factor analysis. The use of an automated medical history questionnaire together with scheduled physical examination data provides a scanning input for computer printout. This system makes it possible to process laboratory results from 1,000 to 2,000 patients for biochemical determinations on an economically feasible base.
3D Mapping of Language Networks in Clinical and Pre-Clinical Alzheimer's Disease
ERIC Educational Resources Information Center
Apostolova, Liana G.; Lu, Po; Rogers, Steve; Dutton, Rebecca A.; Hayashi, Kiralee M.; Toga, Arthur W.; Cummings, Jeffrey L.; Thompson, Paul M.
2008-01-01
We investigated the associations between Boston naming and the animal fluency tests and cortical atrophy in 19 probable AD and 5 multiple domain amnestic mild cognitive impairment patients who later converted to AD. We applied a surface-based computational anatomy technique to MRI scans of the brain and then used linear regression models to detect…
Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay.
Ji, Yuan; Ran, Feng; Ji, Weigui; Xu, Meihua; Chen, Zhangjing; Jiang, Yuxi; Shen, Weixin
2012-06-10
The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V-6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.
NASA Astrophysics Data System (ADS)
Yazici, Ziya Ozgur; Hitit, Aytekin; Yalcin, Yilmaz; Ozgul, Metin
2016-01-01
Effect of Cu and Si substitutions for Co and B on the glass forming ability (GFA) of Co(43-x)CuxFe20Ta5.5B(31.5-x)Siy (x=0-1.5 and y=5-10) were systematically investigated by X-ray diffraction, optical microscopy, scanning electron microscopy, and differential scanning calorimetry. In order to evaluate the contribution of copper and silicon, appropriate amounts of copper and silicon were individually introduced to the base alloy composition. By using the effects of copper and silicon together, significant enhancement was obtained and the critical casting thickness (CCT) of the base alloy was increased three times from 2 mm to 6 mm. Moreover, mechanical properties of the alloys were examined by compression tests and Vickers hardness measurements. The compression test results revealed that the glassy alloys having enhanced GFA shows high strength of about 3500-4000 MPa. In addition, existence of (Co,Fe)2B and (Co,Fe)20.82Ta2.18B6 crystalline phases in glassy matrix influences the hardnesses of the alloys compared to monolitic glassy structure having hardness of about 1200 Hv.
Asynchronous cracking with dissimilar paths in multilayer graphene.
Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki
2017-11-16
Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.
Huo, Yuankai; Xu, Zhoubing; Bao, Shunxing; Bermudez, Camilo; Plassard, Andrew J.; Liu, Jiaqi; Yao, Yuang; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2018-01-01
Spleen volume estimation using automated image segmentation technique may be used to detect splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have demonstrated advantages for abdominal organ segmentation. However, variations in both size and shape of the spleen on MRI images may result in large false positive and false negative labeling when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. SSNet was designed based on the framework of image-to-image conditional generative adversarial networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 weighted) from patients with splenomegaly were used to train and test the networks. The experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with splenomegaly.
NASA Astrophysics Data System (ADS)
Sun, Wei; Zheng, Ruilin; Chen, Xuyuan
To achieve higher energy density and power density, we have designed and fabricated a symmetric redox supercapacitor based on microelectromechanical system (MEMS) technologies. The supercapacitor consists of a three-dimensional (3D) microstructure on silicon substrate micromachined by high-aspect-ratio deep reactive ion etching (DRIE) method, two sputtered Ti current collectors and two electrochemical polymerized polypyrrole (PPy) films as electrodes. Electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatical charge/discharge methods have been carried out on the single PPy electrodes and the symmetric supercapacitor in different electrolytes. The specific capacitance (capacitance per unit footprint area) and specific power (power per unit footprint area) of the PPy electrodes and symmetric supercapacitor can be calculated from the electrochemical test data. It is found that NaCl solution is a good electrolyte for the polymerized PPy electrodes. In NaCl electrolyte, single PPy electrodes exhibit 0.128 F cm -2 specific capacitance and 1.28 mW cm -2 specific power at 20 mV s -1 scan rate. The symmetric supercapacitor presents 0.056 F cm -2 specific capacitance and 0.56 mW cm -2 specific power at 20 mV s -1 scan rate.
Pharmaceutical-grade oral films as substrates for printed medicine.
Wimmer-Teubenbacher, M; Planchette, C; Pichler, H; Markl, D; Hsiao, W K; Paudel, A; Stegemann, S
2018-05-18
In contact-less printing, such as piezo-electric drop on demand printing used in the study, the drop formation process is independent of the substrate. This means that having developed a printable formulation, printed pharmaceutical dosage forms can be obtained on any pharmaceutical grade substrate, such as polymer-based films. In this work we evaluated eight different oral films based on their suitability as printing substrates for sodium picosulfate. The different polymer films were compared regarding printed spot morphology, chemical stability and dissolution profile. The morphology of printed sodium picosulfate was investigated with scanning electron microscopy and optical coherence tomography. The spreading of the deposited drops was found to be governed by the contact angle of the ink with the substrate. The form of the sodium picosulfate drops changed on microcrystalline cellulose films at ambient conditions over 8 weeks and stayed unchanged on other tested substrates. Sodium picosulfate remained amorphous on all substrates according to small and wide angle X-ray scattering, differential scanning calorimetry and polarized light microscopy measurements. The absence of chemical interactions between the drug and substrates, as indicated by infrared spectroscopy, makes all tested substrates suitable for printing sodium picosulfate onto them. Copyright © 2018 Elsevier B.V. All rights reserved.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Technical Reports Server (NTRS)
1982-01-01
Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.
Pressure scanning choices - Rotary vs electronic
NASA Astrophysics Data System (ADS)
Pemberton, Addison
The choices available for present-day pressure scanning applications are described. Typical pressure scanning applications include wind tunnels, flight testing, turbine engine testing, process control, and laboratory/bench testing. The Scanivalve concept is discussed and it is noted that their use eliminates the cost of multiple individual pressure transducers and their signal conditioners as well as associated wiring for each pressure to be measured. However, they are limited to a maximum acquisition speed of 20 ports/sec/scanner. The advantages of electronic pressure scanners include in-situ calibration on demand, fast data acquisition speed, and high reliability. On the other hand, they are three times more expensive than rotary Scanivalves.
Benchmarking contactless acquisition sensor reproducibility for latent fingerprint trace evidence
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Dittmann, Jana
2015-03-01
Optical, nano-meter range, contactless, non-destructive sensor devices are promising acquisition techniques in crime scene trace forensics, e.g. for digitizing latent fingerprint traces. Before new approaches are introduced in crime investigations, innovations need to be positively tested and quality ensured. In this paper we investigate sensor reproducibility by studying different scans from four sensors: two chromatic white light sensors (CWL600/CWL1mm), one confocal laser scanning microscope, and one NIR/VIS/UV reflection spectrometer. Firstly, we perform an intra-sensor reproducibility testing for CWL600 with a privacy conform test set of artificial-sweat printed, computer generated fingerprints. We use 24 different fingerprint patterns as original samples (printing samples/templates) for printing with artificial sweat (physical trace samples) and their acquisition with contactless sensory resulting in 96 sensor images, called scan or acquired samples. The second test set for inter-sensor reproducibility assessment consists of the first three patterns from the first test set, acquired in two consecutive scans using each device. We suggest using a simple feature space set in spatial and frequency domain known from signal processing and test its suitability for six different classifiers classifying scan data into small differences (reproducible) and large differences (non-reproducible). Furthermore, we suggest comparing the classification results with biometric verification scores (calculated with NBIS, with threshold of 40) as biometric reproducibility score. The Bagging classifier is nearly for all cases the most reliable classifier in our experiments and the results are also confirmed with the biometric matching rates.
Investigation of melamine derived quaternary as ammonium salt potential shale inhibitor
NASA Astrophysics Data System (ADS)
Yu, Hongjiang; Hu, Weimin; Guo, Gang; Huang, Lei; Li, Lili; Gu, Xuefan; Zhang, Zhifang; Zhang, Jie; Chen, Gang
2017-06-01
Melamine, sodium chloroacetate and sodium hydroxide were used as raw materials to synthesize a kind of neutral quaternary ammonium salt (NQAS) as potential clay swelling inhibitor and water-based drilling fluid additive, and the reaction conditions were screened based on the linear expansion rate of bentonite. The inhibitive properties of NQASs were investigated by various methods, including montmorillonite (MMT) linear expansion test, mud ball immersing test, particle distribution measurement, thermogravimetric analysis and scanning electron microscopy etc. The results indicate that NQAS can inhibit expansion and dispersion of clay in water effectively. At the same condition, the bentonite linear expansion rate in NQAS-6 solution is much lower than those of others, and the hydration expansion degree of the mud ball in 0.5% NQAS-6 solution is appreciably weaker than the control test. The compatibility test indicates NQAS-6 could be compatible with the conventional additives in water-based drilling fluids, and the temperature resistance of modified starch was improved effectively. Meanwhile, the inhibitive mechanism was discussed through the particle distribution measurement.
2011-03-06
based LCO suppression system housed in a winglet , specifically designed for the GTW. Upon completion of rehabilitation and modifications to the wing to...accommodate the winglet /NES, the full system will be ready for additional testing in the TDT. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...University, will result in the design of an NES-based LCO suppression system housed in a winglet , specifically designed for the GTW. Upon completion of
The Effect of Radiation on Selected Photographic Film
NASA Technical Reports Server (NTRS)
Slater, Richard; Kinard, John; Firsov, Ivan
2000-01-01
We conducted this film test to evaluate several manufacturers' photographic films for their ability to acquire imagery on the International Space Station. We selected 25 motion picture, photographic slide, and negative films from three different film manufacturers. We based this selection on the fact that their films ranked highest in other similar film tests, and on their general acceptance by the international community. This test differed from previous tests because the entire evaluation process leading up to the final selection was based on information derived after the original flight film was scanned to a digital file. Previously conducted tests were evaluated entirely based on 8 x 10s that were produced from the film either directly or through the internegative process. This new evaluation procedure provided accurate quantitative data on granularity and contrast from the digital data. This test did not try to define which film was best visually. This is too often based on personal preference. However, the test results did group the films by good, marginal, and unacceptable. We developed, and included in this report, a template containing quantitative, graphical, and visual information for each film. These templates should be sufficient for comparing the different films tested and subsequently selecting a film or films to be used for experiments and general documentation on the International Space Station.
Griffiths, Mark D; Wood, Richard T A; Parke, Jonathan
2009-08-01
To date, little empirical research has focused on social responsibility in gambling. This study examined players' attitudes and behavior toward using the social responsibility tool PlayScan designed by the Swedish gaming company Svenska Spel. Via PlayScan, players have the option to utilize various social responsibility control tools (e.g., personal gaming budgets, self-diagnostic tests of gambling habits, self-exclusion options). A total of 2,348 participants took part in an online questionnaire study. Participants were clientele of the Svenska Spel online gambling Web site. Results showed that just over a quarter of players (26%) had used PlayScan. The vast majority of those who had activated PlayScan (almost 9 in 10 users) said that PlayScan was easy to use. Over half of PlayScan users (52%) said it was useful; 19% said it was not. Many features were seen as useful by online gamblers, including limit setting (70%), viewing their gambling profile (49%), self-exclusion facilities (42%), self-diagnostic problem gambling tests (46%), information and support for gambling issues (40%), and gambling profile predictions (36%). In terms of actual (as opposed to theoretical) use, over half of PlayScan users (56%) had set spending limits, 40% had taken a self-diagnostic problem gambling test, and 17% had used a self-exclusion feature.
Heinrich, Andreas; Teichgräber, Ulf K; Güttler, Felix V
2015-12-01
The standard ASTM F2119 describes a test method for measuring the size of a susceptibility artifact based on the example of a passive implant. A pixel in an image is considered to be a part of an image artifact if the intensity is changed by at least 30% in the presence of a test object, compared to a reference image in which the test object is absent (reference value). The aim of this paper is to simplify and accelerate the test method using a histogram-based reference value. Four test objects were scanned parallel and perpendicular to the main magnetic field, and the largest susceptibility artifacts were measured using two methods of reference value determination (reference image-based and histogram-based reference value). The results between both methods were compared using the Mann-Whitney U-test. The difference between both reference values was 42.35 ± 23.66. The difference of artifact size was 0.64 ± 0.69 mm. The artifact sizes of both methods did not show significant differences; the p-value of the Mann-Whitney U-test was between 0.710 and 0.521. A standard-conform method for a rapid, objective, and reproducible evaluation of susceptibility artifacts could be implemented. The result of the histogram-based method does not significantly differ from the ASTM-conform method.
Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.
Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S
2017-11-01
To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder
NASA Astrophysics Data System (ADS)
Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.
2018-06-01
Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.
Engineering monitoring expert system's developer
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1991-01-01
This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.
Interference studies with two hospital-grade and two home-grade glucose meters.
Lyon, Martha E; Baskin, Leland B; Braakman, Sandy; Presti, Steven; Dubois, Jeffrey; Shirey, Terry
2009-10-01
Interference studies of four glucose meters (Nova Biomedical [Waltham, MA] StatStrip [hospital grade], Roche Diagnostics [Indianapolis, IN] Accu-Chek Aviva [home grade], Abbott Diabetes Care [Alameda, CA] Precision FreeStyle Freedom [home grade], and LifeScan [Milpitas, CA] SureStep Flexx [hospital grade]) were evaluated and compared to the clinical laboratory plasma hexokinase reference method (Roche Hitachi 912 chemistry analyzer). These meters were chosen to reflect the continuum of care from hospital to home grade meters commonly seen in North America. Within-run precision was determined using a freshly prepared whole blood sample spiked with concentrated glucose to give three glucose concentrations. Day-to-day precision was evaluated using aqueous control materials supplied by each vendor. Common interferences, including hematocrit, maltose, and ascorbate, were tested alone and in combination with one another on each of the four glucose testing devices at three blood glucose concentrations. Within-run precision for all glucose meters was <5% except for the FreeStyle (up to 7.6%). Between-day precision was <6% for all glucose meters. Ascorbate caused differences (percentage change from a sample without added interfering substances) of >5% with pyrroloquinolinequinone (PQQ)-glucose dehydrogenase-based technologies (Aviva and Freestyle) and the glucose oxidase-based Flexx meter. Maltose strongly affected the PQQ-glucose dehydrogenase-based meter systems. When combinations of interferences (ascorbate, maltose, and hematocrit mixtures) were tested, the extent of the interference was up to 193% (Aviva), 179% (FreeStyle), 25.1% (Flexx), and 5.9% (StatStrip). The interference was most pronounced at low glucose (3.9-4.4 mmol/L). All evaluated glucose meter systems demonstrated varying degrees of interference by hematocrit, ascorbate, and maltose mixtures. PQQ-glucose dehydrogenase-based technologies showed greater susceptibility than glucose oxidase-based systems. However, the modified glucose oxidase-based amperometric method (Nova StatStrip) was less affected in comparison with the glucose oxidase-based photometric method (LifeScan SureStep Flexx).
GMR-based eddy current probe for weld seam inspection and its non-scanning detection study
NASA Astrophysics Data System (ADS)
Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya
2017-04-01
Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.
Finding the ’RITE’ Acquisition Environment for Navy C2 Software
2015-05-01
Boiler plate contract language - Gov purpose Rights • Adding expectation of quality to contracting language • Template SOW’s created Pr...Debugger MCCABE IQ Static Analysis Cyclomatic Complexity and KSLOC. All Languages HP Fortify Security Scan STIG and Vulnerabilities Security & IA...GSSAT (GOTS) Security Scan STIG and Vulnerabilities AutoIT Automated Test Scripting Engine for Automation Functional Testing TestComplete Automated
Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors
El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.
2017-01-01
A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV−vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization. PMID:28216668
Fontes, Ricardo B V; Smith, Adam P; Muñoz, Lorenzo F; Byrne, Richard W; Traynelis, Vincent C
2014-08-01
Early postoperative head CT scanning is routinely performed following intracranial procedures for detection of complications, but its real value remains uncertain: so-called abnormal results are frequently found, but active, emergency intervention based on these findings may be rare. The authors' objective was to analyze whether early postoperative CT scans led to emergency surgical interventions and if the results of neurological examination predicted this occurrence. The authors retrospectively analyzed 892 intracranial procedures followed by an early postoperative CT scan performed over a 1-year period at Rush University Medical Center and classified these cases according to postoperative neurological status: baseline, predicted neurological change, unexpected neurological change, and sedated or comatose. The interpretation of CT results was reviewed and unexpected CT findings were classified based on immediate action taken: Type I, additional observation and CT; Type II, active nonsurgical intervention; and Type III, surgical intervention. Results were compared between neurological examination groups with the Fisher exact test. Patients with unexpected neurological changes or in the sedated or comatose group had significantly more unexpected findings on the postoperative CT (p < 0.001; OR 19.2 and 2.3, respectively) and Type II/III interventions (p < 0.001) than patients at baseline. Patients at baseline or with expected neurological changes still had a rate of Type II/III changes in the 2.2%-2.4% range; however, no patient required an immediate return to the operating room. Over a 1-year period in an academic neurosurgery service, no patient who was neurologically intact or who had a predicted neurological change required an immediate return to the operating room based on early postoperative CT findings. Obtaining early CT scans should not be a priority in these patients and may even be cancelled in favor of MRI studies, if the latter have already been planned and can be performed safely and in a timely manner. Early postoperative CT scanning does not assure an uneventful course, nor should it replace accurate and frequent neurological checks, because operative interventions were always decided in conjunction with the neurological examination.
Females scan more than males: a potential mechanism for sex differences in recognition memory.
Heisz, Jennifer J; Pottruff, Molly M; Shore, David I
2013-07-01
Recognition-memory tests reveal individual differences in episodic memory; however, by themselves, these tests provide little information regarding the stage (or stages) in memory processing at which differences are manifested. We used eye-tracking technology, together with a recognition paradigm, to achieve a more detailed analysis of visual processing during encoding and retrieval. Although this approach may be useful for assessing differences in memory across many different populations, we focused on sex differences in face memory. Females outperformed males on recognition-memory tests, and this advantage was directly related to females' scanning behavior at encoding. Moreover, additional exposures to the faces reduced sex differences in face recognition, which suggests that males may be able to improve their recognition memory by extracting more information at encoding through increased scanning. A strategy of increased scanning at encoding may prove to be a simple way to enhance memory performance in other populations with memory impairment.
Comparative Geometrical Investigations of Hand-Held Scanning Systems
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.
2016-06-01
An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.
NASA Astrophysics Data System (ADS)
Alejos, Martin Fernando
Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.
NASA Astrophysics Data System (ADS)
Clem, Douglas Wayne
Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.
Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites
NASA Astrophysics Data System (ADS)
Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.
2017-03-01
The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.
A planar near-field scanning technique for bistatic radar cross section measurements
NASA Technical Reports Server (NTRS)
Tuhela-Reuning, S.; Walton, E. K.
1990-01-01
A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram
2012-01-01
A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.
Centimeter-scale MEMS scanning mirrors for high power laser application
NASA Astrophysics Data System (ADS)
Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.
2015-02-01
A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.
O’Connor, David; Potler, Natan Vega; Kovacs, Meagan; Xu, Ting; Ai, Lei; Pellman, John; Vanderwal, Tamara; Parra, Lucas C.; Cohen, Samantha; Ghosh, Satrajit; Escalera, Jasmine; Grant-Villegas, Natalie; Osman, Yael; Bui, Anastasia; Craddock, R. Cameron
2017-01-01
Abstract Background: Although typically measured during the resting state, a growing literature is illustrating the ability to map intrinsic connectivity with functional MRI during task and naturalistic viewing conditions. These paradigms are drawing excitement due to their greater tolerability in clinical and developing populations and because they enable a wider range of analyses (e.g., inter-subject correlations). To be clinically useful, the test-retest reliability of connectivity measured during these paradigms needs to be established. This resource provides data for evaluating test-retest reliability for full-brain connectivity patterns detected during each of four scan conditions that differ with respect to level of engagement (rest, abstract animations, movie clips, flanker task). Data are provided for 13 participants, each scanned in 12 sessions with 10 minutes for each scan of the four conditions. Diffusion kurtosis imaging data was also obtained at each session. Findings: Technical validation and demonstrative reliability analyses were carried out at the connection-level using the Intraclass Correlation Coefficient and at network-level representations of the data using the Image Intraclass Correlation Coefficient. Variation in intrinsic functional connectivity across sessions was generally found to be greater than that attributable to scan condition. Between-condition reliability was generally high, particularly for the frontoparietal and default networks. Between-session reliabilities obtained separately for the different scan conditions were comparable, though notably lower than between-condition reliabilities. Conclusions: This resource provides a test-bed for quantifying the reliability of connectivity indices across subjects, conditions and time. The resource can be used to compare and optimize different frameworks for measuring connectivity and data collection parameters such as scan length. Additionally, investigators can explore the unique perspectives of the brain's functional architecture offered by each of the scan conditions. PMID:28369458
Predicting PDZ domain mediated protein interactions from structure
2013-01-01
Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on training–testing domain sequence similarity. Using both predictors, we defined a functional map of human PDZ domain biology and predict novel PDZ domain function. Users may access our structure-based and previous sequence-based predictors at http://webservice.baderlab.org/domains/POW. PMID:23336252
Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases
NASA Technical Reports Server (NTRS)
Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley
2009-01-01
In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.
Kreisel, A.; Nelson, R.; Berlijn, T.; ...
2016-12-27
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less
Preprocessing of A-scan GPR data based on energy features
NASA Astrophysics Data System (ADS)
Dogan, Mesut; Turhan-Sayan, Gonul
2016-05-01
There is an increasing demand for noninvasive real-time detection and classification of buried objects in various civil and military applications. The problem of detection and annihilation of landmines is particularly important due to strong safety concerns. The requirement for a fast real-time decision process is as important as the requirements for high detection rates and low false alarm rates. In this paper, we introduce and demonstrate a computationally simple, timeefficient, energy-based preprocessing approach that can be used in ground penetrating radar (GPR) applications to eliminate reflections from the air-ground boundary and to locate the buried objects, simultaneously, at one easy step. The instantaneous power signals, the total energy values and the cumulative energy curves are extracted from the A-scan GPR data. The cumulative energy curves, in particular, are shown to be useful to detect the presence and location of buried objects in a fast and simple way while preserving the spectral content of the original A-scan data for further steps of physics-based target classification. The proposed method is demonstrated using the GPR data collected at the facilities of IPA Defense, Ankara at outdoor test lanes. Cylindrically shaped plastic containers were buried in fine-medium sand to simulate buried landmines. These plastic containers were half-filled by ammonium nitrate including metal pins. Results of this pilot study are demonstrated to be highly promising to motivate further research for the use of energy-based preprocessing features in landmine detection problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreisel, A.; Nelson, R.; Berlijn, T.
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less
Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J
2016-08-01
The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.
ERIC Educational Resources Information Center
Walkowiak, Temple A.; Berry, Robert Q.; Pinter, Holly H.; Jacobson, Erik D.
2018-01-01
The Mathematics Scan (M-Scan), a content-specific observational measure, was utilized to examine the extent to which "standards-based mathematics teaching practices" were present in three focal lessons. While previous studies have provided evidence of validity of the inferences drawn from M-Scan data, no prior work has investigated the…
Suitability of holographic beam scanning in high resolution applications
NASA Astrophysics Data System (ADS)
Kalita, Ranjan; Goutam Buddha, S. S.; Boruah, Bosanta R.
2018-02-01
The high resolution applications of a laser scanning imaging system very much demand the accurate positioning of the illumination beam. The galvanometer scanner based beam scanning imaging systems, on the other hand, suffer from both short term and long term beam instability issues. Fortunately Computer generated holography based beam scanning offers extremely accurate beam steering, which can be very useful for imaging in high-resolution applications in confocal microscopy. The holographic beam scanning can be achieved by writing a sequence of holograms onto a spatial light modulator and utilizing one of the diffracted orders as the illumination beam. This paper highlights relative advantages of such a holographic beam scanning based confocal system and presents some of preliminary experimental results.
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-05-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.
Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-01-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742
Computer Vision Malaria Diagnostic Systems-Progress and Prospects.
Pollak, Joseph Joel; Houri-Yafin, Arnon; Salpeter, Seth J
2017-01-01
Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.
Safe Active Scanning for Energy Delivery Systems Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helms, J.; Salazar, B.; Scheibel, P.
The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into themore » details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.« less
Mähler, Anja; Boschmann, Michael; Jeran, Stephanie
2017-01-01
Objective Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. Methods Validity was assessed among 32 participants (men, 50%) aged 20–58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25–66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. Results Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. Conclusions Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies. PMID:28672039
Adler, Carolin; Steinbrecher, Astrid; Jaeschke, Lina; Mähler, Anja; Boschmann, Michael; Jeran, Stephanie; Pischon, Tobias
2017-01-01
Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. Validity was assessed among 32 participants (men, 50%) aged 20-58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25-66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies.
2009-01-01
Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668
Optimization of dose and image quality in adult and pediatric computed tomography scans
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin
2017-11-01
Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.
Xu, Jinfeng; Yuan, Ao; Zheng, Gang
2012-01-01
Summary In the analysis of case-control genetic association, the trend test and Pearson’s test are the two most commonly used tests. In genome-wide association studies (GWAS), Bayes factor is a useful tool to support significant p-values, and a better measure than p-value when results are compared across studies with different sample sizes. When reporting the p-value of the trend test, we propose a Bayes factor directly based on the trend test. To improve the power to detect association under recessive or dominant genetic models, we propose a Bayes factor based on the trend test and incorporating Hardy-Weinberg disequilibrium in cases. When the true model is unknown, or both the trend test and Pearson’s test or other robust tests are applied in genome-wide scans, we propose a joint Bayes factor, combining the previous two Bayes factors. All three Bayes factors studied in this paper have closed forms and are easy to compute without integrations, so they can be reported along with p-values, especially in GWAS. We discuss how to use each of them and how to specify priors. Simulation studies and applications to three GWAS are provided to illustrate their usefulness to detect non-additive gene susceptibility in practice. PMID:22607017
Farr, J B; Dessy, F; De Wilde, O; Bietzer, O; Schönenberg, D
2013-07-01
The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so. The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool. The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not. The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton spot size and associated resolution, factors of magnetic optics, and vacuum length. The need and benefit of mutielement detectors and high-resolution sensors was also shown. The use of a fluence map analytical software tool was particularly effective in characterizing the dynamic proton energy-layer scanning.
Automated matching of supine and prone colonic polyps based on PCA and SVMs
NASA Astrophysics Data System (ADS)
Wang, Shijun; Van Uitert, Robert L.; Summers, Ronald M.
2008-03-01
Computed tomographic colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. In current practice, a patient will be scanned twice during the CTC examination - once supine and once prone. In order to assist the radiologists in evaluating colon polyp candidates in both scans, we expect the computer aided detection (CAD) system can provide not only the locations of suspicious polyps, but also the possible matched pairs of polyps in two scans. In this paper, we propose a new automated matching method based on the extracted features of polyps by using principal component analysis (PCA) and Support Vector Machines (SVMs). Our dataset comes from the 104 CT scans of 52 patients with supine and prone positions collected from three medical centers. From it we constructed two groups of matched polyp candidates according to the size of true polyps: group A contains 12 true polyp pairs (> 9 mm) and 454 false pairs; group B contains 24 true polyp pairs (6-9 mm) and 514 false pairs. By using PCA, we reduced the dimensions of original data (with 157 attributes) to 30 dimensions. We did leave-one-patient-out test on the two groups of data. ROC analysis shows that it is easier to match bigger polyps than that of smaller polyps. On group A data, when false alarm probability is 0.18, the sensitivity of SVM achieves 0.83 which shows that automated matching of polyp candidates is practicable for clinical applications.
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin
2016-03-01
Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.
Wang, Russell; Tao, Junliang; Yu, Bill; Dai, Liming
2014-04-01
Most fractures of dentures occur during function, primarily because of the flexural fatigue of denture resins. The purpose of this study was to evaluate a polymethyl methacrylate denture base material modified with multiwalled carbon nanotubes in terms of fatigue resistance, flexural strength, and resilience. Denture resin specimens were fabricated: control, 0.5 wt%, 1 wt%, and 2 wt% of multiwalled carbon nanotubes. Multiwalled carbon nanotubes were dispersed by sonication. Thermogravimetric analysis was used to determine quantitative dispersions of multiwalled carbon nanotubes in polymethyl methacrylate. Raman spectroscopic analyses were used to evaluate interfacial reactions between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Groups with and without multiwalled carbon nanotubes were subjected to a 3-point-bending test for flexural strength. Resilience was derived from a stress and/or strain curve. Fatigue resistance was conducted by a 4-point bending test. Fractured surfaces were analyzed by scanning electron microscopy. One-way ANOVA and the Duncan tests were used to identify any statistical differences (α=.05). Thermogravimetric analysis verified the accurate amounts of multiwalled carbon nanotubes dispersed in the polymethyl methacrylate resin. Raman spectroscopy showed an interfacial reaction between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Statistical analyses revealed significant differences in static and dynamic loadings among the groups. The worst mechanical properties were in the 2 wt% multiwalled carbon nanotubes (P<.05), and 0.5 wt% and 1 wt% multiwalled carbon nanotubes significantly improved flexural strength and resilience. All multiwalled carbon nanotubes-polymethyl methacrylate groups showed poor fatigue resistance. The scanning electron microscopy results indicated more agglomerations in the 2% multiwalled carbon nanotubes. Multiwalled carbon nanotubes-polymethyl methacrylate groups (0.5% and 1%) performed better than the control group during the static flexural test. The results indicated that 2 wt% multiwalled carbon nanotubes were not beneficial because of the inadequate dispersion of multiwalled carbon nanotubes in the polymethyl methacrylate matrix. Scanning electron microscopy analysis showed agglomerations on the fracture surface of 2 wt% multiwalled carbon nanotubes. The interfacial bonding between multiwalled carbon nanotubes and polymethyl methacrylate was weak based on the Raman data and dynamic loading results. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope
NASA Technical Reports Server (NTRS)
Manoharan, M.; Lewandowski, J. J.
1989-01-01
Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.
NASA Astrophysics Data System (ADS)
Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.
2015-12-01
Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.
Ischemic stroke enhancement in computed tomography scans using a computational approach
NASA Astrophysics Data System (ADS)
Alves, Allan F. F.; Pavan, Ana L. M.; Jennane, Rachid; Miranda, José R. A.; Freitas, Carlos C. M.; Abdala, Nitamar; Pina, Diana R.
2018-03-01
In this work, a novel approach was proposed to enhance the visual perception of ischemic stroke in computed tomography scans. Through different image processing techniques, we enabled less experienced physicians, to reliably detect early signs of stroke. A set of 40 retrospective CT scans of patients were used, divided into two groups: 25 cases of acute ischemic stroke and 15 normal cases used as control group. All cases were obtained within 4 hours of symptoms onset. Our approach was based on the variational decomposition model and three different segmentation methods. A test determined observers' performance to correctly diagnose stroke cases. The Expectation Maximization method provided the best results among all observers. The overall sensitivity of the observer's analysis was 64% and increased to 79%. The overall specificity was 67% and increased to 78%. These results show the importance of a computational tool to assist neuroradiology decisions, especially in critical situations such as the diagnosis of ischemic stroke.
1.56 Terahertz 2-frames per second standoff imaging
NASA Astrophysics Data System (ADS)
Goyette, Thomas M.; Dickinson, Jason C.; Linden, Kurt J.; Neal, William R.; Joseph, Cecil S.; Gorveatt, William J.; Waldman, Jerry; Giles, Robert; Nixon, William E.
2008-02-01
A Terahertz imaging system intended to demonstrate identification of objects concealed under clothing was designed, assembled, and tested. The system design was based on a 2.5 m standoff distance, with a capability of visualizing a 0.5 m by 0.5 m scene at an image rate of 2 frames per second. The system optical design consisted of a 1.56 THz laser beam, which was raster swept by a dual torsion mirror scanner. The beam was focused onto the scan subject by a stationary 50 cm-diameter focusing mirror. A heterodyne detection technique was used to down convert the backscattered signal. The system demonstrated a 1.5 cm spot resolution. Human subjects were scanned at a frame rate of 2 frames per second. Hidden metal objects were detected under a jacket worn by the human subject. A movie including data and video images was produced in 1.5 minutes scanning a human through 180° of azimuth angle at 0.7° increment.
The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test
NASA Technical Reports Server (NTRS)
Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank
1999-01-01
The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.
Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.
2013-01-01
Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001
Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A
2012-08-01
Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.
Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H
1999-01-01
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058
Bulla, A; Casoli, C; Farace, F; Mazzarello, V; De Luca, L; Rubino, C; Montella, A
2014-01-01
The aim of the present study is to propose a new contrast agent that can be easily applied both to CT and dissection studies to replace lead oxide based formulas for comparative anatomical analyses of the vascularisation of cadaveric specimens. The infusion material was an epoxy resin, especially modified by the addition of barium sulphate to enhance its radiopacity. The final copolymer was toxicologically safe. To test the properties of the new material, several cadaveric limb injections were performed. The injected specimens were both CT scanned to perform 3D vascular reconstructions and dissected by anatomical planes. There was a perfect correspondence between the image studies and the dissections: even the smallest arteries on CT scan can be identified on the specimen and vice versa. The properties of the epoxy allowed an easy dissection of the vessels. The new imaging techniques available today, such as CT scan, can evaluate the vascular anatomy in high detail and 3D. This new contrast agent may help realising detailed vascular studies comparing CT scan results with anatomical dissections. Moreover, it may be useful for teaching surgical skills in the field of plastic surgery.
Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A
2009-05-21
The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.
CT scans for pulmonary surveillance may be overused in lower-grade sarcoma.
Miller, Benjamin J; Carmody Soni, Emily E; Reith, John D; Gibbs, C Parker; Scarborough, Mark T
2012-01-01
Chest CT scans are often used to monitor patients after excision of a sarcoma. Although sensitive, CT scans are more expensive than chest radiographs and are associated with possible health risks from a higher radiation dose. We hypothesized that a program based upon limited CT scans in lower-grade sarcoma could be efficacious and less expensive. We retrospectively assigned patients to a high-risk or low-risk hypothetical protocol. Eighty-three low- or intermediate-grade soft tissue sarcomas met our inclusion criteria. Eight patients had pulmonary metastasis. A protocol based on selective CT scans for high-risk patients would have identified seven out of eight lesions. The incremental cost-effectiveness ratio for routine CT scans was $731,400. A program based upon selective CT scans for higher-risk patients is accurate, spares unnecessary radiation to many patients, and is less expensive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liang, X; Kalbasi, A
2014-06-01
Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less
Eye Exam: Is a Laser Retina Scan Worthwhile?
Healthy Lifestyle Adult health Is a laser retina scan necessary? My eye care provider offers the test, but I'm not sure if I need it. Answers from Alaina ... Softing Hataye, O.D. For most people, a laser retina scan isn't necessary. If you choose ...
Digital Video of Live-Scan Fingerprint Data
National Institute of Standards and Technology Data Gateway
NIST Digital Video of Live-Scan Fingerprint Data (PC database for purchase) NIST Special Database 24 contains MPEG-2 (Moving Picture Experts Group) compressed digital video of live-scan fingerprint data. The database is being distributed for use in developing and testing of fingerprint verification systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brezovich, I; Wu, X; Popple, R
Purpose: To test spatial and dosimetric accuracy of small cranial target irradiation based on 1.5 T MRI scans using static arcs with MLC-defined fields Methods: A plastic (PMMA) phantom simulating a small brain lesion was mounted on a GammaKnife headframe equipped with MRI localizer. The lesion was a 3 mm long, 3.175 mm diameter cylindrical cavity filled with MRI contrast. Radiochromic film passing through the cavity was marked with pin pricks at the cavity center. The cavity was contoured on an MRI image and fused with CT to simulate treatment of a lesion not visible on CT. The transfer ofmore » the target to CT involved registering the MRI contrast cannels of the localizer that were visible on both modalities. Treatments were planned to deliver 800 cGy to the cavity center using multiple static arcs with 5.0×2.4 mm MLC-defined fields. The phantom was aligned on a STx accelerator by registering the conebeam CT with the planning CT. Films from coronal and sagittal planes were scanned and evaluated using ImageJ software Results: Geographic errors in treatment based on 1.5 T scans agreed within 0.33, −0.27 and 1.21 mm in the vertical, lateral and longitudinal dimensions, respectively. The doses delivered to the cavity center were 7.2% higher than planned. The dose distributions were similar to those of a GammaKnife. Conclusion: Radiation can be delivered with an accelerator at mm accuracy to small cranial targets based on 1.5 MRI scans fused to CTs using a standard GammaKnife headframe and MRI localizer. MLC-defined static arcs produce isodose lines very similar to the GammaKnife.« less
An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.
Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique
2015-01-01
This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.
Eddy current X-Y scanner system
NASA Technical Reports Server (NTRS)
Kurtz, G. W.
1983-01-01
The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.
Discovering Visual Scanning Patterns in a Computerized Cancellation Test
ERIC Educational Resources Information Center
Huang, Ho-Chuan; Wang, Tsui-Ying
2013-01-01
The purpose of this study was to develop an attention sequential mining mechanism for investigating the sequential patterns of children's visual scanning process in a computerized cancellation test. Participants had to locate and cancel the target amongst other non-targets in a structured form, and a random form with Chinese stimuli. Twenty-three…
Screening for cognitive impairment in older individuals. Validation study of a computer-based test.
Green, R C; Green, J; Harrison, J M; Kutner, M H
1994-08-01
This study examined the validity of a computer-based cognitive test that was recently designed to screen the elderly for cognitive impairment. Criterion-related validity was examined by comparing test scores of impaired patients and normal control subjects. Construct-related validity was computed through correlations between computer-based subtests and related conventional neuropsychological subtests. University center for memory disorders. Fifty-two patients with mild cognitive impairment by strict clinical criteria and 50 unimpaired, age- and education-matched control subjects. Control subjects were rigorously screened by neurological, neuropsychological, imaging, and electrophysiological criteria to identify and exclude individuals with occult abnormalities. Using a cut-off total score of 126, this computer-based instrument had a sensitivity of 0.83 and a specificity of 0.96. Using a prevalence estimate of 10%, predictive values, positive and negative, were 0.70 and 0.96, respectively. Computer-based subtests correlated significantly with conventional neuropsychological tests measuring similar cognitive domains. Thirteen (17.8%) of 73 volunteers with normal medical histories were excluded from the control group, with unsuspected abnormalities on standard neuropsychological tests, electroencephalograms, or magnetic resonance imaging scans. Computer-based testing is a valid screening methodology for the detection of mild cognitive impairment in the elderly, although this particular test has important limitations. Broader applications of computer-based testing will require extensive population-based validation. Future studies should recognize that normal control subjects without a history of disease who are typically used in validation studies may have a high incidence of unsuspected abnormalities on neurodiagnostic studies.
Parallelized seeded region growing using CUDA.
Park, Seongjin; Lee, Jeongjin; Lee, Hyunna; Shin, Juneseuk; Seo, Jinwook; Lee, Kyoung Ho; Shin, Yeong-Gil; Kim, Bohyoung
2014-01-01
This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.
Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas
2018-06-01
Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.
MutScan: fast detection and visualization of target mutations by scanning FASTQ data.
Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia
2018-01-22
Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.
NASA Astrophysics Data System (ADS)
Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara
2018-01-01
Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.
The child's perspective on discomfort during medical research procedures: a descriptive study.
Staphorst, Mira S; Benninga, Marc A; Bisschoff, Margriet; Bon, Irma; Busschbach, Jan J V; Diederen, Kay; van Goudoever, Johannes B; Haarman, Eric G; Hunfeld, Joke A M; Jaddoe, Vincent V W; de Jong, Karin J M; de Jongste, Johan C; Kindermann, Angelika; Königs, Marsh; Oosterlaan, Jaap; Passchier, Jan; Pijnenburg, Mariëlle W; Reneman, Liesbeth; Ridder, Lissy de; Tamminga, Hyke G; Tiemeier, Henning W; Timman, Reinier; van de Vathorst, Suzanne
2017-08-01
The evaluation of discomfort in paediatric research is scarcely evidence-based. In this study, we make a start in describing children's self-reported discomfort during common medical research procedures and compare this with discomfort during dental check-ups which can be considered as a reference level of a 'minimal discomfort' medical procedure. We exploratory study whether there are associations between age, anxiety-proneness, gender, medical condition, previous experiences and discomfort. We also describe children's suggestions for reducing discomfort. Cross-sectional descriptive study. Paediatric research at three academic hospitals. 357 children with and without illnesses (8-18 years, mean=10.6 years) were enrolled: 307 from paediatric research studies and 50 from dental care. We measured various generic forms of discomfort (nervousness, annoyance, pain, fright, boredom, tiredness) due to six common research procedures: buccal swabs, MRI scans, pulmonary function tests, skin prick tests, ultrasound imaging and venepunctures. Most children reported limited discomfort during the research procedures (means: 1-2.6 on a scale from 1 to 5). Compared with dental check-ups, buccal swab tests, skin prick tests and ultrasound imaging were less discomforting, while MRI scans, venepunctures and pulmonary function tests caused a similar degree of discomfort. 60.3% of the children suggested providing distraction by showing movies to reduce discomfort. The exploratory analyses suggested a positive association between anxiety-proneness and discomfort. The findings of this study support the acceptability of participation of children in the studied research procedures, which stimulates evidence-based research practice. Furthermore, the present study can be considered as a first step in providing benchmarks for discomfort of procedures in paediatric research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The child's perspective on discomfort during medical research procedures: a descriptive study
Staphorst, Mira S; Benninga, Marc A; Bisschoff, Margriet; Bon, Irma; Busschbach, Jan J V; Diederen, Kay; van Goudoever, Johannes B; Haarman, Eric G; Hunfeld, Joke A M; Jaddoe, Vincent V W; de Jong, Karin J M; de Jongste, Johan C; Kindermann, Angelika; Königs, Marsh; Oosterlaan, Jaap; Passchier, Jan; Pijnenburg, Mariëlle W; Reneman, Liesbeth; de Ridder, Lissy; Tamminga, Hyke G; Tiemeier, Henning W; Timman, Reinier; van de Vathorst, Suzanne
2017-01-01
Objective The evaluation of discomfort in paediatric research is scarcely evidence-based. In this study, we make a start in describing children's self-reported discomfort during common medical research procedures and compare this with discomfort during dental check-ups which can be considered as a reference level of a ‘minimal discomfort’ medical procedure. We exploratory study whether there are associations between age, anxiety-proneness, gender, medical condition, previous experiences and discomfort. We also describe children's suggestions for reducing discomfort. Design Cross-sectional descriptive study. Setting Paediatric research at three academic hospitals. Patients 357 children with and without illnesses (8–18 years, mean=10.6 years) were enrolled: 307 from paediatric research studies and 50 from dental care. Main outcome measures We measured various generic forms of discomfort (nervousness, annoyance, pain, fright, boredom, tiredness) due to six common research procedures: buccal swabs, MRI scans, pulmonary function tests, skin prick tests, ultrasound imaging and venepunctures. Results Most children reported limited discomfort during the research procedures (means: 1–2.6 on a scale from 1 to 5). Compared with dental check-ups, buccal swab tests, skin prick tests and ultrasound imaging were less discomforting, while MRI scans, venepunctures and pulmonary function tests caused a similar degree of discomfort. 60.3% of the children suggested providing distraction by showing movies to reduce discomfort. The exploratory analyses suggested a positive association between anxiety-proneness and discomfort. Conclusions The findings of this study support the acceptability of participation of children in the studied research procedures, which stimulates evidence-based research practice. Furthermore, the present study can be considered as a first step in providing benchmarks for discomfort of procedures in paediatric research. PMID:28765130
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation
NASA Astrophysics Data System (ADS)
Shoja Razavi, Reza
2016-08-01
In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.
Ryniewicz, Anna M; Bojko, Łukasz; Ryniewicz, Wojciech I
2016-01-01
The aim of the present paper was a question of structural identification and evaluation of strength parameters of Titanium (Ticp - grade 2) and its alloy (Ti6Al4V) which are used to serve as a base for those permanent prosthetic supplements which are later manufactured employing CAD/CAM systems. Microstructural tests of Ticp and Ti6Al4V were conducted using an optical microscope as well as a scanning microscope. Hardness was measured with the Vickers method. Micromechanical properties of samples: microhardness and Young's modulus value, were measured with the Oliver and Pharr method. Based on studies using optical microscopy it was observed that the Ticp from the milling technology had a single phase, granular microstructure. The Ti64 alloy had a two-phase, fine-grained microstructure with an acicular-lamellar character. The results of scanning tests show that titanium Ticp had a single phase structure. On its grain there was visible acicular martensite. The structure of the two phase Ti64 alloy consists of a β matrix as well as released α phase deposits in the shape of extended needles. Micromechanical tests demonstrated that the alloy of Ti64 in both methods showed twice as high the microhardness as Ticp. In studies of Young's modulus of Ti64 alloy DMLS technology have lower value than titanium milling technology. According to the results obtained, the following conclusion has been drawn: when strength aspect is discussed, the DMLS method is a preferred one in manufacturing load structures in dentistry and may be an alternate way for the CAD/CAM system used in decrement processing.
Evaluation of a laser scanning sensor for variable-rate tree sprayer development
USDA-ARS?s Scientific Manuscript database
Accurate canopy measurement capabilities are prerequisites to automate variable-rate sprayers. A 270° radial range laser scanning sensor was tested for its scanning accuracy to detect tree canopy profiles. Signals from the laser sensor and a ground speed sensor were processed with an embedded comput...
The effect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit.
Ibrahim, Mohd Rafiq Mohd; Singh, Simmrat; Merican, Azhar Mahmood; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Kamarul, Tunku
2016-06-16
Fracture healing in bone gap is one of the major challenges encountered in Orthopedic Surgery. At present, the treatment includes bone graft, employing either internal or external fixation which has a significant impact on the patient, family and even society. New drugs are emerging in the markets such as anabolic bone-forming agents including teriparatide and strontium ranelate to stimulate bone growth. Based on the mechanism of their actions, we embarked on a study on the healing of a fractured ulna with bone gap in a rabbit model. We segregated ten rabbits into two groups: five rabbits in the test group and five rabbits in the control group. We created a 5 mm bone gap in the ulna bone, removing the periosteum as well. Rabbits in the test group received 450 mg/kg of strontium ranelate via oral administration, daily, for six weeks. The x-rays, CT scans and blood tests were performed every two weeks. At the end of six weeks, the rabbits were sacrificed, and the radius and ulna bones harvested for histopathological examination. Based on the x-rays and CT scans, fracture healing or bone formation was observed to be faster in the control group. From the x-ray findings, 80 % of the fracture united and by CT scan, 60 % of the fracture united in the control group at the end of the six-week study. None of the fractures united in the test group. However, the histopathology report showed that a callus of different stages was being formed in both groups, consisting of 80 % of bone. The serum levels of osteocalcin and alkaline phosphatase initially remained similar up to three weeks and changed slightly at the end of six weeks. We conclude that the strontium effect begins slowly, and while it may not interfere with bone cell proliferation it may interfere in the mineralization and delay the acute stage of fracture healing. We recommend that a larger sample size and a longer duration of the study period be implemented to confirm our finding.
Prahs, Philipp; Radeck, Viola; Mayer, Christian; Cvetkov, Yordan; Cvetkova, Nadezhda; Helbig, Horst; Märker, David
2018-01-01
Intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF) medications have become the standard of care for their respective indications. Optical coherence tomography (OCT) scans of the central retina provide detailed anatomical data and are widely used by clinicians in the decision-making process of anti-VEGF indication. In recent years, significant progress has been made in artificial intelligence and computer vision research. We trained a deep convolutional artificial neural network to predict treatment indication based on central retinal OCT scans without human intervention. A total of 183,402 retinal OCT B-scans acquired between 2008 and 2016 were exported from the institutional image archive of a university hospital. OCT images were cross-referenced with the electronic institutional intravitreal injection records. OCT images with a following intravitreal injection during the first 21 days after image acquisition were assigned into the 'injection' group, while the same amount of random OCT images without intravitreal injections was labeled as 'no injection'. After image preprocessing, OCT images were split in a 9:1 ratio to training and test datasets. We trained a GoogLeNet inception deep convolutional neural network and assessed its performance on the validation dataset. We calculated prediction accuracy, sensitivity, specificity, and receiver operating characteristics. The deep convolutional neural network was successfully trained on the extracted clinical data. The trained neural network classifier reached a prediction accuracy of 95.5% on the images in the validation dataset. For single retinal B-scans in the validation dataset, a sensitivity of 90.1% and a specificity of 96.2% were achieved. The area under the receiver operating characteristic curve was 0.968 on a per B-scan image basis, and 0.988 by averaging over six B-scans per examination on the validation dataset. Deep artificial neural networks show impressive performance on classification of retinal OCT scans. After training on historical clinical data, machine learning methods can offer the clinician support in the decision-making process. Care should be taken not to mistake neural network output as treatment recommendation and to ensure a final thorough evaluation by the treating physician.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, G; Cunliffe, A; Armato, S
2015-06-15
Purpose: To determine whether the addition of standardized uptake value (SUV) statistical variables to CT lung texture features can improve a predictive model of radiation pneumonitis (RP) development in patients undergoing radiation therapy. Methods: Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were retrospectively collected including pre-therapy PET/CT scans, pre-/posttherapy diagnostic CT scans and RP status. Twenty texture features (firstorder, fractal, Laws’ filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. The mean, maximum, standard deviation, and 50th–95th percentiles of the SUV valuesmore » for all lung voxels in the corresponding PET scans were acquired. For each texture feature, a logistic regression-based classifier consisting of (1) the average change in that texture feature value between the pre- and post-therapy CT scans and (2) the pre-therapy SUV standard deviation (SUV{sub SD}) was created. The RP-classification performance of each logistic regression model was compared to the performance of its texture feature alone by computing areas under the receiver operating characteristic curves (AUCs). T-tests were performed to determine whether the mean AUC across texture features changed significantly when SUV{sub SD} was added to the classifier. Results: The AUC for single-texturefeature classifiers ranged from 0.58–0.81 in high-dose (≥ 30 Gy) regions of the lungs and from 0.53–0.71 in low-dose (< 10 Gy) regions. Adding SUVSD in a logistic regression model using a 50/50 data partition for training and testing significantly increased the mean AUC by 0.08, 0.06 and 0.04 in the low-, medium- and high-dose regions, respectively. Conclusion: Addition of SUVSD from a pre-therapy PET scan to a single CT-based texture feature improves RP-classification performance on average. These findings demonstrate the potential for more accurate prediction of RP using information from multiple imaging modalities. Supported, in part, by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under grant number T32 EB002103; SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. HA receives royalties through the University of Chicago for computer-aided diagnosis technology.« less
Localized, gradient-reversed ultrafast z-spectroscopy in vivo at 7T.
Wilson, Neil E; D'Aquilla, Kevin; Debrosse, Catherine; Hariharan, Hari; Reddy, Ravinder
2016-10-01
To collect ultrafast z-spectra in vivo in situations where voxel homogeneity cannot be assured. Saturating in the presence of a gradient encodes the frequency offset spatially across a voxel. This encoding can be resolved by applying a similar gradient during readout. Acquiring additional scans with the gradient polarity reversed effectively mirrors the spatial locations of the frequency offsets so that the same physical location of a positive offset in the original scan will contribute a negative offset in the gradient-reversed scan. Gradient-reversed ultrafast z-spectroscopy (GRUFZS) was implemented and tested in a modified, localized PRESS sequence at 7T. Lysine phantoms were scanned at various concentrations and compared with coventionally-acquired z-spectra. Scans were acquired in vivo in human brain from homogeneous and inhomogeneous voxels with the ultrafast direction cycled between read, phase, and slice. Results were compared to those from a similar conventional z-spectroscopy PRESS-based sequence. Asymmetry spectra from GRUFZS are more consistent and reliable than those without gradient reversal and are comparable to those from conventional z-spectroscopy. GRUFZS offers significant acceleration in data acquisition compared to traditional chemical exchange saturation transfer methods with high spectral resolution and showed higher relative SNR effficiency. GRUFZS offers a method of collecting ultrafast z-spectra in voxels with the inhomogeneity often found in vivo. Magn Reson Med 76:1039-1046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.
2016-03-01
We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.
Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation
NASA Technical Reports Server (NTRS)
Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.
2004-01-01
Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.
Ultrasonic linear array validation via concrete test blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoegh, Kyle, E-mail: hoeg0021@umn.edu; Khazanovich, Lev, E-mail: hoeg0021@umn.edu; Ferraro, Chris
2015-03-31
Oak Ridge National Laboratory (ORNL) comparatively evaluated the ability of a number of NDE techniques to generate an image of the volume of 6.5′ X 5.0′ X 10″ concrete specimens fabricated at the Florida Department of Transportation (FDOT) NDE Validation Facility in Gainesville, Florida. These test blocks were fabricated to test the ability of various NDE methods to characterize various placements and sizes of rebar as well as simulated cracking and non-consolidation flaws. The first version of the ultrasonic linear array device, MIRA [version 1], was one of 7 different NDE equipment used to characterize the specimens. This paper dealsmore » with the ability of this equipment to determine subsurface characterizations such as reinforcing steel relative size, concrete thickness, irregularities, and inclusions using Kirchhoff-based migration techniques. The ability of individual synthetic aperture focusing technique (SAFT) B-scan cross sections resulting from self-contained scans are compared with various processing, analysis, and interpretation methods using the various features fabricated in the specimens for validation. The performance is detailed, especially with respect to the limitations and implications for evaluation of a thicker, more heavily reinforced concrete structures.« less
Kiziltay, Aysel; Marcos-Fernandez, Angel; San Roman, Julio; Sousa, Rui A; Reis, Rui L; Hasirci, Vasif; Hasirci, Nesrin
2015-08-01
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells. Copyright © 2013 John Wiley & Sons, Ltd.
Dissolution enhancement of tadalafil by liquisolid technique.
Lu, Mei; Xing, Haonan; Yang, Tianzhi; Yu, Jiankun; Yang, Zhen; Sun, Yanping; Ding, Pingtian
2017-02-01
This study aimed to enhance the dissolution of tadalafil, a poorly water-soluble drug by applying liquisolid technique. The effects of two critical formulation variables, namely drug concentration (17.5% and 35%, w/w) and excipients ratio (10, 15 and 20) on dissolution rates were investigated. Pre-compression tests, including particle size distribution, flowability determination, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM), were carried out to investigate the mechanism of dissolution enhancement. Tadalafil liquisolid tablets were prepared and their quality control tests, dissolution study, contact angle measurement, Raman mapping, and storage stability test were performed. The results suggested that all the liquisolid tablets exhibited significantly higher dissolution rates than the conventional tablets and pure tadalafil. FT-IR spectrum reflected no drug-excipient interactions. DSC and XRD studies indicated reduction in crystallinity of tadalafil, which was further confirmed by SEM and Raman mapping outcomes. The contact angle measurement demonstrated obvious increase in wetting property. Taken together, the reduction of particle size and crystallinity, and the improvement of wettability were the main mechanisms for the enhanced dissolution rate. No significant changes were observed in drug crystallinity and dissolution behavior after storage based on XRD, SEM and dissolution results.
Stemp, W James; Chung, Steven
2011-01-01
This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so. Copyright © 2011 Wiley Periodicals, Inc.
Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes
NASA Astrophysics Data System (ADS)
Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen
2016-06-01
Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.
NASA Astrophysics Data System (ADS)
Church, Philip; Borribanbunpotkat, Kiatchai; Trickey, Evan; Iles, Peter; Sekerka, Mike
2014-06-01
Neptec has developed a family of obscurant-penetrating 3D laser scanners called OPAL 2.0 that are being adapted for rotorcraft platforms. Neptec and Boeing have been working on an integrated system utilizing the OPAL LiDAR to support operations in degraded visual environments. OPAL scanners incorporate Neptec's patented obscurantpenetrating LiDAR technology which was extensively tested in controlled dust environments and helicopters for brownout mitigation. The OPAL uses a scanning mechanism based on the Risley prism pair. Data acquisition rates can go as high as 200kHz for ranges within 200m and 25kHz for ranges exceeding 200m. The scan patterns are created by the rotation of two prisms under independent motor control. The geometry and material properties of the prisms will define the conical field-of-view of the sensor, which can be set up to 120 degrees. Through detailed simulations and analysis of mission profiles, the system can be tailored for applications to rotorcrafts. Examples of scan patterns and control schemes based on these simulations will be provided along with data density predictions versus acquisition time for applicable DVE scenarios. Preliminary 3D data acquired in clear and obscurant conditions will be presented.
Advanced electric-field scanning probe lithography on molecular resist using active cantilever
NASA Astrophysics Data System (ADS)
Kaestner, Marcus; Aydogan, Cemal; Ivanov, Tzvetan; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Krivoshapkina, Yana; Hofer, Manuel; Lenk, Steve; Atanasov, Ivaylo; Holz, Mathias; Rangelow, Ivo W.
2015-07-01
The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many devices. Driven by the thermally actuated piezoresistive cantilever technology, we have developed a prototype of a scanning probe lithography (SPL) platform which is able to image, inspect, align, and pattern features down to the single digit nanoregime. Here, we present examples of practical applications of the previously published electric-field based current-controlled scanning probe lithography. In particular, individual patterning tests are carried out on calixarene by using our developed table-top SPL system. We have demonstrated the application of a step-and-repeat SPL method including optical as well as atomic force microscopy-based navigation and alignment. The closed-loop lithography scheme was applied to sequentially write positive and negative tone features. Due to the integrated unique combination of read-write cycling, each single feature is aligned separately with the highest precision and inspected after patterning. This routine was applied to create a pattern step by step. Finally, we have demonstrated the patterning over larger areas, over existing topography, and the practical applicability of the SPL processes for lithography down to 13-nm pitch patterns. To enhance the throughput capability variable beam diameter electric field, current-controlled SPL is briefly discussed.
Allen, Victoria B; Gurusamy, Kurinchi Selvan; Takwoingi, Yemisi; Kalia, Amun; Davidson, Brian R
2016-07-06
Surgical resection is the only potentially curative treatment for pancreatic and periampullary cancer. A considerable proportion of patients undergo unnecessary laparotomy because of underestimation of the extent of the cancer on computed tomography (CT) scanning. Laparoscopy can detect metastases not visualised on CT scanning, enabling better assessment of the spread of cancer (staging of cancer). This is an update to a previous Cochrane Review published in 2013 evaluating the role of diagnostic laparoscopy in assessing the resectability with curative intent in people with pancreatic and periampullary cancer. To determine the diagnostic accuracy of diagnostic laparoscopy performed as an add-on test to CT scanning in the assessment of curative resectability in pancreatic and periampullary cancer. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via PubMed, EMBASE via OvidSP (from inception to 15 May 2016), and Science Citation Index Expanded (from 1980 to 15 May 2016). We included diagnostic accuracy studies of diagnostic laparoscopy in people with potentially resectable pancreatic and periampullary cancer on CT scan, where confirmation of liver or peritoneal involvement was by histopathological examination of suspicious (liver or peritoneal) lesions obtained at diagnostic laparoscopy or laparotomy. We accepted any criteria of resectability used in the studies. We included studies irrespective of language, publication status, or study design (prospective or retrospective). We excluded case-control studies. Two review authors independently performed data extraction and quality assessment using the QUADAS-2 tool. The specificity of diagnostic laparoscopy in all studies was 1 because there were no false positives since laparoscopy and the reference standard are one and the same if histological examination after diagnostic laparoscopy is positive. The sensitivities were therefore meta-analysed using a univariate random-effects logistic regression model. The probability of unresectability in people who had a negative laparoscopy (post-test probability for people with a negative test result) was calculated using the median probability of unresectability (pre-test probability) from the included studies, and the negative likelihood ratio derived from the model (specificity of 1 assumed). The difference between the pre-test and post-test probabilities gave the overall added value of diagnostic laparoscopy compared to the standard practice of CT scan staging alone. We included 16 studies with a total of 1146 participants in the meta-analysis. Only one study including 52 participants had a low risk of bias and low applicability concern in the patient selection domain. The median pre-test probability of unresectable disease after CT scanning across studies was 41.4% (that is 41 out of 100 participants who had resectable cancer after CT scan were found to have unresectable disease on laparotomy). The summary sensitivity of diagnostic laparoscopy was 64.4% (95% confidence interval (CI) 50.1% to 76.6%). Assuming a pre-test probability of 41.4%, the post-test probability of unresectable disease for participants with a negative test result was 0.20 (95% CI 0.15 to 0.27). This indicates that if a person is said to have resectable disease after diagnostic laparoscopy and CT scan, there is a 20% probability that their cancer will be unresectable compared to a 41% probability for those receiving CT alone.A subgroup analysis of people with pancreatic cancer gave a summary sensitivity of 67.9% (95% CI 41.1% to 86.5%). The post-test probability of unresectable disease after being considered resectable on both CT and diagnostic laparoscopy was 18% compared to 40.0% for those receiving CT alone. Diagnostic laparoscopy may decrease the rate of unnecessary laparotomy in people with pancreatic and periampullary cancer found to have resectable disease on CT scan. On average, using diagnostic laparoscopy with biopsy and histopathological confirmation of suspicious lesions prior to laparotomy would avoid 21 unnecessary laparotomies in 100 people in whom resection of cancer with curative intent is planned.
Chest CT in children: anesthesia and atelectasis.
Newman, Beverley; Krane, Elliot J; Gawande, Rakhee; Holmes, Tyson H; Robinson, Terry E
2014-02-01
There has been an increasing tendency for anesthesiologists to be responsible for providing sedation or anesthesia during chest CT imaging in young children. Anesthesia-related atelectasis noted on chest CT imaging has proven to be a common and troublesome problem, affecting image quality and diagnostic sensitivity. To evaluate the safety and effectiveness of a standardized anesthesia, lung recruitment, controlled-ventilation technique developed at our institution to prevent atelectasis for chest CT imaging in young children. Fifty-six chest CT scans were obtained in 42 children using a research-based intubation, lung recruitment and controlled-ventilation CT scanning protocol. These studies were compared with 70 non-protocolized chest CT scans under anesthesia taken from 18 of the same children, who were tested at different times, without the specific lung recruitment and controlled-ventilation technique. Two radiology readers scored all inspiratory chest CT scans for overall CT quality and atelectasis. Detailed cardiorespiratory parameters were evaluated at baseline, and during recruitment and inspiratory imaging on 21 controlled-ventilation cases and 8 control cases. Significant differences were noted between groups for both quality and atelectasis scores with optimal scoring demonstrated in the controlled-ventilation cases where 70% were rated very good to excellent quality scans compared with only 24% of non-protocol cases. There was no or minimal atelectasis in 48% of the controlled ventilation cases compared to 51% of non-protocol cases with segmental, multisegmental or lobar atelectasis present. No significant difference in cardiorespiratory parameters was found between controlled ventilation and other chest CT cases and no procedure-related adverse events occurred. Controlled-ventilation infant CT scanning under general anesthesia, utilizing intubation and recruitment maneuvers followed by chest CT scans, appears to be a safe and effective method to obtain reliable and reproducible high-quality, motion-free chest CT images in children.
On effectiveness of network sensor-based defense framework
NASA Astrophysics Data System (ADS)
Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh
2012-06-01
Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.
Detailed field test of yaw-based wake steering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew
This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less
Detailed field test of yaw-based wake steering
Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew; ...
2016-10-03
This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
NASA Astrophysics Data System (ADS)
Bean, Glenn E.; Witkin, David B.; McLouth, Tait D.; Zaldivar, Rafael J.
2018-02-01
Research on the selective laser melting (SLM) method of laser powder bed fusion additive manufacturing (AM) has shown that surface and internal quality of AM parts is directly related to machine settings such as laser energy density, scanning strategies, and atmosphere. To optimize laser parameters for improved component quality, the energy density is typically controlled via laser power, scanning rate, and scanning strategy, but can also be controlled by changing the spot size via laser focal plane shift. Present work being conducted by The Aerospace Corporation was initiated after observing inconsistent build quality of parts printed using OEM-installed settings. Initial builds of Inconel 718 witness geometries using OEM laser parameters were evaluated for surface roughness, density, and porosity while varying energy density via laser focus shift. Based on these results, hardware and laser parameter adjustments were conducted in order to improve build quality and consistency. Tensile testing was also conducted to investigate the effect of build plate location and laser settings on SLM 718. This work has provided insight into the limitations of OEM parameters compared with optimized parameters towards the goal of manufacturing aerospace-grade parts, and has led to the development of a methodology for laser parameter tuning that can be applied to other alloy systems. Additionally, evidence was found that for 718, which derives its strength from post-manufacturing heat treatment, there is a possibility that tensile testing may not be perceptive to defects which would reduce component performance. Ongoing research is being conducted towards identifying appropriate testing and analysis methods for screening and quality assurance.
NASA Technical Reports Server (NTRS)
Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua
2016-01-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.
Accuracy of CT-based attenuation correction in PET/CT bone imaging
NASA Astrophysics Data System (ADS)
Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.
2012-05-01
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.
Cash, David M; Sinha, Tuhin K; Chapman, William C; Terawaki, Hiromi; Dawant, Benoit M; Galloway, Robert L; Miga, Michael I
2003-07-01
As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4 +/- 0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust method of acquiring anatomical surfaces intraoperatively.
Lugol's solution eradicates Staphylococcus aureus biofilm in vitro.
Grønseth, Torstein; Vestby, Lene K; Nesse, Live L; Thoen, Even; Habimana, Olivier; von Unge, Magnus; Silvola, Juha T
2017-12-01
The aim of the study was to evaluate the antibacterial efficacy of Lugol's solution, acetic acid, and boric acid against Staphylococcus aureus biofilm. The efficacy of Lugol's solution 1%, 0.1%, and 0.05%, acetic acid 5% or boric acid 4.7% for treatment of Staphylococcus aureus biofilm in vitro was tested using 30 clinical strains. Susceptibility in the planktonic state was assessed by disk diffusion test. Antiseptic effect on bacteria in biofilm was evaluated by using a Biofilm-oriented antiseptic test (BOAT) based on metabolic activity, a biofilm bactericidal test based on culturing of surviving bacteria and confocal laser scanning microscopy combined with LIVE/DEAD staining. In the planktonic state, all tested S. aureus strains were susceptible to Lugol's solution and acetic acid, while 27 out of 30 tested strains were susceptible to boric acid. In biofilm the metabolic activity was significantly reduced following exposure to Lugol's solution and 5% acetic acid, while boric acid exposure led to no significant changes in metabolic activities. In biofilm, biocidal activity was observed for Lugol's solution 1% (30/30), 0.1% (30/30), and 0.05% (26/30). Acetic acid and boric acid showed no bactericidal activity in this test. Confocal laser scanning microscopy, assessed in 4/30 strains, revealed significantly fewer viable biofilm bacteria with Lugol's solution (1% p < 0.001, 0.1% p = 0.001 or 0.05% p = 0.001), acetic acid 5% for 10 min (p = 0.001) or 30 min (p = 0.015), but not for acetic acid for 1 min or boric acid. Lugol's solution 1.0% and 0.1% effectively eradicated S. aureus in biofilm and could be an alternative to conventional topical antibiotics where S. aureus biofilm is suspected such as external otitis, pharyngitis and wounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test
NASA Astrophysics Data System (ADS)
Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel
2018-04-01
We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.
2015-01-01
for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of
p-barp interactions at 2. 32 GeV/c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.K.; Fields, T.; Rhines, D.S.
1978-01-01
A bubble-chamber experiment based on 304 000 events of p-barp interactions at 2.32 GeV/c is described. The film was automatically scanned and measured by the POLLY II system. Details of the data-analysis methods are given. We report results on cross sections for constrained final states, tests of C invariance, and inclusive pion and rho/sup 0/ multiplicity parameters for annihilation final states.